OPTICAL CHARACTER RECOGNITION:
A TECHNOLOGY DRIVER FOR NEURAL NETWORKS

R. E. Howard, B. Boser, J. S. Denker, H. P. Graf
D. Henderson, W. Hubbard, L. D. Jackel, and Y. Le Cun
AT&T Bell Laboratories, Room 4E-436
Holmdel, NJ 07733

and

H. S. Baird
AT&T Bell Laboratories
Murray Hill, NJ 07974

Introduction

Over the last several years, computing systems based on
adaptive learning with fine-grained parallel architectures have
moved from obscurity to front-page prominence. These systems
derive some of their novel architecture from ideas gleaned from
biology, hence the name "neural network”. Although many of
the ideas behind this field are not new, improved computing
hardware, better understanding of learning algorithms, and
limitations of traditional approaches have combined to renew
interest in neural nets.

The ultimate success of electronic neural networks will
depend on their effectiveness in solving real-world problems.
Therefore it is important to choose realistic benchmarks as a
focus for research in algorithms and hardware for neural-network
computing. Optical character recognition (OCR) of handwritten
digits is such a benchmark problem: it has a clearly defined
commercial importance and a level of difficulty that makes it
challenging, yet it is not so large as to be completely intractable.

We have demonstrated that a neural net can perform
handwritten digit recognition with state-of-the-art accuracy. The
solution required "automatic learning” and generalization from
thousands of training examples, and also required designing into
the system considerable knowledge about the task --—- neither
engineering alone nor learning from examples alone would have
sufficed. The resulting network is well-suited for implementation
on workstations or PCs, and can take advantage of digital signal
processors (DSPs) or custom VLSL

amplifier

’ o)
o‘|_|-';rlrrlo-l_rl?lesIstor output
synapses

inputs

Figure 1. An clectronic neuron model. The amplifier receives
signals to its input through resistors connected to the outputs of
other amplifiers or external inputs. Similarly, the amplifier output
is connected to other amplifiers through their input resistors.

Electronic neural models and networks

Figure 1 shows an electronic model of a neuron - a
greatly simplified abstraction having some of the basic functions
observed in biological systems. Input signals are represented as
voltages and the resulting currents through the resistive
"synapses” are summed on the input wire to the nonlinear
amplifier. Negative (inhibitory) connections can be obtained
using a differential amplifier or a current mirror. The input
voltages can be considered the components of a vector (the input
vector), and the synapse conductances can be considered the
elements of a vector (the weight vector); the neuron begins by
calculating the dot product of these two vectors. The product is
applied to the input of the amplifier. If it is either very large or
very small, the amplifier saturates; for smaller inputs the transfer
function is approximately linear.

Several such neurons, sharing the same inputs, can be
grouped together to form a “layer” of neurons. An electronic
neural network consists of one or more of these layers feeding
forward (and perhaps backward). With appropriate synapse
weights, it is easy to construct a neuron that functions as a NOR
gate, which implies that a two-layered network can implement
any Boolean function. In fact, layered networks are much more
powerful; a three-layer network can implement essentially any
reasonable analog or digital input-output relation.

A single layer network can classify objects when the
boundaries between the classes can be represented as linear
functions in the space of the input examples. Multilayer
networks can make far more complex partitions of the input
space. Such networks offer the promise of being useful for
difficult classification tasks like speech and vision processing [1],
where very dissimilar input patterns must often be put in the
same output category.

Neural Network Hardware

The electronic neural model of Figure 1 offers several
arguments in favor of analog computation. Unfortunately, the
situation is not as simple as it first appears for several reasons.
First, any network large enough for a real-world problem
contains enough neurons and synapses (10,000+) to challenge
existing analog VLSI technology. Second, in analog circuits
only limited precision is available, and it is very difficult to
transfer analog signals from chip to chip in a large system. High
precision could require a large, slow circuit that cannot compete
with straightforward digital designs.

There are several other factors that make digital
implementations of neural networks competitive. Modern
workstations provide reasonably good network development
tools, and can now perform several million multiply-add
operations per second. (This measure of performance is usually

CH2868-8/90/0000-2433$1.00 © 1990 IEEE

called a "connection per second" in the language of neural
computing.)

Higher processing speeds are possible using digital signal
processors (DSPs), which are optimized to perform multiply-add
operations. They can achieve over 20 million 32-bit floating
point connections per second, and provide 10 times the
processing power at 1/10 the cost of a typical workstation.
Singly or in arrays, they offer the possibility of cost-effective
implementation of neural nets.

Only when the utmost performance is required do analog
solutions stand out. Our group and others have designed chips
incorporating analog processing for the multiply/add operation
and digital processing for I/O and control functions. Speeds of
several hundred billion connections per second at low resolution
(1-4 bit) have been achieved [2]; typical applications can only
utilize a fraction of this power because of bottlenecks in the
preprocessing of the data.

Adaptive systems and Learning

A key advantage of neural-net methods is the possibility of
"adaptation” and "learning from examples”. Neural-net learning
algorithms that run on general purpose computers can determine
good choices for network architectures and weights. The
resultant network can then be installed on dedicated neural
hardware or be run on a general-purpose machine.

Analysis shows that many difficult pattern-recognition
problems can be formulated as multi-dimensional curve fitting.
For example, in OCR, general rules for distinguishing one
character from another are not known. The best we can do is to
examine many characters written by a cross-section of the
population and try to find a function that interpolates
(generalizes) adequately to allow recognition of new examples of
the same general type. Unfortunately, any function that maps
character images to one of ten output categories must be
extremely complex and have a tremendously high-dimensional
input. Most curve fitting and statistical-inference procedures
work best in low dimensions, and are next to hopeless for our
application. However, there exist neural-net learning algorithms
that perform this interpolation surprisingly well.

The network cannot learn effectively from examples unless
it starts with some knowledge of the problem to be solved.
Therefore we require a method for programming this knowledge
into the network. This is in stark contrast with conventional
programming languages or rule-based systems, where
engineering knowledge can be incorporated easily, but where
improving the system by adaptation is very difficult.

Most neural-net learning today is performed using the
algorithm known as "Back-Propagation”. The algorithm requires
thousands of training examples, each labeled with the
corresponding desired output. Each training example is presented
to the network, and small changes are made in the synaptic
weights, to force the network’s output closer to the desired
answer. The process is repeated until a set of weights is
developed that allows the network to classify accurately all the
examples in the training set.

The resulting solution is not unique, and there is often no
guarantee that it will generalize to a wider set of examples. If
the network is too small or too large or has the wrong topology,
or if the training set is inadequate, the network solution will
generalize poorly. However, given a network architecture and
constraints that well reflect the problem at hand, and given a
large, rich training set, it is possible for the network to achieve

2434

truly remarkable performance. In some cases solutions are
possible that surpass conventional techniques in accuracy and
require far less development time.

Design of an Optical Character Recognition System

In this section we describe neural-net approaches to
handwritten digit recognition and show how advances in
theoretical understanding of neural-net learning has led to
improved system performance.

The key to tackling any large problem with an adaptive
system is to obtain a large and representative database. For our
application, we used a collection of zipcode digits collected from
real US Mail envelopes. A US Postal Service contractor
converted the original images to a digital format and segmented
them into isolated digits. The resulting database consisted of
9,298 binary images of isolated digits, 7291 of which were used
for training; the other 2007 were reserved fui testing. Before
presenting the images to the network, additional preprocessing
was done to ensure uniform scaling and orientation, and to
correct for noise and broken lines. The resulting processed
images are presented as vectors to a network that is either
implemented in software or a mix of custom hardware and
software. Figure 2 shows examples of the normalized digits
used.

260149463571 4637103711%497
FTOS57 11 1249%¢1 1025620258870
330103341602920402310029012
14062G50L729¢801295%0299055
S1012920(303%~7012942106Y
11&]1176057199600159-1N1899
P1ST7SSTA125700885214998 1 ¢
79605720071536272283249237
35072712723183930538803114
1321914119139192841911701 4
611 7U548657368U322641418¢
£3597202992997225100%¢701
308441445710 10615¢406103431
(O6Y1110304752(20097799¢66
BI1A08LT708STFIININA29554¢0
lol¥23018711299430%9970984
010970759733 1970155170588
(07851 R02SS (2514358090963
17871 (0SSY¢C0559L035¢605S
182851083030+7520739401

Figure 2. Typical examples from the U.S. Postal Service
handwritten digit database. Notice that many of the digits are
poorly formed and hard to classify, even for a human.

Just feeding an input image into a multilayer, fully-
connected network gives a poor solution to this problem. If the
network has a sufficient number of units in the intermediate
layers to be able to fit the training data, it will have so many
adjustable parameters (synapse weights) that the generalization
will be underdetermined. The analogous problem arises in
ordinary 2-dimensional curve fitting: if too few data points are fit
to a high-order function, the curve may well pass through every
data point but have disastrously poor interpolation properties.

Better generalization results are obtained using a
“constrained” network that incorporates our knowledge about the
problem into its structure. Since we are processing 2D images, it
is important to have a network structured to organize the input in
a 2D space. We have therefore designed networks that perform
multiple 2D convolutions of the image to extract geometric
features and form a family of 2D feature-maps. The coefficients
that define the kemels of these convolutions are the adjustable
parameters of our network. We find that these kemels typically
serve as feature detectors for simple, perceptually important
features such as oriented lines and edges. A map is created for
each class of features. For our application, these maps are a
better representation of the data than the original pixel map. In
particular, distortions in shape or location of a digit usually have
a smaller effect on the feature maps than on the original pixel
image.

Our first successful attack at this problem involved using a
custom chip suitable for evaluating simple 3-valued kernels
convolved across an image at high speed [3] and thresholding the
output. In this case, the features were chosen by hand, using
some weak hints from biological vision systems and simple
heuristics. The chip was also used to "skeletonize" the images,
that is to make the lines one-dimensional, removing meaningless
linewidth variations. After these two levels of preprocessing, the
resulting feature maps were presented as input to an additional 3
layers of interconnected neurons trained using the
backpropagation algorithm [4]. The total network is equivalent
to almost 3,000,000 connections and 7 layers (since the
skeletonizing layers were repeated several times). More than
99% of these connections were tailored to fit on the custom chip
as 3-valued weights with binary outputs. Because of the large
number of repetitive kernels, the network had only about 13,000
free parameters, which is less than 1% of the number of
connections that must be evaluated. The performance was
measured by choosing a confidence threshold on the output layer
to reject a sufficient number of digits so that the error rate on
those remaining was 1%. For this network, that reject fraction
was about 11% of the 2007 digits in the test set.

In the above network, the 49 features used were chosen by
hand, without automatic adaptive learning. A better network was
designed by replacing these binary features with a smaller
number of features with greater dynamic range and using back-
propagation learning to adjust the kemel weights. The required
dynamic range exceeded the capabilities of our currently
available chips, so the net was first implemented on a general
purpose computer. (Chips adequate for this net are now being
tested and should provide orders-of-magnitude increases in
speed.) Figure 3 shows a schematic of one such network with
66,000 connections and about 10,000 free parameters. This
network has 2 layers, each with 12 feature-extraction kernels that
are learned during the training process. Although this network is
smaller than the previous design, it makes more efficient use of
its resources and its reject performance is about 11%. The
smaller size means that the computation time on a general
purpose processor is reduced by almost a factor of 40 compared
with the earlier network. By replacing the original custom

2435

hardware by a digital signal processor chip, this network can
classify more than 10 digits per second (including all
preprocessing, which is performed by a personal computer) [5].
With a second generation custom chip optimized for these higher
resolution kemels and with pipelined /O, another speedup by a
factor of 10 to 100 is expected [2].

Further improvements in performance in the system have
been obtained by selectively removing connections. We have
developed an automatic process to prune weights from an
existing network based on their importance [6]. During training,
the back-propagation algorithm adjusts each weight so that any
change in the weight has no first-order effect on the output. The
system is at a local minimum in "weight space”. One can then
measure the second derivative of the output with respect to each
weight and determine which ones can be removed without
serious effect. Using this algorithm, we were able to delete the
30 hidden units of Figure 3, and decrease the number of first-
layer feature maps from 12 to 4. These 4 maps have higher
resolution than those in the previous design, bringing the total
number of connections to 98,000. However, the new network has
only 2700 free parameters, a factor of four reduction from the
parent design. As the number of free paramecters decrease
performance improved, reaching a reject rate of about 9%. At
this level, this network is a state-of-the-art classifier of
handwritten digits [7]. Further reduction in the size from this
point led to degradation in performance.

12 4x4 super-
feature maps

10 output units

30
hidden
units

12 8x8
feature maps

input:
16 x16 image

Figure 3. A network architecture for classifying handwritten
digits. All the connection weights between layers are learned
using the backpropagation algorithm. Two layers of feature
extraction are followed by an addition layer of 30 neurons
(called hidden units). In later networks these 30 neurons were
eliminated, and the first layer of 12 feature maps was replaced
by a layer of 4 higher-resolution maps. These changes were
motivated by a weight pruning process described in the text.

This trend of improved performance as the network size is
reduced is easily understood through the curve-fitting analogy.
Making the network smaller is equivalent to reducing the order
of a curve fit. If it is done using the proper family of functions,
the interpolation properties of the fit will improve as the number
of parameters is reduced. Eventually, the fit will reach an
optimum (model and data dependent) below which there are
insufficient degrees of freedom to fit the data. For neural
networks, the topological and other constraints placed on the
network determine what family of functions will be
implemented. A rough rule of thumb is that the number of
adjustable parameters should not exceed the amount of available
training data.

Conclusion
Neural-net methods have now demonstrated their
usefulness for tackling hard, practical problems. Neural-net

systems now exist for handwritten digit recognition that have
state-of-the-art performance. Significant improvements in
recognition speed will occur when new custom neural-net chips
are incorporated into the systems. Research in real-world
problems like optical character recognition identify key issues for
neural-net hardware and provide a proving ground for algorithm
development in ways that can’t be achieved with toy problems.

Acknowledgement

We thank the U.S. Postal Service and its contractors for
providing us with a database of handwritten digits.

2436

(1

[2]

3]

{4]

(51

fe]

(7]

References

For a general introduction see:"Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition. Vol. 1: Foundations," Rumelhart and
McClelland (Eds.), Bradford Books/MIT Press (1986).

H. P. Graf and D. Henderson, "A reconfigurable CMOS
neural network”, to appear in Technical Digest of
International Solid-State Circuits Conference, IEEE, 1990.

H. P. Graf and P. deVegvar, "A CMOS Associative
Memory Chip Based on Neural Networks," in Technical
Digest International Solid-State Circuits Conference
IEEE, (New York, 1987), p. 304.

J. S. Denker, W. R. Gardner, H. P. Graf D. Henderson,
R. E. Howard, W. Hubbard, L. D. Jackel, H. S. Baird,
and I Guyon, "Neural Network Recognizer for Hand-
Written Zip Code Digits, in Advances in Neural
Information Processing Systems I, David S. Touretzky,
ed., Morgan Kaufmann, San Mateo, CA , pp. 323-31
(1989).

Y. Le Cun, B. Boser, I. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, "Back-
Propagation Applied to Handwritten Zipcode
Recognition", Neural Computation, 1(4), January 1990

Y. Le Cun, J. S. Denker, and S. A. Solla, "Optimal Brain
Damage", to appear in Advances in Neural Information
Processing Systems 2, D. S. Touretzky, ed. Morgan
Kaufman, San Mateo, CA, 1990.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, "Handwritten
digit recognition with a backpropagation network" to
appear in Advances in Neural Information Processing
Systems 2, D. S. Touretzky, ed. Morgan Kaufman, San
Mateo, CA, 1990.

