VLSIIMPLEMENTATIONS OF ELECTRONIC NEURAL NETWORKS:
AN EXAMPLE IN CHARACTER RECOGNITION

L. D. Jackel, B. Boser, H. P. Graf, J. S. Denker,
Y. Le Cun, D. Henderson, O. Matan, R. E. Howard
AT&T Bell Laboratories, Holmdel NJ 07733, and
H. S. Baird, AT&T Bell Laboratories, Murray Hill NJ 07974

By their very nature, neural-net chips are application specific
circuits. Because the lead-time for chip design, fabrication, and
testing usually exceeds a full year, and because neural-net algo-
rithm development proceeds at a faster pace, the circuit designer
must face the problem of creating a circuit that will be useful for a
network application that is not even conceived when circuit design
begins. If we could cram unlimited circuitry on a chip, we could
build enormous fully-connected hardware networks; particular net-
work designs could be implemented by pruning away the
superfluous connections. Unfortunately, a fully-connected net-
work structure that includes most useful networks as subsets would
be two or three orders of magnitude larger than anything we can
build today, and it would be so wasteful of area and power that
such an approach would probably never make sense.

We have, however, found a more economical approach that
is far more promising. Through a series of experiments in pattern
recognition using neural-net algorithms, we identified a large class
of applications where theoretical considerations that promote
high-accuracy classification result in constrained network architec-
tures. These constrained nets can map nicely onto appropriately
designed hardware. Here, we discuss the concepts we learned
from our pattern recognition experiments, we show how they can
be applied to chip design and we describe a new neural-net chip.

Introduction

In this paper we will use the example of Optical Character

- Recognition (OCR) to illustrate neural-network architecture princi-

ples, and in particular we will show how these principles can

influence the design of neural-net chips. This paper is not intended
as a review of current neural-net chip technology [1].

The most commonly used neural networks are called "feed-
forward, layered networks." Each layer in such a network has an
array of inputs from the previous layer and sends its output array to
the succeeding layer. For OCR, the input to the first layer is typi-
cally a pixel-map of a character image. The output array usually
has one component for each category, with the value of a particular
component expressing a measure of the likelihood that the input
image represents a character of the corresponding category.

A major advantage of neural-network methods is that they
allow learning from examples. In the case of pattern recognition,
we wish to learn a function that takes an image as its input and
produces a category label as its output. The untrained network is a
parameterized family of functions, where the parameters are the
weights used in the weighted sums. Training consists of selecting
a suitable function from this family, by searching for appropriate
values of the weights. The technique known as Backward Error
Propagation (or simply backprop)[2] is an efficient method for car-
rying out this search.

An added bonus of the neural-net approach is that the
predominant arithmetic calculations are multiply-add steps, most
of which can be performed in parallel, either on standard Digital
Signal Processors (DSPs), which are fully programmable, or on
special purpose neural-net chips. DSPs can perform multiply-adds
at rates of about 10 million per second which is faster than most

commonly used microprocessors. Neural-net chips can do the
same calculation (though usually with fewer bits of resolution) at
speeds of over 1 billion per second.

Despite the speed advantage of custom chips, neural-net chip
designers have been plagued by the following dilemma: with
today’s VLSI technology, it is impossible to design chips that are
flexible enough to encompass all possible network architectures
and, at the same time, contain enough resources to accommodate
the large networks needed for many real-world applications.
Designers typically guess that the ultimate users of the chips will
want several fully-connected layers of neurons with as many neu-
rons and connections as will fit in the system. This approach is
often unworkable because the number of connections between
fully interconnected layers of neurons grows as the product of the
number of neurons in the layers. Even in a small image-processing
problem, the input field is at least 16 x 16. If the number of neu-
rons in the next layer of the net is the same size as the input field
(it is usually larger), then (16x16) x (16x16) = 64,000 connections
are needed. The largest neural-net chip made so far [3] has 32,000
1-bit connections, so it falls short of the needs of this apparently
minimal network. In practice, single-bit connections are likely to
be insufficient for our needs, and several 1-bit connections would
have to be combined to provide composite connections with the
required analog depth. Even though VLSI technology is advanc-
ing, this type of completely parallel, one-chip network will not be
readily available until near the end of this decade.

The prospects for the near-term availability of really useful
hardware are not as bleak as the previous paragraph might suggest.
Through our work on various character-recognition systems, we
have discovered that at least for this class of problem, constraints
imposed on the network to improve classification accuracy result
in an architecture having limited connectivity and replicated
weights, leading to an ideal structure for time-multiplexing the
hardware.

Character Recognition and Feature Extraction

In optical recognition, a character must be identified from
the pixels in its image. Depending on the nature of the image, this
task ranges from extremely difficult to fairly straightforward. If the
image includes only cleanly printed, fixed-font symbols, simple
template matching does an excellent job of classification. When
multiple fonts are used, or when the image is noisy or distorted,
template matching is not as successful, and more sophisticated
methods, usually including feature extraction, must be used. The
problem becomes even more difficult with hand-printed characters
because of the wide variability in writing styles.

We can think of the neural-net character recognizer as
implementing a mapping from an input space whose dimension is
the size of the image pixel-array (say 16x16=256) to a 10-
dimensional output space (one output for each digit category). If
the mapping were regular, points near each other in input space (in
a simple metric such as Euclidean distance) would be mapped to
the same point in output space (same category); in such a case,

90CH2930-6/90/0000-0320$01.00 © 1990 IEEL

[l

simple techniques, such as learning with a small, fully-connected
backpropagation net, would do the job. Alas, the mapping
required for this task is much nastier: even characters that appear
essentially the same to a human are often far apart in a simple
metric. The distance between character images within a class is
often greater than distances between character images in different
classes. In this case, backpropagation through an unstructured net
cannot provide acceptable results. This is because in such a general
network, an enormous amount of training data would be needed to
determine the huge number of free parameters in the network [4].
With limited data, undetermined free parameters make it easy to
"learn" the training data, but result in poor "generalization” when
the network has to classify characters not in the training set. Even
if sufficient data could be found, the learning time would be prohi-
bitively long.

The "classical" solution of this problem is to change the
input representation of the input data to bring elements of the same
category closer to each other than to members of different
categories. Feature extraction is a well-known change-of-
representation technique.

Recently, Le Cun et al [5], working with a database of hand
and machine printed digits, developed a series of networks that
could be trained to develop their own feature extraction kernels.
They designed a network with a limited connectivity where the
first few layers performed multiple convolutions. Groups of
weights in the net were constrained to take the form of convolution
kernels, but their values were not fixed. This network had many
fewer connections than a fully-connected net with comparable
computing power. The constraints on the network drastically
reduced the number of free parameters, thereby improving general-
ization. The classification accuracy was state-of-the art: when
tested on hand-printed zipcode digits normalized to 20 x 20 pixel
images, 7% of the digits had to be rejected to keep substitution
errors below 1%. (While this may seem like a high reject rate, it is
actually quite good considering the poor quality of the test
images.) Although this network had 100,000 connections it had
only 2,500 free parameters. With this number of connections, the
system could process one digit per second on a Sun 3 workstation.
Using an AT&T DSP32C Digital Signal Processor in conjunction
with either the Sun or a 386PC, the rate increased to 10 digits per
second. Evaluation of the network took only 30msec; most of the
computing time was taken by image scaling.

Recognition Network Design

From the proceeding example, and from other recognition
experiments [6,7], certain network design principles emerge.
While we cannot be certain that they must be common to all
machine perception systems, it is likely that they will be important.

Here is what we find: the early layers of the network have
limited receptive fields; that is, each neuron in these layers takes
its input from a small, compact region of the previous layer. More-
over, the units (or neurons) in these layers can be grouped so that
their outputs form maps whose dimensionality is the same as the
input field (obviously 2D for vision problems). Most importantly,
units within a map perform the same operation as their neighbors,
but operating on a shifted input. Explicitly, it seems that the right
thing to do is to take convolutions followed by a non-linear func-
tion on each output component.

We find that high resolution is important for defining the
types of features that will be detected, but rather less precision is
required for recording where a given feature occurred. In tum,
progressively higher-level features require progressively less prec-

321

ision in their location. Therefore the outputs of the feature maps
tend to have less spatial resolution than their inputs.

Biology seems to have come up with the same principles in
animal vision systems, where numerous feature maps are formed
for the visual field; this gives us additional confidence in our
approach. But biological neurons are much "cheaper" than silicon
neurons; our brains cram 10" synapses into a two liter volume.
Even if we knew how to hook them up, that many silicon connec-
tions, stacked as chips 1 cm apart, would fill a room 10 meters
square and a few meters high.

Silicon neurons, however, are perhaps 100,000 times faster
than biological neurons. Clearly, systems using electronic neurons
would do well to use time-multiplexing to compensate for their
limited parallelism by taking advantage of their high speed. This
tradeoff will not work if all the connections of a network have dif-
ferent, random values since we would have to load every neuron’s
unique set of input connection weights onto the chip, creating an
enormous I/O load on the system. The fortunate result of our char-
acter recognition experiments is that in order to learn effectively
from examples or even to do feature extraction with fixed, hand-
crafted kernels, we need a highly regular, locally connected net-
work with repetitive use of the same weights. This is precisely the
kind of network that lends itself to multiplexing.

Another feature of our recognition networks that aids multi-
plexed processing is that even with the coarse-blocking of the
feature maps, successive layers of feature extraction still just
require input data whose origin can be traced to a restricted region
of the image input field. This means that if we provide some mod-
est on-chip storage, we can serially process portions of the image
several layers deep through the net before requiring new input
data, significantly reducing 1/O, and easing a potential bottleneck.

A Neural-Net Chip for Machine Vision

In this section we describe a second generation neural-net
chip [3], designed by H. P. Graf that includes support circuitry that
makes it efficient for image processing. The chip, which combines
analog and digital processing, is reconfigurable, so that the number
of "neurons" can be varied as well as the number of connections
per neuron. The 32,000 programmable 1-bit connections on the
chip can be combined to form fewer connections with greater ana-
log depth.

The chip which measures 4.5 mm by 7.0 mm, was fabricated
by AT&T in 0.9 micron CMOS. It can evaluate all 32,000 connec-
tions in parallel (with 4% accuracy on the weighted sums) every
100nsec, giving a rating of 300 billion connections/sec. The con-
nections each take up a cell 23 microns by 17 microns and contain
9 transistors. The chip also contains thresholding circuitry, multi-
pliers, switches to set the network architecture, and decoders, as
well as output shift registers to control the data flow. The shift
registers can also be used to store intermediate results, passing the
output of one neuron to the input of another.

outputs from
other blocks

COMPARATOR
OUTPUT

multiplier

1 4 |
summing

wire REFERENCE

Figure 1. Basic building block "neuron.”

The chip’s basic building block "neuron” is shown in Figure
1. An array of 128 SRAM cells store the 1-bit connection
weights. Each connection is evaluated locally using a digital
NXOR. Outputs from the NXORs are connected to current sources
to permit efficient analog summing. Using current mirrors, the
summed current is scaled by a multiplier and can be added to the
currents of other building blocks. The resulting current is con-
verted to a voltage that can be processed by a comparator with a
programmable reference threshold.

4

' multiplier
: x1

one analog
connection

OQUTPUT
P
Y Ref=7/8

128

connections
L 1)
4 o OUTPUT
I multiplier
x1/8 Ref = 1/8

Figure 2. Combining blocks to form neurons with analog depth.

Greater cffective analog depth in the weights can be attained
by combining several blocks of neurons as shown in Figure 2. The
same input data is passed to all the blocks of neurons. A column
of 1-bit weight SRAM cells stores a binary-coded weight value.
The multipliers are set to scale as powers of 2, and the outputs of
the blocks are combined to form the appropriately weighted sum.
Each block also provides a comparator to sample the common
summing wire; by using different reference values for each com-
parator, a flash A/D conversion can be done, including a non-linear
sampling if desired.

The blocks can also be combined as shown in Figure 3 to
provide additional inputs. In this case the multipliers are set to the
same value and different input data is sent to the different blocks.
Up to 8 blocks can be joined either in the manner of Figure 2 or
Figure 3 or in combination of both schemes. For example, 8 neu-
rons could be used to form a neuron with 256 inputs and 4-bit
weights.

Using these methods, the first layer of the OCR net was pro-
cessed by the chip. Efforts are now continuing to map most of the
recognizer network onto the chip.

Conclusions

We have found that different approaches to image recogni-
tion often lead to neural-net architectures that have limited connec-
tivity and repeated use of the same set of weights. This architecture
is ideal for time-multiplexing (a combined parallel-serial process-
ing) on hardware systems that would be too small to evaluate the
entire network in parallel. To make this process efficient, a chip
needs to have shift-registers to format the input data, and addi-
tional registers to store intermediate results. Within this frame-
work, it is possible to design chips that have broad utility, large
connection capacity, and high speed. This was demonstrated by a
new chip with 32,000 reconfigurable connections.

322

Ref = 1/8

Figure 3. Combining blocks to form neurons with additional
inputs.

Acknowledgement

We thank the U.S. Postal Service for providing us with a
database of handwritten digits.

References

[1] For a snapshot of the state-of-the-art in neural-net chips see
the the section on "Electrical Neurocomputers”, in the
proceedings of the IICNN, 1990, San Diego, IEEE Catalog

Number 90CH2879-5.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learn-
ing Internal Representations by Back-Propagating Errors”,
Nature, 323, pp 533-536 (1986).

H. P. Graf and D. Henderson, "A reconfigurable CMOS
neural network", Digest of Technical Papers, IEEE Interna-
tional Solid-State Circuits Conference, 1990 pp. 144, 145,
285.

J. S. Denker, D. Schwartz, B. Wittner, S. A. Solla, R.
Howard, L. Jackel, and J. Hopfield, "Large Automatic
Learning, Rule Extraction and Generalization", Complex
Systems, 1, pp. 877-922 (1987).

Y. Le Cun, O. Matan, B. Boser, J. S. Denker, D. Hender-
son, R. E. Howard, W. Hubbard, L. D. Jackel, and H. S.
Baird, "Handwritten Zip Code Recognition with Multilayer
Networks", Proceedings of 10th International Conference
on Pattern Recognition, (Atlantic City, NJ USA), Volume
2, pp. 35-40, IEEE Computer Society Press, Los Alamitos,
CA (1990).

J. S. Denker, W. R. Gardner, H. P. Graf, D. Henderson, R.
E. Howard, W. Hubbard, L. D. Jackel, H. S. Baird, and I
Guyon, "Neural Network Recognizer for Hand-Written Zip
Code Digits", in Advances in Neural Information Process-
ing Systems 1, David S. Touretzky, ed., Morgan Kaufmann,
San Mateo, CA, pp. 323-331 (1989).

L. Guyon, P. Albrecht, Y. Le Cun, J. Denker, W. Hubbard,
“A Time Delay Neural Network Character Recognizer for a
Touch Terminal”, Proceedings INNC 90 Paris, Kluwer
Academic Publishers, pp. 42-45 (1990).

[2]

3]

(4]

i3]

(61

(71

