Word-Level Training of a Handritten Word Recognizer Based on
Convolutional Neural Networks

Yann Le Cun

AT&T Bell Laboratories
Holmdel, NJ 07733
U.S.A.

yann@research.att.com

Abstract

We introduce a new approach for on-line recogni-
tion of handwritten words written in unconstrained
mized style. Words are represented by low resolution
“annotated images” where each pizel contains infor-
mation about trajectory direction and curvature. The
recognizer is a convolutional network which can be spa-
teally replicated. From the network output, a hidden
Markov model produces word scores. The entire sys-
tem is globally trained to minimize word-level errors.

1 Introduction

Natural handwriting is often a mixture of differ-
ent “styles”: lower case printed, upper case, and cur-
sive. A reliable recognizer for such handwriting would
greatly improve interaction with pen-based devices,
but its implementation presents new technical chal-
lenges. Characters taken in isolation can be very
ambiguous, but considerable information is available
from the context of the whole word. We propose a
word recognition system for pen-based devices based
on four main modules: a preprocessor that normal-
izes a word, or word group, by fitting a geometrical
model to the word structure using the EM algorithm;
a module that produces an “annotated image” from
the normalized pen trajectory; a convolutional neu-
ral network that recognizes characters; and a Hidden
Markov Model (HMM) that interprets the networks
output by taking word-level constraints into account.
The network and the HMM are jointly trained to min-
imize an error measure defined at the word level.

Many on-line handwriting recognizers exploit the
sequential nature of pen trajectories by representing
the input in the time domain. While these representa-
tions are compact and computationally advantageous,
they tend to be sensitive to stroke order, writing speed,

Yoshua Bengio

Dept. Informatique et Recherche
Opérationnelle, Université de Montréal
Montreal, Qc H3C-3J7, Canada

bengioy@iro.umontreal.ca

and other irrelevant parameters. In addition, global
geometric features, such as whether a stroke crosses
another stroke drawn at a different time, are not read-
ily available in temporal representations. To avoid this
problem we designed a representation, called AMAP,
that preserves the pictorial nature of the handwriting.

In addition to recognizing characters, the system
must also correctly segment the characters within the
words. One approach, that we call INSEG; is to rec-
ognize a large number of heuristically segmented can-
didate characters and combine them optimally with a
postprocessor [3, 10]. Another approach, that we call
OUTSEG, is to delay all segmentation decisions until
after the recognition, as is often done in speech recog-
nition. An OUTSEG recognizer must accept entire
words as input and produce a sequence of scores for
each character at each location on the input. Since
the word normalization cannot be done perfectly, the
recognizer must be robust with respect to relatively
large distortions, size variations, and translations. An
elastic word model —e.g., an HMM- can extract word
candidates from the network output. The HMM mod-
els the long-range sequential structure while the neu-
ral network spots and classifies characters, using local
spatial structure.

2 Word Normalization

Input normalization reduces intra-character vari-
ability, simplifying character recognition. This is par-
ticularly important when recognizing entire words.
We propose a new word normalization scheme, based
on fitting a geometrical model of the word structure.
Our model has four “flexible” lines representing re-
spectively the ascenders line, the core line, the base
line and the descenders line. See the companion pa-
per [2] for details of this model. Variables that asso-
ciate each vertical extremum with one of the curves



are taken as hidden variables of the EM algorithm.
One can thus derive an auxiliary function which can be
solved analytically (and cheaply) for the 6 free param-
eters of the model. Fitting the trajectory to the model
was done with the EM algorithm, typically within 2
to 4 iterations (of maximization of the auxiliary func-
tion).

Sampled Trajectory

Micro Segment ; j

AMAP Space

/%

Sampled AMAP

Figure 1: AMAP: representation of spatial trajectories

3 AMAP

The recognition of handwritten characters from a
pen trajectory on a digitizing surface is often done in
the time domain. Trajectories are normalized, and lo-
cal geometrical or dynamical features are sometimes
extracted. The recognition is performed using curve
matching [11], or other classification techniques such
as Neural Networks [4]. While, as stated earlier, these
representations have several advantages, their depen-
dence on stroke ordering and individual writing styles
makes them difficult to use in high accuracy, writer
independent systems that integrate the segmentation
with the recognition.

Since the intent of the writer is to produce a leg-
ible image, it seems natural to preserve as much of
the pictorial nature of the signal as possible, while at
the same time exploit the sequential information in
the trajectory. We propose a representation scheme,
called AMAP, where pen trajectories are represented
by low-resolution images in which each picture element
contains information about the local properties of the

trajectory. More generally, an AMAP can be viewed
as a function in a multidimensional space where each
dimension is associated with a local property of the
trajectory, say the direction of motion 6, the X po-
sition, and the Y position of the pen. The value
of the function at a particular location (6, X,Y) in
the space represents a smooth version of the “den-
sity” of features in the trajectory that have values
(0, X,Y) (in the spirit of the generalized Hough trans-
form). An AMAP is a multidimensional array (say
4x10x10) obtained by discretizing the feature density
space into “boxes”. FEach array element is assigned
a value equal to the integral of the feature density
function over the corresponding box. In practice, an
AMAP is computed as sketched in Figure 1.At each
sample on the trajectory, one computes the position of
the pen (X,Y) and orientation of the motion # (and
possibly other features, such as the local curvature
¢). Each element in the AMAP is then incremented
by the amount of the integral over the corresponding
box of a predetermined point-spread function centered
on the coordinates of the feature vector. The use of
a smooth point-spread function (say a Gaussian) en-
sures that smooth deformations of the trajectory will
correspond to smooth transformations of the AMAP.
An AMAP can be viewed as an “annotated image” in
which each pixel is a feature vector.

A particularly useful feature of the AMAP repre-
sentation is that it makes very few assumptions about
the nature of the input trajectory. It does not depend
on stroke ordering or writing speed, and it can be used
with all types of handwriting (capital, lower case, cur-
sive, punctuation, symbols). Unlike many other rep-
resentations (such as global features), AMAPs can be
computed for complete words without requiring seg-
mentation.

4 Convolutional Neural Networks

Image-like representations such as AMAPs are par-
ticularly well suited for use in combination with Multi-
Layer Convolutional Neural Networks (MLCNN) [6,
7]. MLCNNs are feed-forward neural networks whose
architectures are tailored for minimizing the sensitiv-
ity to translations, local rotations and distortions of
the input image. They are trained with a variation of
the Back-Propagation algorithm [9, 5].

The units in MCLNNSs are only connected to a local
neighborhood in the previous layer. Each unit can be
seen as a local feature detector whose function is deter-
mined by the learning procedure. Insensitivity to local
transformations is built into the network architecture
by constraining sets of units located at different places
to use identical weight vectors, thereby forcing them



to detect the same feature on different parts of the
input. The outputs of the units at identical locations
in different feature maps can be collectively thought
of as a local feature vector. The feature maps are
then subsampled to further enhance the invariance of
the output with respect to shifts and deformations.
Features of increasing complexity, increasing globality,
and decreasing spatial resolution are extracted by the
neurons in the successive layers, resulting in a pyra-
midal architecture [7]. An interesting side effect of
the weight-sharing technique employed in MLCNN is
that the number of free parameters in the system is
relatively small, which increases the chance of good
generalization.

Classically, MLCNNs are shown a single character
at the input, and have a single set of outputs. How-
ever, an essential feature of MLCNNs is that they can
be scanned (replicated) over large input fields contain-
ing multiple unsegmented characters (whole words)
very economically by simply performing the convolu-
tions on larger inputs. Instead of producing a single
output vector, they produce a series of output vectors.
The outputs detect and recognize characters at differ-
ent (and overlapping) locations on the input. These
multiple-input, multiple-output MLCNN are called
Space Displacement Neural Networks (SDNN) [8] (see
Figure 2).

\ Single
‘ Character

Recognizer

; SDNN

A

A\\\\\

Figure 2: SDNN: Space Displacement Neural Net

One of the best networks we found for character
recognition has 5 layers arranged as follows: layer 1:
convolution with 8 kernels of size 3x3, layer 2: 2x2
subsampling, layer 3: convolution with 25 kernels of
size bx5, layer 4 convolution with 84 kernels of size
4x4, layer 5: 2x2 subsampling. The subsampling lay-
ers are essential to the network’s robustness to distor-
tions. The output layer is one (single MLCNN) or a
series of (SDNN) 84-dimensional vectors on which the
character labels are coded in a distributed fashion.

5 Post-Processing

The convolutional neural network can be used to
give scores associated to characters when the network
(or a piece of it corresponding to a single character
output) has an input field, called a segment, that cov-
ers a connected subset of the whole word input. A
segmentation is a sequence of such segments that cov-
ers the whole word input. Because there are in general
many possible segmentations, sophisticated tools such
as hidden Markov models and dynamic programming
are used to search for the best segmentation.

In this paper, we consider two approaches to the
segmentation problem called INSEG (for input seg-
mentation) and OUTSEG (for output segmentation).
The post-processor can be generally decomposed into
two levels: 1) character level scores and constraints ob-
tained from the observations, 2) word level constraints
(grammar, dictionary). The INSEG and OUTSEG
systems share the second level.

In an INSEG system [3], the network is applied to
a large number of heuristically segmented candidate
characters. A cutier generates candidate cuts, which
can potentially represent the boundary between two
character segments. It also generates definite cuts,
which we assume that no segment can cross. Using
these, a number of candidate segments are constructed
and the network is applied to each of them separately.
Finally, for each high enough character score in each
of the segment, a character hypothesis is generated,
corresponding to a node in an observation graph. The
connectivity and transition probabilities on the arcs
of the observation graph represent segmentation and
geometrical constraints (e.g., segments must not over-
lap and must cover the whole word, some transitions
between characters are more or less likely given the
geometrical relations between their images).

In an OUTSEG system [8, 10], all segmentation
decisions are delayed until after the recognition, as is
often done in speech recognition [1]. The AMAP of
the entire word is shown to an SDNN, which produces
a sequence of output vectors equivalent to (but ob-
tained much more cheaply than) scanning the single-
character network over all possible pixel locations on
the input. The FEuclidean distances between each
output vector and the targets are interpreted as log-
likelihoods of the output given a class. To construct
an observation graph, we use a set of character models
(HMMs). Each character HMM models the sequence
of network outputs observed for that character. We
used three-state HMMs for each character, with a left
and right state to model transitions and a center state
for the character itself. The observation graph is ob-
tained by connecting these character models, allowing



any character to follow any character.

On top of the constraints given in the observation
graph, additional constraints that are independent of
the observations are given by what we call a grammar
graph, which can embody lexical constraints. These
constraints can be given in the form of a dictionary or
of a character-level grammar (with transition proba-
bilities), such as a trigram (in which we use the prob-
ability of observing a character in the context of the
two previous ones). The recognition finds the best
path in the observation graph that is compatible with
the grammar graph. The INSEG and OUTSEG ar-
chitectures are depicted in Figure 3.

A crucial contribution of our system is the joint
training of the neural network and the post-processor
with respect to a single criterion that approximates
word-level errors. We used the following discriminant
criterion: minimize the total cost (sum of negative
log-likelihoods) along the “correct” paths (the ones
that yield the correct interpretations), while minimiz-
ing the costs of all the paths, correct or not. The dis-
criminant nature of this criterion can be shown with
the following example.

If the cost of a path associated to the correct inter-
pretation is much smaller than all other paths, then
the criterion is very close to 0 and no gradient is back-
propagated. On the other hand, if the lowest cost
path yields an incorrect interpretation but differs from
a path of correct interpretation on a sub-path, then
very strong gradients will be propagated along that
sub-path, whereas the other parts of the sequence will
generate almost no gradient. Within a probabilistic
framework, this criterion corresponds to maximizing
the mutual information (MMI) between the observa-
tions and the correct interpretation. During global
training, it is optimized using (enhanced) stochastic
gradient descent with respect to all the parameters in
the system, most notably the network weights. Exper-
iments described in the next section have shown im-
portant reductions in error rates when training with
this word-level criterion instead of just training the
network separately for each character. Similar combi-
nations of neural networks with HMMs or dynamic
programming have been proposed in the past, for
speech recognition problems [1].

6 Experimental Results

In a first set of experiments, we evaluated the gen-
eralization ability of the neural network classifier de-
scribed above coupled with the word normalization
preprocessing and AMAP input representation. All
results are in writer independent mode (different writ-
ers in training and testing). Tests on a database of

OUTSEG ARCHITECTURE
FOR WORD RECOGNITION

raw word fa
word %WQ '

normalization

normalized
word
AMAP
computation
AMAP ‘
SDNN
graph
of character
candi—
dates Character
HMMs .
graph S..Coliidp... t
of character S...e...n...ej..0.T
candi- 5...a..U...p..f
dates Lexical
constraints
word "Script"
INSEG ARCHITECTURE
FOR WORD RECOGNITION
raw word S. : :,a ; :t
word ‘
normalization
normalized = P
Word m—p—

Cut hypotheses

generation
segment *
raph
grap AMAP
computation
AMAP
Convolutional
Neural Network
graph
of character
candi-
dates Lexical
constraints
word "Script"

Figure 3: INSEG and OUTSEG architectures for word

recognition.



isolated characters were performed separately on four
types of characters: upper case (2.99% error on 9122
patterns), lower case (4.15% error on 8201 patterns),
digits (1.4% error on 2938 patterns), and punctuation
(4.3% error on 881 patterns).

The second and third set of tests concerned the
recognition of lower case words (writer independent,
on a database of 875 words). First we evaluated the
improvements brought by the word normalization to
the INSEG system. Before doing any word-level train-
ing, we obtained with character per character normal-
ization (no global word normalization) 7.3% and 3.5%
word and character errors (adding insertions, deletions
and substitutions) when the search was constrained
within a 25461-word dictionary. When using the word
normalization preprocessing instead of a character-
level normalization, error rates dropped to 4.6% and
2.0% for word and character errors respectively, i.e., a
relative drop of 37% and 43% in word and character
error respectively.

Finally, we measured the improvements obtained
with the joint training of the neural network and the
post-processor with the word-level criterion, in com-
parison to training based only on the errors performed
at the character level. Training was performed with a
database of 3500 lower case words. For the OUTSEG
system, without any dictionary constraints, the error
rates dropped from 38% and 12.4% word and char-
acter error to 26% and 8.2% respectively after word-
level training, i.e., a relative drop of 32% and 34%.
For the INSEG system and a slightly improved archi-
tecture, without any dictionary constraints, the error
rates dropped from 22.5% and 8.5% word and charac-
ter error to 17% and 6.3% respectively, i.e., a relative
drop of 24.4% and 25.6%. With a 25461-word dictio-
nary, errors dropped from 4.6% and 2.0% word and
character errors to 3.2% and 1.4% respectively after
word-level training, i.e., a relative drop of 30.4% and
30.0%. Finally, some further improvements can be
obtained by reducing the size of the dictionary to 350
words, yielding 1.6% and 0.94% word and character

€Irrors.

7 Conclusion

We have demonstrated a new approach to on-
line handwritten word recognition that uses word
or sentence-level preprocessing and normalization,
image-like representations, convolutional neural net-
works, word models, and global training using a highly
discriminant word-level criterion. Excellent accuracy
on various writer independent tasks were obtained
with this combination.

References

[1]

[10]

(11]

Bengio, Y., R. De Mori and G. Flammia and
R. Kompe. 1992. Global Optimization of a Neural
Network-Hidden Markov Model Hybrid. IFEE Trans-
actions on Neural Networks v.3, nb.2, pp.252-259.

Bengio, Y. and LeCun Y. 1994. Word Normalization
For On-Line Handwritten Word Recognition. Proc.
ICPR’94, Jerusalem. IEEE.

Burges, C., O. Matan, Y. Le Cun, J. Denker, L.
Jackel, C. Stenard, C. Nohl and J. Ben. 1992. Short-
est Path Segmentation: A Method for Training a
Neural Network to Recognize character Strings. Proc.
[JCNN’92 (Baltimore), pp. 165-172, v.3.

Guyon, I., Albrecht, P., Le Cun, Y., Denker, J. S., and
Weissman, H. 1991 design of a neural network char-
acter recognizer for a touch terminal. Pattern Recog-
nition, 24(2):105-119.

Le Cun, Y. 1986. Learning Processes in an Asymmet-
ric Threshold Network. In Bienenstock, E., Fogelman-
Soulié, F., and Weisbuch, G., editors, Disordered sys-
tems and biological organization, pages 233-240, Les
Houches, France. Springer-Verlag.

Le Cun, Y. 1989. Generalization and Network De-
sign Strategies. In Pfeifer, R., Schreter, Z., Fogelman,
F., and Steels, L., editors, Connectionism in Perspec-
tive, Zurich, Switzerland. Elsevier. an extended ver-
sion was published as a technical report of the Uni-
versity of Toronto.

Le Cun, Y., Matan, O., Boser, B., Denker, J. S.,
Henderson, D., Howard, R. E., Hubbard, W., Jackel,
L. D., and Baird, H. S. 1990. Handwritten Zip Code
Recognition with Multilayer Networks. In TAPR, ed-
itor, Proc. ICPR, Atlantic City. IEEE.

Matan, O., Burges, C. J. C., LeCun, Y., and Denker,
J. S.1992. Multi-Digit Recognition Using a Space Dis-
placement Neural Network. In Moody, J. M., Han-
son, S. J., and Lippman, R. P., editors, Neural Infor-
mation Processing Systems, volume 4. Morgan Kauf-
mann Publishers.

Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. 1986. Learning internal representations by error
propagation. In Parallel distributed processing: Fzplo-
rations in the microstructure of cognition, volume I,
pages 318-362. Bradford Books, Cambridge, MA.

Schenkel, M., Guyon, 1., Weissman, H., and Nohl,
C. 1993. TDNN Solutions for Recognizing On-Line
Natural Handwriting. Advances in Neural Informa-
tion Processing Systems 5. Morgan Kaufman.

Tappert, C., Suen, C., Wakahara, T. 1990. The state
of the art in on-line handwriting recognition. IFEFE

Trans. PAMI, 12(8).



