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Abstract—We present a novel ”hybrid Hessian” six-degrees-of-
freedom simultaneous localization and mapping (SLAM) algo-
rithm. Our method allows for the smooth trade-off of accuracy
for efficiency and for the incorporation of GPS measurements
during real-time operation, thereby offering significant advan-
tages over other SLAM solvers.

Like other stochastic SLAM methods, such as SGD and
TORO, our technique is robust to local minima and eliminates
the need for costly relinearizations of the map. Unlike other
stochastic methods, but similar to exact solvers, such as iSAM,
our technique is able to process position-only constraints, such as
GPS measurements, without introducing systematic distortions in
the map.

We present results from the Google Street View database, and
compare our method with results from TORO. We show that
our solver is able to achieve higher accuracy while operating
within real-time bounds. In addition, as far as we are aware,
this is the first stochastic SLAM solver capable of processing
GPS constraints in real-time.

I. INTRODUCTION

In mobile robotics, the ability to self-localize is a critical
prerequisite to many higher-level functions. SLAM can be
described as the iterative process of localizing oneself relative
to previously explored locations, and mapping new locations
relative to oneself.
A popular formulation of this problem is to model it as

a graph of nodes, representing robot poses to be solved for,
and edges, representing sensor readings. Each edge defines
an energy function of the nodes it connects. This function
penalizes deviations between the nodes’ relative pose, and the
relative pose as measured by a sensor. By minimizing the sum
of these constraint energies with respect to the pose variables,
we solve for the maximum a posteriori values of all poses
given all sensor readings.
In this paper, we draw inspiration from two divergent

approaches to minimizing this energy: full linearized solvers,
and stochastic relaxation. Full solvers are mathematically
equivalent to the well-known Gauss-Newton method, though
with better numerical stability and much-improved speed.
These methods linearize the total constraint energy E around
the current value of the poses z, then solve the resulting
linear equation for an update dz that minimizes E(z + dz)
in a least-squares sense. Sparse solving techniques can in-
crementally solve for this update in real time, but once the
update becomes too large, the map must be relinearized from
a new linearization point and solved from scratch, an expensive
process. Furthermore, like Gauss-Newton, these methods are
susceptible to becoming stuck in local minima.
By contrast, stochastic relaxation relaxes one constraint at

a time without need of a fixed linearization point. Like the
stochastic gradient descent techniques popular in machine
learning, stochastic relaxation converges more quickly than
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performing full Newton steps, and is more robust to local min-
ima. To minimize oscillation between competing constraints,
stochastic relaxation encodes nodes in a hierarchical pose tree,
where each pose is defined relative to its parent (see fig.
1). For each constraint, there is a difference r between a
pose and a constraint’s desired value for that pose. Stochastic
relaxation minimizes this difference by accumulating −αir
into the node’s ancestors ni in the tree (the coefficients αi are
chosen to sum to one), which has the effect of shifting the
node by −r. While efficient, this can introduce a systematic
distortion into the map, known as the “dog-leg problem” [1].
As shown in fig. 2, this arises when a constraint has a large
error in position but little error in rotation, which may happen
by chance, or because the constraint only acts on position, as
is the case with GPS.
In this paper, we present a method that performs stochastic

relaxation, but which does so by solving a set of linear
equations. This eliminates the dog-leg problem. It also allows
the user to smoothly transition between stochastic and exact
updates at run-time, flexibly trading off cost for accuracy as
needed.

II. RELATED WORK

Early SLAM algorithms, such as Smith and Cheeseman’s
EKF SLAM [2], incorporated new observations into an ex-
tended Kalman filter (EKF), which tracked the pose of the
robot and any landmarks. The approach is used to this day,
such as with Davison’s monocular visual SLAM [3], and Kim
and Sukkarieh’s GPS-augmented SLAM for flying vehicles
[4]. Unfortunately, EKF-based SLAM requires a full inversion
of a dense N-by-N matrix with each new observation, where N
is the size of the state vector containing all tracked landmark
and robot poses. This O(N3) operation scales poorly with the
size of the map. It can be mitigated by selective sparsification
of the information matrix [5], [6], but reconstructing the map
from this matrix remains costly.
The “full SLAM problem” solves for the entire history of

robot poses, not just the most recent. This paper concerns itself
with the pose graph formulation of this problem. As described
in section I, two recent approaches to this have been full
linear solvers, as in

√
SAM [7] and iSAM [8], and stochastic

relaxation, as used by SGD [9] and TORO [10]. The
√

SAM
method and its descendants speed up this linear solve through
column reordering [7] and incremental factorization [8], arriv-
ing at the same exact answer as the Gauss-Newton method in
much shorter time. Drawbacks include the computational cost
of relinearizations, and susceptibility to local minima.
SGD [9] performs stochastic relaxation in two dimensions

by parametrizing each pose in the pose hierarchy as an
addition onto the pose of its parent. This allows a constraint to
be relaxed efficiently by simply adding fractions of its residual
into the constrained pose’s ancestors. TORO [10] extends this
into three dimensions by updating translation and rotation
separately to work around the non-commutativity of rotations
in 3D. Both methods are highly robust to large residuals



Fig. 1. Pose tree terminology The image on the left shows a small
pose graph, with odometry-based constraints, and a loop-closing
constraint. We use a hierarchical tree-based representation of pose,
where each pose is defined relative to its parent. The tree is a spanning
tree of the pose graph, using a subset of its edges. Such a tree
is shown in the center. The right figure illustrates the constraint
terminology used in the paper. A constraint’s domain is the set of
poses whose values affect the constraint energy. The constraint’s root
is the topmost node in the path from one node of the constraint to
the other. It is not part of the constraint domain.

and local minima, but both suffer from dog-leg distortions
as described in section I.
Some authors have proposed solving for only those poses

in the pose graph that are near the current pose. This can help
SLAM adapt to dynamic environments [11], or save on-board
cost by leaving the task of creating a globally consistent map to
an off-board computer [12]. Our work can be easily adapted
to solve for local poses only (see section III-E and III-F)).
However, storing the map in a single global coordinate frame
can have many advantages to real-time tasks. For example, it
can facilitate detecting loop-closures, by allowing the robot to
only compare the current frame against those thought to be
nearby in the global coordinate frame. A global coordinate
system can likewise help align multiple maps in collaborative
mapping, or help register a map in progress against satellite
imagery or other geolocated data. For these reasons, we have
chosen to focus on real-time, globally consistent SLAM.

III. ALGORITHM

In this section, we first describe our parametrization, intro-
ducing relevant terminology. We review the mathematics of
performing a full linearized update to the poses, then intro-
duce our stochastic approach in terms of this formalism. We
describe methods of reducing the cost of expensive updates,
and of solving more than one constraint at a time, for stable
processing of GPS constraints. We then present the algorithm
in summary.

A. Pose Trees

Like [10], we represent our poses by initially growing a
spanning tree out of a node in the pose graph, and defining
each pose relative to its parent in the tree. Fig. 1 shows a pose
graph, and one possible tree ordering. In this parametrization,
the energy of a constraint connecting nodes a and b can only
be affected by nodes in the path through the tree from a to b,
excluding the node with the smallest tree depth. We call this
topmost node the constraint’s “root”, and all other nodes in
the path the constraint’s “domain”. The root is excluded from
the domain, since translating or rotating the root translates

Fig. 2. The dog-leg problem occurs when an error in position is
corrected by position updates only, without also updating rotations.
Here we see a relaxation of the red constraint, with and without the
dog-leg problem.

and rotates its entire sub-tree, leaving the relative pose from a
to b unchanged. Likewise, minimizing a constraint’s residual
only changes nodes in its domain. The node from which
this tree is grown becomes the root of the entire tree. We
allow for the use of GPS and other constraints that operate in
“absolute” coordinates, by using a root node that represents the
earth’s frame. GPS readings can then be represented as relative
position constraints between the earth and a pose. Because
the earth node is the root of the tree, it is outside of any
constraint’s domain, and is thus appropriately left unchanged
by the pose graph optimization.
We initialize the poses using the tree constraints, by concate-

nating their desired relative poses down from the root node.
Using noisy constraints in the tree, such as GPS constraints,
can lead to poor initial poses. For this reason, it is important
to prefer high-stiffness edges (corresponding to low-noise
sensors) when building the spanning tree. An MST algorithm
that maximizes the total stiffness of tree edges is one option.
The results in this paper come from a simple breadth-first
traversal, modified to avoid GPS edges whenever possible.

B. Linearized updates

We represent our poses as 7-dimensional vectors composed
of a position vector and quaternion (quaternions are re-
normalized after each update). We collect all poses in a single
vector z. For a constraint c connecting poses a and b, Let
fc(z) be a function of the relative pose between a and b. We
define the constraint energy Ec as a quadratic penalty on the
difference between fc(z) and its desired value kc, weighted
by distance matrix Sc:

Ec(z) = (fc(z)− kc)
T Sc(fc(z)− kc) (1)

For example, (1) may represent a relative position constraint
by having fc(z) be the relative position of b in the frame of a,
and having kc be this relative position as measured by a sensor,
such as a wheel encoder. Likewise, (1) may model a relative
rotation constraint by setting fc(z) = qc(z)w−1

c and kc = qI ,
where qc(z) is the relative rotation of b in the frame of a,
wc is the relative rotation as measured by a sensor, and qI is
the identity rotation. In EKF terminology, fc is the prediction
function, kc is the “observation”, and Sc is the inverse of the
sensor covariance matrix.
The total energy is the sum of constraint energies:

E =
∑

c

Ec(z) (2)



We linearize fc around z̄, the current value of z, using the
substitution z = z̄ + x, where x is the parameter update we
will solve for. We also take the Cholesky decomposition of
the stiffness matrices Sc:

fc(z) ≈ fc(z̄) + ∂f
∂z

∣

∣

∣

z̄
x (3)

Sc = LcL
T
c (4)

We plug (3) and (4) into (1) and (2) to get:

E =
∑

c

∥

∥

∥
LT

c

(

fc(z̄) + ∂f
∂z

∣

∣

∣

z̄
x− kc

)

∥

∥

∥

2

(5)

Let Jc = LT
c

∂f
∂z

∣

∣

∣

z̄
and rc = LT

c (kc − fc(z̄)) to get:

E =
∑

c

‖Jcx− rc‖2 (6)

= ‖Jx− r‖2 (7)

Here matrix J and column vector r are simply the individual
constraints’ Jc and rc stacked vertically:

J =
[

JT
o , . . . , JT

M−1

]T
, r =

[

rT
o , . . . , rT

M−1

]T
(8)

We arrive at a linear least-squares problem

x = min
x
‖Jx− r‖2, (9)

which can be solved using one of two standard methods:
normal equations and orthogonal decomposition. The normal
equations are obtained by taking the derivative of E in (7) and
setting it equal to zero:

2JT (Jx− r) = 0 (10)

Hx = JT r, (11)

where H denotes JT J , as it is the approximated Hessian
from the Gauss-Newton method. Equation 11 may be upper-
triangularized by the Cholesky decomposition H = RT R,
followed by one back-substitution:

RT Rx = JT r (12)

Rx = b (back-substituted) (13)

With another back-substitution, we solve for x. Using orthog-

onal decomposition, we also arrive at 13 by setting Jx−r = ~0
and QR-factorizing J :

Jx = r (14)

QRx = r (15)

Rx = QT r (16)

Rx = b (17)

When J is nearly upper-triangular, orthogonal decomposition
can take O(N2) time to solve compared to O(N3) for the nor-
mal equations, a fact we exploit in section III-D to efficiently
solve for stochastic updates. Having solved for update x, we
add it to pose parameters z:

z ← z + x (18)

This is followed by normalizing the quaternions in z.

Algorithm 1 OptimizePoseGraph

Grow a spanning pose tree through the pose graph.
Sort constraints C in increasing order of root depth.
G ← {} ⊲ an empty set
for c in C do

if ||G|| > gps batch size then
BatchUpdate(G, Dmax)
G ← {}

end if
if c is a GPS constraint then

Add c to G
else

BatchUpdate(G, Dmax) ⊲ no-op if G is empty
Update(c, Dmax)

end if
end for

C. Stochastic Updates

The update x described above is expensive to evaluate, since
it is calculated using all constraints in the graph. An alternative
is to inexpensively calculate one approximate update xc from
each constraint c. Such “stochastic” updates have a long
history in machine learning[13], as they can converge much
more quickly than exact updates, and provide some robustness
to local minima. Oscillations due to the inexactness of these
updates are mitigated by using a decaying learning rate, as
will be discussed in section III-H. In this section we derive
our expression for xc.
Plugging (8) into the right-hand-side of (11) gets:

Hx =
∑

c

JT
c rc (19)

Note that we may express the total update x as a sum
x =

∑

c xc of constraint-specific updates xc, where:

xc = H−1JT
c rc (20)

In practice, we compute xc by solving the linear system:

Hxc = JT
c rc (21)

In stochastic relaxation, the parameters z are updated by one
xc at a time, rather than by their sum, x. In many applications,
this converges quicker, and typically computation is saved
by not recalculating H =

∑

c JT
c Jc from scratch after each

constraint update.
Our goal is to speed up solving for xc and make it real-

time. One can use an approach similar to second-order back-
propagation in neural networks [14], where H is reduced to a
diagonal by zeroing all off-diagonal elements. Unfortunately,
while this makes solving for xc linear in the number of non-
zeros in vector JT

c rc, it can prevent convergence. The reason is
that this can greatly reduce the matrix norm ‖H‖, making the
resulting update xc very large. Large updates to the poses, par-
ticularly to the rotations, can easily prevent convergence, since
rotating a node rotates its entire sub-tree. In [9], Olson prevents
this by using an approximation to Jc where each nonzero block
is replaced by a constant diagonal matrix. This eliminates
any large derivatives it may contain, and removes the need
to calculate any derivatives. While the resulting algorithm is
very fast, it erases the correlation between rotation parameters



(a) Initial pose tree, detail (b) After convergence with our method (c) Underconstrained loop (d) Same loop with GPS

(e) Dog-legged path, after convergence with TORO (f) Same path, after convergence with our method

Fig. 3. Paris1 dataset A posegraph taken from a section of Paris, with 27093 nodes and 27716 constraints. Fig. 3a shows a section of the
pose tree in its initial state. Stretched constraints can be seen as red lines. Fig. 3b is the same section after 10 iterations of our method, using
a maximum problem size of Dmax = 200, and no GPS constraints. The stretched constraints of 3a have collapsed; the runs that remain
separated are those without constraints tying them together. Fig. 3c shows a severely under-constrained intersection, with few loop-closing
constraints connecting adjacent runs. Such intersections can happen due to the difficulty in identifying loop closures in dynamic urban
environments. While optimizing the posegraph, parallel paths with no cross-connections can become separated. Fig. 3d shows the same
intersection when GPS constraints are added to one out of every 100 nodes. The GPS’ residual vectors are visible as blue line segments.
Unlike loop-closing constraints, GPS constraints are easy to come by, limit drift in large loops, and prevent separation of nearby unconnected
runs. Fig. 3e shows a portion of the Paris posegraph after convergence with TORO. The dog-leg problem has caused the vehicle poses to
not point along the direction of travel. No GPS constraints were used. Fig. 3f shows the same portion, after convergence with our method.

and position residuals, causing the “dog-leg problem”. TORO
[10] employs a similar simplification in 3D, with the same
problem.

D. Hybrid Hessians

We now describe our approximation to H , which is easy
to invert, avoids the dog-leg problem, and does not produce
overly large updates. We approximate H in (21) by a “hybrid
Hessian” Hc specific to constraint c. Note that H is composed
of N by N blocks, where N is the number of poses. We define
Hc as the full Hessian H =

∑

i(J
T
i Ji) with all of the off-

diagonal blocks zeroed except those of JT
c Jc, namely

Hc = JT
c Jc + Bc (22)

where Bc is the block-diagonal approximation to the hessian
built from all constraints except for constraint c:

Bc = B(H) −B
(

JT
c Jc

)

(23)

Here B is an operator which zeros any off-diagonal blocks.
In practice, these blocks are never calculated in the first place,
so that B(JT

c Jc) is calculated in O(d) time, where d is
the number of nonzero blocks in Jc. Instead of recalculating
B(H) =

∑

c B(JT
c Jc) at each constraint relaxation, we

update the approximation in O(d) time by:

B(H)← B(H)−B(JT
c Jc)old + B(JT

c Jc) (24)

where B(JT
c Jc)old denotes the value of B(JT

c Jc) calculated
in the previous relaxation of constraint c.
We obtain our stochastic update xc by replacing H in (21)

with Hc, and solving for xc:

(JT
c Jc + Bc)xc = JT

c rc (25)

This yields a solution to the following least-squares problem:

min
xc

(

‖Jcxc − rc‖2 + ‖Γcxc‖2
)

(26)

where Γc is the upper triangle of the Cholesky factorization:

Bc = ΓT
c Γc (27)

Without ‖Γcxc‖2, (26) would be an under-constrained mini-
mization problem for a single constraint c. We have regularized
it using the block-diagonals of the full hessian, both to make
it solvable, and also to prevent each constraint update from
simply satisfying constraint c without regard to all other
constraints.
Only the poses in constraint c’s domain Dc affect c’s energy,

as seen in fig. 1. We can therefore solve a reduced-dimension
version of (25) by omitting all rows and columns that do not
correspond to poses in Dc. We denote this omission using hats
(ˆ), as in:

(ĴT
c Ĵc + B̂c)x̂c = ĴT

c rc (28)

One could solve this dense normal equation using Cholesky
factorization. But since this is cubic in the size of Dc, it may
be unacceptably expensive for real-time performance, because
constraints near the bottom of large pose trees can have large
constraint paths. Instead, we solve (26) using the following
orthogonal decomposition:

[

Ĵc

Γ̂c

]

x̂c =

[

rc

~0

]

(29)

Note that left-multiplying both sides of (29) by [ ĴT
c Γ̂T

c ]
recovers (28). Equation 29 is a Tikhonov regularization of the

under-constrained problem Ĵcx̂c − r̂c = 0, with the Tikhonov

matrix Γ̂c constructed from diagonal blocks of the hessian H .



Fig. 4. Subsampling a constraint path Subsampling a path by
omitting node p, parent of b. Node b is now acted on by a temporary
constraint β instead of α. The block corresponding to node b
in the block-diagonal hessian approximation B must be updated
accordingly, using equation 31. Constraint β is constructed from
constraints γ and α.

Denoting the i’th block of Ĵc as J i
c and the i’th block of

the block-diagonal matrix Γ̂c as Γi
c we rewrite (29) as






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c J1

c J2

c . . . Jd−1
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








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0
0
0
...
0

















(30)

Here, d is the size of domain Dc. Each block is 7 by 7, since
7 is the number of dimensions in a single pose or residual.
Equation 30 is therefore nearly upper-triangular. This allows
us to fully upper-triangularize it (using Givens rotations) in
O(d2) time, not the usual O(d3) for dense matrices. The
subsequent back-substitution to solve for x takes O(d2) time
as well. Updating Bc is O(d). The total cost of relaxing a
constraint is therefore O(d2). For a relatively balanced tree,
we can estimate the expected path length for a constraint as
de = O(log(N)), where N is the total number of poses. This
is because the domain size d of a constraint c is one less
than the length of the tree path connecting the two nodes
constrained by c. The expected running time for a single
iteration through all M constraints is therefore O(Md2

e), or
O(Mlog(N)2).

E. Interpolated solving

In large pose trees with low branching factor (such as urban
pose trees), the path length for some constraints can get into
the thousands, making even O(d2) too costly for real-time
operation on a single processor. Fortunately, it is possible
to solve for an approximation to xc within a user-chosen
computational cost budget which can range from O(d) to
O(d2). This is done by solving for a subset Sc of the nodes in
the path Dc, then distributing these updates over the remaining
nodes.
1) Merging constraints: in (28), we solved for only the

nodes in Dc by omitting from (25) the rows and columns
corresponding to other nodes. We take the same approach here,
solving for only the nodes in Sc ∈ Dc by omitting rows and
columns in (28). When omitting nodes from the path, we are
replacing chains of constraints between unomitted nodes with
single constraints. This change affects Bc =

∑

i6=c B(JT
i Ji).

Consider a pair of nodes a and b in Sc, where a is b’s closest
ancestor in Sc, or if none exists, the constraint root (fig. 4).
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Fig. 5. Log-energy vs time, Valencia dataset The average constraint
energy vs time (in seconds) for TORO [10] and our method. For our
method, we use different values for the maximum limit Dmax on the
number of poses solved per constraint, as described in section III-E.

We replace a chain of constraints between a and b by a single
constraint β. Let α be b’s current parent constraint in the path.
We update B as follows:

B ← B − JT
α Jα + JT

β Jβ (31)

Both α and its replacement β connect two consecutive nodes
in the path. As can be seen in fig. 1, such constraints have only
one node in their domain, namely the lower of the two nodes
they connect (in this case, b). Both Jα and Jβ therefore have
only one nonzero block, making the update in (31) an O(1)
operation. The path from a to b may contain another constraint
γ, but we need not subtract JT

γ Jγ from B, since its domain
node has been omitted from the path, and its corresponding
rows and columns are not included in the linear solve. Note
that modifying B for all nodes in Sc is linear in the size of
Sc, since we perform the update in (31) for each node in Sc

whose parent was omitted from Sc.

To calculate the Jβ of merged constraint β, we need its
stiffness Sβ and desired value kβ , where kβ follows directly
from β’s desired relative pose pβ (see (1)). If c1 . . . cn are
the constraints merged to create β, we get pβ by taking the
product of the desired transforms of c1 . . . cn:

pβ =

n
∏

i=1

pi (32)

Since stiffness is the inverse of sensor covariance, we find the
merged stiffness Sβ by applying the covariance merging rule

Cmerged =
(
∑

i C−1

i

)−1

. In terms of stiffnesses this becomes:

Sβ =

n
∑

i=1

RaiSiR
T
ai (33)

where Si is the stiffness of ci and Rai is the desired rotation
from node a to i.



TABLE I
AVERAGE AND MAXIMUM TIME PER CONSTRAINT, VALENCIA DATASET

Solver Avg. time (s) Max. time (s)

TORO 1.75092 ∗ 10−5 5.24759 ∗ 10−3

Dmax = 75 3.6635 ∗ 10
−4

5.3559 ∗ 10
−2

Dmax = 100 4.0791 ∗ 10
−4

6.5095 ∗ 10
−2

Dmax = 150 4.919 ∗ 10−4 9.5015 ∗ 10−2

Dmax = 200 5.812 ∗ 10
−4

0.13747

Dmax = ∞ 2.0823 ∗ 10
−3 3.583

2) Solving and distributing the update: After modifying
B with (31) and eliminating the omitted nodes’ rows and
columns from (29), we get the reduced orthogonal decom-
position:

[

J̃c

Γ̃c

]

x̃c =

[

rc

~0

]

(34)

Here, Γ̃c is created from the Cholesky decomposition
Γ̃T

c Γ̃c = B̃, where B̃ is B updated by (31), retaining only
the rows and columns corresponding to nodes in Sc. After
solving for x̃c, we revert the modified blocks of B to their
previous values before updating by 24. If we apply update x̃c

to z as before, the path can potentially bend only at the nodes
in Sc, making the chain discontinuous. Instead, we use the
method used by TORO to distribute over a chain of nodes the
desired pose adjustment of the endmost node. In our case, the
desired pose adjustment is given by temporarily applying x̃c

to z and normalizing the affected quaternions. The desired
pose adjustment is the transform from b’s old pose to its
new pose. This pose adjustment is distributed over the nodes
from a down to b, not including a. As in TORO, we use the
diagonal elements of B as the distribution weights. For details
on this distribution algorithm, we refer the reader to [10]. This
does not cause dog-legs, because x̃c updates rotations even for
position-only constraints.

F. Batch solving

It is possible to build a hybrid hessian HC for updating a set
C of constraints at once, by including the off-diagonal blocks
of multiple constraints’ JT

c Jc.

HC =
∑

c∈C

JT
c Jc + BC (35)

where the block-diagonal regularizer BC is:

BC = B(H)−
∑

i∈C

B(JT
i Ji) (36)

The corresponding orthogonal decomposition form is:

[

JC

ΓC

]

xc =

[

rC
~0

]

(37)

where ΓC is created as before by the Cholesky decomposition
BC = ΓT

C ΓC . We vertically stack Jc and rc corresponding to
the constraints c in C to get JC and rC . When C contains all
the constraints in the posegraph, (37) reduces to the full exact
update equation (14), since JC and rC become J and r (see
(8)), and ΓC vanishes, since there are no constraints i such
that i /∈ C (see (36)).

TABLE II
MINIMUM VALUES OF Dmax NEEDED FOR CONVERGENCE.

Dataset nodes edges loop edges max d Dmax

“Manhattan world” 3500 5598 2099 184 30
Valencia w/o GPS 15031 15153 122 1161 40
Valencia w/GPS 15031 15440 409 1834 90
Paris1 w/o GPS 27093 27716 590 3599 190
Paris1 w/GPS 27093 28943 1817 3605 200
Paris2 w/o GPS 41957 55392 13384 701 150
Paris2 w/GPS 41957 56109 13878 802 200

G. Special Considerations for GPS

In some instances, it is desirable to combine omitting nodes
and batch-optimizing multiple constraints. For example, we
may wish to solve for a locally exact update, by solving for
only the nodes close to the robot position, as in [12]. This
can be done in our system by omitting faraway nodes, and
batch-optimizing all constraints that operate on nearby nodes.
Another application is in the processing of GPS constraints.
GPS constraints are characterized by long path sizes and large
position residuals, and do not specify rotation. Relaxing a
single GPS constraint c causes its path to bend in order to
move the constrained node n closer to the desired position.
Because c specifies no orientation for the node, n is free to
rotate to align itself with the new direction of the path. This
is harmful to convergence, as it rotates all of n’s sub-tree,
increasing the residuals of other GPS constraints, which then
do similar damage in turn. To avoid this, we update GPS
constraints in batches. This eliminates spurious rotations by
placing additional position constraints below n in the tree,
preventing the sub-tree from bending away from them. We
find that relatively small batch sizes are sufficient to prevent
spurious rotations. For the Valencia and Paris datasets (section
IV), we update GPS constraints in batches of 30 and 50,
respectively. As when processing other constraints with long
paths, we use interpolated solving to keep update times low.

H. Temperature

To aid convergence, we scale update xc by a temperature
parameter τ , before adding it to parameters z as: z ← z+τxc.
We start with τ = 1, and slowly decrease it over time. We do
this by scaling τ by 0.99 after each loop through all con-
straints. If a constraint c’s residual is large, the resulting τxc

may contain large rotation updates, which can adversely affect
convergence. For such updates, we temporarily substitute τ for
a value τ ′, which is chosen so that the largest rotation update
in τ ′xc does not exceed π/8.

I. Algorithm summary

We summarize our method in algorithm 1. The functions
“Update” and “BatchUpdate” implement single and multi-
constraint updates as described above, using interpolated solv-
ing to solve for no more than Dmax nodes at a time.

IV. RESULTS

Fig. 3 shows a section of our “Paris1” posegraph before and
after optimization, both with and without GPS constraints. We
show a case where, without GPS constraints, the optimization
causes rotations at an under-constrained intersection, causing
the loop to rotate into an unrealistic configuration. We show
that GPS constraints serve to limit such error. We also show an
instance of the dog-leg problem experienced by TORO. Even



(a) Olson’s “Manhattan world” (b) “Manhattan world”, converged

(c) Valencia (d) Valencia, converged

(e) Paris2 (f) Paris2, converged

Fig. 6. Solved maps Pose graphs, before and after 10 iterations
with Dmax = 200. Pose graph sizes are given in table II. Initial
configurations show the poses as set by concatenating constraint
transforms down the tree, as described in section III-A. Constraint
residuals are shown as brown/red lines connecting the constraint’s
desired pose to the actual pose. Brighter red indicates higher error.
Valencia (fig. 6c, fig. 6d) is shown at an oblique angle, to better show
its error residuals, which are primarily vertical.

though the dog-leg problem is typical with GPS constraints, it
can also happen, as it did here, with loop-closing constraints
that have a large position residual and small rotation residual.
Our method does not suffer from this problem.

In fig. 5, we show the log-energy per constraint over time for
our method and TORO. Our method reduces the error quicker,
and converges to an average energy per constraint that is an
order of magnitude lower than that of TORO. For our method,
we use interpolated solving as described in section III-E, with
different maximum values Dmax for the size of set Sc. GPS
constraints were not used, to minimize dog-legs in TORO.
The pose graph data was taken from a section of Valencia,
Spain, with 15031 poses and 15153 constraints. The energy
was measured after each loop through all constraints. In actual
operation, only a few constraints are added or updated per
frame, so the spacing of the points in the plot should not be
interpreted as the required time per iteration. Rather, see table
I for the average and maximum time per constraint for the
same solvers and posegraph. The average constraint domain
size was 1.53 poses, while the largest constraint domain was
1161 poses. The times shown are all within real-time bounds
per frame, except when domain subsampling is turned off (by
setting Dmax =∞).

Linearizing the relation between position error and rotation
updates is necessary for properly addressing the dog-leg

Fig. 7. Montmartre, Paris An overlay of the converged poses of
fig. 6f on a satellite image from Google Earth.

problem. However, such projective rotations can also cause
oscillations in the face of excessive subsampling. To test our
method’s robustness to oscillations, we ran the solver with
various levels of subsampling, defined by Dmax, the maximum
number of nodes to solve for in (34). Table II shows the
minimum values of Dmax which did not cause divergence.
Note that these are not hard minimums, as divergence may
also be avoided by lowering the initial temperature τ from 1.0.
This table is only intended to illustrate the potential danger of
over-subsampling. Table II also shows each map’s number of
nodes, edges, loop edges, and “max d”. Loop edges are edges
with more than two nodes in their path (they are also counted
under “edges”). The “max d” is the length of the longest edge
path in the map. The “Manhattan world” dataset was originally
used by Olson in [9] (see fig. 6a).
In fig. 6, we show some maps before and after solving with

our method. The “before” images show the poses as initialized
by starting at the root of the parametrization tree, and crawling
downwards, concatenating the tree edges’ transforms. For a
pose graph with no loop closures, this would be equivalent to
dead-reckoning. The red edges are edge residuals, connecting
the desired pose of a node to its actual pose. Relative con-
straints’ residuals connect two poses, while GPS constraints’
residuals connect a pose to a spot in empty space, indicating
the desired position. Redder residuals indicate higher error.
Longer residuals do not necessarily have higher error, as some
edges are less stiff than others. In particular, GPS constraints
are much less stiff than other types, due to GPS’ imprecision.
Our method performs well on graphs with ample loop closures,
such as Olson’s “Manhattan world”, converging to an average
energy per constraint of 1.596, compared to TORO’s 2.062.
Our method completely collapses most relative constraint
residuals (fig. 6b, 6d), and greatly reduces GPS residuals (fig.
6f). A small number of lines which overlap in fig. 6e can be
seen to have split apart in 6f. These are parallel runs where the
loop closure detector failed to recognize as traversing the same
path, and therefore did not connect together with a constraint.
Outdoor urban maps can have fewer loop-closures, due to the
difficulty of detecting them in highly dynamic environments.
Despite this distortion, the solved map aligns relatively well
to satellite photography, as seen in fig. 7.



(a) “Manhattan world”, noisified (b) “Manhattan world”, converged

(c) Valencia, noisified (d) Valencia, converged

(e) Paris2, noisified (f) Paris2, converged

Fig. 8. Graphs with large initial error Pose graphs, with noisified
constraints (sensor readings). A small random rotation around the
local up axis was multiplied onto each constraint’s rotation, causing
large distortions to accumulate over time. Pose graph sizes given in
table II. Constraint residuals are shown as brown/red lines (redder =
more error).

To test the robustness of our solver to large errors due to
sensor noise, we added rotational noise to all edges in the
“Manhattan world”, Valencia, and Paris2 pose graphs. These
“noisified” graphs can be seen in fig. 8. Each rotation was
multiplied by a small rotation around the local up axis, where
the angle was drawn from a normal distribution with a standard
deviation of 3 degrees. The poses are initialized using these
edges, these small rotations add up to the large map distortions
shown in the left column.

V. CONCLUSIONS AND FUTURE WORK

We have described a method for stochastic optimization on
pose graphs that is able to process position-only constraints,
such as GPS, without introducing the pose staggering known
as the “dog-leg problem”. We demonstrated methods for
reducing the complexity of updates in order to stay within real-
time bounds, and for batch-optimizing multiple constraints,
with applications to stable GPS updates. Our method thus
presents the means to smoothly transition between approxi-
mate O(n)-per-constraint loop closing (where n is the size
of the constraint’s loop), and exact linear updates as used by
full linear solvers. The method optimizes to a lower overall
energy than a state-of-the-art method in stochastic SLAM,
while staying well within real-time cost bounds per constraint.
On each iteration, our method efficiently updates a subset

of the pose graph, in a manner that approximates the effects
of nodes and constraints outside of that set. There is consid-
erable flexibility in how to choose this set, affording several
avenues of future investigation. One is constraint prioritization,
where an effort is made to update constraints with large
error more frequently than those with small error, for quicker
convergence. Another is node prioritization, where instead of
subsampling a constraint domain uniformly, we select nodes
according to the the needs of the application. An example
would be to prioritize local nodes during real-time exploratory
SLAM. This is an approach similar to [12], but with the added
benefit of maintaining global consistency. Another example
is to add loop-closing to visual odometry by treating bundle
adjustment as a local batch update, within a SLAM framework.
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