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ABSTRACT

A proven strength of neural-network methods is their application to character
recognition and document analysis. In this paper we describe a neural-net
Optical Character Recognizer (OCR), neural-net preprocessing, and neural-
net hardware accelerators that together comprise a high-performance
character recognition system. We also describe applications in network-
based fax and bit-mapped text processing.

1 Introduction

Character recognition has served as one of the principal proving grounds for
neural-net methods and has emerged as one of the most successful applica-
tions of this technology. This chapter outlines optical character recognition /
docume.t analysis systems developed at AT&T Bell Labs that combine the
strengths of machine-learning algorithms with high-speed, fine-grained
parallel hardware. From our point of view, the most significant aspect of this
work hes been the efficient integration of diverse methods into end-to end
systems. In this paper we use the task of locating and reading ZIP codes on
US mail pieces as an illustration of the character recognition / document



analysis process. We will also describe other applications of the technology,
including interpretation of faxed forms and bit-mapped text to ASCII
conversion,

2 The Character Recognition Process

Figure 1. shows the "typical" character recognition process, which starts with
an optical image and ultimately produces a symbolic interpretation. The
process is divided into a series of tasks that are usually executed independ-
ently. It begins with image capture in which an optical image is converted to
a bit-map. Next the region of interest, in this example the address block, is
located. Then the desired field, the ZIP code, is found. This field is then
usually size-normalized and sometimes (not shown here) de-slanted. Finally,
the characters are segmented and recognized. Note that the recognition phase
is only one step in a long
process. In our systems we
modify this model, using
feedback from down-stream
stages to influence up-stream
decisions. We also apply
neural-net hardware and al-
gorithms where they are ad-
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speed and accuracy are key issues. Most of this paper describes technology
developed for this application. This kind of problem has also been addressed
by other workers [1].

3 The Basic Recognizer: LeNet

At the core of our recognition system is an isolated character recognizer that
we now call LeNet [2]. The LeNet architecture is shown in Figure 2. LeNet
takes a 20 x 20 pixel field as input and returns a rank-ordered list of possible
single-character interpretations of the input image, along with confidence
scores for each interpretation.

LeNet is an example of a highly structured neural-net in which the structure
seeks to incorporate a priori knowledge about the task domain. For the OCR
task, this knowledge includes the local two-dimensional geometric relation-
ships that exist in images. LeNet is designed to extract local geometric fea-
tures from the input field in a way that preserves the approximate relative lo-
cations of these features. This is done by creating feature maps that are
formed by convolving the image with local feature-extraction kernels. (An
important feature of LeNet is that the feature extraction kernels are learned as
opposed to being hand-crafted.) These maps are then spatially smoothed and
sub-sampled; this latter step builds in invariance to small distortions of the
input image [3,4]. In the same way, higher-level feature maps are extracted
from the sub-sampled first-level maps. The higher level maps then provide
input to a linear classification layer. Although the network has over 100,000
connections, the network structure imposes constraints so that only about
3,000 different weight values have to be learned.

LeNet has several advantages that make it attractive for recognizing charac-
ters when high variability (like we see in images of mailed envelopes) is ex-
pected. First, LeNet has state-of-the-art accuracy as illustrated by its strong
performance in a competition sponsored by NIST , the US. National Insti-
tute of Standards and Technology [5]. Second, LeNet runs at reasonable
speeds on standard hardware (~10 characters/sec on a workstation) and high
speed (~1000 characters/sec) on specialized hardware. LeNet can also be
readily trained to recognize new character styles and fonts. It works well for
both handwritten and machine printed characters.

In general, in machine-learning tasks, best performance on test data is ob-
tained by controlling the capacity of the learning machine to match the avail-
able training data. With this idea in mind, we have modified the architecture
of LeNet, hence controlling capacity, depending on the amount of training
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Figure 2. Architecture of LeNet. Each small box represents a neural-net "unit" or
"neuron”. The weighted connections between units (not shown in this figure) are
highly structured. The maps are generated by convolutions with feature extraction
kernels. Input images are sized to fit in a 20 x 20 pixel field, but enough blank
pixels are added around the border of this field to avoid edge effects in the
convolution calculations. In this figure, the activation of the input and the first two
layers of the network are indicted: darker shading indicates greater activity.

data available. The version shown in Figure 2 was optimized for a training
set of 7000 ZIP code digits. We found that a version with more hidden units
and about twice as many weight values provided better results when we
switched to a database of 50,000 digits. Even larger nets will be effective for
bigger training data bases.

We note that there are other methods for OCR that may be more appropriate
than LeNet for some applications. In particular, when our task is to read
cleanly printed text with a limited range of fonts, a much simpler network



may give adequate performance. In this case, acceptable accuracy at very
high recognition speeds can often be attained by simple template matching.
The problems we address in this paper are those in which recognition accu-
racy is most important and where the quality of the input images or charac-
ters may be poor. It is in this regime that LeNet excels. We also note that
recognition accuracy equaling or exceeding LeNet has been obtained with a
sophisticated pattern matching technique that uses a special metric, known as
"tangent distance", for comparing patterns [6]. Currently, this method lags
LeNet in speed, but this situation may change as this new method evolves.

4 Segmentation

LeNet recognizes one character at time. If our objective is to recognize a
string of characters, the string has to be cut up into individual characters, a
process called segmentation. The difficulty of the segmentation task strongly
depends on the quality and type of the string. If we have fixed-pitch ma-
chine-printed fonts 1ike this, and if we can detect this condition, the
task is straightforward. For cleanly-printed, variable-pitch machine fonts, the
task is more difficult, although a connected components analysis can almost
always identify individual characters. For machine printing of poor quality or
for handwriting, where different characters might touch and single characters
might be broken into several
pieces, the task is very difficult.
o For these difficult cases, segmenta-
L tion is like a "chicken and egg"
problem: in order to recognize we

need to segment, but in order to
segment we may have to recognize
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Figure 3. a) ZIP code image. b) location| segmentation / recognition process.
of definite cuts (dashed lines) and tenta- Our strategy is to find probable
tive cuts (dotted line and thin solid line). segmentation points or "cuts", snip

out the "inked" regions between these points, and then see if LeNet can
recognize these segments with high confidence, either in isolation, or in
combination with neighboring segments. We then choose the set of segment
combinations that gives highest overall confidence while accounting for all
the ink in the image.

a)

We proceed in the following way: given a string, we first find the "definite"
cuts between characters. These are places where there are substantial hori-



zontal gaps in the "inked" image. For the ZIP code image shown in Figure 3,
definite cuts occur between the "2" and the "1" and between the "1" and the
"5". We denote them by the vertical dashed lines shown in Figure 3b. Then
we consider "tentative cuts" where a connected components analysis locates
gaps between blobs of ink. In Figure 3, such cuts are within the "5" and the
"4" ar.d between the "5" and "4". These tentative cuts are shown as thir., solid
lines in Figure 3b. Finally, using heuristic rules, we identify additional tenta-
tive cuts at places where characters are likely to be joined or touching. Such
a tentative cut is shown as the dotted line in Figure 3b.

0" 2"

S|

0.87 0.11

o
oL
0.98
oD
0.99

"3 g

—

0.72 0.97
9" g 3" j

0.04 0.31 0.50
.2. H4l

0.12 0.96

Figure 4. Blocks of segments from Figure 3 that are passed to LeNet. The number
near the top of each box is the most likely classification of the "ink" in the box.
Blocks in the same row are bounded on the left by the same cut; blocks in the same
column are bounded on the right by the same cut. The number near the bottom 1s
LeNet's relative confidence in the classification. In order to choose a consistent seg-
mentation of the image we must ensure that all the "ink" is accounted for, and that 1t
is only used once. Using this rule, the highest overall confidence classification /
segmentation is indicated by the boxes with the heavy borders.




The next step in our segmentation process is to pass segments and possible
segment combinations to LeNet for scoring as possible characters. Figure 4.
shows these segments and segment combinations along with their top scoring
classification and confidence level. The number near the top of each box is
the most likely classification of the "ink" in the box. Blocks in the same row
are bounded on the left by the same cut; blocks in the same column are
bounded on the right by the same cut. The number near the bottom is LeNet's
relative confidence in the classification. In order to choose a consistent seg-
mentation of the image we must ensure that all the "ink" is accounted for,
and that it is only used once. Using this rule, the highest overall confidence
classification / segmentation is indicted by the boxes with the heavy borders.

Notice that for the example in Figure 3, in order to recognize and segment a
5 digit ZIP code we had to make 12 calls to LeNet. For 5 digit ZIP code im-
ages with no large blobs of extraneous ink, we have to make an average of
7.5 calls. In actual mail streams we expect more calls will be necessary. This
places additional demands on the required speed of the recognizer engine
and further motivates the use of special purpose hardware to implement
LeNet.

A hardware system that has been effective in speeding the recognition / seg-
mentation process is one based on the ANNA neural-net chip {12]. This chip,
which mixes analog and digital processing, was specifically designed to
speed evaluations of networks like LeNet. A key feature of ANNA's design
is the provision for parallel evaluation of non-linear 2-dimensional convolu-
tions, which represent the bulk of the computing required by LeNet. Because
LeNet is large (over 100,000 connections), it cannot be evaluated entirely in
parallel by ANNA. Instead, sections of the input image are sequentially
evaluated, with the corresponding sections of the feature maps being evalu-
ated in parallel. In order for ANNA, (or most any neural-net chip) to run ef-
ficiently, heavy system demands are placed in the management of data on
and off the chip. The current board-level ANNA system has special hard-
ware to speed I/O operations along with a custom sequencer to control
ANNA's instruction execution. The latest versions of this system can evalu-
ate LeNet in about 1 msec, so that, accounting for multiple calls to LeNet
during the recognition/segmentation process, a throughput of over 400 char-
acter recognitions/sec can be sustained. This speed is about 25 times faster
than a state-of-the-art workstation.
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Figure 5. NET32K board-level system. The board contains two NET32K chips,
along with a sequencer and circuitry to provide high-speed data input/output paths
to the NET32K chips. In image processing applications this board sustains over
100 billion multiply/add operations per second.

5 Normalization

Recognition accuracy can be increased if we know that characters presented
to the recognizer engine are limited in their range of size and orientation.
This can be accomplished by normalizing the character strings with respect
to size and slant angle. We found that while size normalization could be
done quickly on a standard work station, slant normalization could not. In
this de-slanting process, the overall slant in a string must be detected. Then
the image bit-map of the string is modified so that the overall slant is set to
zero. Here the most computationally intensive step is the measurement of the
string slant angle. We have found that this potential speed bottleneck can be
eliminated by using a second neural-net board-level system. This system is
based on Hans Peter Graf's NET32K chip [13], which like ANNA mixes
analog and digital processing, but unlike ANNA, NET32K has more stored
weights (up to 32K vs. 4K for ANNA) at the expense of decreased accuracy
(1 bit vs. 6 bits). NET32K excels at scanning relatively large images with
large kernels (up to 16 x 16). A working board-level NET32K system, now
in use, contains two NET32K chips, as well as custom sequencers and on-



board memory. This system, which is shown in Figure 5, is designed to
support a high I/O rate for the NET32K chips. In the applications described
below, this system achieves a sustained rate of 100 billion multiply-adds per
second at 1.5-bit precision. To our knowledge this is the highest processing
rate yet attained in any single-board image processing system.

In order to measure average image slant, the NET32K system scans the im-
age field with a set of oriented edge detector kernels, with each kernel tuned
for a particular edge orientation. Examples of these kernels and detected
feature maps are shown in Figure 6. After the scan is completed, we count
how many places each kernel matched in a section of the image. The kernel
that scored the most matches indicates the dominant slant angle in the image.
With NET32K, we can find the slant angle of a ZIP code string in about 20
msecs.

Original Image

Slant
detection
kernels

f ; / / e Detected

feature
/ maps
!

Figure 6. Detection of slant angle using a set of slant detection kernels. A set a 16
kernels (only 4 are shown in this figure) are scanned across the image. For the ker-
nels shown here, a dark shading indicates a region where the required match is
white space, and a lighter shading indicates a region where the required match 1s
inked. Feature maps for each kernel record where matches are found 1n the image.
The kernel that scores the most matches across the image indicates the predominant
slant.




6 Finding the Region of Interest

Locating the region in an image that contains the desired text can be very
challenging, especially if the image is cluttered with extraneous text, graph-
ics, and/or background noise, e.g. Figure 7. Because the images typically
contain millions of pixels and because techniques for image analysis usually
require many operations per pixel, field location is a computationally
intensive task. We have used custom hardware to find address blocks at a
rate of more than 10 images/sec. Here again, NET32K shows its
effectiveness. The system scans the input image with feature detection
kernels that are tuned to the characteristics of text lines. Using the resultant
feature maps and our a priori knowledge about where address blocks are
likely to occur on an envelope, we can find likely candidate fields at the
required rate. All the processes described above are now being integrated
into a complete end-to-end system.

candidate address blocks

Figure 7. An example of address block location performed by the NET32K system
on a particularly challenging mail piece. Two candidate address blocks were
found; rules about the likely location of address blocks makes the candidate on the
lower right the first choice. The NET32K system can sustain a processing rate of
more than 10 images/sec.

7 Additional Applications

The technology developed to solve postal tasks has been successfully built
upon and used in telecommunication applications. In this section several of
these applications are discussed.
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Bit-Map to ASCII Conversion for Document Retrieval

A document retrieval system that allows users to browse internal technical
publications has been in service at AT&T Bell Laboratories for more than a
year [14]. The system displays bit-map images of document pages on users'
workstation screens. It is now being upgraded to provide an ASCII version of
the text as a companion of the bit-map. This allows users to search for words
or phrases and to lift sections of text for inclusion in other documents. The
bit-map images include many fonts and vary in their image quality.
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To obtain the ASCII version of a document, page-layout analysis is first per-
formed using a software package developed by H. S. Baird [15]. This
package finds text blocks, and then segments out individual characters.
These clipped character images are then recognized using a version of LeNet
that was trained on numerous printed fonts and sizes, including character
examples that were corrupted with synthetic noise with characteristics
similar to those encountered in actual documents [16]. Overall OCR
accuracy for this system typically exceeds 99%. An example of an original
document and its ASCII version are shown in Figure 8.

Processing of Faxed Forms

As a further example of an application of recognition technology, we de-
scribe a system, deployed internally in AT&T, that automates processing of
new service orders for parts of the AT&T network. A block diagram of the
system is shown in Figure 9. In this system, a client requesting a new service
faxes a form to a central AT&T facility. There, the bit-map is first used to
identify the type of form. Next, registration marks on the image are located
and the image is adjusted to compensate for distortions generated by the fax-
scanning process. The image fields that specify the order requisitioner and
the ordering information are then clipped out, normalized and passed to
LeNet. The forms are designed so that the characters to be processed are
written in boxes, eliminating the need for segmentation.

faxed
hand printed
order forms
client - ,
office e ' .
faxed OCR Server|  instructions
confirmation - for filling
* 4+ .= 4 orders
[ ] :
* Customer >
* Database
client e
office /| <
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Figure 9. Block diagram of automatic order processing system. Clients fax orden]
forms to a central facility where OCR is performed and the instructions for filling
the order are then generated. A confirmation notice is faxed back to the client.

For this task the considerable contextual information available 15 used to
maintain high recognition accuracy. As examples, the requisitioner's name
and organization can be cross-checked against a database and the service
order can be matched against allowable service codes After this cross-
checking, if LeNet still has low confidence in a particular field, that field is

passed to a human correction station operator who makes the final decision.
This system was successfully deployed in 1992 and is now in everyday use.

Processing of Tabular Text

Another application of the document processing technology is being used by
an AT&T Data Center in Kansas City. For this application very high recog-
nition accuracy is essential. First introduced in 1992, this application trans-
lates large volumes of densely printed tabular text from scanned documents
into structured ASCII format. Typically, the printed text is one of a large va-
riety of small machine printed fonts, and may be poorly registered on the
document. The document pages (either original or copy) are scanned in by
document type and passed to the AT&T document analysis system, which
uses Baird's page-layout analysis. The system locates text strings according
to a user-defined template that describes fields within text lines while ignor-
ing other text. Then using fast and accurate algorithms invented by David
Itner [17] for fixed-pitch printed text, such as from impact printers, each line
is parsed into fields according to the user-defined template. The fields are
then passed on to the neural-net character recognizer. After performing a
contextual analysis, 99.9% accuracy is achieved. Any low-confidence
characters are marked for review by human operators.

8 Conclusions

In this paper we have described some examples of applications of neural-net
character recognition and document analysis that have been developed at
AT&T Bell Labs. We have concentrated on a system designed to find and
read ZIP codes on envelopes for the US Postal Service. In order to meet real-
time requirements, this system includes special purpose hardware with
neural-net chips. The system also uses a combined approach to the
interdependent problems of recognition and segmentation. We have also
sketched applications to document retrieval and to automatic processing of
faxed forms.
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