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Abstract

We present an application of back-
propagation networks to handwritten zip-
code recognition. Minimal preprocessing
of the data was required, but the archi-
tecture of the network was highly con-
strained and specifically designed for the
task. The input of the network consists
of size-normalized images of isolated dig-
its. The performance on zipcode digits
provided by the U.S. Postal Service is 92%
recognition, 1% substitution, and 7% re-
jects. Structured neural networks can be
viewed as “statistical methods with struc-
ture” bridging the gap between purely sta-
tistical and purely structural methods.

1 INTRODUCTION

A widely accepted approach to pattern recognition,
and in particular to handwritten character recog-
nition, is to divide the classification process into
a feature extraction, followed by a classification.
The feature extractor usually contains most of the
problem-dependent information, and is rather spe-
cific to the problem at hand. It requires most of the
design effort, and determines the performance to a
large extent. The classifier, on the other hand, often
incorporate a trainable module, and contains little
a priori knowledge about the task.

The main point of this paper is to show that large
connectionist systems (or neural networks) trained
with back-propagation {BP) can be applied to real
image-recognition problems without a large, com-
plex feature-extraction stage requiring detailed en-
gineering. However, expecting good performance
without having to specify any knowledge about
the task (relying exclusively on learning) is wish-
ful thinking. Previous work performed on simple
digit images [5] showed that the architecture of the
network strongly influences generalization perfor-
mance. Not surprisingly, good generalization can

An early version of this paper was published in ref-
erence [9].
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only be obtained by designing a network architec-
ture that contains a certain amount of a priori
knowledge about the problem. The basic design
principle is to minimize the number of free parame-
ters that must be determined by the learning algo-
rithm, without overly reducing the computational
power of the network. This principle increases the
probability of correct generalization because it re-
sults in a specialized network architecture that has
a reduced entropy (see [7] and references therein).
On the other hand, some effort must be devoted
to designing appropriate constraints into the archi-
tecture, but this only requires general, high-level
knowledge about shape recognition.

The benefit of constraining the architecture is
that the network can be directly fed with images,
rather than feature vectors. This demonstrates the
ability of BP networks to deal with large amount of
low-level information. The network effectively syn-
thesizes appropriate local-feature extractors as part
of the learning process. The resulting system can
be viewed as intermediate between statistical, and
structural methods, although it resembles the for-
mer more than the latter.

2 ZIPCODES

The problem of handwritten zipcode recognition is
an interesting research subject because of its great
practical value, and because the large body of liter-
ature devoted to the subject makes it a good bench-
mark for testing new methods [9].

The database we used consists of 9298 segmented
numerals digitized from handwritten zipcodes that
appeared on U.S. Mail envelopes passing through
the Buffalo, N.Y. post office. Examples of such im-
ages are shown in figure 1. Since the zipcodes were
obtained from standard mail pieces, they were writ-
ten in a totally unconstrained fashion, by many dif-
ferent people, using a great variety of sizes, writing
styles and instruments, with widely varying levels of
care. This zipcode database was supplemented by a
set of 3349 printed digits coming from 35 different
fonts. The training set consisted of 7291 handwrit-
ten digits plus 2549 printed digits. The remaining
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2007 handwritten, and 700 printed digits were used
as the test set. The printed fonts in the test set were
different from the printed fonts in the training set.
One important feature of this database, which is a
common feature to all large databases, is that both
the training set and the testing set contain numer-
ous examples that are ambiguous, unclassifiable, or
even misclassified.

3 PREPROCESSING

Acquisition, binarization, location of the zipcode on
the envelope, and segmentation of the zipcode into
individual digits were performed by Postal Service
contractors [10]. Further segmentation, notably to
eliminate extraneous marks, were performed in our
laboratory. Segmentation of totally unconstrained
digit strings is an extremely difficult problem, and
several ambiguous characters in the database are the
result of mis-segmentation (especially broken 5’s) as
can be seen in figure 2.

The segmented digits vary in size, but are typi-
cally around 40 by 60 pixels. The size of the charac-
ters is then normalized to 16 by 16 pixels using a lin-
ear transformation. This transformation preserves
the aspect ratio of the character, and is performed
after extraneous marks in the image have been re-
moved. Because of the linear transformation, the
resulting image is not binary but has multiple gray
levels, since a variable number of pixels in the orig-
inal image can fall into a given pixel in the target
image. The gray levels of each image are scaled and
translated to fall within the range ~1 to 1. Note
that no skeletonization was performed. The printed
digits were artificially generated using a stochastic
model of the printing process and of the acquisition
system.
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Figure 1: Examples of original zipcodes from the testing set.
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4 THE NETWORK

The remainder of the recognition is entirely per-
formed by a multi-layer neural network. All of the
connections in the network are adaptive, although
heavily constrained, and are trained using back-
propagation. This is in contrast with our earlier
work [2] where the first few layers of connections
were chosen by hand and were not subject to learn-
ing. The input of the network is a 16 by 16 normal-
ized image and the output is composed of 10 units:
one per class. When a pattern belonging to class
i is presented, the desired output is +1 for the ith
output unit, and —1 for the other output units.

Back-Propagation networks are composed of sev-
eral layers of interconnected elements arranged in
a feed-forward architecture: connections can only
go from lower layers to higher layers. Each ele-
ment resembles a “soft” linear classifier, comput-
ing a weighted sum of its input, and transforming
this sum through a non-linear squashing function
(usually a sigmoid function such as tanh). Learning
is performed by iteratively modifying the weights
on each connection so as to minimize an objective
function. A popular objective function is the mean
squared error between the actual output of the net-
work and a desired output. Minimizing the objec-
tive function is performed by a gradient descent pro-
cedure which requires to compute the gradient of
the objective function with respect to connection
weights. Back-Propagation is just an efficient way
to compute this gradient. It was popularized by
[8] but similar procedures were proposed earlier in
various contexts for various purposes [4].

A naive approach to our task would use a
large, fully-connected (unstructured) backpropaga-
tion net, where all the units in a layer are connected
to all the units in the following layer(s). This ap-
proach has severe deficiencies. If the number of
weights is kept reasonably small, the network cannot
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Figure 2: Examples of normalized digits from the testing set.

even learn the training set accurately. On the other
hand, if it is made big enough to learn the train-
ing set, the excessive number of parameters causes
overfitting, with devastating effect on the general-
ization performance. Structuring the network can
solve this conflict, as we show in the following.

One alternative to a fully connected net is of
course a locally connected net. The design of the
connection pattern must be guided by our knowl-
edge about shape recognition. Because there are
well-known advantages to performing shape recog-
nition by detecting and combining local features,
our network has only local connections in all but
the last layer. Furthermore, salient features of a
distorted character might be displaced slightly from
their position in a typical character, or the same
feature can appear at different locations in differ-
ent characters. Therefore a feature detector that is
useful on one part of the image, is likely to be use-
ful on other parts of the image as well. Specifying
this knowledge we can be performed by forcing a
set of units, located at different places on the im-
age, to have identical weight vectors. The outputs
of such a set of neurons constitute a feature map. A
sequential implementation of this would be to scan
the input image with a single neuron that has a local
receptive field, and store the states of this neuron
at corresponding locations in the feature map. This
operation is equivalent to a convolution with a small
size kernel, followed by a squashing function. The
process can be performed in parallel by implement-
ing the feature map as a plane of neurons that share
a single weight vector !. That is, units in a feature
map are constrained to perform the same operation
on different parts of the image (see figure 3).

An interesting side-effect of this weight sharing
technique, already described in [8], is to reduce
greatly the number of free parameters, since a large
number of units share the same weights. In addi-
tion, this builds a certain level of shift invariance

1A better name for a feature map would be “regi-
ment” since all units are controlled by the same kernel.
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into the system. In practice, multiple feature maps,
extracting different features types from the same im-
age, are needed. The learning algorithm is not sig-
nificantly modified by the weight sharing technique.

The idea of local, convolutional feature maps can
be applied to subsequent hidden layers as well, to
extract features of increasing complexity and ab-
straction. Interestingly, higher level features require
less precise coding of their location. Reduced preci-
sion on the position is actually advantageous, since
a slight distortion or translation of the input will
have reduced effect on the representation. Thus,
each feature extraction in our network is followed
by an additional layer which performs a local av-
eraging and a subsampling, reducing the resolution
of the feature map. This layer introduces a certain
level of invariance to distortions and translations.
The resulting architecture is a “bi-pyramid”: The
loss of spatial resolution in the feature maps (due
to subsampling) is partially compensated by an in-
crease in the number of feature types. This is rem-
iniscent of the Neocognitron architecture [3], with
the notable difference that instead of using unsu-
pervised learning, we use backpropagation learning,
which we feel is more appropriate to this sort of
classification problem.

The network architecture, represented in figure
4, is a direct extension of the ones described in [5;
6]. The network has four hidden layers respectively
named H1, H2, H3, and H4. Layers H1 and H3 are
shared-weight feature extractors, while H2 and H4
are averaging/subsampling layers.

Although the size of the active part of the input
is 16 by 16, the actual input is 28 by 28 to avoid
boundary problems. H1 is composed of 4 groups of
576 units arranged as 4 independent 24 by 24 fea-
ture maps. These feature maps will be designated
by H1.1, H1.2, H1.3 and H1.4. Each unit in a fea-
ture map takes its input from a 5 by 5 neighborhood
on the input plane. As described above, correspond-
ing connections on each unit in a given feature map
are constrained to have the same weight. In other



words, all of the units in H1.1 uses the same set of 26
weights (including the bias). Units in another map
(say H1.4) share another set of 26 weights. Layer
H2 is an averaging/subsampling layer. It is com-
posed of 4 planes of size 12 by 12. Each unit in
one of these planes takes inputs on 4 units on the
corresponding plane in H1. Receptive fields do not
overlap. All the weights are constrained to be equal,
even within a single unit, except the bias. There-
fore, H2 performs a local averaging and a 2 to 1
subsampling of H1 in each direction. Layer H3 is
composed of twelve 8 by 8 feature maps. As before,
these feature maps will be designated as H2.1, H2.2
-+~ H2.12. The connection scheme between H2 and
H3 is quite similar to the one between the input
and H1, but slightly more complicated because H3
has multiple 2-D maps. Each unit receptive field is
composed of one or two 5 by 5 neighborhoods cen-
tered around units that are at identical positions
within each H2 maps. Of course, all units in a given
map are constrained to have identical weight vec-
tors. Layer H4 plays the same role as layer H2, it is
composed of 12 groups of 16 units arranged in 4 by
4 planes.

The output layer has 10 units and is fully con-
nected to H4. In summary, the network has 4635
units, 98442 connections, and 2578 independent pa-
rameters. This architecture was derived using the
OBD technique [7] starting from a previous archi-
tecture [6] that had 4 times more free parameters.

5 RESULTS

After 30 training passes the error rate on the train-
ing set (7291 handwritten plus 2549 printed digits)
was 1.1% and the MSE was .017. On the whole test
set (2007 handwritten plus 700 printed characters)
the error rate was 3.4% and the MSE was 0.024.
All the classification errors occurred on handwrit-
ten characters (no error were made on the printed
characters).

In realistic applications, substitutions are traded
for rejections. Our rejection criterion was that the
difference between the activity levels of the two
most-active output units should be larger than a
threshold. The best percentage of rejections on the
complete test set was 5.7% for 1% substitution er-
ror. On the handwritten zipcode set only, the result
was 9% rejections for 1% substitutions, and 6% re-
Jjections for 2% substitutions. About half the substi-
tutions were due to segmentation problems. Most
remaining errors were due to erroneous assignment
of the desired category, or low-resolution effects.

To reduce the number of errors due to the low-
resolution of the normalized images, a new network
with a 20x20 pixel input was tested. Except for the
size of the various feature maps, the architecture
was identical to the previous one. The network was
trained for about 20 passes through the 7291 hand-
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Figure 5: Atypical data. The network classifies
these correctly, even though they are quite unlike
anything in the training set.

written zipcode digits. The performance was then
9% rejects for 1% substitutions. The network was
then further trained for 9 passes on 36300 additional
handwritten digits (not coming from zipcodes), and
retrained for 4 passes on the handwritten zipcodes.
The performance on the 2007 zipcode test set im-
proved to 7% rejects and 1% substitutions.

It is interesting to note that the learning takes
only a few passes through the training set. Even
though a second-order version of back-propagation
was used, we think this can be attributed to the
large amount of redundancy present in real data.
A complete training session (30 passes through the
training set plus performance measure on the test
set) takes about 3 days on a SUN SPARCstation 1
using the SN2 connectionist simulator [1]. In fact,
after about a dozen passes the performance im-
proves only marginally, and the learning can be
stopped. After training, a recognition (including
size normalization) is performed in about 1.5 sec-
ond on a SUN 3 with FPA.

In some experiments, the four kernels of the first
layer were initialized to Sobel-like edge detectors
(horizontal, vertical and two diagonals). They were
of course allowed to evolve during training. This
did not significantly improve the performance of the
system, but made the interpretation of the internal
state much easier.

After successful training, the network was imple-
mented on a commercial Digital Signal Processor
board containing an AT&T DSP-32C general pur-
pose DSP chip with a peak performance of 12.5 mil-
lion 32-bit floating point multiply-adds per second.
The DSP operates as a coprocessor in a PC con-
nected to a video camera. The PC performs the dig-
itization, binarization and segmentation of the im-
age, while the DSP performs the size-normalization
and the classification. The overall throughput of
the recognizer including image acquisition is 10 to
12 characters per second and is limited mainly by
the size normalization step. The size normalization
is performed in about 60ms, while the network clas-
sification is performed in less than 30ms.



6 CONCLUSION

Back-propagation learning was successfully applied
to handwritten zipcode recognition. The network
had many connections but relatively few free pa-
rameters. The bi-pyramidal architecture and the
constraints on the weights were designed to incorpo-
rate geometric knowledge about shape recognition.
Because of this architecture, the network could be
trained on normalized images without requiring a
predetermined feature extractor. The network was
able to synthesize a hierarchy of appropriate feature
detectors.

Because of the redundant nature of the data and
because of the constraints imposed on the network,
the learning time was relatively short considering
the size of the training set. The final network of con-
nections and weights obtained by back-propagation
learning was readily implementable on commercial
digital signal processing hardware. Throughput
rates, from camera to classified image, of more than
10 characters per second were obtained.

At first glance. multi-layer nets resemble purely
statistical techniques. However, specifying knowl-
edge by constraining the architecture introduces
some high-level structure in the process, thereby re-
stricting the set of implicit “rules” that the network
can generate. Neural networks heavily rely on learn-
ing, so they require large training sets. On the other
hand, their adaptability is very well suited to prob-
lems with high variability and/or noise. Addition-
ally, the amount of task-specific information needed
is minimal; the same system can be retrained to rec-
ognize other symbols with no modification. Prelim-
inary results obtained on alphanumeric characters
confirm this fact, and show that the method can be
readily extended to larger tasks.

The main limitation of our approach comes from
the necessity to normalize the size of the pixel im-
age, which is quite an expensive operation. How-
ever, recent progress in the implementation of
neural-net chips suggest that “brute force” solutions
are possible. The raw speed of the chips allows to
run several networks in parallel at various scales and
positions on the region of interest. We do not believe
that our approach can be applied to very complex
objects with wide variation of scale and rotation,
even if these objects have little shape variability, but
it seems very well suited to handwritten characters.
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Figure 3: Input image (left), weight vector (center), and resulting feature map (right). The feature map
is obtained by scanning the input image with a single neuron that has a local receptive field, as indicated.
White represents -1, black represents +1.
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Figure 4: Network Architecture with 5 layers of fully-adaptive connections.
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