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Abstract. Finding an appropriate set of features is an essential problem
in the design of shape recognition systems. This paper attempts to show
that for recognizing simple objects with high shape variability such as
handwritten characters, it is possible, and even advantageous, to feed the
system directly with minimally processed images and to rely on learning
to extract the right set of features. Convolutional Neural Networks are
shown to be particularly well suited to this task. We also show that these
networks can be used to recognize multiple objects without requiring
explicit segmentation of the objects from their surrounding. The second
part of the paper presents the Graph Transformer Network model which
extends the applicability of gradient-based learning to systems that use
graphs to represents features, objects, and their combinations.

1 Learning the Right Features

The most commonly accepted model of pattern recognition, is composed of a
segmenter whose role is to extract objects of interest from their background,
a hand-crafted feature extractor that gathers relevant information from the in-
put and eliminates irrelevant variabilities, and a classifier which categorizes the
resulting feature representations (generally vectors or strings of symbols) into
categories. There are three major methods for classification: template matching
matches the feature representation to a set of class templates; generative meth-
ods use a probability density model for each class, and pick the class with the
highest likelihood of generating the feature representation; discriminative models
compute a discriminant function that directly produces a score for each class.
Generative and discriminative models are often estimated (learned) from train-
ing samples. In all of these approaches, the overall performance of the system is
largely determined by the quality of the segmenter and the feature extractor.
Because they are hand-crafted, the segmenter and feature extractor often rely
on simplifying assumptions about the input data and can rarely take into account
all the variability of the real world. An ideal solution to this problem is to feed
the entire system with minimally processed inputs (e.g. “raw” pixel images), and
train it from data so as to minimize an overall loss function (which maximizes a
given performance measure). Keeping the preprocessing to a minimum ensures
that no unrealistic assumption is made about the data. Unfortunately, that also



requires to come up with a suitable learning architecture that can handle the
high dimension of the input (number of pixels), the high degree of variability
due to pose variations or geometric distortions among other things, and the
necessarily complex non-linear relation between the input and the output.

Gradient-Based Learning provides a framework in which to build such a sys-
tem. The learning machine computes a function Y? = F(ZP W) where Z? is
the p-th input pattern, and W represents the collection of adjustable parameters
in the system. The output Y? contains scores or probabilities for each category.
A loss function EP = D(DP, F(W, Z?)), measures the discrepancy between DP,
the “correct” output for pattern ZP, and the output produced by the system.
The average loss function Ety.qi, (W) is the average of the errors EP over a set of
labeled examples called the training set {(Z!, D!),....(Z¥, D¥)}. In the simplest
setting, the learning problem consists in finding the value of W that minimizes
Etraz'n(W)-

Making the loss function differentiable with respect to W ensures that ef-
ficient, gradient-based non-linear optimization methods can be used to find a
minimum. To ensure global differentiability, the system is built as a feed-forward
network of modules. In the simplest case, each module computes a function
X, = F,(W,,X,—1), where X, is an object (a vector in the simplest case)
representing the output of the module, W, is the vector of tunable (trainable)
parameters in the module (a subset of W), and X,,_; is the module’s input (as
well as the previous module’s output). The input Xy to the first module is the
system’s input pattern ZP.

The main idea of Gradient-Based Learning, which is a simple extension of
the well-known back-propagation neural network learning algorithm, is that the
objective function can be efficiently minimized through gradient descent (or other
more sophisticated non-linear optimization methods) because the gradient of
E with respect to W can be efficiently computed with a backward recurrence
through the network of modules. If the partial derivative of EP with respect to
X, is known, then the partial derivatives of EP with respect to W,, and X,_1
can be computed using the following backward recurrence:
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where %(Wn, Xn—1) is the Jacobian of F,, with respect to W evaluated at the
point (W,,, X,,—1), and %I;" (Wh,Xpn—1) is the Jacobian of F,, with respect to X.
The first equation computes some terms of the gradient of EP(W), while the sec-
ond equation propagates the partial gradients backward. The idea can be trivially
extended to any network of functional modules. A completely rigorous deriva-
tion of the gradient propagation procedure in the general case can be done using
Lagrange functions [LeCun 1987]. [LeCun 1988], [Bottou and Gallinari 1991].




2 Shape Recognition with Convolutional Neural
Networks

Traditional multi-layer neural networks are a special case of the above where the
states X,, are fixed-sized vectors, and where the modules are alternated layers
of matrix multiplications (the weights) and component-wise sigmoid functions
(the units). Traditional multilayer neural nets where all the units in a layer are
connected to all the units in the next layer can be used to recognize raw (roughly
size-normalized and centered) images, but there are problems.

Firstly, typical images are large, often with several hundred variables (pixels).
A fully-connected network with, say 100 units in the first layer, would already
contain several 10,000 weights. Such a large number of parameters increases the
capacity of the system and therefore requires a larger training set. But the main
deficiency of unstructured nets is that they have no built-in invariance with re-
spect to translations, scale, or geometric distortions of the inputs. Images of
objects can be approximately size-normalized and centered, but no such prepro-
cessing can be perfect. This, combined with intrinsic within-class variability, will
cause variations in the position of distinctive features in input objects. In prin-
ciple, a fully-connected network of sufficient size could learn to produce outputs
that are invariant with respect to such variations. However, learning such a task
would probably result in multiple units with similar weight patterns positioned
at various locations in the input so as to detect distinctive features wherever they
appear on the input. Learning these weight configurations requires a very large
number of training instances to cover the space of possible variations. In con-
volutional networks, described below, the robustness to geometric distortions is
automatically obtained by forcing the replication of weight configurations across
space.

Secondly, a deficiency of fully-connected architectures is that the topology
of the input is entirely ignored. The input variables can be presented in any
(fixed) order without affecting the outcome of the training. On the contrary,
images have a strong 2D local structure: variables (pixels) that are spatially
nearby are highly correlated. Local correlations are the reasons for the well-
known advantages of extracting and combining local features before recognizing
spatial or temporal objects, because configurations of neighboring variables can
be classified into a small number of relevant categories (e.g. edges, corners...).
Convolutional Networks force the extraction of local features by restricting the
receptive fields of hidden units to be local.

2.1 Convolutional Networks

Convolutional Networks combine three architectural ideas to ensure some degree
of shift, scale, and distortion invariance: local receptive fields, shared weights (or
weight replication), and spatial sub-sampling. A typical convolutional network
for recognizing shapes, dubbed LeNet-5, is shown in figure 1. The input plane
receives images of objects that are approximately size-normalized and centered.
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Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-
nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

Each unit in a layer receives inputs from a set of units located in a small neigh-
borhood in the previous layer. The idea of connecting units to local receptive
fields on the input goes back to the early 60s, and was largely inspired by Hubel
and Wiesel’s discovery of locally-sensitive, orientation-selective neurons in the
cat’s visual system [Hubel and Wiesel 1962]. Local connections have been used
many times in neural models of visual learning [Fukushima 1975], [LeCun 1986],
[LeCun 1989], [Mozer 1991]. With local receptive fields, neurons can learn to ex-
tract elementary visual features such as oriented edges, end-points, corners (or
similar features in other signals such as speech spectrograms). These features
are then combined by the subsequent layers in order to detect higher-order fea-
tures. As stated earlier, distortions or shifts of the input can cause the position
of salient features to vary. In addition, elementary feature detectors that are
useful on one part of the image are likely to be useful across the entire image.
This knowledge can be applied by forcing a set of units, whose receptive fields
are located at different places on the image, to have identical weight vectors
[Fukushima and Miyake 1982], [Rumelhart, Hinton and Williams 1986],

[LeCun 1989]. Units in a layer are organized in planes within which all the units
share the same set of weights. The set of outputs of the units in such a plane
is called a feature map. Units in a feature map are all constrained to perform
the same operation on different parts of the image. A complete convolutional
layer is composed of several feature maps (with different weight vectors), so that
multiple features can be extracted at each location. A concrete example of this
is the first layer of LeNet-5 shown in Figure 1. Units in the first hidden layer of
LeNet-5 are organized in 6 planes, each of which is a feature map. A unit in a
feature map has 25 inputs connected to a 5 by 5 area in the input, called the
receptive field of the unit. Each unit has 25 inputs, and therefore 25 trainable
coefficients plus a trainable bias. The receptive fields of contiguous units in a
feature map are centered on correspondingly contiguous units in the previous
layer. Therefore receptive fields of neighboring units overlap. For example, in
the first hidden layer of LeNet-5, the receptive fields of horizontally contiguous
units overlap by 4 columns and 5 rows. As stated earlier, all the units in a feature
map share the same set of 25 weights and the same bias so they detect the same



feature at all possible locations on the input. The other feature maps in the layer
use different sets of weights and biases, thereby extracting different types of lo-
cal features. In the case of LeNet-5, at each input location six different types of
features are extracted by six units in identical locations in the six feature maps.
A sequential implementation of a feature map would scan the input image with
a single unit that has a local receptive field, and store the states of this unit
at corresponding locations in the feature map. This operation is equivalent to
a convolution, followed by an additive bias and squashing function, hence the
name convolutional network. The kernel of the convolution is the set of connec-
tion weights used by the units in the feature map. An interesting property of
convolutional layers is that if the input image is shifted, the feature map output
will be shifted by the same amount, but will be left unchanged otherwise. This
property is at the basis of the robustness of convolutional networks to shifts and
distortions of the input.

Once a feature has been detected, its exact location becomes less important.
Only its approximate position relative to other features is relevant. Using hand-
written digits as an example, once we know that the input image contains the
endpoint of a roughly horizontal segment in the upper left area, a corner in the
upper right area, and the endpoint of a roughly vertical segment in the lower
portion of the image, we can tell the input image is a 7. Not only is the precise
position of each of those features irrelevant for identifying the pattern, it is po-
tentially harmful because the positions are likely to vary for different instances
of the shape. A simple way to reduce the precision with which the position of dis-
tinctive features are encoded in a feature map is to reduce the spatial resolution
of the feature map. This can be achieved with a so-called sub-sampling layers
which performs a local averaging and a sub-sampling, reducing the resolution
of the feature map, and reducing the sensitivity of the output to shifts and dis-
tortions. The second hidden layer of LeNet-5 is a sub-sampling layer. This layer
comprises six feature maps, one for each feature map in the previous layer. The
receptive field of each unit is a 2 by 2 area in the previous layer’s corresponding
feature map. Each unit computes the average of its four inputs, multiplies it
by a trainable coefficient, adds a trainable bias, and passes the result though a
sigmoid function. Contiguous units have non-overlapping contiguous receptive
fields. Consequently, a sub-sampling layer feature map has half the number of
rows and columns as the feature maps in the previous layer. The trainable coef-
ficient and bias control the effect of the sigmoid non-linearity. If the coefficient
is small, then the unit operates in a quasi-linear mode, and the sub-sampling
layer merely blurs the input. If the coefficient is large, sub-sampling units can be
seen as performing a “noisy OR” or a “noisy AND” function depending on the
value of the bias. Successive layers of convolutions and sub-sampling are typi-
cally alternated, resulting in a “bi-pyramid”: at each layer, the number of feature
maps is increased as the spatial resolution is decreased. Each unit in the third
hidden layer in figure 1 may have input connections from several feature maps
in the previous layer. The convolution/sub-sampling combination, inspired by
Hubel and Wiesel’s notions of “simple” and “complex” cells, was implemented



in Fukushima’s Neocognitron [Fukushima and Miyake 1982], though no glob-
ally supervised learning procedure such as back-propagation was available then.
A large degree of invariance to geometric transformations of the input can be
achieved with this progressive reduction of spatial resolution compensated by a
progressive increase of the richness of the representation (the number of feature
maps).

Since all the weights are learned with back-propagation, convolutional net-
works can be seen as synthesizing their own feature extractors, and tuning them
to the task at hand. The weight sharing technique has the interesting side ef-
fect of reducing the number of free parameters, thereby reducing the “capac-
ity” of the machine and reducing the gap between test error and training error
[LeCun 1989]. The network in figure 1 contains 345,308 connections, but only
60,000 trainable free parameters because of the weight sharing.

Fixed-size Convolutional Networks have been applied to many applications,
among others: handwriting recognition [LeCun et al. 1990,Martin 1993], as well
as machine-printed character recognition [Wang and Jean 1993], on-line hand-
writing recognition [Bengio et al. 1995], and face recognition
[Lawrence et al. 1997]. Fixed-size convolutional networks that share weights along
a single temporal dimension are known as Time-Delay Neural Networks (TDNNs)
and applied widely in speech processing and time-series prediction. Variable-size
convolutional networks, which have applications in object detection and location
are described in section 3.

2.2 LeNet-5

This section describes in more detail the architecture of LeNet-5, the Convo-
lutional Neural Network used in the experiments. LeNet-5 comprises 7 layers,
not counting the output, all of which contain trainable parameters (weights).
The input is a 32x32 pixel image. Input shapes should be significantly smaller
than that (e.g. on the order of 20x20 pixels). The reason is that it is desirable
that potential distinctive features such as end-points or corner can appear in
the center of the receptive field of the highest-level feature detectors. In LeNet-5
the set of centers of the receptive fields of the last convolutional layer (C3, see
below) form a 20x20 area in the center of the 32x32 input. The values of the
input pixels are normalized so that the background level (white) corresponds
to a value of -0.1 and the foreground (black) corresponds to 1.175. This makes
the mean input roughly 0, and the variance roughly 1 which accelerates learn-
ing [LeCun, Kanter and Solla 1991]. In the following, convolutional layers are
labeled Cx, sub-sampling layers are labeled Sx, and fully-connected layers are
labeled Fx, where x is the layer index.

Layer C1 is a convolutional layer with 6 feature maps. Each unit in each
feature map is connected to a 5x5 neighborhood in the input. The size of the
feature maps is 28x28 which prevents connection from the input from falling off
the boundary. C1 contains 156 trainable parameters, and 122,304 connections.

Layer S2 is a sub-sampling layer with 6 feature maps of size 14x14. Each unit
in each feature map is connected to a 2x2 neighborhood in the corresponding



feature map in C1. The four inputs to a unit in S2 are added, then multiplied by a
trainable coefficient, and added to a trainable bias. The result is passed through
a sigmoidal function. The 2x2 receptive fields are non-overlapping, therefore
feature maps in S2 have half the number of rows and column as feature maps in
C1. Layer S2 has 12 trainable parameters and 5,880 connections.

Layer C3 is a convolutional layer with 16 feature maps. Each unit in each
feature map is connected to several 5x5 neighborhoods at identical locations in
a subset of S2’s feature maps. Why not connect every S2 feature map to every
C3 feature map? The reason is twofold. First, a non-complete connection scheme
keeps the number of connections within reasonable bounds. More importantly, it
forces a break of symmetry in the network. Different feature maps are forced to
extract different (hopefully complementary) features because they get different
sets of inputs. The rationale behind the connection scheme is the following. The
first six C3 feature maps take inputs from every contiguous subsets of three
feature maps in S2. The next six take input from every contiguous subset of
four. The next three take input from some discontinuous subsets of four. Finally
the last one takes input from all S2 feature maps. The full connection table
is given in [LeCun et al. 1998], Layer C3 has 1,516 trainable parameters and
156,000 connections.

Layer 54 is a sub-sampling layer with 16 feature maps of size 5x5. Each unit
in each feature map is connected to a 2x2 neighborhood in the corresponding
feature map in C3, in a similar way as C1 and S4. Layer S4 has 32 trainable
parameters and 2,000 connections.

Layer C5 is a convolutional layer with 120 feature maps. Each unit is con-
nected to a 5x5 neighborhood on all 16 of S4’s feature maps. Here, because the
size of S4 is also 5x5, the size of C5’s feature maps is 1x1: this amounts to a
full connection between S4 and C5. C5 is labeled as a convolutional layer, in-
stead of a fully-connected layer, because if LeNet-5 input were made bigger with
everything else kept constant, the feature map dimension would be larger than
1x1. This process of dynamically increasing the size of a convolutional network
is described in the section Section 3. Layer C5 has 48,120 trainable connections.

Layer F6, contains 84 units (the reason for this number comes from the design
of the output layer, explained later) and is fully connected to C5. It has 10,164
trainable parameters.

As in classical neural networks, units in layers up to F6 compute a dot product
between their input vector and their weight vector, to which a bias is added.
This weighted sum is then passed through a scaled hyperbolic tangent function
to produce the state of the unit.

Finally, the output layer is composed of Euclidean Radial Basis Function
units (RBF), one for each class, with 84 inputs each. Each output RBF unit
computes the Euclidean distance between its input vector and its parameter
vector. The output of a particular RBF can be interpreted as a penalty term
measuring the fit between the input pattern and a model of the class associated
with the RBF. Given an input pattern, the loss function should be designed so
as to get the configuration of F6 as close as possible to the parameter vector



of the RBF that corresponds to the pattern’s desired class. The parameter vec-
tors of these units were chosen by hand and kept fixed (at least initially). The
components of those parameters vectors were set to -1 or +1 to predetermined
values. The parameter vectors of the RBFs play the role of target vectors for
layer F6.

The simplest output loss function that can be used with the above network
is:

P
BW) = 5 3" ye(27, W) 2)
p=1
where yp» is the output of the Dp-th RBF unit, i.e. the one that corresponds
to the correct class of input pattern ZP. The actual loss function used in our
experiments has additional term to make it more discriminative. More details are
available in [LeCun et al. 1998]. Computing the gradient of the loss function with
respect to all the weights in all the layers of the convolutional network is done
with back-propagation. The standard algorithm must be slightly modified to take
account of the weight sharing. An easy way to implement it is to first compute
the partial derivatives of the loss function with respect to each connection, as
if the network were a conventional multi-layer network without weight sharing.
Then the partial derivatives of all the connections that share a same parameter
are added to form the derivative with respect to that parameter.

2.3 An Example: Recognizing Handwritten Digits

Recognizing individual digits is an excellent benchmark for comparing shape
recognition methods. This comparative study concentrates on adaptive methods
that operate directly on size-normalized images. Handwritten digit recognition
may seem a little simplistic when one’s interest is Computer Vision, but the
simplicity is only apparent, and the problems to solve are essentially the same
as with any 2D shape recognition, only there is abundant training data available,
and the intra-class shape variability is considerably larger than with any rigid
object recognition problem.

The database used to train and test the systems described in this paper was
constructed from the NIST’s Special Database 3 and 1 containing binary images
of handwritten digits. From these, we built a database called MNIST which con-
tains 60,000 training samples (half from SD1, half from SD3), and 10,000 test
images (half from SD1 and half from SD3). The original black and white (bilevel)
images were size normalized to fit in a 20x20 pixel box while preserving their
aspect ratio. The resulting images contain grey levels as result of anti-aliased
resampling. Three versions of the database were used. In the first version, the
images were centered in a 28x28 image by computing the center of mass of the
pixels, and translating the image so as to position this point at the center of
the 28x28 field. In some instances, this 28x28 field was extended to 32x32 with
background pixels. This version of the database will be referred to as the regular
database. In the second version of the database, (referred to as the deslanted
version) the character images were deslanted using the moments of inertia of the
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Fig. 2. Examples from the test set (left), and examples of distortions of ten training
patterns (right).

black pixels and cropped down to 20x20 pixels images. In the third version of the
database, used in some early experiments, the images were reduced to 16x16 pix-
els. The regular database is available at http://www.research.att.com/yann.

2.4 Results and Comparison with other Classifiers

Several versions of LeNet-5 were trained on the regular database, with typically
20 iterations through the entire training data. The test error rate stabilizes af-
ter around 10 passes through the training set at 0.95%. The error rate on the
training set reaches 0.35% after 19 passes. The influence of the training set size
was measured by training the network with 15,000, 30,000, and 60,000 exam-
ples. The results made it clear that additional training data would be beneficial.
In another set of experiments, we artificially generated more training examples
by randomly distorting the original training images. The increased training set
was composed of the 60,000 original patterns plus 540,000 instances of distorted
patterns with randomly picked distortion parameters. The distortions were com-
binations of the following planar affine transformations: horizontal and vertical
translations, scaling, squeezing (simultaneous horizontal compression and verti-
cal elongation, or the reverse), and horizontal shearing. Figure 2 shows examples
of distorted patterns used for training. When distorted data was used for train-
ing, the test error rate dropped to 0.8% (from 0.95% without deformation). Some
of the misclassified examples are genuinely ambiguous, but several are perfectly
identifiable by humans, although they are written in an under-represented style.
This shows that further improvements are to be expected with more training
data.

For the sake of comparison, a variety of other trainable classifiers was trained
and tested on the same database. The error rates on the test set for the var-
ious methods are shown in figure 3. The experiments included the following
methods: linear classification with 10 two-way classifiers trained to classify one
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Fig. 3. Error rate on the test set (%) for various classification methods. [deslant] indi-
cates that the classifier was trained and tested on the deslanted version of the database.
[dist] indicates that the training set was augmented with artificially distorted examples.
[16x16] indicates that the system used the 16x16 pixel images. The uncertainty in the
quoted error rates is about 0.1%.

class from the other nine; pairwise linear classifier with 45 two-way classifiers
trained to classify one class versus one other followed by a voting mechanism;
K-Nearest Neighbor classifiers with a simple Euclidean distance on pixel images;
40-dimension principal component analysis followed by degree 2 polynomial clas-
sifier; radial basis function network with 1000 Gaussian RBF trained with K-
means per class, and followed by a linear classifier; Tangent Distance classifier,
a nearest-neighbor classifier where the distance is made invariant to small geo-
metric distortions by projecting the pattern onto linear approximations of the
manifolds generated by distorting the prototypes; Support Vector Machines of
various types (regular SVM, reduced-set SVM, virtual SVM) using polynomial
kernels; fully connected neural nets with one or two hidden layers and various
numbers of hidden units; LeNet-1, a small convolutional neural net with only
2600 free parameters and 100,000 connections; LeNet-4, a convolutional neural
net with 17,000 free parameters and 260,000 connection similar to but slightly
different from LeNet-5; Boosted LeNetj, a classifier obtained by voting three
instances of LeNet-4 trained on different subsets of the database; and finally
LeNet-5.

Concerning fully-connected neural networks, it remains somewhat of a mys-
tery that unstructured neural nets with such a large number of free parameters
manage to achieve reasonable performance. We conjecture that the dynamics



of gradient descent learning in multilayer nets has a “self-regularization” effect.
Because the origin of weight space is a saddle point that is attractive in al-
most every direction, the weights invariably shrink during the first few epochs.
Small weights cause the sigmoids to operate in the quasi-linear region, making
the network essentially equivalent to a low-capacity, single-layer network. As the
learning proceeds, the weights grow, which progressively increases the effective
capacity of the network. This seems to be an almost perfect, if fortuitous, imple-
mentation of Vapnik’s “Structural Risk Minimization” principle [Vapnik 1995].

The Support Vector Machine [Vapnik 1995] has excellent accuracy, which is
most remarkable, because unlike the other high performance classifiers, it does
not include a priori knowledge about the problem [Burges and Scholkopf 1997].
In fact, this classifier would do just as well if the image pixels were permuted
with a fixed mapping and lost their pictorial structure. However, reaching levels
of performance comparable to the Convolutional Neural Networks can only be
done at considerable expense in memory and computational requirements. The
computational requirements of Burges’s reduced-set SVM are within a factor of
two of LeNet-5, and the error rate is very close. Improvements of those results
are expected, as the technique is relatively new.

Boosted LeNet-4 performed best, achieving a score of 0.7%, closely followed
by LeNet-5 at 0.8%. Boosted LeNet-4 [Drucker, Schapire and Simard 1993] is
based on theoretical work by R. Schapire [Schapire 1990]. Three LeNet-4s are
combined: the first one is trained the usual way. the second one is trained on
patterns that are filtered by the first net so that the second machine sees a mix
of patterns, 50% of which the first net got right, and 50% of which it got wrong.
Finally, the third net is trained on new patterns on which the first and the second
nets disagree. During testing, the outputs of the three nets are simply added.

When plenty of data is available, many methods can attain respectable ac-
curacy. Compared to other methods, convolutional neural nets offer not only
the best accuracy, but also good speed, low memory requirements, and excellent
robustness as discussed below.

2.5 Invariance and Noise Resistance

While fully invariant recognition of complex shapes is still an elusive goal, it
seems that convolutional networks, because of their architecture, offer a partial
answer to the problem of invariance or robustness with respect to distortions,
varying position, scale and orientation, as well as intrinsic class variability. Fig-
ure 4 shows several examples of unusual and distorted characters that are cor-
rectly recognized by LeNet-5. For these experiments, the training samples were
artificially distorted using random planar affine transformations, and the pixels
in the training images were randomly flipped with probability 0.1 to increase
the noise resistance. The top row in the figure shows the robustness to size and
orientation variations. It is estimated that accurate recognition occurs for scale
variations up to about a factor of 2, vertical shift variations of plus or minus
about half the height of the character, and rotations up to plus or minus 30
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Fig. 4. Examples of unusual, distorted, and noisy characters correctly recognized by
LeNet-5. The grey-level of the output label represents the penalty (lighter for higher
penalties).

degrees. While the characters are distorted during training, it seems that the ro-
bustness of the network subsists for distortions that are significantly larger than
the ones used during training. Figure 4 includes examples of characters written
in very unusual styles. Needless to say, there are no such examples in the training
set. Nevertheless, the network classifies them correctly, which seems to suggest
that the features that have been learned have some degree of generality. Lastly,
figure 4 includes examples that demonstrates LeNet-5’s robustness to extremely
high levels of structured noise. Handling these images with traditional segmen-
tation and feature extraction techniques would pose insurmountable problems.
Even though the only noise used during training was random pixel flipping, it
seems that the network can eliminate the adverse effects of non-sensical but
structured marks from images such as the 3 and the 8 in the second row. This
demonstrates a somewhat puzzling ability of such networks to perform (if im-
plicitly) a kind of elementary feature binding solely through feed-forward linear
combinations and sigmoid functions.



Animated examples of LeNet-5 in action are available on the Internet at
http://www.research.att.com/ yann.

3 Multiple Object Recognition with Space Displacement
Neural Networks

A major conceptual problem in vision and pattern recognition is how to recognize
individual objects when those objects cannot be easily segmented out of their
surrounding. In general, this poses the problem of feature binding: how to identify
and bind together features that belong to a single object, while suppressing
features that belong to the background or to other objects. The common wisdom
is that, except in the simplest case, one cannot identify and bind together the
features of an object unless one knows what object to look for.

In handwriting recognition, the problem is to separate a character from its
neighbors, given that the neighbors can touch it or overlap with it. The most
common solution is called “heuristic over-segmentation”. It consists in generat-
ing a large number of potential cuts between characters using heuristic image
analysis techniques. Candidate characters are formed by combining contiguous
segments in multiple ways. The candidate characters are then sent to the recog-
nizer for classification and scoring. A simple graph-search technique then finds
the consistent sequence of character candidates with the best overall score.

There is a simple alternative to explicitly segmenting images of character
strings using heuristics. The idea is to sweep a recognizer across all possible
locations on an image of the entire word or string whose height has been nor-
malized. With this technique, no segmentation heuristics is required. However,
there are problems with this approach. First, the method is in general quite
expensive. The recognizer must be applied at every possible location on the in-
put, or at least at a large enough subset of locations so that misalignments of
characters in the field of view of the recognizers are small enough to have no
effect on the error rate. Second, when the recognizer is centered on a character
to be recognized, the neighbors of the center character will be present in the
field of view of the recognizer, possibly touching the center character. Therefore
the recognizer must be able to correctly recognize the character in the center
of its input field, even if neighboring characters are very close to, or touching
the central character. Third, a word or character string cannot be perfectly size
normalized. Individual characters within a string may have widely varying sizes
and baseline positions. Therefore the recognizer must be very robust to shifts
and size variations.

These three problems are elegantly circumvented if a convolutional network
is replicated over the input field. First of all, as shown in the previous sec-
tion, convolutional neural networks are very robust to shifts and scale varia-
tions of the input image, as well as to noise and extraneous marks in the input.
These properties take care of the latter two problems mentioned in the previous
paragraph. Second, convolutional networks provide a drastic saving in compu-
tational requirement when replicated over large input fields. A replicated con-
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Fig. 5. A Space Displacement Neural Network is a convolutional network that has been
replicated over a wide input field.

volutional network, also called a Space Displacement Neural Network or SDNN
[Matan et al. 1992], is shown in Figure 5. While scanning a recognizer can be
prohibitively expensive in general, convolutional networks can be scanned or
replicated very efficiently over large, variable-size input fields. Consider one in-
stance of a convolutional net and its alter ego at a nearby location. Because of
the convolutional nature of the network, units in the two instances that look
at identical locations on the input have identical outputs, therefore their states
do not need to be computed twice. Only a thin “slice” of new states that are
not shared by the two network instances needs to be recomputed. When all the
slices are put together, the result is simply a larger convolutional network whose
structure is identical to the original network, except that the feature maps are
larger in the horizontal dimension. In other words, replicating a convolutional
network can be done simply by increasing the size of the fields over which the
convolutions are performed, and by replicating the output layer accordingly. The
output layer effectively becomes a convolutional layer. An output whose recep-
tive field is centered on an elementary object will produce the class of this object,
while an in-between output may indicate no character or contain rubbish. The
outputs can be interpreted as evidences for the presence of objects at all possible
positions in the input field.

The SDNN architecture seems particularly attractive for recognizing cursive
handwriting where no obvious segmentation heuristics exist. Although the idea
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Fig. 6. An example of multiple character recognition with SDNN. With SDNN, no
explicit segmentation is performed.

of SDNN is quite old [Keeler, Rumelhart and Leow 1991, Matan et al. 1992], and
very attractive by its simplicity, it has not generated wide interest until recently
because of the enormous demands it puts on the recognizer.

3.1 Interpreting the Output of an SDNN

The output of a horizontally replicated SDNN is a sequence of vectors which
encode the likelihoods, penalties, or scores of finding character of a particular
class label at the corresponding location in the input. A post-processor is required
to pull out the best possible label sequence from this vector sequence. An example
of SDNN output is shown in Figure 6. Very often, individual characters are
spotted by several neighboring instances of the recognizer, a consequence of
the robustness of the recognizer to horizontal translations. Also quite often,
characters are erroneously detected by recognizer instances that see only a piece
of a character. For example a recognizer instance that only sees the right third of
a “4” might output the label 1. How can we eliminate those extraneous characters
from the output sequence and pull-out the best interpretation? This can be done
with a simple weighted finite state machine. The sequence of vectors produced by
the SDNN is first turned into a linear graph constructed as follows. Each vector in
the output sequence is transformed into a bundle of arcs with a common source
node and target node. Each arc contains one of the possible character labels,
together with its corresponding penalty. Each bundle contains an additional
arc bearing the “none of the above”label with a penalty. These bundles are
concatenated in the order of the vector sequence (the target node of a bundle
becomes the source node of the next bundle). Each path in this graph is a possible
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Fig. 7. An SDNN applied to a noisy image of digit string. The digits shown in the
SDNN output represent the winning class labels, with a lighter grey level for high-
penalty answers.

interpretation of the input. A grammar is then constructed as a weighted finite-
state machine that contains a model for each character. The grammar ensures
for example that neighboring characters must be separated by a “none of the
above” label (white space), and that successive occurrences of the same label
are probably produced by a single input character. The grammar and the linear
graph are then composed (a graph operation similar to a tensor product). The
composed graph contains all the paths of the linear graph that happen to be
grammatically correct. A Viterbi algorithm can then be used to find the path
with the smallest overall penalty.

3.2 Experiments with SDNN

In a series of experiments, LeNet-5 was trained with the goal of being replicated
into an SDNN so as to recognize multiple characters without segmentations. The
data was generated from the previously described MNIST set as follows. Training
images were composed of a central character, flanked by two side characters
picked at random in the training set. The separation between the bounding
boxes of the characters were chosen at random between -1 and 4 pixels. In other
instances, no central character was present, in which case the desired output
of the network was the blank space class. In addition, training images were
degraded by randomly flipping the pixels with probability 0.1.



Figures 6 and 7 show a few examples of successful recognitions of multi-
ple characters by the LeNet-5 SDNN. Standard techniques based on Heuristic
Over-Segmentation would likely fail on most of those examples. The robustness
of the network to scale and vertical position variations allows it to recognize
characters in such strings. More importantly, it seems that the network is able
to individually recognize the characters even when there is a significant overlap
with the neighbors. It is also able to correctly group disconnected pieces of ink
that form characters, as exemplified in the upper half of the figure. In the top
left example, the 4 and the 0 are more connected to each other than they are
connected with themselves, yet the system correctly identifies the 4 and the 0 as
separate objects. The top right example is interesting for several reasons. First
the system correctly identifies the three individual “1”. Second, the left half and
right half of the disconnected 4 are correctly grouped, even though no simple
proximity criterion could decide to associate the left half of the 4 to the vertical
bar on its left or on its right. The right half of the 4 does cause the appearance of
an erroneous “1” on the SDNN output, but this “1” is removed by the grammar
which prevents different non-blank characters from appearing on contiguous out-
puts. The bottom left example demonstrates that extraneous marks that do not
belong to identifiable characters are suppressed even though they may connect
genuine characters to each other. The lower right example shows the combined
robustness to character overlaps, vertical shifts, size variations, and noise.

Several authors have argued that invariance and feature binding for multi-
ple object recognition requires specific mechanisms involving feedback, explicit
switching devices (3-way multiplicative connections) [Lades et al. 1993], object-
centered representations, graph matching mechanisms, or generative models that
attempt to simultaneously extract the pose and the category of the objects. It
is somewhat disconcerting to observe that the above SDNN seems to “solve”
the feature binding problem, albeit partially and in a restricted context, even
though it possesses no built in machinery to do it explicitly. If nothing else,
these experiments show that purely feed-forward “numerical” multi-layer sys-
tems with a fixed architecture can emulate functions that appear combinatorial,
and are qualitatively much more complex than anticipated by most (including
the authors).

Several short animations of the LeNet-5 SDNN, including some with charac-
ters that move on top of each other, can be
viewed at http://www.research.att.com/ ~yann.

3.3 Face Detection and Spotting with SDNN

An interesting application of SDNNs is object detection and spotting. The in-
variance properties of Convolutional Networks, combined with the efficiency
with which they can be replicated over large fields suggest that they can be
used for “brute force” object spotting and detection in large images. The main
idea is to train a single Convolutional Network to distinguish images of the
object of interest from images present in the background. Once trained, the
network is replicated so as to cover the entire image to be analyzed, thereby



forming a two-dimensional Space Displacement Neural Network. The output of
the SDNN is a two-dimensional plane in which the most activate units indi-
cate the presence of the object of interest in the corresponding receptive field.
Since the size of the objects to be detected within the image are unknown,
the image can be presented to the network at multiple resolutions, and the
results at multiple resolutions combined. The idea has been applied to face loca-
tion, [Vaillant, Monrocq and LeCun 1994], address block location on envelopes
[Wolf and Platt 1994], and hand tracking in video [Nowlan and Platt 1995].

To illustrate the method, we will consider the case of face detection in im-
ages as described in [Vaillant, Monrocq and LeCun 1994]. First, images contain-
ing faces at various scales are collected. Those images are filtered through a
zero-mean Laplacian filter so as to remove variations in global illumination and
large-scale illumination gradients. Then, training samples of faces and non-faces
are manually extracted from these images. The face sub-images are then size
normalized so that the height of the entire face is approximately 20 pixels while
keeping fairly large variations (within a factor of two). The scale of background
sub-images are picked at random. A single convolutional network is trained on
those samples to classify face sub-images from non-face sub-images. When a
scene image is to be analyzed, it is first filtered through the Laplacian filter, and
sub-sampled by ratios that are successive powers of the square root of 2. The
network is replicated over each of the images at each resolution. A simple voting
technique is used to combine the results from multiple resolutions.

More recently, some authors have used Neural Networks, or other classi-
fiers such as Support Vector Machines for face detection with great success
[Rowley, et al. 1996,0suna et al. 1997]. Their systems are somewhat similar to
the one described above, including the idea of presenting the image to the net-
work at multiple scales. But since those systems do not use Convolutional Net-
works, they cannot take advantage of the speedup described here, and have to
rely on other techniques, such as pre-filtering and real-time tracking, to keep the
computational requirement within reasonable limits. In addition, because those
classifiers are much less invariant to scale variations than Convolutional Net-
works, it is necessary to use a large number multiscale images with finely-spaced
scales.

4 Graph Transformer Networks

Despite the apparent ability of the systems described in the previous sections
to solve combinatorial problems with non-combinatorial means, there are sit-
uations where the need for compositionality and combinatorial searches is in-
escapable. A good example is language modeling and more generally, models that
involve finite-state grammars, weighted finite-state machines, or other graph-
based knowledge representations such as finite-state transducers. The main point
of this section is to show that gradient-based learning techniques can be extended
to situations where those models are used.



It is easy to show that the modular gradient-based learning model presented
in section 1 can be applied to networks of modules whose state variables X, are
graphs with numerical information attached to the arcs (scalars, vectors, etc),
rather than fixed-size vectors. There are two main conditions for this. First,
the modules must produce the values on the output graphs from the values
on the input graphs through differentiable functions. Second, the overall loss
function should be continuous and differentiable almost everywhere with respect
to the parameters. Networks of graph-manipulating modules are called Graph
Transformer Networks [Bottou, LeCun and Bengio 1997,LeCun et al. 1998].

4.1 Word Recognition with a Graph Transformer Network

Though the Space Displacement Neural Net method presented in the previ-
ous section is very promising for word recognition applications, the more tra-
ditional method (and so far still the most developed) is called heuristic over-
segmentation. With this methods, the word is segmented into candidate char-
acters using heuristic image analysis techniques. Unfortunately, it is almost im-
possible to devise techniques that will infallibly segment naturally written words
into well formed characters. This section and the next describe in detail a sim-
ple example of GTN for reading words. The method can rely on gradient-based
learning to avoids the expensive and unreliable task of manually segmenting and
hand-truthing a database so as to train the recognizer on individual characters.

Segmentation. Given a word, a number of candidate cuts are generated with
heuristic methods. The cut generation heuristic is designed so as to generate
more cuts than necessary, in the hope that the “correct” set of cuts will be
included. Once the cuts have been generated, alternative segmentations are best
represented by a graph, called the segmentation graph. The segmentation graph
is a Directed Acyclic Graph (DAG) with a start node and an end node. Each
internal node is associated with a candidate cut produced by the segmentation
algorithm. Each arc between a source node and a destination node is associated
with an image that contains all the ink between the cut associated with the
source node and the cut associated with the destination node. An arc is created
between two nodes if the segmenter decided that the piece(s) of ink between the
corresponding cuts could form a candidate character. Typically, each individual
piece of ink would be associated with an arc. Pairs of successive pieces of ink
would also be included, unless they are separated by a wide gap, which is a clear
indication that they belong to different characters. Each complete path through
the graph contains each piece of ink once and only once. Each path corresponds
to a different way of associating pieces of ink together so as to form characters.

Recognition Transformer and Viterbi Transformer. A simple GTN to
recognize character strings is shown in Figure 8. Only the right branch of the top
half is used for recognition. The left branch is used for the training procedure
described in the next sub-section. The GTN is composed of two main graph
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transformers called the recognition transformer T,.., and the Viterbi transformer
Tyit- The goal of the recognition transformer is to generate a graph, called the
interpretation graph or recognition graph Gin:, that contains all the possible
interpretations for all the possible segmentations of the input. Each path in
Gint represents one possible interpretation of one particular segmentation of the
input. The role of the Viterbi transformer is to extract the best interpretation
from the interpretation graph.

The recognition transformer T}, takes the segmentation graph G, as in-
put, and applies the recognizer for single characters to the images associated
with each of the arcs in the segmentation graph. The interpretation graph Gin:
has almost the same structure as the segmentation graph, except that each arc
is replaced by a set of arcs from and to the same node. In this set of arcs, there
is one arc for each possible class for the image associated with the correspond-
ing arc in Gyey. To each arc is attached a class label, and the penalty that the
image belongs to this class as produced by the recognizer. If the segmenter has
computed penalties for the candidate segments, these penalties are combined
with the penalties computed by the character recognizer, to obtain the penal-
ties on the arcs of the interpretation graph. Although combining penalties of
different nature seems highly heuristic, the GTN training procedure will tune
the penalties and take advantage of this combination anyway. Each path in the
interpretation graph corresponds to a possible interpretation of the input word.
The penalty of a particular interpretation for a particular segmentation is given
by the sum of the arc penalties along the corresponding path in the interpre-
tation graph. Computing the penalty of an interpretation independently of the
segmentation requires to combine the penalties of all the paths with that in-
terpretation. This can be done using the “forward” algorithm widely used in
Hidden Markov Models.

The Viterbi transformer produces a graph G,;; with a single path. This path
is the path of least cumulated penalty in the interpretation graph. The result of
the recognition can be produced by reading off the labels of the arcs along the
graph G extracted by the Viterbi transformer. The Viterbi transformer owes
its name to the famous Viterbi algorithm to find the shortest path in a graph.

4.2 Gradient-Based Training of a GTN

The previous section describes the process of recognizing a string using Heuristic
Over-Segmentation, assuming that the recognizer is trained so as to assign low
penalties to the correct class label of correctly segmented characters, high penal-
ties to erroneous categories of correctly segmented characters, and high penalties
to all categories for badly formed characters. This section explains how to train
the system at the string level to do the above without requiring manual labeling
of character segments.

In many applications, there is enough a priori knowledge about what is ex-
pected from each of the modules in order to train them separately. For example,
with Heuristic Over-Segmentation one could individually label single-character
images and train a character recognizer on them, but it might be difficult to



obtain an appropriate set of non-character images to train the model to re-
ject wrongly segmented candidates. Although separate training is simple, it re-
quires additional supervision information that is often lacking or incomplete (the
correct segmentation and the labels of incorrect candidate segments). The fol-
lowing section describes two of the many gradient-based methods for training
GTN-based handwriting recognizers at the string level: Viterbi training and dis-
criminative Viterbi training. Unlike similar approaches in the context of speech
recognition, we make no recourse to a probabilistic interpretation, but show
that, within the Gradient-Based Learning approach, discriminative training is a
simple instance of the pervasive principle of error correcting learning.

Viterbi Training. During recognition, we select the path in the Interpretation
Graph that has the lowest penalty with the Viterbi algorithm. Ideally, we would
like this path of lowest penalty to be associated with the correct label sequence
as often as possible. An obvious loss function to minimize is therefore the average
over the training set of the penalty of the path associated with the correct label
sequence that has the lowest penalty. The goal of training will be to find the
set of recognizer parameters (the weights, if the recognizer is a neural network)
that minimize the average penalty of this “correct” lowest penalty path. The
gradient of this loss function can be computed by back-propagation through the
GTN architecture shown in figure 8, using only the left-hand path of the top
part, and ignoring the right half. This training architecture contains a graph
transformer called a path selector, inserted between the Interpretation Graph
and the Viterbi Transformer. This transformer takes the interpretation graph
and the desired label sequence as input. It extracts from the interpretation graph
those paths that contain the correct (desired) label sequence. Its output graph
G is called the constrained interpretation graph, and contains all the paths that
correspond to the correct label sequence. The constrained interpretation graph
is then sent to the Viterbi transformer which produces a graph G with a
single path. This path is the “correct” path with the lowest penalty. Finally, a
path scorer transformer takes Gyi, and simply computes its cumulated penalty
Cevis by adding up the penalties along the path. The output of this GTN is the
loss function for the current pattern:

Evit = Ccvit (3)

The only label information that is required by the above system is the sequence
of desired character labels. No knowledge of the correct segmentation is required
on the part of the supervisor, since the system chooses among the segmentations
in the interpretation graph the one that yields the lowest penalty.

The process of back-propagating gradients through the Viterbi training GTN
is now described. As explained in section 1, the gradients must be propagated
backwards through all modules of the GTN, in order to compute gradients in
preceding modules and thereafter tune their parameters. Back-propagating gra-
dients through the path scorer is quite straightforward. The partial derivatives
of the loss function with respect to the individual penalties on the constrained



Viterbi path Gyit are equal to 1, since the loss function is simply the sum of those
penalties. Back-propagating through the Viterbi Transformer is equally simple.
The partial derivatives of Ey;; with respect to the penalties on the arcs of the
constrained graph G, are 1 for those arcs that appear in the constrained Viterbi
path Gyit, and 0 for those that do not. Why is it legitimate to back-propagate
through an essentially discrete function such as the Viterbi Transformer? The
answer is that the Viterbi Transformer is nothing more than a collection of
min functions and adders put together. It can be shown easily that gradients
can be back-propagated through min functions without adverse effects. Back-
propagation through the path selector transformer is similar to back-propagation
through the Viterbi transformer. Arcs in Gin that appear in G, have the same
gradient as the corresponding arc in G, i.e. 1 or 0, depending on whether the
arc appear in Geyit- The other arcs, i.e. those that do not have an alter ego in
G. because they do not contain the right label have a gradient of 0. During
the forward propagation through the recognition transformer, one instance of
the recognizer for single character was created for each arc in the segmentation
graph. The state of recognizer instances was stored. Since each arc penalty in
Ging 1s produced by an individual output of a recognizer instance, we now have
a gradient (1 or 0) for each output of each instance of the recognizer. Recognizer
outputs that have a non zero gradient are part of the correct answer, and will
therefore have their value pushed down. The gradients present on the recognizer
outputs can be back-propagated through each recognizer instance. For each rec-
ognizer instance, we obtain a vector of partial derivatives of the loss function
with respect to the recognizer instance parameters. All the recognizer instances
share the same parameter vector, since they are merely clones of each other,
therefore the full gradient of the loss function with respect to the recognizer’s
parameter vector is simply the sum of the gradient vectors produced by each
recognizer instance. Viterbi training, though formulated differently, is often use
in HMM-based speech recognition systems [Rabiner 1989).

While it seems simple and satisfying, this training architecture has a flaw
that can potentially be fatal. If the recognizer is a simple neural network with
sigmoid output units, the minimum of the loss function is attained, not when
the recognizer always gives the right answer, but when it ignores the input, and
sets its output to a constant vector with small values for all the components.
This is known as the collapse problem. The collapse only occurs if the recognizer
outputs can simultaneously take their minimum value. If on the other hand the
recognizer’s output layer contains RBF units with fixed parameters, then there
is no such trivial solution. This is due to the fact that a set of RBF with fixed
distinct parameter vectors cannot simultaneously take their minimum value.
In this case, the complete collapse described above does not occur. However,
this does not totally prevent the occurrence of a milder collapse because the
loss function still has a “flat spot” for a trivial solution with constant recognizer
output. This flat spot is a saddle point, but it is attractive in almost all directions
and is very difficult to get out of using gradient-based minimization procedures.
If the parameters of the RBF's are allowed to adapt, then the collapse problems



reappears because the RBF centers can all converge to a single vector, and the
underlying neural network can learn to produce that vector, and ignore the input.
A different kind of collapse occurs if the width of the RBF's are also allowed to
adapt. The collapse only occurs if a trainable module such as a neural network
feeds the RBFs. Another problem with Viterbi training is that the penalty of the
answer cannot be used reliably as a measure of confidence because it does not
take low-penalty (or high-scoring) competing answers into account. A simple way
to address this problem and to avoid the collapse is to train the whole system
with a discriminative loss function as described in the next section.

Discriminative Viterbi Training. The idea of discriminative Viterbi training
is to not only minimize the cumulated penalty of the lowest penalty path with
the correct interpretation, but also to somehow increase the penalty of competing
and possibly incorrect paths that have a dangerously low penalty. This type of
criterion is called discriminative, because it plays the good answers against the
bad ones. Discriminative training procedures can be seen as attempting to build
appropriate separating surfaces between classes rather than to model individual
classes independently of each other.

One example of discriminative criterion is the difference between the penalty
of the Viterbi path in the constrained graph, and the penalty of the Viterbi
path in the (unconstrained) interpretation graph, i.e. the difference between the
penalty of the best correct path, and the penalty of the best path (correct or
incorrect). The corresponding GTN training architecture is shown in figure 8.
The left side of the diagram is identical to the GTN used for non-discriminative
Viterbi training. This loss function reduces the risk of collapse because it forces
the recognizer to increases the penalty of wrongly recognized objects. Discrimi-
native training can also be seen as another example of error correction procedure,
which tends to minimize the difference between the desired output computed in
the left half of the GTN in figure 8 and the actual output computed in the right
half of figure 8.

Let the discriminative Viterbi loss function be denoted Eqvit, and let us call
Cevig the penalty of the Viterbi path in the constrained graph, and Ciyi the
penalty of the Viterbi path in the unconstrained interpretation graph:

Eqyit = Cevit — Cvit (4)

Eqvit is always positive since the constrained graph is a subset of the paths in
the interpretation graph, and the Viterbi algorithm selects the path with the
lowest total penalty. In the ideal case, the two paths C.yi; and Cy;; coincide, and
FEgvit is zero.

Back-propagating gradients through the discriminative Viterbi GTN adds
some “negative” training to the previously described non-discriminative training.
Figure 8 shows how the gradients are back-propagated. The left half is identical
to the non-discriminative Viterbi training GTN, therefore the back-propagation
is identical. The gradients back-propagated through the right half of the GTN
are multiplied by -1, since Cyi contributes to the loss with a negative sign.



Otherwise the process is similar to the left half. The gradients on arcs of Gint
get positive contributions from the left half and negative contributions from the
right half. The two contributions must be added, since the penalties on Gyt
arcs are sent to the two halves through a “Y” connection in the forward pass.
Arcs in Gjp that appear neither in Gyjy nor in Gy have a gradient of zero.
They do not contribute to the cost. Arcs that appear in both Gy and Geyit
also have zero gradient. The -1 contribution from the right half cancels the the
+1 contribution from the left half. In other words, when an arc is rightfully
part of the answer, there is no gradient. If an arc appears in Gcyiy but not in
G.it, the gradient is +1. The arc should have had a lower penalty to make it to
G.it. If an arc is in G4t but not in Gyig, the gradient is -1. The arc had a low
penalty, but should have had a higher penalty since it is not part of the desired
answer. Variations of this technique have been used for the speech recognition.
Driancourt and Bottou [Driancourt and Bottou 1991] used a version of it where
the loss function is saturated to a fixed value.

An important advantage of global and discriminative training is that learn-
ing focuses on the most important errors, and the system learns to integrate the
ambiguities from the segmentation algorithm with the ambiguities of the charac-
ter recognizer. There are other training procedures than the ones described here,
some of which are described in [LeCun et al. 1998]. Complex Graph Transformer
modules that combine interpretation graphs with language models can be used
to take linguistic constraints into account [LeCun et al. 1998].

5 Conclusion

The methods described in this paper confirms what the history of Pattern Recog-
nition has already shown repeatedly: finding ways to increase the role of learning
and statistical estimation almost invariably improves the performance of recog-
nition systems. For 2D shape recognition, Convolutional Neural Networks have
been shown to eliminate the need for hand-crafted feature extractors. Replicated
Convolutional Networks have been shown to handle fairly complex instances of
the feature binding problem with a completely feed-forward, trained architec-
ture instead of the more traditional combinatorial hypothesis testing methods.
In situation where multiple hypothesis testing is unavoidable, trainable Graph
Transformer Networks have been shown to reduce the need for hand-crafted
heuristics, manual labeling, and manual parameter tuning in document recogni-
tion systems.

Globally-trained Graph Transformer Networks have been applied successfully
to on-line handwriting recognition and check recognition [LeCun et al. 1998].
The check recognition system based on this concept is used commercially in
several banks across the US and reads millions of checks per day. The concepts
and results in this paper help establish the usefulness and relevance of gradient-
based minimization methods as a general organizing principle for learning in
large systems. It is clear that Graph Transformer Networks can be applied to
many situations where the domain knowledge or the state information can be



represented by graphs. This is the case in many visual tasks where graphs can
represent alternative interpretations of a scene, multiple instances of an object,
or relationship between objects.
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