
Large-scale Learning with SVM and Convolutional Nets

for Generic Object Categorization

Fu Jie Huang, Yann LeCun
The Courant Institute of Mathematical Sciences

New York University, New York, NY, USA
{jhuangfu,yann}@cs.nyu.edu

Abstract

The detection and recognition of generic object cate-

gories with invariance to viewpoint, illumination, and clut-

ter requires the combination of a feature extractor and a

classifier. We show that architectures such as convolutional

networks are good at learning invariant features, but not

always optimal for classification, while Support Vector Ma-

chines are good at producing decision surfaces from well-

behaved feature vectors, but cannot learn complicated in-

variances. We present a hybrid system where a convolu-

tional network is trained to detect and recognize generic

objects, and a Gaussian-kernel SVM is trained from the fea-

tures learned by the convolutional network.

Results are given on a large generic object recognition

task with six categories (human figures, four-legged ani-

mals, airplanes, trucks, cars, and “none of the above”),

with multiple instances of each object category under vari-

ous poses, illuminations, and backgrounds. On the test set,

which contains different object instances than the training

set, an SVM alone yields a 43.3% error rate, a convolu-

tional net alone yields 7.2% and an SVM on top of features

produced by the convolutional net yields 5.9%.

1 Introduction

The detection and recognition of generic object cate-
gories with invariance to pose, illumination, clutter, and oc-

clusions has motivated several research efforts in the last

few years. It is a considerably more challenging problem
than detection alone, or recognition alone.

While model-based specific object recognition systems
have had a long history, the recognition of broad, generic

categories with wide variability of form such as “animals”,

or “airplanes” is still a very challenging problem. The task
of detecting and classifying objects in such high-level cate-

gories is an ideal challenge for machine learning methods.

Discriminative methods can be tested in situations where
the number of categories is small while the intra-class vari-

ations can be very large due to shape variations within a

category, or due to variations in viewpoint, lighting condi-

tions, and background clutter.

In this paper, we investigate two types of popular dis-

criminative learning methods: Support Vector Machines
(SVM) and Convolutional Nets. SVMs [2] have become a

standard tool in the classification toolbox in the last decade.

They are theoretically appealing because [32]: (1) with
an appropriate choice of the kernel parameters, they can in

principle learn any training set perfectly; (2) the loss func-

tion minimized by the learning algorithm is convex; (3) the
maximum margin criterion gives raise to “sparse” solutions

with theoretical bounds on the generalization error; (4) once

the kernel function is chosen, the algorithm is relatively free
of adjustable parameters, except the maximum cost of mis-

classified samples. In practice, however, the SVM training

is very computationally intensive, and scales badly with the
size of the data sets. Large-scale experiments (105 - 106

samples) on high-dimensional data (104 variables) have so
far been limited. Another limitation of SVMs is that the

“standard” kernels, such as the Gaussian kernel, are woe-

fully inadequate for image recognition from raw pixels.
With a Gaussian kernel, the SVM architecture essentially

reduces to performing pixel-level global template matching

with stored training samples, and linearly combining the
matching scores. As we will show, such an architecture

cannot handle the wide variability of appearance in pixel

images that result from variations in pose, illumination, and
clutter, unless an impracticably large number of templates

(support vectors) are used. Ad-hoc preprocessing and fea-

ture extraction can, of course, be used to mitigate the prob-
lem, but this concentrates on methods that can be fed with

raw pixel data and that integrate feature extraction as part of
the learning process.

The other method used in this paper, the Convolutional

Network [14], is a multi-layer architecture trained in su-

pervised mode using a gradient-based algorithm that mini-
mizes a loss function. The convolutional net architecture is

specifically designed for image processing, containing mul-

tiple alternated layers of trainable filters, point-wise non-
linearities, and spatial subsampling. The overall function

is non-linear in the parameters (the filter coefficients), and
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the loss function is non-convex. There is no guarantee that

a global minimum will be found, but this does not seem
to be a problem in practice. Empirically, the training time

scales sub-linearly with dataset size. Convolutional net have

been shown empirically to automatically learn salient image
features and yield good recognition accuracy. However, no

theoretical bounds exist, beyond the most generic ones that

apply to all reasonable learning algorithms with finite ca-
pacity.

The contribution of this paper is two-fold. First, we test
the SVM and convolutional net methods on the publicly

available NORB dataset [15] which is intended as a bench-

mark dataset for large-scale invariant object categorization
experiments. The dataset contains images of 50 objects be-

longing to 5 generic categories: human figures, four-legged

animals, airplanes, trucks, and cars. Five instances of each
category are used for training, and the remaining five for

testing. Each object instance has 162 different views dis-

tributed on a viewing hemisphere, under 6 illuminations,
and captured by a camera pair. A large dataset is available in

which the objects are slapped on complex backgrounds, and

randomly jittered for position, scale, in-plane rotation, con-
trast, and brightness. Previously reported results in the liter-

ature [15] have indicated convergence failures when train-
ing an SVM on the full dataset. The present paper reports

successful results obtained after running systematic experi-

ments with a highly-parallelized efficient SVM implemen-
tation [10]. Systematic experiments with convolutional nets

on the same dataset were also performed.

The main point of the paper is to combine the advantages
of convolutional nets and SVM. It is shown that the convo-

lutional net can be trained to extract features that are rela-

tively invariant to irrelevant variations of the input. Then it
is shown that an SVM trained on feature vectors produced

by the convolutional net can attain superior performance. It

is easy to see that integrating a feature extraction process
c(x) with a regular kernel K(c(x), c(x′)) is equivalent to

constructing a new kernel Kc(x,x′) on raw images. The

Mercer condition over the new kernel Kc is automatically
preserved. We show that this hybrid method yields signif-

icant performance improvement over the stand-alone sys-
tems on the large NORB dataset.

2 Previous Work

Object recognition is a very active research area. Many
different approaches have been proposed over the years.

The use of color, texture, and contours have been advocated
in [16], the use of global appearance templates in [19, 18,

25], silhouettes and edge information [22, 29, 16, 5, 25],

pose-invariant feature histograms [17, 6, 1], distinctive lo-
cal features [26, 35, 33, 12], and image fragments [30].

Learning-based methods operating on raw pixels or low-

level local features have been quite successful for such ap-
plications as face detection [31, 24, 33, 27]. SVM has been

used first for OCR [7], and later for face detection [20],

object recognition [23] on the COIL [19] dataset. In these

reports, SVMs were used directly on raw pixels, while [6]
used histogram features. More recent work concentrated

on the use of more sophisticated kernel that use local fea-

tures [11, 3, 34].

Several hierarchical, feed-forward multi-layer architec-

tures have been proposed for invariant object recognition
and detection, including convolutional nets [13, 31, 14, 15],

hierarchies of features detectors based on image frag-

ments [8], and variants of the HMAX architecture [28].
These architectures are all based on stacking multiple lay-

ers of the following modules [9, 13]: feature extrac-

tion through multiple convolutional filters, point-wise non-
linearities, and spatial subsampling. These architectures are

inspired by Hubel and Wiesel’s classic simple cell/complex
cell model of the early visual cortex. The spatial subsam-

pling modules are designed to provide some level of shift

and distortion invariance.

In [9], the filters are learned with an unsupervised

method that produces sparse features, and the non-
linearities are piecewise linear rectifications. In [28], the

first layer is simply a set of fixed Gabor filters, and the non-

linearity/subsampling is a max over local filter outputs. A
large number of Gabor filters are necessary to cover the ori-

entation/scale space. In [8], the filters are image fragments

selected from training images using a mutual information
criterion with the objects labels. Since the filters are rela-

tively selective and class-specific, a large number of them

is required. In convolutional nets [15], the features are all
learned in supervised mode using gradient descent, and the

non-linarities are sigmoid functions. The filter produced are

quite broadly tuned, and a relatively small number of them
is required for good performance (typically 8 at the first

layer). The supervised, gradient-based optimization pro-

duces good results with far more compact networks than
other methods, allowing for real-time applications.

3 SVM, Convolutional Nets, and Combining
the two methods

In this section, we first briefly describe the SVM method
and the Convolutional networks. The focus is to inspect

their internal structures to provide insights into their respec-

tive strengths and weaknesses on the present vision task.
This analysis will lead us to propose a method that com-

bines the strengths of the two methods.

As we will show, SVMs can produce good decision sur-

faces if the input representation is reasonably well-behaved.

But, with their fixed architecture, they cannot learn to ex-
tract relevant features so as to handle complicated invari-

ances. Conversely, convolutional nets can learn invariant

local features that are appropriate for image recognition, but
the top layers seem to produce suboptimal classification sur-

faces.
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3.1 SVM with Gaussian Kernel

SVMs with Gaussian kernels have two-layers. The first

layer can be viewed as a set of template matchers that mea-
sure the similarity of the input pattern x to each of the train-

ing samples xi. The second layer computes the discrimi-

nant function as a linear combination of the similarity scores
with learned weights αi (many of which may be zero):

f(x) = sgn(
∑

i

yiαiK(xi,x) + b)

where the kernel function K(xi,x) measures the similarity

between the input pattern x and the training sample xi. The
samples xi for which the corresponding αi are non-zero are

the support vectors.

The supervised learning algorithm only affects the co-
efficients αi. They are obtained by maximizing a margin

criterion. In the dual formulation, the following quadratic
loss function is minimized:

LD(α) =
1

2
αT Gα − 1T α

subject to the constraints 0 ≤ αi ≤ C, i = 1, . . . , n and∑n

i=1
αiyi = 0.

Gi,j = yiyjK(xi,xj). When the kernel function K

satisfies the Mercer condition, the matrix G is positive
semidefinite, and therefore the loss function is convex,

which guarantees the existence of a single global mini-

mum. For small problems (103 samples), this constrained
quadratic optimization problem can be easily solved with

standard methods like primal-dual interior-point methods

with less than 100 lines of plain Matlab code. Unfortu-
nately, the scaling properties of standard optimization al-

gorithms in terms of memory usage and CPU time makes
them impractical for large and complex datasets: the kernel

matrix memory usage scales like O(n2), and the CPU time

scales like O(n3) at best.
For large problems, the sparse nature of the learned co-

efficients αi must be exploited. The sparsity comes from

the fact that many data points are redundant, and can be dis-
carded at early stages of the optimization procedure to make

the algorithm efficient. Popular SVM algorithms, such as

SMO and its variants [21], consider small batches of sam-
ples at a time (with two samples in the case of the original

SMO), and use a caching mechanism to avoid storing the

full kernel matrix.
The experiments reported here use the latest version of

a fast implementation of SMO-type algorithm [10], run-
ning on a 32-node Linux cluster, with each node having

dual AMD Athlon 1.5GHz CPUs and 2GB memory. The

program automatically splits the training samples and dis-
tributes them to different nodes. The kernel matrix can be

distributed over multiple nodes and fully cached in the clus-

ter’s large memory pool, to speed up the optimization pro-
cess. The communication overhead is negligible (less than

5%).

3.2 Convolutional Network

Convolutional nets are multi-layer architectures where

the successive layers are designed to learn progressively

higher-level features, until the last layer which produces
categories. All the layers are trained simultaneously to min-

imize an overall objective function. the feature extraction is

therefore an integral part of the classification system, rather
than a separate module, and is entirely trained from data,

rather than designed.
However, once training is complete, one can view the last

layer as a linear classifier operating on features extracted by

the previous layers. Since those features are the result of the
integrated training procedure, one could hope that they have

been optimized to satisfy the requirements and limitations

of the last layer.
The feature extraction front-end can be seen as com-

posed of a stack of convolution and subsampling layers.

The convolution (C-)layers compute convolutions over the
previous layers xin with some small trainable convolution

kernels k:

xout = S(
∑

i

xin ⊛ ki + b)

where S is a non-linear function (a hyperbolic tangent sig-
moid), and b is a scalar bias. Depending on the values of the

kernel coefficients k, the convolution operation can imple-

ment a local edge detector, a low-pass filter, or something
entirely different. On each C-layer, multiple convolution

kernels can be used, creating several different feature maps.

The spatial subsampling (S-)layers take the average of a
n × n pixel block, multiply it by a trainable scalar β, add a

bias, and pass the result through a sigmoid:

xout = S(β
∑

xn×n
in + b)

The result is a feature map of lower resolution where

some position information about features has been elimi-

nated, thereby building some level of distortion invariance
in the representation.

Alternated layers of convolution and subsampling can

extract features from increasingly large receptive fields,
with increasing robustness to irrelevant variabilities of the

inputs. The overall effect of these layers is to extract a fea-
ture vector v from the input x, written as v = c(x).

The last layer of a convolutional network can be seen

as a linear classifier operating on the feature representation
extracted by the previous layers. This last layer computes

the product of the feature vector v with a weight matrix W ,

adds a bias vector, and passes the result through sigmoid
functions. For training, the Euclidean distance between the

output vector and a target output vector T i is used as the

loss function to be minimized:

L = ‖S(W.v + b) − T i‖2

where W is a trainable weight matrix of the last layer. T i

can be a traditional place code (one unit corresponding to
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Figure 1. Left: architecture of the convolutional net. The input is an image pair, the system extracts 8 feature maps of size 92× 92, 8 maps

23 × 23, 24 maps 18 × 18, 24 maps 6 × 6, and 100 features, followed by the 5 outputs. Middle: The learned convolution kernels of the

C1 layer. The rows correspond to the feature maps, the columns are the input images. The first two maps takes input from the left image,

the next two from the right, and others from both images. Right: The 96 learned kernels of the C3 layer. The columns correspond to the 24

feature maps output by C3, and the rows correspond to the 8 feature maps output by the S2 layer. Each feature map draw from 2 monocular

maps and 2 binocular maps of S2.

the i-th element set to active, other units inactive), i being

the class label of the input x. The network is trained by min-

imizing L. Gradient descent based algorithms can be used
for the optimization since all the layers are differentiable.

A six-layer net, shown in figure 1, was used in the exper-
iments reported here. The layers are respectively named C1,

S2, C3, S4, C5, and output (numbers indicate the sequential

position of the layers). The input of this example network
is a pair of 96×96 gray scale images.

C1 uses 12 5×5 convolution kernels to generate 8 fea-
ture maps. As shown in figure 1, the first 2 maps take in-

put from the left image, the next two from the right image,

and the last 4 from both. There are 308 (300 on ki and
8 on b) trainable parameters in this layer. The output of

C1 is a 8×92×92 3-dimensional array. S2 is a 4×4 sub-

sampling layer with 16 parameters, with output dimensions
8×23×23.

C3 uses 96 convolution kernels of size 6×6 to output 24
feature maps. Each C3 map takes input from 2 monocular

maps and 2 binocular maps from S2, each with a differ-

ent combination, as shown in figure 1. This configuration
is used to combine features from the stereo image pairs.

The C3 layer contains 3,480 trainable parameters, with out-

put dimensions 24×18×18. S4 is a 3×3 subsampling layer
which outputs feature maps of size 24×6×6.

C5 has a variable number of maps (80 and 100 in the
reported results) that combine inputs from all map in S4

through 6×6 kernels. A C5 layer outputting 100 feature

maps has 86,500 trainable parameters, about 95% of the
whole system’s parameter set. The output of the C5 layer is

a 100-dimensional (or 80-dimensional) vector. This vector

is the feature extracted by the sequence of C1 to C5 layers.

The output layer takes inputs from all C5 maps, trans-

form them into a 5-dimensional vector, and compute
the mean squared error with a set of target outputs (5-

dimensional vectors that has one element corresponding to

one class set to 1.5, all other elements set to -1.5). For 6-
class detection/recognition tasks, we added a 6-th target out-

put with all units set to -1.5 for the background class. For

a C5 layer with 100-dimensional output, this layer has 505

free parameters. In this case, the whole network has a total

of 90,857 trainable parameters.

To minimize the loss function a stochastic version of the
Levenberg-Marquardt algorithm with diagonal approxima-

tion of the Hessian was used.

3.3 Combining Convolutional net with
SVM

Architectures such as convolutional networks are quite
good at learning invariant features, but not always optimal

for classification (most of the trainable parameters are in

the middle layers). On the other hand, Support Vector Ma-
chines with their fixed kernel function cannot learn compli-

cated invariances, but produce good decision surfaces when

applied to well-behaved feature vectors. It is interesting to
investigate a hybrid system in which the convolutional net

is trained to extract features that are relatively invariant to
irrelevant variations of the input, so that an SVM with a

simple Gaussian kernel can do a good job at separating the

categories in the learned feature space.

This idea is appealing also because integrating the
feature extraction process c(x) with a regular kernel

K(c(x), c(x′)) is equivalent to constructing a new kernel

Kc(x,x′) on raw images. If K is a Mercer kernel, Kc also
satisfies the Mercer condition. This can be shown by noting

that the Mercer condition guarantees that the kernel func-

tion can be written as an inner product in a transformed
space φ:

K(c(x), c(y)) = 〈φ(c(x)), φ(c(y))〉
= 〈φc(x), φc(y)〉
= Kc(x,y)

where φc is the composition of φ and c.

The equivalence is important since it means that a kernel
Kc can be learned by cascading a learned feature extraction

c with a fixed kernel function K .

4



Figure 2. Left: The 25 objects used for training. Middle: the 25 objects used for testing. Each object is captured by a camera pair from

18 azimuth, 9 elevations and under 6 different illuminations. Right: a few of the 291,600 training examples from the jittered-cluttered set.

Each column shows images from one category (including a background category).

In the following experiments, we use a convolutional net
as the feature extractor c. The training and testing samples

are fed through the trained network, and the output of the C5

layer are extracted as the features. The feature sets from the
training samples are then used as input to train a Gaussian

SVMs in the usual way. We show that this hybrid system
not only improve the recognition performance significantly,

but also are computationally very efficient.

Local feature extraction from images can be carried out
in various ways. Popular strategies include using a bank

of fixed, hardwired filters such as Gabor wavelets [28], or

selecting patches or fragments extracted from training im-
ages [35, 30, 12]. Both approaches are quite expensive com-

putationally, because they require a large number of filters

to cover the space of possible inputs. Convolutional nets
can get away with a small number of filters by training them

from data in supervised mode.

4 Data Sets

The experiments in this paper used the NORB

dataset [15] which is publicly available. This data set is

a collection of images of 50 different toys, with 10 toys in
each of the 5 generic categories: four-legged animals, hu-

man figures, airplanes, trucks, and cars. The 50 objects are

split into a training set as shown in figure 2 and a testing set
as in figure 2.

Each object is captured by a camera pair with 162 dif-

ferent views (9 elevations from 30◦ to 70◦ every 5◦, 18
azimuths sampled every 20◦ along the horizontal viewing

circle) and under 6 different illuminations.
Two datasets derived from NORB are used. The first

dataset, called the normalized-uniform set, are images of

a single object with a normalized size placed at the cen-
ter of images with uniform background. The training set

has 24,300 stereo image pairs of size 96×96, and another

24,300 for testing (from different object instances).
The second set, the jittered-cluttered set, contains ob-

jects with randomly perturbed positions, scales, in-plane

rotation, brightness, and contrast. The objects are placed
on highly cluttered backgrounds and other NORB objects

placed on the periphery. A 6-th category of images is in-

cluded: background images containing no objects. Some
examples images of this set are shown in figure 2.

Each image is randomly perturbed so that the objects are
at different positions ([-3, +3] pixels horizontally and ver-

tically), and of different scales (ratio in [0.8, 1.1]), image-

plane angles ([−5◦, 5◦]), brightness ([-20, 20] shifts of gray
scale), contrast ([0.8, 1.3] gain). The objects were placed

on randomly chosen natural scene images as backgrounds.

A randomly chosen “distractor” object from the same set
is placed at the periphery of the image. The central object

could be occluded by the distractor.

To generate the training set, each image was perturbed
with 10 different configurations of the above parameters,

which makes up 291,600 image pairs of size 108×108. The

testing set has 2 drawings of perturbations, and have 58,320
pairs.

In the NORB datasets, the only useful and reliable clue
is the shape of the object, while all the other parameters

that affect the appearance are subject to variation, or are de-

signed to contain no useful clue. Parameters that are subject
to variation are: viewing angles (pose), lighting conditions.

Potential clues whose impact was eliminated include: color

(all images are grayscale), and object texture. For specific
object recognition tasks, the color and texture information

may be helpful, but for generic recognition tasks the color

and texture information are distractions rather than useful
clues. By preserving natural variabilities and eliminating ir-

relevant clues and systematic biases, NORB can serve as a

benchmark dataset in which no hidden regularity that would
unfairly advantage some methods over others can be used.

5 Results and Discussions

Results with the three methods described on both the
normalized-uniform set and the jittered-cluttered set are re-

ported, with the focus on the later set which is more chal-
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lenging and closer to real-world scenarios. Running times

for testing and training are also reported to draw attention
to the scalabilities of the methods.

5.1 Results on the jittered-cluttered set

The results on this set are shown in table 1. To clas-

sify the 6 categories, 6 binary (“one vs. others”) SVM sub-

classifiers are trained independently, each with the full set
of 291,600 samples. The training samples are raw 108×108
pixel image pairs cascaded into a 23,328-dimensional vec-

tor, with values between 0 to 255.

SVM Conv Net SVM/Conv

test error 43.3% 16.38% 7.5% 7.2% 5.9%

train time
10,944 420 2,100 5,880 330+

(min*GHz)

test time

2.2 0.06+per sample 0.04

(sec*GHz)

#SV 5% 2%

parameters

dim=100

σ=10
4 step size = σ=5

C=40 2×10
−5 - 1×10

−6
C=1

Table 1. Testing error rates and training/testing timings on the

jittered-cluttered dataset of different methods. The timing is nor-

malized to hypothetical 1GHz single CPU. The convolutional nets

have multiple results with different training passes due to its itera-

tive training.

SVMs have relatively few free parameters to tune. In
the case of Gaussian kernels, one can choose σ (Gaussian

kernel sizes) and C (penalty coefficient) that yield best re-

sults by grid tuning. A rather disappointing test error rate of
43.3% is obtained on this set, as shown in the first column

of table 1.

The training time depends heavily on the value of σ for

Gaussian kernel SVMs. The experiments are run on a 64-

CPU (1.5GHz) cluster, and the timing information is nor-
malized into a hypothetical 1GHz single CPU to make the

measurement meaningful. (The training time of the pro-

gram is inversely proportional to the number of CPU’s in
the cluster). The testing time is per sample and in normal-

ized seconds (for a single 1GHz CPU). The program is op-

timized for unsigned byte input vectors.

The convolutional net uses a online stochastic gradient

descent for training, where the whole data set can be used
for multiple passes to get progressively better results. We

listed results after different number of passes (1, 5, 14) and

their timing informations. The test error rate flattens out at
7.2% after about 10 passes. No significant over-training was

observed, and no early stopping was performed. One pa-

rameter controlling the training procedure must be heuristi-
cally chosen: the global step size of the stochastic gradient

procedure. Best results are obtained by adopting a sched-

ule in which this step size is progressively decreased from

2 × 10−5 to 1 × 10−6.

A full propagation of one data sample through the net-
work requires about 4 million multiply-add operations. Par-

allelizing the convolutional net is relatively simple since
multiple convolution can be performed simultaneously, and

each convolutions can be performed independently on sub-

regions of the layers. The experiments here are run on a
single CPU (AMD Opteron at 2GHz) with 4GB of mem-

ory. Again, the training time is normalized to a hypothet-

ical 1GHz CPU. The convolutional nets are computation-
ally very efficient. The training time scales sublinearly with

dataset size in practice, and the testing can be done in real-

time with a few frames per second.

The third column shows the result with the hybrid sys-
tem. The training and testing features are extracted with

the convolutional net trained after 14 passes. The C5 layer
of the network has 100 outputs, therefore the features are

100-dimensional, with values ranged between −1.7 and 1.7
(decided by the sigmoid function of the C5 layer).

The SVMs on features extracted from the convolutional
net yields error rate of 5.9%, a significant improvement over

either method alone. By incorporating a learned feature ex-

tractor into the kernel function, the SVM was indeed able to
leverage both the ability to use low-level local features and

at the same time keep all the advantages of a large margin
classifier.

The hybrid system is also very efficient in the running

times. Its training time includes 3 parts: the time to train

a convolution net, the time to extract the features, and the
time to train the SVM with the feature set. The time shown

in the table is only the training time of the SVM with the

feature sets. With the significant dimension reduction and
the decrease of the percentage of support vectors, this train-

ing is 30 times faster than the pure SVM, and is a small por-

tion of the convolutional net training time. The testing times
include 2 parts: the time of a full propagation through the

convolutional network, and the time of testing the trained
SVMs on the extracted feature shown in the table, which is

about 40 times faster than the pure SVM.

The poor performance of SVM with Gaussian kernels

on raw pixel is not unexpected. With a Gaussian kernel,
the template matching layer of the SVM is merely calcu-

lating Euclidean-distance-based similarities between the in-

coming pattern and the support vectors. The resulting simi-
larity numbers are linearly combined to produce a score for

a category. This architecture has previously been reported to
obtain good results on both MNIST [14] and COIL [19] data

sets. But those data sets contain images with little variation

in registration and background, and so do not expose the
SVMs’ limitations. The MNIST data set has mostly black

or white pixels, with size-normalized and registered isolated

digit images on a white background. The COIL set’s sim-
plicity is demonstrated by the perfect recognition rate even

with rather naive classification methods.
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SVM Conv Net SVM/Conv

test error 11.6% 10.4% 6.0% 6.2% 5.9%

train time
480 64 448 3,200 50+

(min*GHz)

test time

0.95 0.04+per sample 0.03

(sec*GHz)

#SV 28% 28%

parameters

dim=80

σ=2,000 step size = σ=5

C=40 2×10
−5 - 2×10

−7
C=0.01

Table 2. Testing error rates and training/testing timings on the

normalized-uniform dataset of different methods. The timing is

normalized to hypothetical 1GHz single CPU. The convolutional

nets have multiple results with different training passes due to its

iterative training.

5.2 Results on the normalized-uniform set

Table 2 shows the results on the smaller NORB dataset
with uniform background. This dataset simulates a scenario

in which objects can be perfectly segmented from the back-

ground, and is therefore rather unrealistic.
The experiments are done in the same way as on the full

set. The SVMs for this set has 5 sub-classifiers, each trained

on the 24,300 samples of 96×96 pixel image pairs. The
convolutional net trained on this set has a smaller C5 layer

with 80 outputs. The input features to the SVM of the hy-

brid system are accordingly 80-dimensional vectors.
The results of the convolutional net trained after 2, 14,

100 passes are listed in the table. The network is slightly

overtrained with more than 30 passes. No regularization
term was used in the experiment. The SVM in the hy-

brid system is trained over the features extracted from the

network trained with 100 passes. The improvement of the
combination is marginal over the convolutional net alone.

6 Conclusion and Outlook

The tremendous increase of the computing power has

opened doors to large-scale data-driven learning methods
with application to tasks such as computer vision. In this

paper, convolutional nets and SVM are investigated with

results on a generic object categorization dataset. to com-
bine the advantages of the two methods we proposed a two-

step learning process: first, train a convolutional net and
view the first N − 1 layers as a feature extractor c. Second,

train an SVM on the features produced by the convolutional

net. Based on experiments on the NORB data set, we have
shown that this system yields a dramatic performance im-

provements over the SVM alone, and a significant perfor-

mance improvement over the the convolutional net alone
on the large jittered-cluttered NORB dataset. Experiments

with the smaller normalized-uniform NORB dataset did not

yield a significant improvement in accuracy over a plain

convolutional network.
This suggests that large convolutional nets trained com-

plex tasks may suffer from undertraining. It is possible

that gradient-based optimization is not able to find the best
use of the parameters. The results point to the fact that the

normalized-uniform task is simple enough for the convolu-

tional net to generate features in the penultimate layers in
which the categories are linearly separable. The fact that

the convolutional net trained on the large datasets can be
improved by substituting an SVM in lieu of the last layer

suggests that convolutional nets fall victim to undertrain-

ing.
With a trained object categorization system, tasks such

as the detection of objects in large images or videos are

a straightforward extension: the convolutional net can be
replicated over the entire image at multiple scales. On mod-

ern mid-range processors (e.g. Pentium M 1.7GHz), con-

volutions can be performed at a rate of roughly 1.109 op-
erations per second. This allowed us to build a real-time

system for generic object detection and recognition that can

run at several frames per second at full video resolution on
a laptop.

While the scalability problems of SVMs with standard
kernels is being addressed by numerous research efforts, in-

cluding the use of online and active learning [4], their per-

formance for invariant image recognition without prior fea-
ture extraction is limited.

Convolutional networks, on the other hand, yield good

recognition accuracy with low computational complexity.
Future work will attempt to build larger architectures so as

to further improve the recognition accuracy, while taking

advantage of the constant increase of available computa-
tional power.
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