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1 - INTRODUCTION

Threshold functions and related operators are widely used as basic elements
of adaptive and associative networks [Nakano 72, Amari 72, Hopfield 82]. There
exist numerous learning rules for finding a set of weights to achieve a
particular correspondence between input-output pairs. But early works in the
field have shown that the number of threshold functions (or linearly separable
functions) in N binary variables is small compared to the number of all possible
boolean mappings in N variables, especially if N is large. This problem is one of
the main limitations of most neural networks models where the state is fully
specified by the environment during learning they can only learn linearly
separable functions of their inputs. Moreover, a learning procedure which
requires the outside world to specify the state of every neuron during the
learning session can hardly be considered as a general learning rule because in
real-world conditions, only a partial information on the "ideal” network state
for each task is available from the environment. It is possible to use a set of
so-called "hidden units” [Hinton,Sejnowski,Ackley. 84], without direct inter-
action with the environment, which can compute intermediate predicates.
Unfortunately, the global response depends on the output of a particular hidden
unit in a highly non-linear way, moreover the nature of this dependence is
influenced by the states of the other cells. Thus, it is difficull to decide
whether the output of a hidden unit is wrong for a particular input, and,
consequently, how to modify its weights. This last problem has been referred
to as the “credit assignment problem™ (CAP) in [Hinton & al. 84]. Attempts to
find a learning rule taking into account hidden units and generating high order
predicates failed until recently, which could explain for the decrease of
interest in this field for the past 15 years [Minsky & Papert 68]

In this paper, we consider learning and associative memorization as
dynamiC processes and show how to describe the evolution of the weights
through an "energy” function. This method will be used to solve the CAP and
apphed to a model of hierarchical associative memory called HLM (Hierarchical
Learning Machine).



2- LEARNING AS ITERATIVE MINIMIZATION

In the following, we consider a neural network with state vector X in

{-1,+1}N_The time evolution of the network is described by:

X(t+1) = F[W(1).X(1)] (1
where W(t) is the weight matrix at time t and F 1s the mapping whose ith
coordinate has value +1 if the ith coordinate of its argument is positive, -1
otherwise (threshold function).

Learning modifies the weights and can be viewed as minimizing a given cost
function or criterion. The simplest way to minimize a function is to use a
gradient descent method: given C(t) where t is a discrete time index and whose
time average <C> is taken as the criterion, the recursive formula.

W(t) = W(t-1) - K(t). gradyy [C(t)]. (2)
minimizes <C> with respect to W, with a noise level defined by K (where W(t)
is the weight matrix at time t, and K is a diagonal positive matrix).

For example, we can choose for C the Hopfield's energy [Hopfield 82}

C(t) = =172 Y(O)T.W(t).¥(t) (3)

where the patterns to be memorized, Y(t), are presented sequentially and

Y(1)T is ¥(t) transpose. In this case, (2) gives:

Wyj(t) = Wy (t=1) + Ki(DY{()Y;(t) (4)
which is the classical Hebb's 1aw. Running this procedure will "dig holes™ in the
energy landscape around states to be memorized. Notice that this process

diverges if the patterns are presented indefinitely.
Another possible criterion is:

C(t) = [Y(t) - W(E).Y(ITIY() - W(t).Y()] (5)
in case of auto-association (Y(t) associated to itself) or
C(t) = [Y(t) - W(t-1).X(t- DITIY(L) - W(t-1)X(t-1)] (6)

in case of hetero-association (Y(t) associated to X(t-1)).
Equation (2) then gives:
Wij(1) = Wy (t-1) + Ki(DIY{()-A(DIXj(t-1) (7
where A is the vector defined by: A(t) = W(t-1).X(t-1) (ie A;j is the total input

to cell i)

Equation (7) is known as the Widrow-Hoff rule [widrow & Hoff. 60] (or least
mean square algorithm) and is strongly related to the pseudo-inverse method
[Duda & Hart 73, Kohonen 74, 84]

Under some conditions on K, this method provides an exact solution when
the X's are linearly independent. Otherwise, the process is still convergent, but
may find only sub-optimal solutions. Nevertheless, a “good” solution is found in
both the separable and the non-separable cases [Duda & Hart. 73]

A similar method can be applied to the Boltzmann Machine [Hinton & al. 84]
if we take

C() = X(OT.W()X(t) - Y()T.W(t).Y(t) (8)
where X is the network state when input cells only are clamped and Y is the
network state when both input and output cells are clamped. (2) now gives.
Wij(t) = Wy(t-1) + Ki(lY{(0Y j(t) - X;(0X ()] (9)



This is a deterministic version of the Boltzmann Machine learning rule. This
algorithm solves the "credit assignment problem”, because the Y's have a
dynamics which is not fully specified by the external environment.

3- THE HIERARCHICAL LEARNING MACHINE

In the learning rules described above, the ¥Y's played the role of desired
states In classical neural network models, without hidden units, the desired
states are fully specified externally, while in the Boltzmann Machine and the
HLM, they are partly computed by the network itself. Solving the CAP requires
being able to change the output of each hidden unit so as to satisfy the global
criterion. This can be done by computing each local criterion -attached to
hidden units- while remaining consistent with all other local criteria.

In the following, we consider "smooth™ neural networks, with real valued
cell outputs defined by Xj(t+1) = f[ijij(t)Xj(t)], where f is an odd function,
with strictly positive first derivative. Let us denote Ai(t)=zjwlj(t)Xj(t) and C
a global criterion, depending on A, and defined by.

N
c(t) = &j=1 Cjt) (10)
where C j is the criterfon attached to the j-th cell and depends on A;.
Assume that cell k is a hidden unit and let Cy be its local criterion. An optimal
definition for Cx can be chosen such that minimizing Cx with respect to the
Wi g (£=1,..,N) amounts to minimizing §;j=k Cj (assuming that all Cj  j*K are
known). This condition can be expressed by:

0 Ck 0 Cj
= &=k £=1,..N (n
o Wip o Wkp
It 1s possible to use a weaker constraint:
0 Ck 0 Cj
SIGN [ J = SIGN [ =k ] £=1,.N (12)
o Wi p o Wkl

where SIGN is the threshold function . This condition ensures that Ck and
2.j=kC) vary in the same direction We can compute each term:

aCj oCj 0Aj OXkx oAk oCj oAK  oXk
= . . s - Wik —— (13)
o Wi p OAj Xk oAk o Wip oAj 0 Wi oAk
oCk aCk oAk
(14)

dWiP  dAK WP

Condition (12) implies:



oCk oCj Xk

SIGN [——]=SIGN[ &y=k Wik — — | (15)
dAK 0Aj OA(
The 1ast term 1n the bracketed sum is always positive, hence.
oCk aCy
SIGN [——1=SIGN [ )=k Wik —] (16)
3AK OA]
If we take for C its simplest form: Cj=-Yj Aj (17)
we obtain SIGN Yi 1= SIGNL j=k Wik Yj ] (18)
We can choose any absolute value for Y, in particular.
Yk =SIGN{ &=k Wik Yj] (19)
Using vector notation, (19) becomes: Y = F(WT ¥) (20)

and we can compute a "desired response” for each hidden cell by back propa-
gating this cost function gradient [Hinton 85].

Minimizing the error between Y and X can be done with the Widrow Hoff rule
(7) We obtain a system of recursive equations describing the complete
behavior of HLM

X(t+1) = F[ W(t) . X(1) ]

Y(t+1) = FLW(T . ¥(t) ]
Wyjt+1) = Wij(t) + Ki(DIY(t+1)-Ajt+1 )]Xj(t) (21)
Ai(t+1) = S Wit (t)

assuming that the X's and Y's of some cells can be Clamped externally.

4- SIMULATIONS

The learning rule we obtain is totally local in space and time The global
criterion <C> is convex provided there is no hidden cell This implies that
several solutions to a particular task can co-exist, and that the weights can be
trapped into a local minimum of <C>. This means too that the weight
configuration found out by learning depends on the initial weight configuration
Moreover, it depends on the whole network history. what has been learned
before and how.

Two parameters have a great influence on the weight dynamics The first
one is the matrix K which defines the step size towards the criterion minimum
at each iteration. A trade-off must be found between the speed of convergence
(proportional to the K;'s) and the accuracy and stability of the stable point
(achieved with small Ki's). 1t must be noticed that large values for Ki's
facilitate escaping from local minima because large energy barriers can be
crossed over The second parameter is the nature of the learning pattern
sequence. By definition, the <C> landscape is statistically defined and can be
completely modified by changing the relative occurrence frequency of each
pattern Increasing the occurrence frequency of poorly learned patterns



increases the energy of the nearest local minimum, and therefore, lowers the
heights of the surrounding barriers. This can define what a "good pedagogy”
must be, and can be interpreted as a "smart noise”.

A particular structure has been chosen for testing the algorithm. It has some
restrictions to facilitate the study of the weight dynamics. First, the cells are
threshold automata (i.e. function f is approximated by a threshold function);
second, all the interactions are local in a 3-D space, third, there is no loop in
the interaction graph, which means that the matrix W is isomorphic to a
triangular matrix. The network has a hierarchical architecture with several
layers. Each layer is composed of 64 cells (8 by 8 plane) with a toric topology
to avoid boundary effects. The first layer is the input plane (retina). Each cell
in a layer receives signals only from 9, 25, or 49 cells in the previous layer.
There is no interaction between cells in a given layer. The last layer (output
plane) has a variable number of cells which "see” the entire previous layer (see
fig 1). This structure allows hierarchical information processing, the
abstraction level of the representation increases as the information is
processed by the successive layers. The locally connected loop-free structure
causes the X and Y dynamics to have trivial fixed points, and makes the study
of the weight dynamics easier. It must be noticed that in such a struture, since
there is no direct path between input and output cells, the information /g5 to
be processed by the hidden units.

A learning iteration is composed of three phases.

- Present a pattern in the input plane (clamp the X,'s of the first layer cells)

and compute the stable X state.

- Present the associated desired response (clamp the Y;'s of the output cells)

and compute the stable Y state ( using back-propagation).
- Modify the weights using Widrow-Hoff rule with X and Y.

For the simulations, the matrix K is chosen as K= k | , where | is the unit
matrix K is modified manually during the learning phase

The most important thing we have to test by simulation is whether the
network is able to generalize or not. The generalization is the ability to
produce a correct response for a non learned input pattern. Without
generalization, learning is only memorizing. We have chosen for that test a set
of alphabetic characters presented in several positions on the retina (See fig
2). There are S instances of the first 6 characters of the alphabet, each one
presented in 4 different positions (total of 120 patterns). There are 6 classes,
each of them associated with the activation of one of the 6 output cells A
correct classification (with 100% recognition rate) is obtained with a 6 layer
network and connectivity 25. This task is somewhat complex because very
different patterns (in the Hamming sense) must be put into the same class,
while some close patterns must be separated.

Fig 3 shows the classification achieved by a 6 layer network with
connectivity 49 when 5 to 7% of the pixels have been randomly inverted during
learning and recognition phases.

Fig 4 shows classification made by the previous network on a set of non-
learned input patterns With this kind of data, the observer has a "semantic
criterion™ (the only one possible) to test the quality of the generalization. Of



course, Hamming distance could be used to measure the spatial basins of
attraction, but this would have little semantic relevance in this context

In these examples, the generated boolean function is not linearly separable
and requires using hidden units. The learning phase is somewhat long (a few
thousands iterations), and needs a sophisticated pedagogy. All the learning set
must not be presented at once (new patterns may be added when previous ones
are learned). The value for k must be carefully chosen, decreased when learning
is successfull, increased when trapped in a local minimum. The patterns must
be presented in a random order.

Note that by presenting a pattern until it is recognized instead of changing
it at each iteration, the learning time is reduced by a significant amount.

Other simulations have been performed in a more autonomous learning mode
that modelizes Pavlovian conditioning [Le Cun 85] In this last experiment, the
network response is taken as the desired output, i.e. the desired response is
self-generated

S - CONCLUSION

Numerous simulations must be made to evaluate the algorithm perfor-
mances, for instance by using a structure with loops, and real valued outputs.

Nevertheless, this demonstrates the possibility of learning without
specifying the states of all neurons

The behaviour of HLM shows strong analogies with animal learning,
especially when considering the effects of a pedagogy on the results.
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FIG 1 The network structure chosen for the simulations 1S Three-
dimensional and composed of several 8 by 8 layers. Each cell in a layer is
connected to 9, 25 or 49 cells in the previous layer. The last layer is fully
connected to the previous one.
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FIG 2 - Five examples of the first six alphabetic characters are presented In
four different positions. Each class is coded by the activation of one of the
output cells.
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FIG 3

during learning and recognition.

The figure shows the classification produced by a six layers network
with 7 by 7 receptive fields. S to 7% of the pixels were randomly inverted
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FIG 4. A generalization test set. Classification produced by the same network
as Infig 3 ondistorted noisy patterns The patterns for which none of the six
desired responses has been produced are put together at the bottom of the

figure




