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The learning time of a simple neural-network model 1s obtained through an analytic computation of
the eigenvalue spectrum for the Hessian matrix, which describes the second-order properties of the ob-
Jective function tn the space of coupling coefficients. The results are generic for symmetric matrices ob-
tained by summing outer products of random vectors. The form of the eigenvalue distribution suggests
new techniques for accelerating the learning process, and provides a theoretical justification for the

choice of centered versus biased state variabies.
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The application of statistical-physics methods to the
investigation of neural-network models has provided
tools to characterize a variety of aspects of the static per-
formance of trained networks (see, for example, Ref. 1).
Here we use these methods to investigate a somewhat
overlooked problem of considerable conceptual and prac-
tical importance: the dynamics of learning. The goal is
to characterize the time scales that control the dynami-
cal behavior of the synaptic coefficients as they are up-
dated during the learning process. Causes for the
slowest time constants can be thus identified, and specific
prescriptions to eliminate their effect result in practical
methods to accelerate convergence.

The discussion focuses on layered networks with no
feedback, a class of architectures remarkably successful
at perceptual tasks such as speech and image recogni-
tion.2* In this paper we derive rigorous results for a sin-
gle linear unit, and discuss the generalization of the re-
sults to multilayer nonlinear networks, under suitable
conditions. The analytic calculation provides a rigorous
and general result for the distribution of eigenvalues of a
symmetric matrix constructed as a sum of outer products
of random vectors with independent components. This
result is of interest beyond its application to the analysis
of neural-network learning.

Multilayer networks are composed of model neurons
interconnected through a feed-forward graph. The state
x, of the ith neuron is computed from the states {x,} of
the set S, of neurons that feed into it through the total
input (or induced local field) a,=X,esw,x,. The
coefficient w,, of the linear combination is the coupling
from neuron j to neuron i. The local field a, determines
the state x, through a nonlinear differentiable function f
called the activation function: x,=f(a,). The activation
function is often chosen to be the hyperbolic tangent or a
similar sigmoid function.

The connection graph of multilayer networks has no
feedback loop, and the stable state is computed by prop-
agating state information from the input units (which re-
ceive no input from other units) to the output units
(which propagate no information to other units). The
initialization of the state of the input units through an

input vector X results in an output vector @ describing
the state of the output units. The network thus imple-
ments an input-output map, @ =@ (X, W), which de-
pends on the values assigned to the vector W of synaptic
couplings.

The learning process is formulated as a search in the
space W, so as to find an optimal configuration W*
which minimizes an objective function E(W). Given a
training set of p input vectors X* and their desired out-
puts D¥, 1 =< u < p, the cost function

p
EW)=-"L 3 |ID* -0+ w)||? ()
2p =1

measures the discrepancy between the actual behavior of
the system and the desired behavior. The minimization
of E with respect to W is usually performed through
iterative updates using some form of gradient descent:

W(k+1)=W(k)—nVE, ()

where 7 is used to adjust the size of the updating step,
and VE is an estimate of the gradient of E with respect
to W. The commonly used backpropagation algorithm,
popularized by Ref. 4, provides an efficient way of es-
timating VE for a multilayer network.

The dynamical behavior of learning algorithms based
on the minimization of E(W) through gradient descent
is controlled by the second-order properties of E(W), as
represented by its Hessian matrix H. We now consider a
simple model which can be investigated analytically.
Consider the case of an N-dimensional input vector feed-
ing onto a single output unit with a linear activation
function f(a) =a. The output corresponding to input X*
is given by

N
O*=3 wx'=WTX*, (3)
=

where x/ is the ith component of the uth input vector,
and w, is the coupling from the ith input unit to the out-
put. It is assumed that the input elements {x!} are
drawn randomly and independently from a distribution
with mean m and variance v.
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The dynamic rule for weight updates, rule for weight updates becomes
V(k+1)=V(k) —nAV(k), (9)

p
Wk+D=WK) -1 Y (0*—a4)X*,

P u=i

4

follows from the gradient of the cost function

E(W)=2- Z @-0m2=L § @-wTxn?. )
2p = 2p =i

A complete treatment of the convergence properties of
such a linear neuron is available in the literature on
adaptive filters for the case of an infinite number p of
tramning examples.® But in most learning problems the
training data are limited; we are thus interested in the
case of finite p. The size of the training set is quantified
by the ratio @=p/N between the number of examples
and the dimensionality of the input vector. Calculations
are performed in the N — oo limit while keeping a con-
stant and finite.

Note that the cost function of Eq. (5) is quadratic in
W, and can be rewritten as

EW)=3(WIRW-2Q"W+(),

whcrc R is the covariance matrix of the input,

R, =(/p) xXf=\x!x!, a symmetric and non-negative
Nx N matrix; the N-dimensional vector Q is @, =(1/p)
x2f=1d"x!, and the constant C=(1/p)Xf=(d")2
Note that R=H, the Hessian matrix of E(W). The
solution space of vectors W* which minimize E(W) is
the subspace of solutions of the linear equation

RW=Q. (7

This subspace reduces to a point if R 1s full rank. The
diagonalization of R provides a diagonal matrix A
formed by its eigenvalues and a matrix U formed by its

(6)

eigenvectors. The coordinate transformation V=U(W
—W?*) yields

E(V)=3VTAV+E,, (3)
with Eq=E(W™*). In the new coordinate system the

J

p(R)=— ——Im% hm -{[det (A -R)I"—1},

the Fresnel representation yields
Nn
2 9 . 1]|e™
p(l)=—1—v-;lmanll_rpo—” f dekcxp

The expression 1n curly brackets in Eq. (11) can be written as

exp[ {IZﬂsoraqmln l S Tdy,exp [-ikarz—iZﬂwrﬂyryﬂ]
Yi Y 4 Y

}=fH dqrﬂd‘prﬂfn

+aln

a set of N decoupled equations. The dynamics in this di-
agonalized space is fully controlled by the matrix A, and
thus by the eigenvalues of the covariance matrix R.

It is precisely the spectrum p(X) of eigenvalues of the
covariance matrix R that has been computed here. Since
R is a non-negative matrix, all eigenvalues satisfy A = 0.
If, as stated above, the input elements {x*} are indepen-
dently drawn from a distribution with mean m and vari-
ance v, the spectrum exhibits three dominant features:®
(a) A singular contribution at A =0 with weight 1 — a for
a<1. (b) A continuous part of the spectrum within a
bounded interval A—- <A <A4. The bounds are well
defined and of order 1. For a#1, A~ >0, and there is a
gap at the lower end of the spectrum. (c) One eigenval-
ue of order N, Ay, present in the case of biased inputs
(m=0).

The continuous part (b) of the spectrum collapses onto
a & function at A=p as p— oo. True correlations be-
tween pairs of input components (x,,x,) might lead to a
quite different spectrum from the one described above.

The dynamic equation (9) indicates that V will con-
verge to zero (and thus W to the solution W*) provided
that 0 < 7 <2/Amax. The slowest time constant in the
system is given by (7Amn) ', where Amy is the smallest
nonzero eigenvalue. The optimal choice n=1/Ana, leads
to a slowest time constant given by the ratio Amax/Ammn,
and a learning time t™=almax/Amn proportional to the
number of examples in the training set.

The spectrum p(X) also yields the average learning
time (1/A), as well as information about the final entror >’
of the trained network. Further discussion of the full im-
pact and implications of these results is briefly postponed
to provide an outline of the calculation that produced
them. Full details of the calculation will be given else-
where.’

Results (a) and (b) for the spectral density follow
from using a standard Fresnel representation for the
determinant of a symmetric matrix R.® In combination
with the identity

(10)

(11)

N n
—i kZ/Zy A8k = Ri)y/
Y

_1}_

fﬁ‘;—:exp[ Zz +\/—m2t M +th,t,,q,ﬂ]”J, (12)

and can be evaluated in the N — o thermodynamic limit using a saddle-point method.
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A replica-symmetric solution,’ with g,5™go and ¢, =, for y=5, gs=q1 and o,3=¢ for y#p, and M,= M, yields

the main result

(1—-a)o(1 —a)s(r), A=0,

p(r) = {{4av2- Ma—v(Q+a)13 22000, A-<Ad=<iry,

with A-=[(1-Va)¥alv and r+=[1+Va)¥alv.
Averages (- --)=[dAp(L) - - - over the eigenvalue dis-
tribution (13) can be easily computed to obtain (1) =y,
Apmax) =v(1 —a)?/(1+a), and (1/A)=(+a)*/4v(a
—1) for @> 1. Note that the results are heavily con-
trolled by the variance v of the distribution from which
the inputs {x/} are drawn. Also, (A) ~'#(1/A) and ()
#A (Pmax).

The stability of the replica-symmetric solution of Eq.
(13) is difficult to establish in general. In order to assess
such stability as well as the magnitude of finite-size
effects, we have numerically investigated systems with
N =200 for various values of @. Results of the simula-
tions for N =200, shown in Fig. 1, indicate that correc-
tions due to replica-symmetry breaking'® are negligible,
and that finite-size effects are unimportant: The distri-
bution p(1) exhibits no long tails, and is well bounded
within the predicted values of A— and A+, even for such
small systems.

For m =0, Aynax =A+ and Ay =A-. The learning time
T=aAmax/Amn =aA+/A— can be easily computed using
Eq. (13): t=a(1++va)*(1 —+va)% As a function of «,
7 diverges at a=1, and, surprisingly, goes through a
minimum at ¢ = (1++/2)2=5.83 before diverging linear-
ly for a— 0. Numerical simulations were performed to
estimate 7 by counting the number T of presentations of
training examples needed to reach an allowed error level
E through gradient descent. If the prescribed error E is
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FIG. 1. Spectral density p(1) predicted by Eq. (13) for

m=0, v=]1, and a=0.6, 1.2, 4, and 16. Experimental histo-
grams for @=0.6 (solid squares) and a =4 (open squares) are
averages over 100 trials with V=200 and x/ = 2 | with proba-
bility + each.
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(13)

sufficiently close to the minimum error Eg, T is con-
trolled by the slowest mode, and it provides a good esti-
mate for 7. Numerical results for T as a function of «,
shown in Fig. 2, were obtained by training a single linear
neuron on randomly generated vectors. As predicted, the
curve exhibits a clear maximum at a=1, as well as a
minimum between a =4 and 5.

For m=0, Amax ™Ay, an eigenvalue proportional to N.
Then t=aAn/A-, much larger than in the m=0 case.
The eigenvalue Ay arises because in the thermodynamic
limit the off-diagonal elements of R are equal to m? and
the diagonal elements are equal to v+m? The eigen-
vector uy =(1,...,1) thus corresponds to the eigenval-
ue Ay =Nm?+v. Since TrR =N(m2+v) and (A) =0,
Ay is the only eigenvalue larger than A4+. The large part
of Ay is eliminated for centered distributions with m =0,
such as x/ = * 1 with probability §, or x*=3,—1,—-2
with probability 3. Note that although m plays a cru-
cial role in controlling the existence of an isolated eigen-
value of order ; it plays no role in the spectral density
of Eq. (13).

The existence of only ome eigenvector of order M,
while the remaining N—1 eigenvalues are of order 1,
can be also established for the case in which the mean of
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FIG. 2. Number of iterations T (averaged over 20 trials)
needed to tramn a linear neuron with N =100 inputs. The o
are uniformly distributed between —1 and +1. Initial and
target couplings W are chosen randomly from a uniform distri-
bution within the {—1,+1]" hypercube Gradient descent,
with 17 =1/2Am.x, is considered complete when the error reaches
the prescribed value £ =0.001 above the Eo=0 munimum
value.
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the distribution is not uniform but position dependent:
m is replaced by {m,} (i=1,...,N). For such nonuni-
formly biased inputs with m,#0 there is only one eigen-
value Ay of order IV, and the components of the associat-
ed eigenvector uy are given by u,y =m,.

Such information can be exploited to achieve consider-
able reduction in learning times. The goal is to minimize
the ratio Amax/Amin. A simple approach is to center each
input variable x, by subtracting its mean m,, thereby
suppressing Ay. Nonuniform variances which also cause
a spread of the spectrum can be treated by a trivial re-
scaling.

An alternative approach is to use the available eigen-
vector to subtract or reduce the component of the gra-
dient along the fast direction. The modified update rule

uy‘VE
—_——uy
llunl[?

interpolates between standard steepest descent for c=1
[for which Eq. (2) is recovered] and complete elimina-
tion of updates in the direction of uy for ¢=0. The con-
stant ¢ controls the time constant in the direction of uy;
its optimal value is that which makes relaxation along
that direction comparable to that along the other direc-
tions, characterized by eigenvalues of order 1. The
reasonable choice ¢ =(A)/An provides an approximation
to the Newton-Raphson algorithm, which cannot be ap-
plied in its exact form to multilayer networks due to lack
of defimte positivity in the Hessian matrix!! as well as
excessive storage and computation time requirements.
Several eigenvalues of order NV may appear in the case
of true correlations between pairs of input components:

Wk +1)=W(k)—n|VE+(c—1) (14)

x,x,%x, x, for i=j.

The approach of Eq. (14) can be easily generalized to
deal with this case; it requires knowledge of the corre-
sponding eigenvectors.

The extension of these results to multilayer networks
rests on the observation that each neuron i receives state
information {x,} from the j € S, neurons that feed into
it, and can be viewed as minimizing a local objective
function E, whose Hessian matrix involves the covari-
ance matrix of such inputs. If all input variables are un-
correlated and have zero mean, no large eigenvalues will
appear. But states with x, =m0 produce eigenvalues
proportional to the number of input neurons A, in the set
S, resulting in slow convergence if the connectivity is
large.

An obvious source of systematic bias m is the use of
activation functions which restrict the state variables to
the interval [0,1]. Symmetric activation functions such
as the hyperbolic tangent are empirically known to yield
faster convergence than their nonsymmetric counterparts
such as the logistic function. Our results provide an ex-
planation to this observation, and justify the empirical
rule of choosing individual learning rates 7, inversely
proportional to the number of inputs N, to the ith neu-
ron.

Our results are based on a rigorous calculation of the
eigenvalue spectrum for a symmetric matrix constructed
from the outer product of random vectors. Such spectral
density provides a full description of the relaxation of a
single adaptive linear unit, and illuminates various as-
pects of the dynamics of learning in multilayer networks
composed of nonlinear units.
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