A GENERAL SEGMENTATION SCHEME FOR DJVU
DOCUMENT COMPRESSION

PATRICK HAFFNER, LEON BOTTOU and YANN LECUN
ATET Labs-Research

200 Laurel Ave, Middletown NJ 07748
{haffner,leonb,yann}@research.att.com

and

LUC VINCENT

LizardTech, Inc

821 2nd Avenue, Seattle WA 98104
lvincent@lizardtech.com

[Proceedings of the International Symposium on Mathematical Morphology
(ISMM), Sydney, Australia, April 2002, CSIRO Publications]

Abstract.

We describe the “DjVu” (Déja Vu) technology: an efficient document image compression
methodology, a file format, and a delivery platform that together, enable instant access
to high quality documents from essentially any platform, over any connection. Originally
developed for scanned color documents, it was recently expanded to electronic documents,
so DjVu has now truly become a universal document interchange format.

With DjVu, a color magazine page scanned at 300dpi typically occupies between 40KB
and 80KB, i.e. approximately 5 to 10 times smaller than JPEG for a similar level of readabil-
ity (the typical compression ratio is 500:1). Converting electronic documents to DjVu also
offers substantial advantages, as described in the paper. The technology relies on a classifica-
tion of each pixel as either foreground (text, drawing) or background (pictures, paper texture
and color), thereby producing a segmentation into layers that are compressed separately. The
novel contribution of this paper is a unified approach for segmentation of scanned or elec-
tronic documents, using a rigorous approach based on the Minimum Description Length
(MDL) principle.

The foreground layer is compressed using a pattern matching technique taking advan-
tage of the similarities between character shapes. A progressive, wavelet-based compression
technique, combined with a masking algorithm, is then used to compress the background
image at lower resolution, while minimizing the number of bits spent on the pixels that are
otherwise covered by foreground pixels. Encoders, decoders, and real-time, memory efficient
plug-ins for various web browsers are available for all the major platforms.

Key words: Arithmetic Coding, DjVu, Document Interchange, Image Compression, Mini-
mum Description Length, Segmentation, Wavelets, 2D Hidden Markov Models.

1. Introduction

With the generalized use of the Internet and the declining cost of scanning and
storage hardware, documents are increasingly archived, communicated, and
manipulated in digital form rather than in paper form. The growing need for
instant access to information makes the computer screen the preferred display

2 PATRICK HAFFNER ET AL.

medium.

Compression technology for bitonal (black and white) document images has
a long history (see [22] and references therein). It is the basis of a large and
rapidly growing industry with widely accepted standards (Group 3, MMR /Group
4), and less popular and emerging standards (JBIG1, JBIG2).

The last few years have seen a growing demand for a technology that could
handle color documents in an effective manner. Such applications as online
digital libraries with ancient or historical documents, online catalogs for e-
commerce sites, online publishing, forms processing, and scientific publication,
are in need of an efficient compression technique for color documents. The
availability of low-cost, high quality color scanners, the recent emergence of
high-speed production color scanners, and the appearance of ultra high resolu-
tion digital cameras open the door to such applications.

Standard color image compression algorithms are inadequate for such ap-
plications because they produce excessively large files if one wants to preserve
the readability of the text. Compressed with JPEG, a color image of a typical
magazine page scanned at 100dpi (dots per inch) is around 100-200KB, and is
barely readable. The same page at 300dpi is of acceptable quality, but occupies
300-600 KB. These sizes are impractical for online document browsing, even
with broadband connections.

Preserving the readability of the text and the sharpness of line art requires
high resolution and efficient coding of sharp edges (typically 300-400dpi). On
the other hand, preserving the appearance of continuous-tone images and back-
ground paper textures does not require as high a resolution (typically 100dpi).
An obvious way to take advantage of this is to segment these elements into
separate layers. The foreground layer would contain the text and line draw-
ings, while the background layer would contain continuous-tone pictures and
background textures. This multi-layer raster representation is key element in
various recent document interchange products and standards [21, 2, 12, 14].

The separation method brings another considerable advantage. Since the
text layer is separated, it can be stored in a chunk at the beginning of the
image file and decoded by the viewer as soon as it arrives in the client machine.

Overall, the requirements for an acceptable user experience are as follows:
The text should appear on the screen after only a few seconds delay. This means
that the text layer must fit within 20-40KB assuming a 56Kb/sec connection.
The pictures, and backgrounds would appear next, improving the image quality
as more bits arrive. The overall size of the file should be of the order of 50 to
100 KB to keep the overall transmission time and storage requirements within
reasonable bounds.

Large images are also problematic during the decompression process. A
magazine-size page at 300dpi is 3300 pixels high and 2500 pixels wide and
occupies 25 MB of memory in uncompressed form, more memory than many
devices (such as low-end PCs or hand-held devices) can comfortably handle.
A practical document image viewer should therefore keep the image in a com-
pressed form in the memory of the machine and only decompress on-demand
the pixels that are being displayed on the screen.

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 3

The DjVu document image compression technique [2] described in this pa-
per addresses all the above mentioned problems. With DjVu, pages scanned
at 300dpi in full color can be compressed down to 30 to 80 KB files from 25
MB originals with excellent quality. This puts the size of high-quality scanned
pages in the same order of magnitude as a typical HTML page (which are
around 100KB on average). DjVu pages are displayed progressively within a
web browser window through a plug-in, which allows easy panning and zoom-
ing of very large images without generating the fully decoded 25MB image.
This is made possible by storing partially decoded images in a data structure
that typically occupies 2MB, from which the pixels actually displayed on the
screen can be decoded on the fly. The DjVu encoder was designed to be as
generic as possible: the only information it requires about the document is its
scanning resolution. This puts an extraordinary constraint on the segmentation
algorithms used to obtain the foreground /background separation.

DjVu was initially designed for scanned documents. However, it soon be-
came apparent that DjVu could also significantly improve the compression rate
and speed of rendering of electronic documents such as PostScript, PDF or
MSWord, as these document description languages are generally slow to ren-
der, may produce very large files and are often platform dependent. In this
case, one would like to compress the document produced using computerized
methods that do not rely on an expensive-to-compute, pixel based representa-
tion of the document, but rather on an existing structured page information [3].
A text processing software, for instance, represents a document using high level
objects such as text, fonts, colors, embedded images, etc.

The technologies used in DjVu can be divided in three main groups: segmen-
tation, compression and distribution/viewing. This paper gives an overview of
the DjVu compression technologies, pieces of which is described in more de-
tail in [2]: Section 2 explains the general principles used in DjVu compression
and decompression. A recent description of distribution/viewing technologies
is available in [11].

The novel contribution of this paper is an extended and unified description
of the principles and algorithms that drive the DjVu segmentation [7, 3]. Sec-
tion 3 shows how the Minimum Description Length (MDL) principle can be
turned into a practical and universal segmentation tool. Its application to the
optimization of the segmentation in electronic documents is shown in Section 4.
How the same MDL principle defines foreground/background segmentation al-
gorithms for scanned documents is illustrated in Section 5.

2. The DjVu Compression Method

The basic idea behind DjVu is to separate the text from the background and
pictures and to use different techniques to compress each of those components.
Traditional methods are either designed to compress natural images with few
edges (JPEG), or to compress black and white document images almost entirely
composed of sharp edges (Group 3, MMR/Group 4, and JBIG1). The DjVu
technique combines the best of both approaches. A foreground/background

4 PATRICK HAFFNER ET AL.

separation algorithm segments images into separately compressed layers:

— The background layer contains a low resolution (typically 100 dpi.)
background image representing details that are best encoded using a con-
tinuous tone technique. This usually includes the document background
and the pictures.

— The foreground layer contains a high resolution bitonal mask image
(typically 300 dpi) that accurately defines the shape of details with sharp
edges such as text and line-art. The color information is either encoded
as a solid color per connected component in the magk, or as a very low
resolution foreground image (typically 25 dpi) whose colors are applied
using the mask as a stencil.

A pixel in the decoded image is constructed as follows: if the corresponding
pixel in the mask image is 0, the output pixel takes the value of the correspond-
ing pixel in the appropriately up-sampled background image. If the mask pixel
is 1, the pixel color is taken from the foreground color.

The mask image is encoded with a new bi-level image compression algo-
rithm called JB2 or DjVuBitonal. Tt is a variation on AT&T’s proposal to
the emerging JBIG2 standard. The basic idea of JB2 is to locate individual
shapes on the page (such as characters), and use a shape clustering algorithm
to find similarities between shapes [1, 8]. Shapes that are representative of each
cluster (or in a cluster by themselves) are coded as individual bitmaps with a
method similar to JBIG1. A given pixel is coded with arithmetic coding using
previously coded and neighboring pixels as a context (or predictor). Other
shapes in a cluster are coded using the cluster prototype as a context for the
arithmetic coder, thereby greatly reducing the required number of bits since
shapes in a same cluster have many pixels in common. In lossy mode, shapes
that are sufficiently similar to the cluster prototype may be substituted by the
prototype. Another chunk of bits contains a list of shape indices together with
the position at which they should be painted on the page. In cases where the
document has multiple pages, it is advantageous to build a library of shapes
that are common to all the pages, in addition to the library of shapes specific
to each page. JB2 uses a fast incremental technique to extract common shape
libraries across pages.

For the background and foreground images, DjVu uses a progressive, wavelet-
based compression algorithm called IW44 or DjVuPhoto. IW44 offers many key
advantages over existing continuous-tone image compression methods.

— It uses the fast “lifting” method to perform the wavelet transform [19].

— The wavelet transform can be performed entirely without multiplication
operations, relying exclusively on shifts and additions, thereby greatly re-
ducing the computational requirements.

— The intermediate image representation in memory is designed to allow pro-
gressive refinement of the wavelet coeflicients while occupying a memory
footprint proportional to the number of non-zero coefficients, and not to
the number of pixels.

— The data structure allows efficient on-the-fly rendering of any sub-image at
any prescribed resolution, in a time proportional to the number of rendered

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION &

Document no GIF JPEG DjVu
title compression | compression | compression | compression

hobby p15 25MB 1562 469 58

medical dict. 16MB 1395 536 110
time zone 9MB 576 249 36
cookbook 12MB 1000 280 52
hobby pl7 24MB 1595 482 52

U.S. Constit. 31MB 2538 604 134
hobby p2 24MB 1213 383 68

ATT Olympic 24MB 955 285 41

TABLE I

Compressed files sizes (in KB) for 8 documents using the following compres-
sion methods: no compression, GIF on the 150dpi image, JPEG on the 300dpi
image with quality 20 and DjVu with 300dpi mask, and 100dpi backgrounds.

pixels (not image pixels). This last feature is particularly useful for efficient
panning and zooming through large images.

A masking technique based on multiscale successive projections [5] is used
to avoid spending bits to code areas of the background that are covered by
foreground characters or drawings.

Both JB2 and IW44 rely on a fast adaptive arithmetic coder called the ZP-
coder [4]. The arithmetic coder uses a conteztformed by previously transmitted
neighboring pixels to predict the value of the pixel under consideration, and
to code its value using a nearly optimal amount of information (within a few
percent of the Shannon limit). The ZP-coder is faster than other approximate
binary arithmetic coders.

According to an independent study by Inglis [9] with bitonal scanned doc-
uments, JB2 in lossless mode achieves an average compression ratio of 26.5,
which can be compared to 13.5 for MMR/Group 4, and 19.4 for JBIG1. The
lossy mode brings another factor of 2 to 3 over lossless, with more improvement
on mostly textual images, and less on images with pictures and in low-quality
images.

The performance of IW44 is typical of the latest wavelet-based compression
methods which form the basis of JPEG2000 [17, 20], but it has been heavily
optimized to minimize the decoding time and memory footprint rather than
maximize the compression ratio. The size of an IW44 file is generally 30% to
50% less than a JPEG with the same signal to noise ratio, but the biggest advan-
tage over JPEG is the progressive refinement. Comparisons between IW44 and
JPEG are available at www.djvuzone.org/djvu/photos/jpgvsdjvu0l and in
[11].

For scanned color documents, the full multilayer DjVu method is known as
DjVuDocument. It can reach compression ratios of 500:1 to 1000:1. As shown
in Table I, typical, letter-size color documents at 300dpi (catalog or magazine
page) compressed with DjVu occupy 30KB to 80KB. Occasionally, larger doc-
uments, or document with lots of highly detailed pictures or handwriting may
occupy 80 to 140KB. This is 5 to 10 times better than JPEG for a similar

6 PATRICK HAFFNER ET AL.

Document Type Pages PS/PDF PS2DjVu

mask.ps.gz LaTeX 10 400K 78K (23s)

paper2web.pdf Book 327 4230K 3424K (1235s)

sgi.pdf Flyer 4 484K 106K (27)

stanford.pdf Map 1 412K 170K (30s)
TABLE II

File sizes and compression times for four different documents. Results
for the proposed segmenter at 300 dpi are given in the last column.
These results can be compared with the initial ps.gz or pdf file sizes.

level of legibility of the text. DjVu is particularly good at reproducing ancient
documents with textured paper. Results and examples are available from the
DjVu digital library at www.djvuzone.org/djvu. More examples are available
from many commercial and non-commercial users of DjVu on the Internet.

For electronic color documents, the full DjVu method with optimization
of the existing segmentation is known as DjVuDigital. Current implementa-
tions include a Ghostscript driver [6], which enables the creation of DjVu from
PostScript and PDF, and a Windows Virtual Printer Driver, which lets Win-
dows users create DjVu documents from virtually any application [13]. Table IT
summarizes the results obtained on four very different documents at 300 dpi.
Though important variations can be observed depending on the type of elec-
tronic document converted to DjVu (PDF, Microsoft Word, PostScript, etc.),
file sizes generally compare favorably. As a rule of thumb, one can expect a file
size reduction of a factor 2 to 50, remarkable considering that the originals were
electronic. The resulting DjVu files are a completely portable version of their
original electronic counterparts: they do not depend on any system-specific
objects such as fonts; like all DjVu files, they are very efficient to transmit,
display, store, and they can be viewed on any platform. This makes DjVu
an excellent document interchange format. Moreover, from a user experience
viewpoint, DjVu enables a much faster zooming and panning.

3. MDL-based Segmentation

Segmentation techniques for documents have traditionally been based on the
concept of adaptive thresholding. From the early stage, DjVu segmentation was
based in the idea of of color clustering [2], which comes for computer vision. As
the DjVu approach was generalized to handle any type of scanned document,
the need for a “principled” approach became clear. It had to be as universal
as possible and avoid heuristics that would have to be tuned on hundreds of
different kinds of documents.

The Minimum Description Length (MDL) principle [16] drives the segmen-
tation in DjVu. Each decision is made to minimize the overall coding cost. This
coding cost is the sum of the number of bits necessary to encode the image (the
encoding bit cost) and the number of bits necessary to encode the discrepancy

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 7

between the encoded image and the original image (the discrepancy bit cost).
In the most general case, segmenting an image consists of assigning foreground
or background labels to each pixel. If N is the number of pixels, segmenta-
tion is a choice among 2V possible decisions. Comparing the true bit costs
for each decision would be very expensive as it would require coding both the
foreground and the background layers and measuring the resulting file size and
quality for each possible decision.
A feasible segmentation relies on the following factorization strategy:

Component extraction Identify connected components, or groups of pixels,
that all belong either to the background or the foreground.

Filtering Decide, for each component, whether it is preferable to code it as
foreground or as background. Rather than performing a full image com-
pression, we should rely on bit cost estimates derived from simple mea-
surements on the component and its vicinity.

In the filtering step, two competing strategies are associated with differ-
ent encoding schemes. The preferred encoding scheme is the one that yields
the lowest overall coding cost. Like most MDL approaches used for segmen-
tation [10], the motivation is to obtain a system with very few parameters to
hand-tune. However, the MDL principle is used here to make only one decision
per component, thus avoiding the time consuming minimization of a complex
objective function.

To code the component as part of the “smooth” background only requires a
background color encoding scheme with cost ! Cg"‘. To code the component as a
piece of foreground that sticks out of the background requires a foreground color
encoding scheme (Cfcg"‘), a mask encoding scheme (CP) and a background
color encoding scheme (ngllfg, this scheme does not spend bits on the already
encoded foreground).

The component is classified as foreground if

CEp' + Ciplsg + Cinac — Cigl <6 (M)
and as background otherwise.

— The mask encoding bit cost C,‘;f;‘sk is roughly proportional to the perimeter
of the component. This mask encoding scheme is also assumed to be
lossless (in DjVu, loss in the bitonal coding is hardly noticeable): there
is no mask discrepancy bit cost. Adding a position cost computed in the
same fashion as in the JB2 algorithm can further refine this cost.

— As the foreground color is assumed to be uniform, the encoding part of
C’fgl, which is only the value of this color, can be assumed to be negligible,
while the discrepancy part of C§°! accounts for the difference between the

fg
foreground pixels and their average.

1 A cost with a col superscript corresponds to a scheme for encoding pixel colors, while a
cost with a bin superscript corresponds to a scheme for encoding pixel binary mask values.

8 PATRICK HAFFNER ET AL.

— For the background, to avoid a computation over the whole image, we
must compute the cost difference CF§' — Cro)¢,. The background encoding
scheme is optimized for continuous tone images and typically requires more
bits to encode sharp transitions such as the component edges. For ngllfg’
the encoding cost for some of these sharp edges has already been paid
for in the mask cost: because the IW44 wavelet encoder is able to reduce
the bit rate allocated to masked parts of the background [5], there is no
need to waste bits for encoding edges that arise from occlusions by the
foreground and are already defined accurately by the boundary of the
foreground mask. Therefore, the background cost difference lies mostly on
area occupied by the candidate component and its edges. Section 4 will
show a simple approximation of this cost difference based on measures on
the perimeter while Section 5 will propose a more complex technique.

The next two sections examine the application of this MDL principle to

optimize the compression for both electronic and scanned documents.

4. Electronic Document Segmentation

An electronic document is represented using high level objects such as text,
fonts, colors, embedded images, etc. These objects also correspond to a list
of drawing operations. In this section, we see how our MDL approach allows
to further process this list into a foreground/background segmentation that
optimizes segmentation: each component of the list is affected to either the
foreground or the background layer according to a MDL principle based on
perimeter ratios. This MDL-principled approach only requires one threshold
and considerably reduces the need for tuning. This algorithm has been pub-
lished in more detail in [3].

4.1. EXTRACTION OF OVERLAPPING COMPONENTS

Structured page information for electronic documents come in a large variety
of file formats such as the MSWord doc files, PDF files, or PostScript files.
Printing such files converts the structured information into a list of drawing
operations such as “fill a rectangle”, “draw a line”, “draw an image” or “draw
a piece of text”. This can be interpreted as a list of predefined foreground
components with a drawing order as they may overlap. However, overlapping
components may cause problems for layered document raster formats. Even
when, as this is done with the most recent versions of DjVu, the foreground
can be represented as a list of components, overlapping components may not
be desirable. The quality of the user experience with DjVu depends critically
on the speed of browsing, zooming and panning through a document. Our
experience in implementing a browser plug-in showed that non-overlapping
foreground components enabled faster subsampling and rendering algorithms.

To remove overlapping, several naive strategies are possible, e.g. to place
all the text into the foreground and all the rest into the background. But the
optimal approach would be, from this list of foreground components, to select
only those (or part of those) which result in the best compression, and this is

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 9

Feapped

&y

Pbackground

o

Fig. 1. A polygonal component is partially occluded by two letters. The perimeter of its
visible part is named Pejipped- The length of the perimeter segments that do not result from
the occlusion is named Ppackground-

where our MDL driven approach comes into play, in a rather simple way.

4.2. FILTERING MEANS COMPARING COMPONENT PERIMETERS

Our goal is a segmentation algorithm that decides whether each monochromatic
component belongs to the foreground or the background, based on the MDL
principle. The gray shape that appears in Figure 1 under the letters may be
classified as foreground or background. The competing encoding schemes are
as follows.

Foreground We need to add the possibility of occlusion to the general algo-
rithm presented in the Section 3. The foreground mask bit cost CPIn is
proportional to the perimeter Pejipped of the visible part of the component
(i.e. after removing the component shape pixels that are occluded by other
page components). The foreground color bit cost, which would correspond

to any color variation, can be ignored in electronic documents.

Background We can reasonably assume that, in our electronic document,
all significant color changes happen at component boundaries. As a con-
sequence, both the background encoding and discrepancy bit costs are
roughly proportional to the length Pyackgrounda Of the perimeter segments
that do not result from occlusions by foreground components. Further-
more, the proportionality coefficient depends on the color differences along
the object boundary.

The proposed classification algorithm proceeds in a greedy way. First we
prepare two empty bitmaps (F and B) representing the pixels currently classi-
fied as foreground and background. Then we perform the following operations
on every monochromatic component starting from the topmost component and
proceeding towards the bottommost component.

i) Determine the part of the component shape that is occluded by background
components drawn above the current component (by computing the inter-
section of the component shape and the current background B). Remove
these occluded pixels from the component shape.

ii) Determine the part of the component shape that is occluded by foreground
components drawn above the current component (by computing the inter-

10 PATRICK HAFFNER ET AL.

Fig. 2. The perimeter of a run-length encoded bitmap is easily computed by adding the
perimeters of each horizontal run and subtracting twice the length of the contact segments
between runs located on adjacent rows.

section of the component shape and the current foreground F). Remove
these occluded pixels from the component shape.

iii) The component shape now contains only the visible pixels of the compo-
nent. Compute its perimeter Pipped- Compute the length Pyackground of
the perimeter segments that do not result from occlusions by foreground
components. Estimate the color difference ¢ along the perimeter segments
that do not result from occlusions by foreground components.

iv) Enforcing Eq.(1) with @ = 0 gives the final test. Let T" be the ratio of the
foreground and background proportionality coefficients (between the bit
costs and the perimeters). If the ratio d Phackground/ Petipped i8 smaller than
T, the component is deemed a background component and the clipped com-
ponent shape is added to bitmap B. Otherwise the component is deemed a
foreground component and the clipped component shape is added to bitmap

2P

4.3. IMPLEMENTATION ISSUES

The proposed algorithm makes a large number of boolean operations between

bitmaps (i.e. B, F and the component shapes). Our implementation represents

these bitmaps using run-length encoding and performs boolean operations in
time proportional to the number of runs on the relevant scan lines.

The proposed algorithm also requires the quantities Puipped and Phackground-
These quantities can be computed as a side effect of processing the component
occlusions in steps () and (i:).

— Quantity Ppipped is simply the perimeter of the clipped component shape
computed at step (ii) of the algorithm. The perimeter of a run-length
encoded bitmap is also computed in linear time by making a single pass
on the bitmap runs and simultaneously computing the sum R of the run
perimeters and the sum L of the lengths of the contact segments between
runs located on adjacent scan lines. As shown in Figure 2, the bitmap
perimeter P is equal to R — 2L.

— Quantity Ppackground i8 easily computed using the relationship illustrated
in Figure 3. It is sufficient to compute the perimeter Pynciipped Of the
component shape after step (i) and the perimeter Pycclusion Of the bitmap
representing the component shape pixels occluded by foreground objects.
This bitmap is computed during step (ii) of the algorithm. The desired

. __ Punclipped + Pelipped — Pocelusion
quantity Pbackground = EE o

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 11

Pbackground

Punclipped Q/— J
G Pbackground +

Pelipped + = - J
-

Pocclusion |

=)

Fig. 3. The sum of the clipped and unclipped perimeter is equal to twice the background
contour plus the perimeter of the occluded part of the unclipped object. This equality
provides a convenient way to compute the length of the background contour.

We implemented the proposed algorithm both as a Ghostscript [6] driver
and a Windows virtual printer driver [13]. Empirical results show that this
algorithm provides an extremely robust and accurate segmentation. It does
not rely on the textual or non-textual nature of each image component. It
is able to handle documents with complex layouts such as geographical maps.
Using this segmenter with the DjVu system yields very high quality images
whose size is smaller than the size of the initial compressed PostScript or PDF
document.

5. Scanned Document Segmentation

This section shows how both the component extraction and the filtering steps
in the scanned document segmentation are driven by the MDL principle.

5.1. COMPONENT EXTRACTION

Unlike electronic documents, candidate components are not available in scanned
documents. To obtain these components, many thresholding or clustering al-
gorithms are available. However, most of them have been developed with one
type of document in mind.

To get the most general possible algorithm, we would like to follow our
MDL guidelines. However, it is unrealistic to represent a pixel-level fore-
ground /background classification as a discrete decision process. If we hypoth-
esize that the pixels are generated by a parametric model, the MDL principle
states that we should look for the model which minimizes the sum of the costs
for encoding the model parameters and the discrepancy between the true image
and the model-generated image.

As the simplest parametric model for the foreground/background separa-
tion, we chose a two-dimensional? Hidden Markov Model (HMM)[15] with two

2 Equivalent to a causal Markov Random field

12 PATRICK HAFFNER ET AL.

states (foreground and background) and single Gaussian distributions. In order
to minimize the discrepancy bit cost, parameters are optimized for Maximum
Likelihood Estimation (MLE). The encoding bit cost is a Bayesian prior dis-
tribution over the parameters. MLE is only applied over local regions of the
image(typically rectangular), which are only a few hundred pixels. We found
these regions large enough for a robust ML estimate of the Gaussian means,
but too small to estimate the transition probabilities, which must be entirely
based on some prior knowledge. As a consequence, the “consolidated” tran-
sition probability 2 between the foreground state and the background state is
regarded as a prior parameter, the choice of which will be discussed in Sec-
tion 5.5. Gaussian covariances are also reduced to a single prior parameter,
which is the ratio between the foreground and the background covariances.

This initial foreground separation, dubbed the ForeBack algorithm, is de-
signed to prefer over-segmentation, so that no characters are dropped. As a
consequence, it may erroneously put highly contrasted pieces of photographs in
the foreground. After foreground pixels have been separated, they are grouped
into connected components.

5.2. FILTERING

For each foreground component found by the ForeBack algorithm, the problem
is to decide whether it is preferable to actually code it as foreground or as
background.

As in Section 4, we assume the mask encoding bit cost to be roughly propor-
tional to the perimeter of the component, but there is no possibility of overlap-
ping. Biasing the encoding scheme to favor horizontal and vertical boundaries
improves the performance.

As mentioned in Section 3, the foreground encoding scheme assumes the
color of a component to be uniform. The error with respect to the uniform
color can be coded with Gaussian or Laplacian distributions; the number of
discrepancy bits would be proportional to the L2 (Euclidean) or L1 (Manhat-
tan) distances; the mean value for the foreground color that minimizes this
discrepancy cost would be the average or the median respectively.

The background encoding scheme assumes that the color of a pixel is the
average of the colors of the closest background pixels that can be found up
and to the left. There is no encoding bit cost associated with this very simple
Delta model. As with the foreground, the discrepancy bit cost can be measured
using either the L1 or the L2 distances between the predicted and the actual
pixel colors. It is critical to use the same distance and the same proportionality
coefficients for both the foreground and the background discrepancy costs.

Note that the background encoding scheme allows a slow drift in the color,
whereas the foreground encoding scheme assumes the color to be constant in a
connected component. This difference is critical to break the symmetry between
the foreground and the background.

Section 3 shows that only a difference in background costs is needed, which

3 As we use 2x2 pixel cliques, there are in fact 16 transition patterns, whose probabilities
are expressed as a function of one common transition probability.

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 13

can be restricted to the region below and immediately surrounding the compo-
nent. The ForeBack extraction algorithm makes overlapping impossible, and
touching another component extremely unlikely. However, simply measuring
the perimeter would not give here any accurate estimate of the cost. There
can be significant color variations inside the component, and in the area im-
mediately surrounding it: we must measure the differences in the background
discrepancy costs for the color of each pixel in these areas.

5.3. IMPLEMENTATION ISSUES

The efficient implementation of simple principles can be extremely complex,
and is beyond the scope of this paper, especially when the constraint is to
segment 8 million pixels in a time that is of the order of one second. We
will just mention two implementation issues that call for fast morphological
operations [18].

The fact that the candidate component boundaries are likely to be blurred
significantly complicates the filtering algorithm. On a typical 300dpi scanned
document, because of a combination of losses caused by printing, decay of the
ink and scanning, there is a 1 to 4 pixel border between the foreground and the
background in which the luminance is blurred and the color may be unreliable.
If we want to encode the image exactly, not only do we need to encode the
position of the border, but also these 50 lumen variations in the foreground
and the background discrepancy costs! The total coding cost may be larger
than if we just encoded, with wavelets, the whole image as background. It is
therefore necessary for the encoding process to ignore these boundaries.

— For the foreground color, we compute the average color over an eroded
version of the component shape.

— The background color is encoded using the masked wavelet algorithm, with
a mask which is a dilated version of the component shape.

Depending on the document, the width of the border may vary and it is
necessary to search for the border width that will yield the lowest bit cost
for the foreground /background representation. In the current DjVu segmenter,
this resulted in the development of fast morphological operations (dilation and
erosion) on run-encoded shapes.

Another complication arises when the foreground component combines two
valid foreground components of different color that happen to be connected.
As the overall color is not uniform, this component will be rejected in the
background, unless we are able to break it. A typical example would be, on
a map, a red road that intersects a blue river. The problem is to examine
a large number of breaking hypothesis in a component that can comprises
hundreds of thousands of pixels: to do that in real time would require even
faster morphological operations.

5.4. SUBJECTIVE EVALUATION OF THE FOREGROUND/BACKGROUND SEPA-
RATION

Before tuning our model, we must establish the following “proof of concept”:
at the same compression rate, a document using a foreground /background seg-

14 PATRICK HAFFNER ET AL.

Image IW44 only
Description Raw image detail size=DjVu DjVu
Magazine ’ | 'ma ’ the |
Add S E il b o X
% image= 56 20640K 61K 338:1 52K 396:1
Brattain '6&(, {-&C %{,
Notebook
% image= 22 9534K 20K 476:1 19K 501:1
Article
% image= 50 12990K 42K 309:1
Cross-
Section of
Jupiter
% image= 73 24405K 52K 469:1
XVIIIth
Century
book
% image= 45 12128K 39K 310:1 37K 327:1
US First
Amend-
ment
% image= 30 31059K 78K 398:1 73K 425:1

Fig. 4. Influence of the segmentation on the compressed image quality. Raw applies no
compression. IW44 applies wavelet compression to a unigque 300dpi layer, with the quality
parameter chosen to obtain the same size as multi=layer DjVu. The “% image” value
corresponds to the percentage of bits required to code for the background. FEach column
shows the same selected detail of the image. To make selection as objective as possible,
when possible, the first occurrence of the word “the” was chosen. The two numbers under
each image are the file size in kilobytes and the compression ratio (with respect to the raw

file size).

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 15

mentation has a better subjective quality than a document compressed using
a “smooth” encoding scheme (wavelet or JPEG) only.

Traditionally, as an “objective” measure of the quality of the compressed
image, researchers use the so called Signal to Noise Ratio (SNR). In the case
of foreground/background encoded documents, we ignore the borders. Over a
width of several pixels we allow the encoded pixel value to diverge, sometimes
a lot, from the original pixel value. While we will see that the human eye often
finds DjVu foreground/background transitions “better” than the original, this
discrepancy causes a very large SNR. As a consequence, an evaluation of the
foreground/background separation algorithm is, by essence, subjective.

The proof of concept is obtained by examining images compressed with or
without segmentation. We have selected six images representing typical color
documents. These images have been scanned at 300dpi and 24 bits/pixel from
a variety of sources. Figure 4 compares DjVu (with foreground/background
separation) with the IW44 encoder alone (column “IW44”). It clearly demon-
strates the benefits of such a separation on the textual components of the image
and proves that to represent the textual components of a color document as a
bi-level image is critical for DjVu performance. It also shows that to replace
blurred edges with sharp edges improves readability and does not compromise
the document integrity. The experimental digital library which is available at
www.djvuzone.org shows the performance of the algorithm on a large vari-
ety of document types (it is important to stress that no hand-correction was
applied to any of these images).

5.5. TUNING THE SEGMENTER

The previous section showed that our foreground and background encoding
schemes, based on what kind of loss is acceptable for the human eye, work
reasonably well on specific documents. Our encoding schemes are associated
with data-generating models, whose parameters are for the most part esti-
mated on the document, apart from a few mete-parameters that represent our
prior knowledge. To establish fully the efficiency of our MDL approach, we
must verify that the number of meta-parameters to tune is minimal and that
these meta-parameters are reasonably document-type independent. Most of
the meta-parameters determine the prior distribution of the MLE parameters
in the HMM that drives the ForeBack separation algorithm.

— Prior for the Gaussian means These means are obtained by MLE on
local image regions, with a Bayesian prior distribution determined by the
surrounding local regions. The only meta-parameter that can be chosen is
the weight that is applied to this prior.

— ForeBack transition probability We saw that the transition probability
between the foreground and the background states could not be robustly
estimated on the data, so that we have to set it as a prior. As a con-
sequence, the only meta-parameter we need is this transition probability
itself. It is critical: the proportion of foreground decreases monotonously
as this transition probability decreases. A low probability removes very
small marks, smooth out edges and remove halftoning. When it reaches

16 PATRICK HAFFNER ET AL.

zero, no foreground is left.

— ForeBack threshold This parameter corresponds to the ratio between
the foreground and the background standard deviations used for the Gaus-
sian of our Hidden Markov Model. Its normal setting breaks the symme-
try between foreground and background by giving the background a larger
variance.

— ForeBack MLE block size This is the size of the blocks (typically 16x16)
on which separate foreground and background MLEs are performed. Small
blocks will allow for fast changes in the foreground color; large blocks will
make the estimate more robust.

— Filter threshold This threshold, which corresponds to 8 in Eq.(1), acts
as a bias in the comparison between the foreground and the background
encoding schemes used in the filtering step.

— Perimeter coefficient In the filtering step, this is the multiplicative co-
efficient applied to perimeters to turn them into bit costs.

The user has access to these parameters in the DjVu encoding software?. How-

ever, it is necessary to provide some reasonable default options that will work

for most scanned documents.

The semi-automatic tuning procedure we used is illustrated in the following
example, where a reasonable value is obtained for the Foreground/Background
transition probability. Figure 5 shows the impact of this transition probability
on three very different types of documents. The area plots show how the DjVu
file size, which is the sum of the number of bytes used to encode the mask, back-
ground and foreground layers, evolves as a function of this probability. When
it is high, the document is over-segmented and bits are wasted in encoding a
mask that includes images elements, texture and noise. As it converges to zero,
the text gets encoded as background. Note that, to avoid interferences, the fil-
tering stage was not applied. In each area plot, the vertical line corresponds
to the value of the transition probability for which a human observed the best
document quality. It has been observed that, for most documents, this point
corresponds to the best compression rate. This property greatly facilitates the
tuning of the segmenter.

6. Conclusion

DjVu is unique in a number of ways: its state-of-the-art segmentation, compres-
sion, and software design combine to create a platform that is so intuitive and
powerful that most users never come close to realizing how many technological
advances are behind DjVu. With the recent addition of electronic document

4 The options corresponding to the parameters are available in the API or the command
line of the DjVu encoder (available at www.lizardtech.com). The correspondence table is

Prior for the Gaussian means inhibit-foreback-level
ForeBack transition probability | pix-filter-level
ForeBack threshold threshold-level
ForeBack MLE block size block-size

Filter threshold shape-filter-level

A GENERAL SEGMENTATION SCHEME FOR DJVU DOCUMENT COMPRESSION 17

x10* x10* x 10*
10 9 18
[mask [mask [mask
[backgroung [background [background
o| Il foreground | HI foreground 16 Il foreground
14
12
5 10
4 8

0 0
25 5 75 25 5] 75 25 5 7.5
Transition —log probability Transition -log probability Transition —log probability
Mail order catalog XVII century book Textured document
Fig. 5. DjVu files sizes as a function of the negative log probability

of the foreground/background transition, reported for three documents. The first
two are browsable on the Internet at www.djvuzone.org/djvu/cat/sharper and
www.djvuzone.org/djvu/antics/pharm.

conversion to its portfolio, DjVu becomes a serious, powerful document inter-
change format, able to address the needs of a wide range of users.

A full range of DjVu authoring products, from non-commercial software
packages to full-feature, advanced packages designed for enterprise users, is
available from LizardTech, www.lizardtech. com. The technology is also partly
available as open source at djvu.sourceforge.net, where new contributions
are welcome. In addition, a growing number of third-party tools, from imaging
packages such as IrfanView to searching and indexing engines such as jss, are
supporting DjVu. The web site www.djvuzone.org is dedicated to the DjVu
community , with news, documentations and many links to Digital libraries
which use DjVu.

DjVu unique performance comes from that fact that it handles documents as
multi-layer pixel images, resulting in a highly optimized representation. It offers
many opportunities to apply existing and new image processing technologies
to the field of document interchange, which is poised for growing explosively
over the next decade.

18 PATRICK HAFFNER ET AL.

Acknowledgements

The authors wish to thank Bill Riemers, Artem Mikheev, Joe Orost and Andrei
Erofeev for their work on developing the DjVu system. They acknowledge Paul
Howard, Pascal Vincent, and Yoshua Bengio key contributions to the DjVu
technology. They also express their gratitude to Larry Rabiner for his continued
support and to Jeffery Triggs for helping to the popularization of DjVu.

References

1. R. N. Ascher and G. Nagy. Means for achieving a high degree of compaction on scan-
digitized printed text. IEEE Trans. Comput., C-23:1174-1179, November 1974.

2. L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Bengio, and Y. LeCun. High quality
document image compression with DjVu. Journal of Electronic Imaging, 7(3):410-428,
1998.

3. L. Bottou, P. Haffner, and Y. LeCun. Conversion of digital documents to multilayer
raster formats. In Proceedings of the International Conference on Document Analysis
and Recognition, Sept. 2001.

4. L. Bottou, P. G. Howard, and Y. Bengio. The Z-coder adaptive binary coder. In
Proceedings of IEEE Data Compression Conference, pages 13—22, Snowbird, UT, 1998.

5. L. Bottou and S. Pigeon. Lossy compression of partially masked still images. In Pro-
ceedings of IEEE Data Compression Conference, Snowbird, UT, March-April 1998.

6. GhostScript. available at http://www.ghostscript.com.

7. P. Haffner, Y. LeCun, L. Bottou, P. Howard, P. Vincent, and B. Riemers. Color docu-
ments on the web with DjVu. In Proc. of ICIP-99, 1999.

8. P. G. Howard. Text image compression using soft pattern matching. Computer Journal,
40(2/3):146-156, 1997.

9. S. Inglis. Lossless Document I'mage Compression. PhD thesis, University of Waikato,
March 1999.

10. W. N. J. Sheinvald, B. Dom and D. Steele. Unsupervised image segmentation using the
minimum description length principle. In Proceedings of IAPR 92, 1992.

11. Y. LeCun, L. Bottou, A. Erofeev, P. Haffner, and W. Riemers. DjVu document browsing
with on-demand loading and rendering of image components. In Internet I'maging, Jan.
2001.

12. P. Macleod, X. Zhu, and L. Vincent. Method and apparatus for compressing color or
gray scale documents. United States Patent 5,778,092, US Patent Office, 1998.

13. A. Mikheev, L. Vincent, and L. Bottou. Electronic conversion of documents to DjVu
using a Windows virtual printer driver. In Submitted to DAS’02, Jan. 2002.

14. MRC. Mixed rater content (MRC) mode. ITU Recommendation T.44, 1997.

15. L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models. IEEE
Trans. on Acoustics, Speech, and Signal Processing, 3 (1), January 1986.

16. J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080-1100,
1986.

17. A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for
Video Technology, 6(3):243-250, June 1996.

18. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London,
1982.

19. W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal
wavelets. Journal of Applied Computing and Harmonic Analysis, 3:186—200, 1996.

20. D. Taubman. High performance scalable image compression with ebcot. IEEE Trans-
actions on Image Processing, 9(7):1158-1170, July 2000.

21. R. Thibadeau and E. Benoit. Antique books. D-Lib Magazine, 1997.
http:/ /www.dlib.org/dlib/september97/thibadeau/09thibadeau.html.

22. 1. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indezing
Documents and Images. Van Nostrand Reinhold, New York, 1994.

