An FPGA-Based Stream Processor for Embedded Real-Time Vision with
Convolutional Networks

Clément Farabet, Cyril Poulet and Yann LeCun
Courant Institute of Mathematical Sciences, New York University

{cfarabet,yann}@cs.nyu.edu

http://www.cs.nyu.edu/~-yann

Abstract

Many recent visual recognition systems can be seen as
being composed of multiple layers of convolutional filter
banks, interspersed with various types of non-linearities.
This includes Convolutional Networks, HMAX-type archi-
tectures, as well as systems based on dense SIFT features
or Histogram of Gradients. This paper describes a highly-
compact and low power embedded system that can run such
vision systems at very high speed. A custom board built
around a Xilinx Virtex-4 FPGA was built and tested. It mea-
sures 710 x 80 mm, and the complete system—FPGA, cam-
era, memory chips, flash—consumes 15 watts in peak, and
is capable of more than 4 x 10° multiply-accumulate oper-
ations per second in real vision application. This enables
real-time implementations of object detection, object recog-
nition, and vision-based navigation algorithms in small-size
robots, micro-UAVs, and hand-held devices. Real-time face
detection is demonstrated, with speeds of 10 frames per sec-
ond at VGA resolution.

1. Introduction

Vision systems have progressed a lot in the past decade,
but most of the modern algorithms still require an amount
of computation that makes their integration to autonomous
vehicles, cameras or toys impossible. The present work is a
step in the direction of low power, lightweight, and low cost
vision systems that are required for such applications.

We describe an implementation of a complete vi-
sion/recognition system on a single Field-Programmable
Gate Array (FPGA). The design requires no external hard-
ware, other than a memory chip, and has been integrated
onto a small 70 x 80 mm printed circuit board, that con-
sumes less than 15W, camera included. The system is pro-
grammable, and can implement any vision system in which
the bulk of the computation is spent on convolutions with
small-size kernels. The design is specifically geared to-

wards Convolutional Networks [&, 9], but can be used for
many similar architectures based on local filter banks and
classifiers, such as HMAX [15, 11], and HoG methods [4].

Convolutional Networks (ConvNets) are feed-forward
architectures composed of multiple layers of convolutional
filters, interspersed with point-wise non-linear functions [8,

]. Because they can easily be trained for a wide variety
of tasks (e.g. OCR [9], face/person detection [6, 12], object
recognition [13], and robot navigation [10, 7]), ConvNets
have many potential applications in micro-robots and other
embedded vision systems that require low cost and high-
speed implementations.

Pre-trained ConvNets are algorithmically simple, with
low requirements for arithmetic precision. Hence, sev-
eral hardware implementations have been proposed in the
past. The first one was the ANNA chip, a mixed high-end,
analog-digital processor that could compute 64 simultane-
ous 8 x 8 convolutions at a peak rate of 4.10° multiply-
accumulate operations per second [I, 14]. Subsequently,
Cloutier et al. proposed an FPGA implementation of Conv-
Nets [2], but fitting it into the limited-capacity FPGAs of the
time required the use of extremely low-accuracy arithmetic.

Alternatively, pre-trained ConvNets and other
convolution-based systems can be implemented on
Digital Signal Processors (DSPs), or Graphics Processing
Units (GPUs). DSPs are very simple to program, and often
result in systems that consume less power than FPGAs,
but have lesser capabilities in terms of parallelism. On
the other hand, GPUs provide a very flexible environment
for parallelism, but consume a lot of power. FPGAs have
a clear advantage over these platforms, as they allow
the development of custom logic, targeted for precise
applications. Although they are not necessarily low-power
when compared to equivalent DSPs, they can be seen as a
step towards custom chips (e.g. ASICs) to achieve very low
power.

The system presented in this paper is a programmable
ConvNet Processor (CNP), which can be thought of as a
SIMD (Single Instruction, Multiple Data) processor, with

http://www.cs.nyu.edu/~yann

Remote system
A

Terminal Serial 32bit l
' | Interface Interface General CPU
i L i
! Control File Pre/Post 1
© | Unit (CU) Manager Processing |
jmoomsmmmms 1 [IR v)
' Hardware 1 |] B Fxternal
 ardware . d) I Memory I/0 i Flash
UL S O D
- SUB Q = Interface

‘ NONLIN

‘ DIVISION

Stream = .
Router | t—>| Arbiter |_
§ 7 Interface T (Mux [©

Streaming

Multiport External

Memory
Chip(s)

Demux }

Manager /o

Screen

Camera

Figure 1. Architecture of the CNP.

a vector instruction set that matches the elementary oper-
ations of a ConvNet. While these elementary operations
are highly optimized at the hardware level, implementing
a particular ConvNet simply consists in reprogramming the
software layer of our processor, and does not require to re-
configure the logic circuits in the FPGA.

Section 2 describes the architecture for the ConvNet Pro-
cessor (CNP). Section 3 describes a particular application,
based on a standard ConvNet. Finally section 4 gives results
on the performance of the system.

2. Architecture

Figure 1 shows the functional architecture of the system.
This design has been implemented within a single Xilinx
Virtex-4 SX35, coupled to a pair of QDR-SRAM chips, on
a custom board. This FPGA is rather small in terms of
gates—about 34,000 logic cells—but provides 192 built-in
hardware multiply and accumulate units that can operate at
up to 450MHz. The bandwidth from/to the external mem-
ory is 7.2GB/s in this custom design, but only half of it is
currently used. The built-in fixed-point multipliers use 18
bit inputs and accumulate on 48 bits.

2.1. Hardware

The CNP contains a Control Unit (CU), a Paral-
lel/Pipelined Vector Arithmetic and Logic Unit (VALU), an
I/O control unit, and a Memory Interface. The CU is actu-
ally emulated on a full-fledged 32-bit soft CPU, based on

the PowerPC architecture, which is used to sequence the
operations of the VALU. The VALU implements ConvNet-
specific operations including 2D convolutions (CONV),
spatial pooling/subsampling (SUB), point-wise non-linear
functions (NONLIN), and other more general vector oper-
ators, such as square root (SQRT), division (DIV), It
has direct memory access (DMA). The I/O unit comprises
two hardware modules: one to acquire video data from a
standard DVI' port (camera, or other video source), and the
other to generate a video signal for display on a standard
DVI monitor.

Memory Interface

The Memory Interface is a key part of the system. Its first
purpose is to enable parallelization by allowing multiple si-
multaneous access of the same memory location transpar-
ently. A dedicated hardware arbiter has been designed to
multiplex/demultiplex access to the external memory chip,
by providing 8 ports that can read/write from/to the mem-
ory at the same time. To ensure continuity of data flows,
each port is buffered with FIFOs. The depth of these FIFOs
determine the maximum time slice that can be attributed per
port without interrupting the streams.

The arbiter has a simple heuristic: it cycles through the
ports, and connects a port to the external memory if its re-
quest queue is not empty. Then it estimates its bandwidth

IDigital Visual Interface

based on the quantity of data present in this queue, to al-
locate a certain time slice. As the arbiter constantly cy-
cles through the ports, the amount of requests in a queue
is a fairly good estimate of the bandwidth requirement for a
port. Once a queue is fully processed, or if the time slice is
over (whatever is shortest), it switches to the next port.

The second purpose of the Memory Interface is to pro-
vide an abstract representation of the memory. For that,
it uses a streaming interface that can read/write streams
from/to the memory. A stream is defined by an offset
in memory, strides (to access multi-dimensional data) and
sizes for each dimension. For example, a module connected
to a port of the streaming interface can simply request a 2D
image starting at location X, with dimensions W x H, and
the streaming interface will compute the offsets, generate
all the addresses, start fetching data, and sets a flag when
ready to stream. It will then stream out the data, until the
whole chunk has been read out.

It is then easy to build up a system on top of this Memory
Interface, as each module can request 2D chunks of data,
process them, and simply hand them back. It also allows
easy integration of other systems, such as a camera, or dis-
play, as each of these can simply read/write to a particular
area of the memory. However, there is no hardware check-
ing on the validity of data at some particular location, e.g.
if a port is writing at some location, no other port should
read from this location before the former operation is fully
completed.

Vector/Stream ALU

The second key component is the Vector/Stream ALU. All
the basic operations of a ConvNet have been implemented
at the hardware level, and provided as macro-instructions.
These macro-instructions can be executed in any order.
Their sequencing is managed at the software level by the
soft CPU.

The main hard-wired macro-instructions of this system
are: (1) 2D convolution with accumulation of the result
(CONYV), (2) 2D spatial pooling and subsampling (SUB),
using a max or average filter, (3) dot product between val-
ues at identical locations in multiple 2D planes and a vec-
tor (DOT), and (4) point-wise non-linear mapping (NON-
LIN, currently an approximation of the hyperbolic tangent
sigmoid function). These are higher-level instructions than
those of most traditional processors, but provide an opti-
mal framework for running ConvNets. This VALU contains
other instructions (division, square root, product), that are
needed to pre-process images. The entire instruction set is
vectorial, and properly pipelined to compute any of these in-
structions in a linear time to the input size. More precisely,
once the instruction pipeline is filled, one value is computed
per clock cycle. Streams are handled by the streaming in-

terface, therefore instructions process streams of similar el-
ements continuously, until the stream stops.

We will not go into the details of implementation here,
but simply describe the two most important instructions of
the system: the 2D convolution and the sigmoid.

When computing a ConvNet, most of the effort goes
into 2D convolutions. Therefore the efficiency of the sys-
tem relies mainly on the efficiency of the convolution hard-
ware (combined with the efficiency of the streaming inter-
face). Our 2D convolver, shown in Fig. 2, is inspired by
Shoup [16], and includes a post accumulation to allow the
combination of multiple convolutions. It performs the fol-
lowing basic operation in a single clock cycle:

K-1K-1

Zij = Yij + Z Z Litm,j+nWmn, Q8

m=0 n=0

where z;; is a value in the input plane, w,,, is a value in a
K x K convolution kernel, y;; is a value in a plane to be
combined with the result, and z;; is the output plane.

Values from the input plane are put into K on-chip
FIFOs of which the size is the width of the image minus
the width of the kernel. Shifting values in these FIFOs cor-
responds to shifting the convolution window over the in-
put plane. At each clock cycle, values are shifted by one,
and the dot product between the input plane window and
the kernel is computed in parallel. In other words, the con-
volver performs K2 multiply-accumulate operations simul-
taneously (plus the accumulation of the temporary plane Y,
plus a possible subsampling), at each clock cycle. Conse-
quently, the number of clock cycles for a complete convolu-
tion is equal to the number of values in the output plane,
plus the latency necessary to fill up the FIFOs (roughly
equal to the width of the input plane times the height of the
kernel). All arithmetic operations are performed with 16-bit
fixed-point precision for the kernel coefficient, and 8-bit for
the states. The intermediate accumulated values are stored
on 48 bits in the FIFOs.

The FPGA wused for this implementation has 192
multiply-accumulate units, hence the maximum square ker-
nel size is 13 x 13, or two simultaneous kernels of size 9 x 9,
corresponding to a theoretical maximum rate of 32 x 10? op-
erations per second at 200MHz. However, our experiments
use a single 7 x 7 convolver because our current application
does not require a larger kernel, which corresponds to a the-
oretical maximum of 10 x 10%op/s at 200MHz. A 13 x 13
convolver has been successfully synthesized and routed by
itself, but we could only go up to 10 x 10 with the rest of
the design (the 32-bit CPU consumes a lot of logic/area).

As noted previously, the convolution engine is also used
to perform the subsampling and the dot products.

The point-wise non-linearity is implemented as a piece-
wise approximation of the hyperbolic tangent function

"] Internal storage
(A =1 register)

Hard-wired

2D CONV)

operations in ALU

Data stream from /
to memory

Kernel loaded
from CPU

Pooling /
Subsampling

L

i Output data;

Figure 2. 2D Convolution for K = 3, K = kernel width = kernel height, W = image width.

g(z) = A.tanh(B.x). Since the hard-wired multipliers are
used by the convolver, the implementation was designed to
avoid the use of multiplications, relying exclusively on ad-
ditions and shifts. The function is approximated by a collec-
tion of linear segments for which the binary representation
of the slopes a; has few ones. This allows use to implement
the multiplication using a small number of shifts and adds:

glx) =ax+b; for z€ll;liq] 2)
1 1
@ =g+ 5n MNE [0, 5]. 3)

With this constraint, the sigmoid can be computed with two
shifts and three adds.

The different instructions of the system have concurrent
access to the external memory, through the stream interface,
allowing them to work asynchronously, given that enough
bandwidth is available.

2.2. Software

The soft CPU adds a layer of abstraction to the system:
a program on the soft CPU acts as a micro-program for the
VALU, allowing a high degree of flexibility.

Control Unit

The advantage of using a full-blown CPU instead of a sim-
ple state machine is that standard libraries (in C/C++) can
be easily adapted to run on this platform. In fact, our cur-
rent Control Unit is a complex embedded C++ program
that reproduces most of the feed-forward part of common
machine learning libraries (e.g.Lush, Torch): modular-
ity, high-level representations of networks, de/serialization

of architectures to files, dynamic/hidden memory manage-
ment, ... The main difference with these libraries is that the
computations are not done by the CPU, but off-loaded to the
VALU that can read/write data from/to the Streaming In-
terface asynchronously. The model is similar to the model
adopted by GPUs, for which a general purpose CPU handles
high-level aspects of the code (what needs to be computed),
while the actual computations are executed by the special
purpose processor. This model is extremely efficient when
the amount of communications between these two entities
is small compared to the actual computations.

Prior to being run on the CNP, a ConvNet must be de-
fined and trained on a conventional machine. Currently
available software implementations of ConvNets are avail-
able in the Lush language (a dialect of Lisp), or as C/C++
libraries, such as Torch and EBLearn. Our system is
built around the ConvNet training environment distributed
as part of the Lush system. We wrote a Lush compiler that
takes the Lush description of a trained ConvNet, and auto-
matically compiles it into a compact representation describ-
ing the content of each layer—type of operation, matrix of
connections, kernels. This representation can then be stored
on a flash drive (e.g. SD Card) connected to the CNP.

The Control Unit running on the soft CPU is then able
to decode this representation and dynamically create a rep-
resentation of the network, with all its layers, tables of con-
nections, and kernels. Once the representation is created
the program computes each state of the system in a feed-
forward way, from an input image to the output states, by
generating the proper sequence of calls to the VALU and
Streaming Interface. Memory management is totally ab-
stracted by this program. As a result, the CNP can run dif-

ferent different recognition tasks at the same time and/or
easily switch from an application to another at run-time.

Pre/Post Processing

Another advantage of using a 32-bit CPU is the ability
of performing less common tasks that are not worth im-
plementing in hardware. To do so, the CPU has to have
full read/write access to the same memory used by the
VALU/Streaming Interface. This is handled by the Memory
I/O driver, which provides high-latency access to the exter-
nal memory. The code can then have access to all the feature
maps and images computed by the VALU, asynchronously
(the CPU uses one of the Streaming Interface ports).

Post processing operations for object detection applica-
tions include blob detection, non-maximum suppression,
computation of centroids of activities, and other functions
such as formatting the results of the computation and plot-
ting positions of objects detected on the DVI output, or con-
verting pixel coordinates into real-world zenith/azimuth an-
gles, and so on. All these operations are easily integrated in
our C++ environment.

Other Tasks

As shown in Fig. 1, other functions run on this processor.
A File Manager is used to store/retrieve network config-
urations from/to an external memory (flash, or SD Card).
These configurations contain network architectures and pre-
trained convolution kernels and other trainable parameters.
A Serial Interface/Terminal Interface, which provide a
means of transferring data from/to an external system (e.g.
a host computer). Once the FPGA is programmed, this is
the easiest way of uploading new network configurations.
The embedded software also controls external peripher-
als, such as the camera (e.g. dynamic exposure adjustment,
resolution), and the video monitor (resolution, color).

3. Application to Face Detection

To demonstrate the system and to test its performance,
a ConvNet face detection system was built and run on the
CNP. Face detection systems based on ConvNets have been
shown to outperform the popular boosted cascades of Haar
wavelets method [7], both in speed and accuracy [6, 12].

3.1. Network Architecture

The ConvNet was built and trained on a conventional
computer using the Lush language, and compiled to the
CNP using the automatic ConvNet compiler mentioned in
the previous section. The architecture of the network is
quite similar to those described in [6, 12]. The training ar-
chitecture of the network is given in table 1. The training
images are greyscale images of size 42 x 42 that have been

high-pass filtered by subtracting a Gaussian-filtered version
of the image from the image itself. The first layer, called
C1, performs 6 convolutions with 7 x 7 kernels on the in-
put image, producing 6 feature maps of size 36 x 36. The
second layer, S2 performs 2 x 2 spatial pooling and subsam-
pling of each feature map using a box filter (local averaging
without overlap). The third layer, C3, computes high-level
features by performing 7 x 7 convolutions on several S2
feature maps and adding the results. Each of the sixteen
C3 feature maps combines different random subsets of S2
feature maps. Layer S4 performs 2 x 2 pooling and subsam-
pling similarly to S2. The C5 layer performs 6 x 6 convolu-
tions, combining random subsets of S4 feature maps into 80
different C5 feature maps. Finally, F6 multiplies all feature
map values at a single location by a 2 x 80 matrix. Each fea-
ture map in F6 represents a map of activation peaks for each
category (face or background). Layer F7 is a fixed, dummy
layer that simply combines the face and background outputs
into a single score.

Layer Kernels: dims [nb] Maps: dims [nb]
Input image 42 x 42 [1]
C1 (Conv) 7 x 71[6] 36 x 36 [6]
S2 (Pool) 2 x 2[6] 18 x 18 [6]
C3 (Conv) 7 x 7[61] 12 x 12 [16]
S4 (Pool) 2 x 2[16] 6 x 6[16]
C5 (Conv) 6 x 6 [305] 1 x 1[80]
F6 (Dotp) 1 x 1[160] 1 x1[2]

Table 1. Architecture of the face detector ConvNet. Each layer
contains a certain number of feature maps, e.g. C1 contains 6 fea-
ture maps that are each 36x36. Processing the input image through
C1 shrinks the size of these features, because of the convolution
kernel.

3.2. Training and Running the ConvNet

The network was trained on a data set of faces and
non-faces according to the method described in [9]. The
data set contained 45,000 images from various sources, of
which 30,000 were used for training, and 15,000 for test-
ing. Each set contains 50% faces, and 50% random images
(non faces). The face examples include a wide variety of
angles, and slight variations of size and position within the
window to improve the robustness of the detector. With a
fixed detection threshold, the system reaches a roughly 3%
equal error rate on this data set after only 5 training epochs
through the training set. After training, the Lush-to-CNP
compiler normalizes and quantizes the kernel coefficients
to 16-bit fixed point representation for transfer to the CNP.
The weight quantization did not adversely affect the accu-
racy of the system in any significant way.

A key advantage of ConvNets is that they can be applied
to sliding windows on a large image at very low cost by

Subs. Conv. Full connections

Convolutions Subsampling Convolutions
\
S2:6@157x117

Input Image
Cl:6@314x234

U-“ @70x50 1@70x50

C3:16@151x111
C5: 80@70x50

Figure 3. Architecture of LeNet-5, an example of Convolutional Network.

simply computing convolutions at each layer over the entire
image. The output layer is replicated accordingly, produc-
ing a detection score for every 42 x 42 window on the input,
spaced every 4 pixels. The overall network is depicted in
Fig. 3 for a 320 x 240 input image.

4. Results

The system was connected to a simple greyscale camera,
and the output was displayed on a monitor using the DVI
interface, as shown on Fig. 4. Fig. 7 also shows captures
for an other possible application: object recognition. Fig. 8
shows the complete system, which only requires an external
power source.

S>> n

Figure 4. Face detection without (top) and with (bottom) embed-
ded centroid detection. The output maps are shown for three dif-
ferent scales: on the medium scale the three faces are clearly de-
tected. A blob detector is then run on these maps to find the cen-
troids of these activation peaks, and squares are drawn on the input
images. All these steps are performed by the soft CPU, and these
images are actual captures of the DVI signal generated by the sys-
tem.

4.1. Usage

The design uses 90% of the logic in the Virtex4, but only
28% of the multipliers. The multipliers are mainly used

by the 2D convolver, which requires 7 x 7 = 49 hardware
multipliers. 60% of the RAM blocks are used, mostly by
the Memory Interface. The Virtex4 also provides hardware
FIFOs, which are only used at 7% in this design. Table 2
shows the usage of other resources.

The size of the kernel can be easily increased up to a cer-
tain point, as the convolution engine mostly requires FIFOs
and multipliers. When the router starts packing unrelated
logic in the same slices, the process of optimization be-
comes extremely difficult, and it is hard to predict if a design
will actually fit in the device.

Entity Number Usage
1/0O Buffers 238 out of 448 53%
Clock Managers 2 out of 8 25%
DSP48s (Mult/Accs) 53 out of 192 27%
FIFO blocks 14 out of 192 7%
RAM Blocks 144 out of 192 75%
Logic Slices 13741 out of 15360 89%

Related 13741 out of 13741 100%

Unrelated 0 out of 13741 0%

Table 2. Device usage for a Virtex-4 SX35.

4.2. Speed

The current design can be run at up to 200MHz. At
this frequency, the peak performance is 9.8 billion con-
nections per second, and approximately 4 billion connec-
tions per second on average, when computing a realistic
network, post-processing included. The difference between
these two values is due to the time spent on pre/post pro-
cessing, stream generations (initiating a stream has a certain
latency), and other operations such as sigmoids.

Fig 6 compares raw performances when only comput-
ing convolutions. From an actual implementation of 2D
convolution on a standard computer (in C, using nested for
loops) to a convolution computed by our CNP, the speed-
up is about 10x for small kernels (=7x7), and 30x for large
kernels (=17x17).

More convincing is the speed-up attained when comput-
ing realistic networks, as shown on Fig 6. In that case, our

system is approximately 100 times faster than a standard
software implementation (tested), and 12 times faster than
an ideal version of that code (theoretically computed, based
on the Intel specifications). A realistic software implemen-
tation, optimized for a particular CPU would be somewhere
in between, still giving our system the advantage of a 30x
speed-up.

With these computing resources, processing a full 512 x
384 greyscale image—using a standard convolutional net-
work containing 530 million connections (as shown in
Fig. 3)—takes 100ms, or 10 frames per second. This is for a
scale-invariant detection system that pre-computes a multi-
resolution image pyramid as input to the ConvNet (as shown
in Fig. 7). Computing the same ConvNet on a monoscale in-
put reduces this time by a factor of 1.5, or allows full VGA
frames (640 x 480) to be processed at 10fps.

Time to convolve a 640x480 image with a KxK kernel

I

Actual result on a dual- L
- L
core P4 -24GHz — Theoretical result on a
(nested loops) Pentium'4 - 3GHz
107 ////
///

Time (ms)

s

Result achieved with the current CNP

Planned result with optimized CNP

o 33 56 7 99 Al a3 a5 X7
Kernel size (KxK)

Figure 5. Time required to compute a 2D convolution, on different
platforms. The current CNP uses a 7x7 convolver, whereas the
optimized CNP would use a 14x14 convolver, and an optimized
pre-caching system (as explained in the conclusion).

4.3. Power

An interesting survey was done by Cope [3], to compare
raw performances of GPUs, FPGAs and classical CPUs for
2D convolutions.

His results for the FPGA are similar to ours, approxi-
mately 30 times faster than a Pentium-4 3.0GHz for a 7x7
kernel, which is what we would get if not using our stream-
ing interface. The fastest GPU he used was an nVidia 6800
Ultra, and he achieved a 10x speed-up for the same kernel
size, which is a bit slower than what we get when using our
streaming interface.

It is then fair to compare our CNP to an this GPU-based
system, as they offer similar performances in terms of 2D
convolutions. An even better comparison would be a full

Time to compute a CSCSCF ConvNet
(512x384 input, 7x7 kernels, 2x2, pooling)

Actual result on a dual-
core P4 - 24GHz

[

S

Theoretical result on a

Pentium 4 - 3GHz
D

Result achieved with
the current CNP

[

I
Planned result with

optimized CNP

Computing time (ms)

N\\\\\
|

o

E @ E G
Nb of Connections in ConvNet (in million)

Figure 6. Time required to compute a full ConvNet, on different

platforms. The 400 million connection network is the one used for

face recognition.

implementation of ConvNets on a GPU, but the authors are
not aware of any.

The results are in favor of our CNP. While our full
system—camera included—draws 15W in peak computa-
tions, an nVidia 6800 PCI board draws more than 70W in
average. To use a GPU in embedded systems, one also
needs to use a general purpose CPU to interface it, and a
camera

Comparisons with standard CPUs is pointless, as those
have lesser performances. Low-power DSPs are an alterna-
tive, but their performances cannot match those of a GPU
or FPGA when kernel sizes are larger than 3x3.

5. Conclusions, Future Work

This paper presents a self-contained, high performance
implementation of Convolutional Networks on a single
FPGA. The system opens the door to intelligent vision ca-
pabilities for low-cost robots. Given the compactness, small
form factor (see Fig. 8), and low power requirement of
the design (15W in peak, for a complete and autonomous
system), a particularly interesting potential application is
vision-based navigation for micro-UAVs.

While the present system was demonstrated for face de-
tection, ConvNets can be trained to perform a large variety
of tasks, including vision-based obstacle avoidance for mo-
bile robots [10, 7], or object recognition.

Our system can also be implemented in a low-end FPGA
(Xilinx Spartan-3A DSP, as first introduced in [5]) and still
reach decent performances.

The next step of this work will aim at improving the de-
sign to make full use of the FPGA, and to target ASICs

input

Figure 7. Captures of the video signal generated by the CNP, run-
ning an object recognition application. The input is shown first
(top), then a pyramid of 3 scales, pre-processed with a Mexican
Filter (middle), and a few feature maps from the two first convo-
lutional layers (bottom). These images show that the convolutions
and subsampling are applied on all the scale, to minimize the effect
of latency in the system

m\k \

Figure 8. Our custom platform, embedding the FPGA and two
QDR memory chips. The complete recognition only draws 15W
in peak.

to reduce the power consumption. Our current efforts aim
at: (1) transforming the convolver into a flexible and pro-
grammable grid of elementary units (e.g. multipliers, non-
linear mappings, ...), to compute several convolutions of
different sizes at the same time, (2) allowing the operations
in the VALU to be cascaded (creating different paths in this
grid) to reduce latencies, (3) pre-caching the kernels in the
grid, and pre-fetching streams of data while processing.

References

[1] B. Boser, E. Sackinger, J. Bromley, Y. LeCun, and
L. Jackel. An analog neural network processor with pro-
grammable topology. IEEE Journal of Solid-State Circuits,
26(12):2017-2025, December 1991. 1

[2] J. Cloutier, E. Cosatto, S. Pigeon, F. Boyer, and P. Y. Simard.
Vip: An fpga-based processor for image processing and neu-

3

—

[4

—

(5

—

(6]

[7

—

[8

—

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

ral networks. In Fifth International Conference on Micro-
electronics for Neural Networks and Fuzzy Systems (Mi-
croNeuro’96), pages 330-336, Lausanne, Switzerland, 1996.
1

B. Cope. Implementation of 2d convolution on fpga, gpu and
cpu. Technical report, Department of Electrical and Elec-
tronic Engineering, Imperial College, London, UK, 2006. 7
N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. of Computer Vision and Pattern
Recognition, 2005. 1

C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An
fpga-based processor for convolutional networks. In Inter-
national Conference on Field Programmable Logic and Ap-
plications, Prague, September 2009. IEEE. 7

C. Garcia and M. Delakis. Convolutional face finder: A
neural architecture for fast and robust face detection. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
26(11):1408-1423, 2004. 1, 5

R. Hadsell, A. Erkan, P. Sermanet, J. Ben, K. Kavukcuoglu,
U. Muller, and Y. LeCun. A multi-range vision strategy for
autonomous offroad navigation. In Proc. Robotics and Ap-
plications (RA’07),2007. 1,7

Y. LeCun. Generalization and network design strategies. In
R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, editors,
Connectionism in Perspective, Zurich, Switzerland, 1989.
Elsevier. an extended version was published as a technical
report of the University of Toronto. 1

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, November 1998. 1, 5
Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-
road obstacle avoidance through end-to-end learning. In
Advances in Neural Information Processing Systems (NIPS
2005). MIT Press, 2005. 1,7

J. Mutch and D. Lowe. Multiclass object recognition with
sparse, localized features. In CVPR, 2006. 1

M. Osadchy, Y. LeCun, and M. Miller. Synergistic face de-
tection and pose estimation with energy-based models. Jour-
nal of Machine Learning Research, 8:1197-1215, May 2007.
1,5

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsu-
pervised learning of invariant feature hierarchies with ap-
plications to object recognition. In Proc. Computer Vi-
sion and Pattern Recognition Conference (CVPR’07). IEEE
Press, 2007. 1

E. Sickinger, B. Boser, J. Bromley, Y. LeCun, and L. D.
Jackel. Application of the ANNA neural network chip to
high-speed character recognition. /IEEE Transaction on Neu-
ral Networks, 3(2):498-505, March 1992. 1

T. Serre, L. Wolf, and T. Poggio. Object recognition with
features inspired by visual cortex. In CVPR, 2005. 1

R. G. Shoup. Parameterized convolution filtering in a field
programmable gate array. In Selected papers from the Oxford
1993 international workshop on field programmable logic
and applications on More FPGAs, pages 274-280, Oxford,
United Kingdom, 1994. Abingdon EE&CS Books. 3

P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001. 5

