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ABSTRACT led to solid and state-of-the-art results on several object recog-

In this work we present a system to automatically learn fea-
tures from audio in an unsupervised manner. Our method
first learns an overcomplete dictionary which can be used to
sparsely decompose log-scaled spectrograms. It then trains
an efficient encoder which quickly maps new inputs to ap-
proximations of their sparse representations using the learned
dictionary. This avoids expensive iterative procedures usu-
ally required to infer sparse codes. We then use these sparse
codes as inputs for a linear Support Vector Machine (SVM).
Our system achieves 83.4% accuracy in predicting genres
on the GTZAN dataset, which is competitive with current
state-of-the-art approaches. Furthermore, the use of a sim-
ple linear classifier combined with a fast feature extraction
system allows our approach to scale well to large datasets.

1. INTRODUCTION

Over the past several years much research has been devoted
to designing feature extraction systems to address the many
challenging problems in music information retrieval (MIR).
Considerable progress has been made using task-dependent
features that rely on hand-crafted signal processing tech-
niques (see [13] and [26] for reviews). An alternative ap-
proach is to use features that are instead learned automat-
ically. This has the advantage of generalizing well to new
tasks, particularly if the features are learned in an unsuper-
vised manner.

Several systems to automatically learn useful features from
data have been proposed over the years. Recently, Restricted
Boltzmann Machines (RBMs), Deep Belief Networks (DBN5s)
and sparse coding (SC) algorithms have enjoyed a good deal
of attention in the computer vision community. These have
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nition benchmarks [8, 15,23, 30].

Some of these methods have also began receiving inter-
est as means to automatically learn features from audio data.
The authors of [22] explored the use of sparse coding using
learned dictionaries in the time domain, for the purposes of
genre recognition. Convolutional DBNs were used in [16]
to learn features from speech and music spectrograms in an
unsupervised manner. Using a similar method, but with su-
pervised fine-tuning, the authors in [12] were able to achieve
84.3% accuracy on the Tzanetakis genre dataset, which is
one of the best reported results to date.

Despite their theoretical appeal, systems to automatically
learn features also bring a specific set of challenges. One
drawback of DBNs noted by the authors of [12] were their
long training times, as well as the large number of hyper-
parameters to tune. Furthermore, several authors using sparse
coding algorithms have found that once the dictionary is
learned, inferring sparse representations of new inputs can
be slow, as it usually relies on some kind of iterative proce-
dure [14,22,30]. This in turn can limit the real-time appli-
cations or scalability of the system.

In this paper, we investigate a sparse coding method called
Predictive Sparse Decomposition (PSD) [11, 14, 15] that at-
tempts to automatically learn useful features from audio data,
while addressing some of these drawbacks. Like many sparse
coding algorithms, it involves learning a dictionary from a
corpus of unlabeled data, such that new inputs can be rep-
resented as sparse linear combinations of the dictionary’s
elements. It differs in that it also trains an encoder that ef-
ficiently maps new inputs to approximations of their opti-
mal sparse representations using the learned dictionary. As
a result, once the dictionary is learned inferring the sparse
representations of new inputs is very efficient, making the
system scalable and suitable for real-time applications.

2. THE ALGORITHM
2.1 Sparse Coding Algorithms

The main idea behind sparse coding is to express signals
x € R™ as sparse linear combinations of basis functions



chosen out of an overcomplete set. Letting B € R"*™
(n < m) denote the matrix consisting of basis functions

b; € R" as columns with weights z = (21, ..., 2,,), this
relationship can be written as:
m
X = szbj =Bz (D
J

where most of the z;’s are zero. Overcomplete sparse
representations tend to be good features for classification
systems, as they provide a succinct representation of the sig-
nal, are robust to noise, and are more likely to be linearly
separable due to their high dimensionality.

Directly inferring the optimal sparse representation z of
a signal x given a dictionary B requires a combinatorial
search, intractable in high dimensional spaces. Therefore,
various alternatives have been proposed. Matching Pursuit
methods [21] offer a greedy approximation to the solution.
Another popular approach, called Basis Pursuit [7], involves
minimizing the loss function:

1
La(x,2,B) = 5|[x = Bz|l3 + Al|z[l (2)

with respect to z. Here A is a hyper-parameter setting the
tradeoff between accurate approximation of the signal and
sparsity of the solution. It has been shown that the solu-
tion to (2) is the same as the optimal solution, provided it
is sparse enough [10]. A number of works have focused on
efficiently solving this problem [1,7,17,20], however they
still rely on a computationally expensive iterative procedure
which limits the system’s scalability and real-time applica-
tions.

2.2 Learning Dictionaries

In classical sparse coding, the dictionary is composed of
known functions such as sinusoids, gammatones, wavelets
or Gabors. One can also learn dictionaries that are adaptive
to the type of data at hand. This is done by first initializing
the basis functions to random unit vectors, and then iterating
the following procedure:

1. Get a sample signal x from the training set

2. Calculate its optimal sparse code z* by minimizing
(2) with respect to z. Simple optimization methods
such as gradient descent can be used, or more sophis-
ticated approaches such as [1,7,20].

3. Keeping z* fixed, update B with one step of stochas-
tic gradient descent: B < B — 1/88%1, where Lg is
the loss function in (2). The columns of B are then
rescaled to unit norm, to avoid trivial minimizations
of the loss function where the code coefficients go to

zero while the bases are scaled up.

Figure 1. Shrinkage function with § = 1

There is evidence that sparse coding could be a strategy
employed by the brain in the early stages of visual and audi-
tory processing. The authors in [24] found that basis func-
tions learned on natural images using the above procedure
resembled the receptive fields in the visual cortex. In an
analogous experiment [28], basis functions learned on nat-
ural sounds were found to be highly similar to gammatone
functions, which have been used to model the action of the
basilar membrane in the inner ear.

2.3 Predictive Sparse Decomposition

In order to avoid the iterative procedure typically required
to infer sparse codes, several works have focused on de-
veloping nonlinear, trainable encoders which can quickly
map inputs to approximations of their optimal sparse codes
[11, 14, 15]. The encoder’s architecture is denoted z =
fe(x,U), where x is an input signal, z is an approxima-
tion of its sparse code, and U collectively designates all the
trainable parameters of the encoder. Training the encoder
is performed by minimizing the encoder loss L.(x, U), de-
fined as the squared error between the predicted code z and
the optimal sparse code z* obtained by minimizing (2), for
every input signal x in the training set:

1
Le(X7U): §|‘Z*—fe(X,U)H2 (3)

Specifically, the encoder is trained by iterating the fol-
lowing process:

1. Get a sample signal x from the training set and com-
pute its optimal sparse code z* as described in the pre-
vious section.

2. Keeping z* fixed, update U with one step of stochas-
tic gradient descent: U < U — V%LUe, where L. is
the loss function in (3).

In this paper, we adopt a simple encoder architecture
given by:
fe(x, W,b) = hy(Wx + b) 4)

where W is a filter matrix, b is a vector of trainable bi-
ases and hy is the shrinkage function given by hy(x); =



sgn(x;)(|x;| — 6;)+ (Figure 1). The shrinkage function sets
any code components below a certain threshold 6 to zero,
which helps ensure that the predicted code will be sparse.
Training the encoder is done by iterating the above process,
with U = {W, b, §}. Note that once the encoder is trained,
inferring sparse codes is very efficient, as it essentially re-
quires a single matrix-vector multiplication.

3. LEARNING AUDIO FEATURES

In this section we describe the features learned on music
data using PSD.

3.1 Dataset

We used the GTZAN dataset first introduced in [29], which
has since been used in several works as a benchmark for
the genre recognition task [2, 3,6, 12, 18,25]. The dataset
consists of 1000 30-second audio clips, each belonging to
one of 10 genres: blues, classical, country, disco, hiphop,
jazz, metal, pop, reggae and rock. The classes are balanced
so that there are 100 clips from each genre. All clips are
sampled at 22050 Hz.

3.2 Preprocessing

To begin with, we divided each clip into short frames of
1024 samples each, corresponding to 46.4ms of audio. There
was a 50% overlap between consecutive frames. We then
applied a Constant-Q transform (CQT) to each frame, with
96 filters spanning four octaves from C, to Cg at quarter-
tone resolution. For this we used the toolbox provided by
the authors of [27]. An important property of the CQT is
that the center frequencies of the filters are logarithmically
spaced, so that consecutive notes in the musical scale are
linearly spaced. We then applied subtractive and divisive
local contrast normalization (LCN) as described in [15],
which consisted of two stages. First, from each point in the
CQT spectrogram we subtracted the average of its neigh-
borhood along both the time and frequency axes, weighted
by a Gaussian window. Each point was then divided by the
standard deviation of the new neighborhood, again weighted
by a Gaussian window. This enforces competition between
neighboring points in the spectrogram, so that low-energy
signals are amplified while high-energy ones are muted. The
entire process can be seen as a simple form of automatic
gain control.

3.3 Features Learned on Frames

We then learned dictionaries on all frames in the dataset, us-
ing the process described in 2.2. The dictionary size was
set to 512, so as to get overcomplete representations. Once
the dictionary was learned, we trained the encoder to pre-
dict sparse representations using the process in 2.3. In both

Figure 2. A random subset of the 512 basis functions
learned on full CQT frames. The horizontal axis represents
log-frequency and ranges from 67 Hz to 1046 Hz.

cases, we used the Fast Iterative Shrinkage-Thresholding al-
gorithm (FISTA) [1] to compute optimal sparse codes. Some
of the learned basis functions are displayed in Figure 2. One
can see single notes and what appear to be series of linearly
spaced notes, which could correspond to chords, harmonics
or harmonies. Note that some of the basis functions appear
to be inverted, since the code coefficients can be negative.
A number of the learned basis functions also seem to have
little recognizable structure.

3.4 Features Learned on Octaves

We also tried learning separate dictionaries on each of the
four octaves, in order to capture local frequency patterns.
To this end we divided each frame into four octaves, each
consisting of 24 channels, and learned dictionaries of size
128 on each one. We then trained four separate encoders
to predict the sparse representations for each of the four oc-
taves. Some of the learned basis functions are shown in Fig-
ure 3. Interestingly, we find that a number of basis functions
correspond to known chords or intervals: minor thirds, per-
fect fifths, sevenths, major triads, etc. A number of basis
functions also appear to be similar versions of each other
shifted across frequency. Other functions have their en-
ergy spread out across frequency, which could correspond
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Figure 3. Some of the functions learned on individual oc-
taves. The horizontal axis represents log-frequency. Recall
that each octave consists of 24 channels a quarter tone apart.
Channel numbers corresponding to peaks are indicated. a)
A minor third (two notes 3 semitones apart) b) A perfect
fourth (two notes 5 semitones apart) c) A perfect fifth (two
notes 7 semitones apart) d) A quartal chord (each note is 5
semitones apart) e) A major triad f) A percussive sound.

to sounds caused by percussive instruments.

3.5 Feature Extraction

Once the dictionaries were learned and the encoders trained
to accurately predict sparse codes, we ran all inputs through
their respective encoders to obtain their sparse representa-
tions using the learned dictionaries. In the case of dictio-
naries learned on individual octaves, for each frame we con-
catenated the sparse representations of each of its four oc-
taves, all of length 128, into a single vector of size 512. Ex-
tracting sparse features for the entire dataset, which contains
over 8 hours of audio, took less than 3 minutes, which shows
that this feature extraction system is scalable to industrial-
size music databases.

4. CLASSIFICATION USING LEARNED FEATURES

We now describe the results of using our learned features
as inputs for genre classification. We used a linear Support
Vector Machine (SVM) as a classifier, using the LIBSVM
library [5]. Linear SVMs are fast to train and scale well to
large datasets, which is an important consideration in MIR.

4.1 Aggregated Features

Several authors have found that aggregating frame-level fea-
tures over longer time windows substantially improves clas-
sification performance [2, 3, 12]. Adopting a similar ap-
proach, we computed aggregate features for each song by
summing up sparse codes over 5-second time windows over-
lapping by half. We applied absolute value rectification to
the codes beforehand to prevent components of different
sign from canceling each other out. Since each sparse code
records which dictionary elements are present in a given
CQT frame, these aggregate feature vectors can be thought
of as histograms recording the number of occurrences of
each dictionary element in the time window.

4.2 Classification

To produce predictions for each song, we voted over all ag-
gregate feature vectors in the song and chose the genre with
the highest number of votes. Following standard practice,
classification performance was measured by 10-fold cross-
validation. For each fold, 100 songs were randomly selected
to serve as a test set, with the remaining 900 serving as train-
ing data. This procedure was repeated 10 times, and the re-
sults averaged to produce a final classification accuracy.
Our classification results, along with several other results
from the literature, are shown in Figure 4. We see that PSD
features learned on individual octaves perform significantly
better than those learned on entire frames.! Furthermore,

'In an effort to capture chords which might be split among two of the
octaves, we also tried dividing the frequency range into 7 octaves, overlap-
ping by half, and similarly learning features on each one. However, this did



Classifier Features Acc. (%)
CSC Many features [6] 92.7

SRC Auditory cortical feat. [25] 92
RBF-SVM Learned using DBN [12] 84.3
Linear SVM | Learned using PSD on octaves | 83.4 £ 3.1
AdaBoost Many features [2] 83

Linear SVM | Learned using PSD on frames | 79.4 + 2.8
SVM Daubechies Wavelets [19] 78.5

Log. Reg. Spectral Covariance [3] 77

LDA MFCC + other [18] 71

Linear SVM | Auditory cortical feat. [25] 70

GMM MFCC + other [29] 61

Figure 4. Genre recognition accuracy of various algorithms
on the GTZAN dataset. Our results with standard deviations
are marked in bold.

our approach outperforms many existing systems which use
hand-crafted features. The two systems that significantly
outperform our own rely on sophisticated classifiers based
on sparse representations (SRC) or compressive sampling
(CSC). The fact that our method is still able to reach compet-
itive performance while using a simple classifier indicates
that the features learned were able to capture useful proper-
ties of the audio that distinguish between genres. One possi-
ble interpretation is that some of the basis functions depicted
in Figure 3 represent chords specific to certain genres. For
example, perfect fifths (e.g. power chords) are very com-
mon in rock, blues and country, but rare in jazz, whereas
quartal chords, which are common in jazz and classical, are
seldom found in rock or blues.

4.3 Discussion

Our results show that automatic feature learning is a viable
alternative to using hand-crafted features. Our approach per-
formed better than most systems that pair signal processing
feature extractors with standard classifiers such as SVMs,
Nearest Neighbors or Gaussian Mixture Models. Another
positive point is that our feature extraction system is very
fast, and the use of a simple linear SVM makes this method
viable on any size dataset. Furthermore, the fact that the fea-
tures are learned in an unsupervised manner means that they
are not limited to a particular task, and could be used for
other MIR tasks such as chord recognition or autotagging.
We also found that features learned on octaves performed
better than features learned on entire frames. This could be
due to the fact that in the second case we are learning four
times as many parameters as in the first, which could lead
to overfitting. Another possibility is that features learned on
octaves tend to capture relationships between fundamental
notes, whereas features learned on entire frames also seem

not yield an increase in accuracy.

to capture patterns between fundamentals and their harmon-
ics, which could be less useful for distinguishing between
genres.

One aspect that needs mentioning is that since we per-
formed the unsupervised feature learning on the entire dataset
(which includes the training and test sets without labels for
each of the cross-validation folds), our system is technically
akin to “transductive learning”. Under this paradigm, test
samples are known in advance, and the system is simply
asked to produce labels for them. We subsequently con-
ducted a single experiment in which features were learned
on the training set only, and obtained an accuracy of 80%.
Though less than our overall accuracy, this result is still

within the range observed during the 10 different cross-validation

experiments, which went from 77% to 87%. The seemingly
large deviation in accuracy is likely due to the variation of
class distributions between folds.

There are a number of directions in which we would like
to extend this work. A first step would be to apply our sys-
tem to different MIR tasks, such as autotagging. Further-
more, the small size of the GTZAN dataset does not ex-
ploit the system’s ability to leverage large amounts of data
in a tractable amount of time. For this, the Million Song
Dataset [4] would be ideal.

A limitation of our system is that it ignores temporal de-
pendencies between frames. A possible remedy would be
to learn features on time-frequency patches instead. Pre-
liminary experiments we conducted in this direction did not
yield improved results, as many ’learned’ basis functions
resembled noise. This requires further investigation. We
could also try training a second layer of feature extractors
on top of the first, since a number of works have demon-
strated that using multiple layers can improve classification
performance [12, 15, 16].

5. CONCLUSION

In this paper, we have investigated the ability for PSD to
automatically learn useful features from constant-Q spec-
trograms. We found that the features learned capture infor-
mation about which chords are being played in a particular
frame. Furthermore, these learned features can perform at
least as well as hand-crafted features for the task of genre
recognition. Finally, the system we proposed is fast and uses
a simple linear classifier which scales well to large datasets.

In future work, we will apply this method to larger datasets,
as well as a wider range of MIR tasks. We will also exper-
iment with different ways of capturing temporal dependen-
cies between frames. Finally, we will investigate using hi-
erarchical systems of feature extractors to learn higher-level
features.
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