Generalization and Network
Design Strategies

Y. le Cun
Department of Computer Science
University of Toronto

Technical Report CRG-TR-89-4
June 1989

Send requests to:

The CRG technical report secretary
Department of Computer Science
University of Toronto

10 Kings College Road

Toronto M5S 1A4

CANADA

INTERNET: carol@aij.toronto.edu
UUCP: uunet!utailcarol
BITNET: carol@utorgpu

This work has been supported by a grant from the Fyssen foundation, and a grant from the Sloan
foundation to Geoffrey Hinton. The author wishes to thank Geoff Hinton, Mike Mozer, Sue Becker
and Steve Nowlan for helpful discussions, and John Denker and Larry Jackel for useful comments.
The Neural Network simulator SN is the result of a collaboration between Leon-Yves Bottou and

the author. Y. le Cun’s present address is Room 4G-332, AT&T Bell Laboratories, Crawfords
Corner Rd, Holmdel, NJ 07733.

Y. Le Cun. Generalization and network design strategies. Technical Report
CRG-TR-89-4, University of Toronto Connectionist Research Group, June
1989. a shorter version was published in Pfeifer, Schreter, Fogelman and
Steels (eds) 'Connectionism in perspective’, Elsevier 1989.

Generalization and Network Design
Strategies

Yann le Cun *

Department of Computer Science, University of Toronto
Toronto, Ontario, M5S 1A4. CANADA.

Abstract

An interesting property of connectionist systems is their ability to
learn from examples. Although most recent work in the field concentrates
on reducing learning times, the most important feature of a learning ma-
chine is its generalization performance. It 1s usually accepted that good
generalization performance on real-world problems cannot be achieved
unless some a priort knowledge about the task is built into the system.
Back-propagation networks provide a way of specifying such knowledge
by imposing constraints both on the architecture of the network and on
1ts weights. In general, such constraints can be considered as particular
transformations of the parameter space

Bulding a constrained network for image recognition appears to be a
feasible task. We describe a small handwntten digit recogmtion problem
and show that, even though the problem 1s linearly separable, single layer
networks exhibit poor generalization performance. Multilayer constrained
networks perform very well on this task when organized in a hierarchical
structure with shift invariant feature detectors.

These results confirm the idea that minimizing the number of free
parameters in the network enhances generalization.

1 Introduction

Connectionist architectures have drawn considerable attention in recent years
because of their interesting learning abilittes Among the numerous learn-
ing algorithms that have been proposed for complex connectionist networks,

*Present address: Room 4G-332, AT&T Bell Laboratories, Crawfords Corner Rd, Holmdel,
NJ 07733.

Back-Propagation (BP) 1s probably the most widespread. BP was proposed in
(Rumelhart et al , 1986), but had been developed before by several independent
groups 1n different contexts and for different purposes (Bryson and Ho, 1969,
Werbos, 1974, le Cun, 1985; Parker, 1985; le Cun, 1986) Reference (Bryson and
Ho, 1969) was 1n the framework of optimal control and system identification,
and one could argue that the basic 1dea behind BP had been used 1n optimal
control long before 1ts application to machine learning was considered (le Cun,
1988)

Two performance measures should be considered when testing a learning
algorithm learning speed and generalization performance Generalization is the
main property that should be sought, 1t determines the amount of data needed
to tramn the system such that a correct response 1s produced when presented
a patterns outside of the training set. We will see that learning speed and
generalization are closely related.

Although various successful applications of BP have been described in the
literature, the conditions 1n which good generalization performance can be ob-
taimned are not understood. Considering BP as a general learning rule that can
be used as a black box for a wide variety of problems 1s, of course, wishful think-
ing Although some moderate sized problems can be solved using unstructured
networks, we cannot expect an unstructured network to generalize correctly on
every problem. The main point of this paper 1s to show that good generalization
performance can be obtained if some a prior: knowledge about the task 1s built
mto the network. Although in the general case specifying such knowledge may
be difficult, 1t appears feasible on some highly regular tasks such as image and
speech recognition.

Tailoring the network architecture to the task can be thought of as a way
of reducing the size of the space of possible functions that the network can
generate, without overly reducing its computational power Theoretical studies
(Denker et al, 1987) (Patarnello and Carnevali, 1987) have shown that the
likelihood of correct generalization depends on the size of the hypothesis space
(total number of networks being considered), the size of the solution space (set of
networks that give good generalization), and the number of traming examples
If the hypothesis space 1s too large and/or the number of traning examples 1s too
small, then there will be a vast number of networks which are consistent with the
tramning data, only a small proportion of which will lie in the true solution space,
so poor generalization 1s to be expected Conversely, if good generalization 1s
required, when the generality of the architecture 1s increased, the number of
training examples must also be increased. Specifically, the required number of
examples scales like the logarithm of the number of functions that the network
arclutecture can implement

Anilluminating analogy can be drawn between BP learning and curve fitting.
When using a curve model (say a polynomial) with lots of parameters compared
to the number of points, the fitted curve will closely model the training data
but will not be likely to accurately represent new data. On the other hand, if
the number of parameters in the model is small, the model will not necessarily
represent the training data but will be more likely to capture the regularity of
the data and extrapolate (or interpolate) correctly. When the data is not too
noisy, the optimal choice is the mimimum size model that represents the data.

A common-sense rule mspired by this analogy tells us to minimize the num-
ber of free parameters 1n the network to increase the likelihood of correct gen-
eralization But this must be done without reducing the size of the network to
the point where it can no longer compute the desired function. A good com-
promise becomes possible when some knowledge about the task is available, but
the price to pay 1s an increased effort in the design of the architecture.

2 Weight Space Transformation

Reducing the number of free parameters 1n a network does not necessarily imply
reducing the size of the network Such techniques as weight sharing, described in
(Rumelhart et al , 1986) for the so-called T-C problem, can be used to reduce
the number of free parameters while preserving the size of the network and
specifying some symmetries that the problem may have.

In fact, three main techniques can be used to build a reduced size network.

The first technique 1s problem-independent and consists in dynamically delet-
g “useless” connections during training This can be done by adding a term 1n
the cost function that penalizes big networks with many parameters Several au-
thors have described such schemes, usually implemented as a non-proportional
weight decay (Rumelhart, personnal communication 1988), (Chauvin, 1989,
Hanson and Pratt, 1989), or using “gating coefficients” (Mozer and Smolensky,
1989) Generalization performance has been reported to increase significantly
on small problems Two drawbacks of this technique are that it requires a fine
tuning of the “pruming” coefficient to avoid catastrophic effects, and also that
the convergence 1s significantly slowed down

2.1 Weight Sharing

The second technique 1s weight sharing Weight sharing consists 1n having sev-
eral connections (links) be controlled by a single parameter (weight) Weight
sharing can be interpreted as imposing equality constraints among the con-
nection strengths. An interesting feature of weight sharing 1s that 1t can be

Figure 1. Weight Space Transformation.

implemented with very little computational overhead. Weight sharing is a very
general paradigm that can be used to describe so-called Time Delay Neural
Networks used for speech recogmition (Waibel et al., 1988, Bottou, 1988), time-
unfolded recurrent networks, or shift-invariant feature extractors. The experi-
mental results presented in this paper make extensive use of weight sharing.

2.2 General Weight Space Transformations

The third technique, which really 1s a generalization of weight sharing, 1s called
weight-space transformation (WST) (le Cun, 1988) WST is based on the fact
that the search performed by the learning procedure need not be done in the
space of connection strengths, but can be done in any parameter space that
1s suitable for the task This can be achieved provided that the connections
strengths can be computed from the parameters through a given transformation,
and provided that the Jacobian matrix of this transformation 1s known, so that
we are able to compute the partials of the cost function with respect to the
parameters The gradient of the cost function with respect to the parameters
1s then just the product of the Jacobian matrix of the transformation by the
gradient with respect to the connection strengths. The situation 1s depicted on
figure 1

2.2.1 WST to improve learning speed

Several types of WST can be defined, not only for reducing the size of the
parameter space, but also for speeding up the learning

Although the following example 1s quite difficult to implement in practice, 1t
gives an 1dea about how WST can accelerate learning. Let us assume that the
cost function C' mimmized by the learning procedure is purely quadratic w r.t
the connection strengths W In other words, C is of the form

W) = %WTHW +ITW 4+ K

where W 1s the vector of connection strengths, H the Hessian matrix (the matrix
of second derivatives) which will be assumed positive definite Then the sur-
faces of equal cost are hyperparaboloids centered around the optimal solution
Performing steepest descent 1n this space will be inefficient if the eigenvalues
of H have wide variations In this case the paraboloids of equal cost are very
elongated forming a steep ravine The learning time is known to depend heavily
on the ratio of the largest to the smallest eigenvalue. The larger this ratio, the
more elongated the paraboloids, and the slower the convergence. Let us denote
A the diagonalized version of H, and Q the unitary matnx formed by the (or-
thonormal) eigenvectors of H, we have H = QTAQ. Now, let T be the diagonal
matrix whose elements are the square root of the elements of A, then H can be
rewritten as H = QTEEQ We can now rewrite the expression for C(W) in the
following way

1
C(W) = 5WTQT TEQW + (J)TEQW + K
Using the notation U = QW we obtain
1
c(U) = 5UTU +(UNU+K

In the space of U, the steepest descent search will be trivial since the Hessian
matrix 1s equal to the identity and the surfaces of equal cost are hyper-spheres
The steepest descent direction points in the direction of the solution and s the
shortest path to the solution Perfect learning can be achieved in one single
iteration 1f @ and T are known accurately. The transformation for obtaining
the connection strengths W from the parameters U is simply

W =QTx"U

During learning, the path followed by U in U space is a straight line, as well
as the path followed by W in W space This algorithm is known as Newton’s
algorithm, but 1s usually expressed directly in W space. Performing steepest
descent in U space 1s equivalent to using Newton’s algorithm in W space.

Of course 1n practice tlus kind of WST 1s unrealistic since the size of the
Hessian matrix 1s huge (number of connections squared), and since 1t 1s quite

expensive to estimate and diagonalize Moreover, the cost function 1s usually
not quadratic in connection space, which may cause the Hessian matrix to be
non positive, non definite, and may cause 1t to vary with W Nevertheless, some
approximations can be made which make these 1deas implementable (le Cun,
1987, Becker and le Cun, 1988)

2.2.2 WST and generalization

The WST just described 1s an example of problem-independent WST, Other
kinds of WST which are problem-dependent can be devised. Building such trans-
formation requires a fair amount of knowledge about the problem as well as a
reasonable guess about what an optimal network solution for this problem could
be Finding WST that improve generalization usually amounts to reducing the
size of the parameter space. In the following sections we describe an example
where simple WST such as weight sharing have been used to improve general-
1zation

3 Anexample: A Small Digit Recognition Prob-
lem

The following experimental results are presented to illustrate the strategies that
can be used to design a network for a particular problem The problem described
here 1s 1n no way a real world application but 1s sufficient for our purpose The
intermediate size of the database makes the problem non-trivial, but also allows
for extensive tests of learning speed and generalization performance

3.1 Description of the Problem

The database 1s composed of 480 examples of numerals represented as 16 pixels
by 16 pixels binary images 12 example of each of the 10 digits were hand-
drawn by a single person on a 16 by 13 bitmap using a mouse FEach Image was
then used to generate 4 examples by putting the original image 1n 4 consecutive
horizontal positions on a 16 by 16 bitmap The training set was then formed
by choosing 32 examples of each class at random among the complete set of 480
1mages the remaining 16 examples of each class were used as the test set Thus,
the training set contained 320 images, and the test set contained 160 1mages
On figure 2 are represented some of the training examples

Flgure 2. Some examples of input patterns.

3.2 Experimental Setup

All simulations were performed using the BP simulator SN (Bottou and le Cun,
1988)

Each umt 1n the network computes a dot product between its input vector
and 1its weight vector This weighted sum, denoted @, for unit 7, is then passed
through a sigmoid squashing function to produce the state of unit ¢, denoted by
Ly

I, = f(at)

The squashing function 1s a scaled hyperbolic tangent:
f(a) = Atanh Sa

where A 1s the amplitude of the function and S determunes its slope at the
origin, and f 1s an odd function, with horizontal asymptotes +4 and — A

Symmetric functions are believed to yield faster convergence, although the
learning can become extremely slow if the weights are too small The cause of
this problem 1s that the origin of weight space is a stable point for the learn-
ing dynamics, and, although it is a saddle point, it is attractive in almost all
directions For our simulations, we use A = 1.7159 and S = —. with this choice
of parameters, the equalities f(1) = 1 and f(—1) = —1 are satlsﬁed The ra-
tionale behind this 1s that the overall gain of the squashing transformation 1s
around 1 i normal operating conditions, and the interpretation of the state of
the network 1s simplified Moreover, the absolute value of the second derivative

of f 1s a maximum at +1 and —1, which improves the convergence at the end
of the learning session.

Before training, the weights are iitialized with random values using a uni-
form distribution between —2.4/F, and 2.4/ F, where F, is the number of inputs
(fan-mn) of the unit which the connection belongs to '. The reason for dividing
by the fan-in 1s that we would like the imitial standard deviation of the weighted
sums to be 1n the same range for each umt, and to fall within the normal op-
erating region of the sigmoid If the initial weights are too small, the gradients
are very small and the learning 1s slow, if they are too large, the sigmoids are
saturated and the gradient is also very small The standard deviation of the
weighted sum scales like the square root of the number of inputs when the in-
puts are independent, and it scales linearly with the number of mnputs if the
inputs are highly correlated. We chose to assume the second hypothesis since
some units receive highly correlated signals

The output cost function is the usual mean squared error

1
c= FZ,,:ZO: ~(Dop ~ Xop)’

where P 1s the number of patterns, D,, 1s the desired state for output unit o
when pattern p 1s presented on the input. X,, 1s the state of output umt o
when pattern p 1s presented. It is worth pointing out that the target values for
the output units are well within the range of the sigmoid This prevents the
werghts from growing indefinitely and prevents the output units from operating
in the flat spot of the sigmoid. Additionally, since the second derivative of the
sigmoid 1s maximum near the target values, the curvature of the error function
around the solution 1s maximized and the convergence speed during the final
phase of the learning process is improved

During each learning experiment, the patterns were presented in a constant
order, and the training set was repeated 30 times. The weights were updated
after each presentation of a single pattern according to the so-called stochastic
gradient or “on-line” procedure Each learning experiment was performed 10
times with different initial conditions All experiments were done both using
standard gradient descent and a special version of Newton’s algorithm that uses
a positive, diagonal approximation of the Hessian matrix (le Cun, 1987, Becker
and le Cun, 1988)

All experiments were done using a special version of Newton’s algorithm that
uses a positive, diagonal approximation of the Hessian matrix (le Cun, 1987,
Becker and le Cun, 1988) Tlus algorithm 1s not believed to bring a tremendous

Isince several connections share a weight this rule could be difficult to apply, but in our

case, all connections sharing a same weight belong to units with identical fan-ns

increase 1n learning speed but it converges reliably without requiring extensive
adjustments of the learning parameters

At each learning iteration a particular weight ug (that can control several
connection strengths) 1s updated according to the following rule

ocC
U — Uk + €, Z

w
(‘1])€Vk H

where C' 1s the cost function, w,, is the connection strength from unit j to unit
i, Vi 1s the set of unit index pairs (7, j) such that the connection strength w,, 1s
controlled by the weight ui. The step size ¢} is not constant but 1s function of
the curvature of the cost function along the axis u;. The expression for ¢y is’

_ A
e+ hrg

where A and p are constant and hgg is a running estimate of the second derivative
of the cost function C with respect to ug. The terms hgy are the diagonal terms
of the Hessian matrix of C' with respect to the parameters ug. The larger hiy,
the smaller the weight update The parameter u prevents the step size from
becoming too large when the second derivative is small, very much like the
“model-trust” methods used in non-linear optimization. Special actions must
taken when the second derivative is negative to prevent the weight vector from
going uphill Each hij 1s updated according to the following rule:
2
her — (1 =7)her + v Z g;;?—
(2,0)€V) J

where 7 1s a small constant which controls the length of the window on which
the average 1s taken The term 620/310?] is given by:

6°C _ 5°C ,

Buwz, - daZ
ow;; Oa

where z, 1s the state of umt 7 and 32C/da? is the second derivative of the cost
function with respect to the total input to umt ¢ (denoted a,) These second
denvatives are computed by a back-propagation procedure similar to the one
used for the first derivatives (le Cun, 1987)'

9°C _ . 8C
6 Zwlm f()395,

The first term on the right hand side of the equation is always positive, while
the second term, involving the second derivative of the squashing function f,

can be negative. For the simulations, we used an approximation to the above
expression that gives positive estimates by simply neglecting the second term:

6%C ; 2 9 6%C
W— f (az) Ek:wkz@

This corresponds to the well-known Levenberg-Marquardt approximation used
for non-linear regression (see for example (Press et al., 1988)).

This procedure has several interesting advantages over standard non-linear
optimization techniques such as BFGS or conjugate gradient. First, it can be
used 1n conjunction with the stochastic update (after each pattern presentation)
since a line search 1s not required. Second, 1t makes use of the analytical ex-
pression of the diagonal Hessian, standard quasi-Newton methods estimate the
second order properties of the error surface Third, the scaling laws are much
better than with the BFGS method that requires to store an estimate of the full
Hessian matrix 2

In this paper, we only report the results obtained through this pseudo-
Newton algorithm since they were consistently better than the one obtained
through standard gradient descent The input layer of all networks were 16
by 16 binary images, and their output layer was composed of 10 units, one per
class. An output configuration was considered correct i1f the most-activated unit
corresponded to the correct class.

In the following, when talking about layered networks, we will refer to the
number of layers of modifiable weights. Thus, a network with one hidden layer
1s referred to as a two-layer network

3.3 Net-1: A Single Layer Network

The simplest network that can be tested on this problem 1s a single layer, fully
connected network with 10 sigmoid output units (2570 weights including the
biases) Such a network has successfully learned the traiming set, which means
that the problem is hnearly separable But, even though the training set can be
learned perfectly, the generalization performance 1s disappointing. between 80%
and 72% depending on when the learning 1s stopped (see curve 1 on figure 3).
Interestingly, the performance on the test set reaches a maximum quite early
during tramning and goes down afterwards This over-training phenomenon has
been reported by many authors The analysis of this phenomenon 1s outside
the scope of this paper. When observing the weight vectors of the output
unts, 1t becomes obvious that the network can do nothing but develop a set of
matched filters tuned to match an “average pattern” formed by superimposing

2Recent developments such as Nocedal’s “limited storage BFGS” may alleviate this problem

10

100 LI Il-ll -tlll llll—l'l.l-ll__|.l_i_l:1

% correct on test set

60 i 11 | | I | 1t 14 l 11 1t 1 I | | l |)
0 5 10 15 20 25 30
training epochs

Figure 3 Generahization performance vs training time for 5 network architec-
tures Net-1 single layer, Net-2: 12 hidden units fully connected, Net-3. 2
hidden layers locally connected, Net-4- 2 hidden layers, locally connected with
constraints, Net-5- 2 hidden layers, local connections, two levels of constraints

all the training examples Despate its relatively large number of parameters, such
a system cannot possibly generalize correctly except in trivial situations, and
certaimnly not when the input patterns are slightly translated. The classification
15 essentially based on the computation of a weighted overlap between the input
pattern and the “average prototype”

3.4 Net-2: A Two-Layer, Fully Connected Network

The second step 1s to insert a hidden layer between the input and the output.
The network has 12 hidden units, fully connected both to the input and the
output There 1s a total of 3240 weights including the biases. Predictably, this
network can also learn perfectly the tramning set 1n a few epochs ® (between
T and 15) The generahzation performance 1s better than with the previous

3The word epoch 1s used to designate an entire pass through the tramng set, which 1n our
case 1s equivalent to 320 pattern presentations

11

10 10 10

4x4
12
8x8
16x16 16x16 E 16x16

Figure 4: three network architectures Net-1, Net-2 and Net-3

network and reaches 87% after only 6 epochs (see figure 3). A very slight over-
learning effect is also observed, but its amplitude 1s much smaller than with
the previous network. It 1s interesting to note that the standard deviation on
the generalization performance 1s sigmficantly larger than with the first network.
This an indication that the network 1s largely underdetermined, and the number
of solutions that are consistent with the traiming set is large. Unfortunately,
these various solutions do not give equivalent results on the test set, thereby
explaining the large variations in generalization performance.

From this result, it is quite clear that this network 1s too big (or has too
many degrees of freedom)

3.5 Net-3: A Locally Connected, 3-Layer Network

Since reducing the size of the network will also reduce 1ts generality, some knowl-
edge about the task will be necessary 1n order to preserve the network’s ability
to solve the problem A simple solution to our over-parameterization problem
can be found if we remember that the network should recogmze 1mages. Clas-
sical work 1n visual pattern recogmtion have demonstrated the advantage of
extracting local features and combining them to form higher order features We
can easily build this knowledge into the network by forcing the hidden units
to only combine local sources of information. The architecture comprises two
hidden layers named H1 and H2. The first hidden layer, H1, 1s a 2-dimensional
array of size 8 by 8. Each unit in H1 takes 1ts inputs from 9 umts on the mnput
plane situated in a 3 by 3 square neighborhood. For units in layer H1 that are

12

one unit apart, their receptive fields (in the input layer) are two pixels apart
Thus, the receptive fields of two neighbouring hidden units overlap by one row
or one column. Because of this two-to-one undersampling in each direction, the
information 1s compacted by a factor of 4 going from the input to HI1.

Layer H2 is a 4 by 4 plane, thus, a similar two-to-one undersampling occurs
going from layer H1 to H2, but the receptive fields are now 5 by 5. H2 is fully
connected to the 10 output units. The network has 1226 connections (see figure
4)

The performance is slightly better than with Net-2: 88.5%, but is obtained
at a considerably lower computational cost since Net-3 is almost 3 times smaller
than Net-2. Also note that the standard deviation on the performance of Net-3
is smaller than for Net-2. This is thought to mean that the hypothesis space for
Net-3 (the space of possible functions 1t can implement) is much smaller than
for Net-2

3.6 Net-4: A Constrained Network

One of the major problems of image recogmtion, even as simple as the one we
consider 1n this work, 15 that distinctive features of an object can appear at
various locations on the input image. Therefore it seems useful to have a set
feature detectors that can detect a particular instance of a feature anywhere on
the 1nput plane. Since the precise location of a feature is not relevant to the
classification, we can afford to loose some position information in the process.
Nevertheless, an approzimate position information must be preserved in order
to allow for the next levels to detect higher order features.

Detection of feature at any location on the input can be easily done using
weight sharing. The first hidden layer can be composed of several planes that we
will call feature maps All umts in a plane share the same set of weights, thereby
detecting the same feature at different locations. Since the exact position of the
feature 1s not 1mportant, the feature maps need not be as large as the input
An 1nteresting side effect of this technique 1s that 1t reduces the number of free
weights 1n the network by a large amount.

The architecture of Net-4 1s very simmlar to Net-3 and also has two hidden
layers The first hidden layer 1s composed of two 8 by 8 feature maps. Each
unit 1 a feature map takes input on a 3 by 3 neighborhood on the imnput plane
For unmits in a feature map that are one unit apart, their receptive fields in
the input layer are two pixels apart. Thus, as with Net-3 the input image 1s
undersampled The main difference with Net-3 is that all units in a feature
map share the same set of 9 weights (but each of them has an independent
bias) The undersampling technique serves two purposes The first is to keep

13

10 10

4x4 o o 4x4x4
l 1\ | 8x8x2 8x8x2
| A
A\ W/
16x16 16x16

Figure 5 two network architectures with shared weights: Net-4 and Net-5

the size of the network within reasonable limits The second 1s to ensure that
some location information 1s discarded during the feature detection

Even though the feature detectors are shift invariant, the operation they
collectively perform is not. When the input image 1s shifted, the output of the
feature maps 1s also shifted, but is otherwise left almost unchanged. Because of
the two-to-one undersampling, when the shift of the input is small, the output
of the feature maps is not shifted, but merely slightly distorted.

Asn the previous network, the second hidden layer is a 4 by 4 plane with 5
by 5 local receptive fields and no weight sharing. The output is fully connected
to the second hidden layer and has, of course, 10 umts. The network has 2266
connections but only 1132 (free) weights (see figure 5)

The generalization performance of this network jumps to 94%, indicating
that built-in shift invariant features are quite useful for this task. This result
also indicates that, despite the very small number of independent weights, the
computational power of the network 1s increased.

3.7 Net-5: A Network with Hierarchical Feature Extrac-
tors

The same 1dea can be pushed further, leading to a hierarchical structure with
several levels of constrained feature maps

The architecture of Net-5 is very similar to the one of Net-4, except that the
second hidden layer H2 has been replaced by four feature maps each of which
15 a 4 by 4 plane. Umts in these feature maps have 5 by 5 receptive fields in the

14

first hidden layer. Again, all units in a feature map share the same set of 25
weights and have independent biases. And again, the two-to-one undersampling
occurs between the first and the second hidden layer.

The network has 5194 connection but only 1060 free parameters, the smallest
number of all networks described 1n this paper (see figure 5).

The generalization performance is 98.4% (100% generalization was obtained
during two of the ten runs) and increases extremely quickly at the beginning of
learming. This suggests that using several levels of constrained feature maps is
a big help for shift invariance.

4 Discussion

The results are summarized on table 1.

As expected, the generalization performance goes up as the number of free
parameters in the network goes down and as the amount of built-in knowledge
goes up. A noticeable exception to this rule is the result given by the single-
layer network and the two-layer, fully connected network. Even though the two
layer net has more parameters, the generalization performance is significantly
better One explanation could be that the one-layer network cannot classify the
whole set (traiming plus testing) correctly, but experiments show that 1t can.
We see two other possible explanations. The first one is that some knowledge is
implicitly put by inserting a hidden layer: we tell the system that the problem
1s not first order. the second one 1s that the efficiency of the learning procedure
(as defined 1n (Denker et al., 1987)) 1s better with a two layer net than with a
one layer net, meamng that more information is extracted from each example
with the former. This is highly speculative and should be investigated further.

4.1 Tradeoff Between Speed, Generality and Generaliza-
tion

Computer scientists know that storage space, computation time and generahty
of the code can be exchanged when designing a program to solve a particular
problem For example, a program that computes a trigonometric function can
use a series expansion, or a lookup table. the latter uses more memory than the
former but 1s faster. Using properties of trigonometric functions, the same code
(or table) can be used to compute several functions, but usually results in some
loss 1n efficiency.

The same kind of exchange exists for learning machines. It 1s trivial to
design a machine that learns very quickly, does not generalize, and requires
an enormous amount of hardware In fact this learning machine has already

15

network architecture hinks | weights | performance
single layer network 2570 2570 80 %
two layer network 3240 3240 87 %
locally connected 1226 1226 88.5 %
constrained network 2266 1132 94 %
constrained network 2 5194 1060 98.4 %

Table 1 Generalization performance for 5 network architectures. Net-1. single
layer; Net-2: 12 hidden units fully connected; Net-3 2 hidden layers locally
connected; Net-4: 2 hidden layers, locally connected with constraints; Net-5
2 hidden layers, local connections, two levels of constraints. Performance on
training set is 100% for all networks

been built and is called a Random Access Memory On the other hand, a
back-propagation network * takes longer to train but is expected to generalize.
Unfortunately, as shown in (Denker et al., 1987), generalization can be obtained
only at the price of generality

4.2 On-Line Update vs Batch Update

All simulations described in this paper were performed using the so-called “on-
line” or “stochastic” version of back-propagation where the weights are updated
after each pattern, as opposed to the “batch” version where the weights are up-
dated after the gradients have been accumulated over the whole traiming set.
Experiment show that stochastic update is far superior to batch update when
there 1s some redundancy 1n the data. In fact stochastic update must be better
when a certain level of generalization is expected. Let us take an example where
the traiming database is composed of two copies of the same subset. Then accu-
mulating the gradient over the whole set would cause redundant computations
to be performed Stochastic gradient does not have this problem. This 1dea
can be generalized to training sets where there exist no precise repetition of the
same pattern but where some redundancy 1s present.

4.3 Conclusion

We showed an example where constrainming the network architecture lmproves
both learning speed and generalization performance dramatically This 1s re-

*unless 1t 1s designed to emulate a RAM

16

ally not surprising but it 1s more easily said than done. However, we have
demonstrated that 1t can be done in at least one case, image recognition, using
a hierarchy of shift invariant local feature detectors. These techniques can be
easily extended (and have been) to other domains such as speech recogmtion.

Complex software tools with advanced user interfaces for network description
and simulation control are required in order to solve a real application. Several
network structures must be tried before an acceptable one is found and a quick
feedback on the peformance is critical.

We are just beginning to collect the tools and understand the principles
which can help us to design a network for a particular task. Designing a net-
work for a real problem will require a sigmficant amount of engineering, which
the availability of powerful learning algorithms will hopefully keep to a bare
minmum

Acknowledgments

This work has been supported by a grant from the Fyssen foundation, and a
grant from the Sloan foundation to Geoffrey Hinton. The author wishes to thank
Geoff Hinton, Mike Mozer, Sue Becker and Steve Nowlan for helpful discussions,
and John Denker and Larry Jackel for useful comments. The Neural Network
simulator SN is the result of a collaboration between Léon-Yves Bottou and the
author.

References

Becker, S and le Cun, Y (1988). Improving the convergence of back-propagation
learning with second-order methods. Technical Report CRG-TR-88-5, Uni-
versity of Toronto Connectiomist Research Group.

Bottou, L -Y (1988) Master’s thesis, EHEI, Universite de Pans 5.

Bottou, L.-Y and le Cun, Y. (1988). Sn: A simulator for connectionist models.
In Proceedings of NeuroNimes 88, Nimes, France.

Bryson, A and Ho, Y (1969). Applied Optimal Conirol Blaisdell Publishing
Co

Chauvin, Y (1989) A back-propagation algorithm with optimal use of hidden
units In Touretzky, D., editor, Advances in Neural Information Processing
Systems Morgan Kaufmann.

17

Denker, J., Schwartz, D., Wittner, B, Solla, S. A., Howard, R., Jackel, L.,
and Hopfield, J. (1987) Large automatic learning, rule extraction and
generalization. Complezx Systems, 1:877-922.

Hanson, S. J. and Pratt, L. Y (1989). Some comparisons of constraints for min-
1mal network construction with back-propagation. In Touretzky, D., editor,
Advances in Neural Information Processing Systems. Morgan Kaufmann.

le Cun, Y (1985). A learning scheme for asymmetric threshold networks. In
Proceedings of Cognitiva 85, pages 599-604, Pans, France

le Cun, Y (1986). Learning processes in an asymmetric threshold network.
In Bienenstock, E., Fogelman-Souhé, F., and Weisbuch, G., editors, Dis-
ordered systems and biological organization, pages 233-240, Les Houches,
France Springer-Verlag

le Cun, Y. (1987). Modéles Connezionnistes de I’Apprentissage. PhD thesis,
Université Pierre et Marie Curie, Parnis, France

le Cun, Y. (1988). A theoretical framework for back-propagation. In Touret-
zky, D, Hinton, G., and Sejnowski, T., editors, Proceedings of the 1988
Connectionist Models Summer School, pages 21-28, CMU, Pittsburgh, Pa.
Morgan Kaufmann.

Mozer, M. C and Smolensky, P (1989) Skeletomzation: A techmque for trim-
ming the fat from a network via relevance assessment. In Touretzky, D.,
editor, Advances in Neural Information Processing Systems. Morgan Kauf-
mann.

Parker, D B. (1985). Learning-logic. Technical report, TR-47, Sloan School of
Management, MIT, Cambridge, Mass.

Patarnello, S. and Carnevali, P (1987). Learning networks of neurons with
boolean logic Europhysics Letters, 4(4).503-508

Press, W H, Flannery, B. P.,, A, T. S., and T., V. W. (1988) Numerical
Recipes Cambridge University Press, Cambridge.

Rumelhart, D. E., Hinton, G E., and Williams, R. J. (1986) Learning internal
representations by error propagation. In Parallel disiributed processing.

Ezplorations in the microstructure of cognition, volume I Bradford Books,
Cambridge, MA.

18

Waibel, A, Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1988).
Phoneme recognition using time-delay neural networks. IEEE Transactions
on Acoustics, Speech and Signal Processing.

Werbos, P. (1974). Beyond Regression. Phd thesis, Harvard University.

19

