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ABSTRACT

Vision-based navigation and obstacle detection must
be sophisticated in order to perform well in complicated
and diverse terrain, but that complexity comes at the ex-
pense of increased system latency between image capture
and actuator signals. Increased latency, or a longer control
loop, degrades the reactivity of the robot. We present a nav-
igational framework that uses a self-supervised, learning-
based obstacle detector without paying a price in latency
and reactivity. A long-range obstacle detector uses online
learning to accurately see paths and obstacles at ranges
up to 30 meters, while a fast, short-range obstacle detec-
tor avoids obstacles at up to 5 meters. The learning-based
long-range module is discussed in detail, and field experi-
ments are described which demonstrate the success of the
overall system.
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1 Introduction

Vision-based navigation in offroad environments is a no-
toriously difficult problem. The vast diversity of terrain
types presents a difficult challenge for obstacle and path
detection, uneven groundplane and slippery surfaces cause
positioning errors, and path planning is very difficult in
the absence of identifiable roadways. Traditional vision-
based navigation systems use a stereo algorithm to populate
traversability maps with obstacles. In the most common
approach, a stereo matching algorithm, applied to images
from a pair of stereo cameras, produces a point-cloud in
which the most visible pixels are given an XYZ position
relative to the robot. A traversability map can then be de-
rived using various heuristics, such as counting the number
of points that are above the ground plane in a given map
cell. Maps from multiple frames are assembled in a global
map in which path finding algorithms are run [6, 7, 2]. The
performance of such stereo-based methods is limited, be-
cause stereo-based distance estimation is often unreliable
beyond 10 or 12 meters. This may cause the system to
drive as if in a self-imposed fog, driving into dead ends and
taking time to discover distant pathways.

In addition to the challenges of vision, there is a
dilemma posed by the competing needs of the system. In
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an unstructured environment, good reactivity is necessary
for obstacle avoidance, since obstacles may not be recog-
nized until they are very close. This requires a low latency
system and a fast control loop. However, more advanced
approaches to vision generally require high resolution im-
ages and longer processing times.

We propose a solution to the dilemma that is based on
experiments performed with the LAGR (Learning Applied
to Ground Robots) mobile robot platform. A multiple range
architecture for perception and control is proposed which
combines two navigation modules: a learning-based long-
range obstacle detector, and a simpler, short-range stereo
obstacle detector. The long-range module provides infor-
mation about distant areas, enabling strategic path plan-
ning, thus avoiding dead ends and efficiently navigating
toward goals. The short-range module operates at a fast
frame-rate and performs factical obstacle avoidance.

The long-range obstacle detector uses online learn-
ing to solve the problem of long-range obstacle and path
detection. It uses dimensionality reduction and an online
classifier to identify objects and paths that are far beyond
the reach of stereo. Self-supervised learning, in which
traversability information from one sensor is used to train
a classifier on outputs from a different sensor, allows for
robust performance in spite of rapidly changing terrain.
In this case, we use traversability labels gleaned from the
stereo module to train a classifier on image patches. The
classifier can then predict the traversability costs of distant
parts of the scene.

The long-range vision system has several novel fea-
tures. Since it aims to generalize from the near to the far
range, it must solve the perspective problem which makes
far away obstacles appear smaller than close ones. We con-
struct a distance-normalized image pyramid to cope with
this issue. Secondly, the traversability labels from the
stereo module can be sparse or noisy, so we maximize their
usefulness by accumulating labels in a spatially-indexed
quad-tree and smoothing them over time. Finally, a ring
buffer is used to simulate short term memory.

Path planning is critical to a goal-driven mobile robot.
The use of a multi-range navigation architecture allows
for both strategic and tactical planning decisions that are
merged using a ray-casting planning algorithm. The inte-
gration of the short and long range modules was tested in
the field. Crashes, avoidance of dead ends, and overall time
and distance to goal were used to evaluate the proposed ar-
chitecture.



2 Previous Work

Considerable progress has been made over the last few
years in designing autonomous off-road vehicle navigation
systems. One direction of research involves mapping the
environment from multiple active range sensors and stereo
cameras [8, 12], and simultaneously navigating and build-
ing maps [7, 19] and classifying objects.

Estimating the traversability of an environment con-
stitutes an important part of the navigation problem, and so-
lutions have been proposed by many; see [4, 13, 15, 16, 21].
However, the main disadvantage of these techniques is
that they assume that the characteristics of obstacles and
traversable regions are fixed, and therefore they cannot eas-
ily adapt to changing environments. By contrast, the vision
system presented in this paper uses online learning and is
adaptable to any environment.

A number of systems that incorporate learning have
also been proposed. These include ALVINN [14] by
Pomerlau, MANIAC [5] by Jochem et al., and DAVE [9]
by LeCun et al. Many other systems have been proposed in
recent years that include supervised classification [11, 3].
These systems were trained offline using hand-labeled data
which has two major disadvantages. First labeling requires
a lot of human effort and secondly offline training limits the
scope of the robot’s expertise to environments seen during
training.

More recently, self-supervised systems have been de-
veloped that reduce or eliminate the need for hand-labeled
training data, thus gaining flexibility in unknown environ-
ments. With self-supervision, a reliable module that deter-
mines traversability can provide labels for inputs to another
classifier. This is known as near-to-far learning. Using this
paradigm, a classifier with broad scope and range can be
trained online using data from the reliable sensor (such as
ladar or stereo). Not only is the burden of hand-labeling
data relieved, but the system can robustly adapt to changing
environments on-the-fly. Many systems have successfully
employed near-to-far learning in simple ways, primarily by
identifying ground patches or pixels, building simple color
histograms, and then clustering the entire input image.

The near-to-far strategy has been used successfully
for autonomous vehicles that must follow a road. In this
task, the road appearance has limited variability, so sim-
ple color/texture based classifiers can often identify road
surface well beyond sensor range. Using this basic strat-
egy, self-supervised learning helped win the 2005 DARPA
Grand Challenge: the winning approach used a simple
probabilistic model to identify road surface based on color
histograms extracted immediately ahead of the vehicle as
it drives [1]. In a slightly more complicated approach by
Thrun et al.; previous views of the road surface are com-
puted using reverse optical flow, then road appearance tem-
plates are learned for several target distances [10].

Several other approaches have followed the self-
supervised, near-to-far learning strategy. Stavens and
Thrun used self-supervision to train a terrain roughness
predictor [18]. An online probabilistic model was trained
on satellite imagery and ladar sensor data for the Spinner
vehicle’s navigation system [17]. Similarly, online self-

-

Figure 1. The robot weighs 70kg, measures 1 meter high, and
can reach a maximum speed of 1.3 meters/second.

supervised learning was used to train a ladar-based naviga-
tion system to predict the location of a load-bearing surface
in the presence of vegetation [23]. A system that trains a
pixel-level classifier using stereo-derived traversability la-
bels is presented by Ulrich [20].

3 Overview of Navigation

This section gives an overview of the full navigation system
developed using the LAGR (Learning Applied to Ground
Robots) robot platform (see Figure 1). Both the robot and
the reference “baseline” software were built by Carnegie
Mellon University and the National Robotics Engineering
Center. The LAGR platform is composed of two stereo
pairs of color cameras, a GPS receiver, an inertia measure-
ment unit (IMU), wheel encoders and a front bumper. Four
onboard Linux machines (2Ghz Pentium 4 equivalent with
1Gb of RAM) are connected via a 1Gb ethernet network.
One computer is dedicated to path planning, one to low-
level driving functions and two to the stereo pairs.

Although reference “baseline” software was pro-
vided, none was used in our system. Our navigation sys-
tem consists of 5 major components, described below (see
Figure 2).

Obstacle Detection. The obstacle detection module(s) use
camera inputs to identify traversable and non-traversable
regions. The module(s) then populate the vehicle map with
the traversability information in the form of cost and con-
fidence values. We used two obstacle detectors for this re-
search. One is a fast, short-range stereo module (FAST-
OD), and the other is a slower, long-range vision module
(FAR-OD).

Vehicle Map. The vehicle map is a local map in polar co-
ordinates that is fixed relative to the robot position. It is 100
degrees wide and has a 40 meter radius. It stores cost and
confidence data which is delivered by the various obstacle
detectors.

Local Navigation. The local navigation is based on the ve-
hicle map. It determines a set of candidate waypoints based
on cost, confidence, and steering requirements. The candi-
date waypoint is picked which lets the vehicle progress to-
ward the goal. Driving commands are issued based on this
choice.

Global Map. The global map is a Cartesian grid map into
which cost and confidence information from the vehicle
map is copied after each processed frame. The global map
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Figure 2. A flow chart of our navigation system. The long-range and stereo obstacle detectors both populate the vehicle map, where local
navigation is done. The local map gets written to the global map after every frame, where route planning is done with the global planner.

is the system’s “memory”.

Global Planner. The global planner finds a route to the
goal in the global map, starting with candidate points pro-
posed by the local navigation module. The algorithm is a
modified A* algorithm which operates on rays rather than
grid cells.

This system architecture is designed to make the robot
robust against positioning errors. The vehicle POSE (POSi-
tion Estimation), as computed by an onboard IMU (inertia
measurement unit), is prone to error from wheel slip and
drift. In the absence of visual odometry, this can cause er-
rors in the global map. The strategy of the system, however,
is to “trust our eyes” and issue driving commands directly
from the vehicle map, which is not affected by POSE error.

4 FAST-OD and FAR-OD: A Multi-Range
Architecture

This section describes the multiple range architecture of the
navigation system. To maximize the usage of both long
and short range obstacle detectors, each is implemented
as an independent process running at its own pace. This
allows the short-range module to use a lower image res-
olution and further decrease its control loop period. This
architecture has its basis in our understanding of human vi-
sion. Research has shown that human subjects focus on
nearby objects much more frequently than distant areas:
occasional distant gazing suffices to maintain a global tra-
jectory, but frequent nearby gazing is necessary for obstacle
avoidance[22].

The short-range module is termed FAST-OD (Fast
Obstacle Detection), since its primary function is to pro-
vide quick obstacle avoidance. The long-range module is
termed FAR-OD in accordance with its primary purpose:
accurate, long-range vision. When both processes are run
on the same CPU, the FAST-OD is given priority. This is
done by giving control to the FAST-OD when a new frame
arrives. The two processes must be balanced according to
the available CPU budget, running speed, and visual dis-
tance to achieve the desired behavior. One could extend
this idea by giving more CPU cycles to FAR-OD when go-
ing straight and more to FAST-OD when the robot begins
turning.

In our current system, FAST-OD uses stereo input im-
ages at a resolution of 160x120 to produce a traversability
map with a radius of 5 meters. When run alone on the robot
CPU, it reaches 10Hz and a latency from the acquired im-
age to the wheel commands of about 300 ms. The FAR-OD
uses a stereo module at input resolution 320x240 as training
input to an online/offline classifier. When run together with
a reasonable CPU trade-off between the modules, FAST-
OD has a frequency of about 4Hz and latency of 300ms
and FAR-OD has a frequency between 0.5Hz and 1Hz.

5 FAR-OD: Long-range Vision through Self-
Supervised Online Learning

This section discusses the long-range vision system. We
first describe the image processing: estimating the ground-
plane, leveling the horizon, and constructing a distance-
normalized pyramid. Then the learning process is dis-
cussed: labeling, training, and classifying.

5.1 Image Processing: Horizon Leveling and Distance
Normalization

Vision-based navigation classifiers commonly use
color/texture histograms built from small image patches,
thus limiting the classifier to color and texture discrim-
ination. However, it is beneficial to use larger windows
from the image, thus providing a richer context for more
accurate training and classification. Recognizing the feet
of objects is critical for obstacle detection, and the task is
easier with larger windows.

There is an inherent difficulty with training on large
windows instead of color/texture patches. In image space,
the apparent size of obstacles, paths, etc. varies inversely
with distance, making generalization from near-range to
far-range unlikely. Our approach deals with this problem
by building a distance-invariant pyramid of images at mul-
tiple scales, such that the height of similar objects is con-
sistent, regardless of different distances from the camera.
We also warp the image to level the horizon so that the nor-
malization is consistent in spite of uneven terrain.

In order to build a pyramid of horizon-leveled sub-
images, the ground plane in front of the robot must first be
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Figure 3. Sub-images are extracted around imaginary lines on the ground that are computed using the ground plane estimate. The boxes on
the left correspond to the boxed locations in the pyramid on the right. The size of each sub-image on the left is determined inversely by the
distance of the footline from the camera. All the sub-images are subsampled to a uniform height (20 pixels). The distance-normalized image

pyramid is shown, containing 24 bands.

estimated by performing a robust fit of the point cloud ob-
tained through stereo. A Hough transform is used to pro-
duce an initial estimate of the plane parameters. Then, a
least-squares fit refinement is performed using the points
that are within a threshold of the initial plane estimate.

To build the image pyramid, differently sized sub-
images are cropped from the original image such that each
is centered around an imaginary footline on the ground.
Each footline is a predetermined distance (using a geo-
metric progression) from the robot’s camera, and that dis-
tance determines the size of the cropped sub-image. For
[row, column, disparity, offset] plane parameters P =
[po, p1,D2,ps3] and desired disparity d, the image coordi-
nates (xo, Yo, x1,y1) of the footline can be directly calcu-
lated.

After cropping a sub-image from around its footline,
the sub-image is then subsampled to make it a uniform
height (12 pixels), resulting in image bands in which the
appearance of an object on the ground is independent of its
distance from the camera (see Figure 3). These uniform-
height, variable-width bands form a distance-normalized
image pyramid whose 24 scales are separated by a factor
of 2%,

5.2 Learning: Labeling, Training, and Classification

The long-range obstacle detector is trained using data from
every frame it sees. The distance-normalized pyramid de-
scribed in the previous section is divided into overlapping
identically-sized windows (20x11 pixels). Some of these
windows can be associated with stereo labels. The stereo
module can provide 3 types of labels: ground, obstacle,
and blocked. Windows labeled as ground contain disparity
points that are near to the goundplane. Windows labeled as
obstacle contain disparity points that are above the ground-
plane. Windows labeled as blocked contain disparity points
that belong to obstacles in front of that window. Further-
more, each associated window and label is entered into a
spatially-indexed quad-tree. All labels that are entered for

a particular XYZ location are accumulated and translated
into a traversability probability: Obgfgr, where gr is the
number of ground labels and ob is the number of obstacle
labels.

The windows must be mapped to a lower dimensional
space before they can be used for training an online classi-
fier. This is done using a trained convolutional neural net-
work. The network is trained offline using a diverse collec-
tion of 31,600 stereo-labeled images taken from 158 log-
files. The output of the network is a 240 dimension feature
vector.

The online classifier is a logistic regression trained
with cross-entropy loss. It has 723 trainable parameters and
3 outputs that represent the 3 possible classes (ground, ob-
stacle, or blocked). Weight decay is used to regularize the
regression towards a set of previously learned default pa-
rameters. Learning is done by stochastic gradient descent,
providing a natural generalization over successive frames.

Since the training is discriminative, the classifier’s
performance can be distorted if it is “swamped” with train-
ing samples from one class. Therefore a ring buffer is used
to balance the samples of each class and provide a simple
short-term memory. The ring buffer holds a set number of
samples from each class, and is refreshed on every frame.

After training, the parameters are fixed and the entire
pyramid of windows is classified by a simple inference.
Training and classification are very fast, taking less than
100ms per frame.

6 Planning in a Multi-Range Architecture

The path planner in a multi-range navigation system must
integrate different sources of traversability information that
arrive at different times. The FAST-OD and FAR-OD mod-
ules in our system each produce a traversability (cost) map,
but they are updated at different speeds and they provide
cost estimates for different ranges (0 to 5 meters vs. 5 to
35 meters). The path planning algorithm should run ev-
ery time a new map comes from the FAST-OD, making it



necessary to affinely transform the older FAR-OD map ac-
cording to the robot’s movement. It can then be combined
with the new FAST-OD cost map.

The route chosen by the path planner must satisfy two
requirements: it must avoid collisions with obstacles, and it
must navigate towards the goal. Since the first requirement
is more immediate than the second, we use the following
planning protocol. We identify desirable trajectories in the
FAR-OD map, then use these to influence the allowable
trajectories given by the FAST-OD map. This arrangement
allows us to modulate the contribution of the FAR-OD.

An advantage of separating the FAST and FAR-OD
planning processes is that we can easily use different plan-
ning algorithms for each map. For example, planning is
currently done by casting rays in each direction and stop-
ping when an obstacle is encountered. A future area of
work will be to integrate the vehicle’s dynamics in the plan-
ner by casting curves instead of rays in the map. This al-
gorithm does not need to be used at more than 5 meters
radius with our robot, thus we can keep this high dimen-
sional algorithm small enough to be efficient and maintain
the FAR-OD planner at the same time.

7 Results

The proposed system was tested in the field in order to
compare the performance of the long-range vision in var-
ious environments and to compare the performance of the
FAST-OD and combined FAST-OD + FAR-OD configura-
tions. Two courses were used in testing. Course 1 had a Y-
shaped path with a dead end, and Course 2 was an L-shaped
path that followed an irregular border of sparse scrub and
shrubbery.

Course 1 presented a choice of 2 paths that could po-
tentially reach a goal 100 meters distant. The left path was
a dead end that ended at a building, and the right path was a
narrow gravel road (see Figure 4). Each run was terminated
when the robot crossed a finish line on the gravel road,
rather than proceeding all the way to the goal. Course 2
presented a different challenge. Because of sparse foliage
and repeating patterns, the stereo module persistently de-
tected openings through the bushes, even though the bushes
were definitely non-traversable. This course tested the abil-
ity of the long-range module to accurately assign high cost
to the hazardous scrub border and avoid getting stuck.

The robot was run with (1) only FAST-OD, (2) FAST-
OD + FAR-OD without initializing the classifier parame-
ters, and (3) the complete system with initialized param-
eters. Each configuration was tested 5 times. The classi-
fier parameters were initialized by driving briefly around
the environment. Performance results on both test courses
are shown in Table 5. The time to goal, distance traveled
to goal, and number of crashes all improve substantially
when the FAR-OD is used. In addition, on Course 1, the
FAST-OD configuration enters the dead end on every run,
whereas the FAR-OD configuration avoids the dead end.

A global map is built by the system as it traverses a
course. The maps for two test runs (on Course 1), over-
laid on satellite images of the site, are shown in Figure 6.

Error Rate
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Figure 8. The plot shows the error rate for 50 consecutive frames
on each of 5 runs on Course 2. The error rate begins at > 20%,
then quickly drops and hovers at 5% — 20%.

The short-range FAST-OD cannot see the building in time
to avoid the dead end. Figure 7 shows selected frames pro-
cessed by the FAR-OD module.

A plot of the online classifier error rate (on the val-
idation set, not the training set) is shown for the first 50
frames for each of the 5 runs on Course 2 (see Figure 8). At
a fixed learning rate of 0.0001, the learning begins with a
high error of > 20% and quickly descends towards a lower
“running” error rate of 5 — 20%.

8 Conclusions

We have presented an autonomous navigation system with
a multi-range architecture that includes a reactive, low-
latency obstacle avoidance module and a learning-based
long-range vision module. The long-range vision uses self-
supervised online learning to predict the traversability of
areas up to 30 meters away. Experimental results con-
firm that the long-range module is able to detect and avoid
dead ends, while the short-range module myopically ex-
plores them. Although robotic navigation in unstructured,
outdoor environments remains an extremely difficult, un-
solved problem, our system gives hope for one day attain-
ing human-level understanding of visual scenes.
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