* In Proceedings of the 4th USPS aavanced
Technology Conference, Washington D.C.,
pp 1003-1011, November 1990.

Handwritten Character Recognition Using
Neural Network Architectures’

O. Matan, R. K. Kiang, C. E. Stenard, B. Boser,
J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
L. D. Jackel, and Y. Le Cun
AT&T Bell Laboratories, Holmdel, N. J. 07733

Abstract

We have developed a neural-network architecture for recognizing
handwritten digits. This network has 1% error rate with about 7%
reject rate on handwritten zipcode digits provided by the U.S. Postal
Service. In this paper, we discuss implementing this architecture in a
real-world character recognition system. The main issue is the trade-
off between cost and benefits such as accuracy and speed. A method
for combining independently trained networks to achieve higher per-
formance at relatively low cost is presented.

Accurate estimates of the probability of correct recognition, as well
as runner-up probabilities, are of ever-increasing importance as recog-
nition systems move out of the lab into the real world. Per-character
probabilities give us the information necessary for calculating per-field
or multi-field probabilities. We discuss a method for normalizing out-
put activations levels, thus providing a normalized score, which (for our
network at least) is a good estimate of the probability. We also find
that using this normalized score as a rejection threshold gives similar
performance to previous rejection schemes.

We also discuss the important and complex relationship between
rejection threshold, average number of errors, and the cost of errors.

1 Introduction

We have built a feed-forward multi-layer neural network architecture for
recognizing handwritten digits (Le Cun et al,, 1990). This network has
shown good generalization performance. This was accomplished by combin-
ing “learning from examples” with careful engineering; we find that even

IYLOL 1534865703032 2641¢1
84035972029932997225100%¢7
0130844145710 1061S¥+0610354
(Lo 1 11030%2528200272799
boBIIADTLT708SSFIDIYQAZ225S Y
60Lo|TIOT01871IRT79350Y77701
§40109707592733 19701548170
56tO7XSI1RaSS(T2=814Y3580107
31 7837SN{168SY685594035%¢0
§5182581083030#75a07317401

&

Figure 1: Examples of normalized digits from the testing set.

tens of thousands of examples will not suffice unless considerable a priori
knowledge of the problem is incorporated into the architecture. The input
to the network is a size-normalized pixel image and the output consists of
10 units (one for each class). The target output for a pattern belonging to
class i is +1 for the ith unit and —1 for all the other output units. This
network has been trained using back-propagation (Rumelhart, Hinton and
Williams, 1986) on zipcode digits supplied by the U.S. Postal Service plus
additional digits from other sources. Some examples of digits are shown in
figure 1.

We have implemented several versions of this architecture, varying pa-
rameters such as the size of the input field. On normalized input sizes of 16
by 16 grey-level pixels, our best result is 1% error rate with 9% reject rate;
when the input was 20 by 20 grey-level pixels, we achieved a 1% error rate
with 7% reject rate. For a more detailed account of this work see (Le Cun
et al., 1990).

This paper will discuss two ways of improving the performance of such
networks in real-world applications: In section 2 we will present a method for
combining outputs of two independently trained networks, thus decreasing
the reject rate and/or error rate. In section 3 we discuss a method for
normalizing the activity levels of the output units; this does not improve
the recognition of individual digits, but provides us a reasonable estimate
of the probabilities of correct classification. In section 4 we discuss the
importance of coupling the rejection variable with a cost function, in order
to determine the rejection threshold that measures the overall performance.

rNetwork [0.%__1% 2_@
A 11.60 | 6.50 | 3.02 |
B 9.44 | 6.82 | 3.54
C 14.90 | 8.63 | 4.09
A+B 9.00 | 5.13 | 2.36
A+C 9.51 | 5.97 | 2.47
B+C 9.63 | 6.42 | 3.06
A+B+C | 8.15] 5.16 | 2.58

Table 1: Rejection percentage rates for 0.5%, 1% and 2% error rates on
2711 handwritten and printed characters. Results are shown for individual
networks and for combinations.

2 Multi-Network Decisions

Let us consider combining two or more networks. At one extreme, it would
be a waste of time to evaluate multiple networks if each one produced the
same output for corresponding inputs. Fortunately, we find that different
networks make different mistakes; therefore the combination will provide
more information than a single network. Note that the multiple networks
can easily be evaluated in parallel in cases where speed is important.

In table 1 are presented recognition performance rates for three indepen-
dently trained networks of the 16 by 16 input architecture described in (Le
Cun et al., 1990). The three networks A,B,C were all trained and tested
on exactly the same data. Before training, a few of the weights (connection
strengths) in each network were set to values that were expected a priori to
be approximately correct, but the vast majority of the weights were inde-
pendently set to random initial values. In network C, all the initial weights
were random. In all cases, all weights were free to change during training.

The database consisted of 9298 segmented numerals extracted from hand-
written zipcodes supplemented by 3349 machine printed digits from several
fonts. The training set was composed of 7291 handwritten digits and 2645
printed digits. The remaining 2007 handwritten and 704 printed digits con-
stituted the test set. The reject rate necessary for a certain error rate is
presented for each individual network. One can see that the performance
for network C is considerably worse. At the bottom of table 1 the results
for various combinations of two networks are shown. Combining the two

Networlf_ 0.5% 1%| 2%]

A 16.14 | 9.66 | 4.98
B 13.79 [9.61 | 6.23
C 18.92 | 12.75 | 7.61

A+B 12.25 | 8.70 | 4.73
A+C 15.04 | 8.61 | 5.18
B+C 13.20 | 9.72 | 6.12
A+B+C | 12.81 | 8.17 | 4.93

Table 2: Rejection percentage rates for 0.5%, 1% and 2% error rates on 2007
handwritten characters. Results are shown for individual networks and for
combinations.

networks was done by averaging the activation level of both output layers
and treating the result as the output of the combined network.

One should not attribute too much precision to the tabulated numbers,
since the total number of errors made by any of the networks is so small
that there is significant “quantization noise” in the measurements — the
difference between ten errors and eleven errors cannot be tremendously sig-
nificant.

The combined network performance exceeds, in most cases, the perfor-
mance of the individual networks. It is interesting that this is also the case
for B+C where C is by far an inferior performer. The results for only the
handwritten data are presented in table 2.

Discussion

There are two possible reasons that contribute to the explanation of why
networks trained on the same data would make different mistakes. For one,
we know that the training method, back-propagation, is imperfect. It is
subject to getting stuck in local minima. (There exist methods for escaping
from local minima, but the computation involved in finding the absolute best
point in weight space is usually prohibitive.) More fundamentally, though,
there may be no unique “best” place in weight space, but rather many large
regions that are equally consistent with the training data. The training
set is extremely limited in size, and we believe that it leaves the network
underdetermined.

In either case, the trained network will retain vestiges of its (random)
initial conditions. Because of the high dimensionality of weight space, there
are, in effect, a vast number of ways in which the different networks can
make different mistakes. This gives us grounds for hoping that multi-net
voting will be effective, but there is no guarantee.

For highest accuracy, one would apply multiple networks to every input.
Combining two networks requires twice the amount of computing power,
but for many applications, high accuracy is so important that the added
complexity is well worth it. It is possible that by using custom analog
VLSI neural-net chips (Jackel et al., 1990; Graf and Henderson, 1990), the
price/performance ratio will drop to the point that the cost of multiple-
network recognition will be immaterial.

In any case, there is a way of achieving considerable improvement with
less than a doubling of the computation, by using “multi-level rejection” as
follows: One passes to the second network only the cases that were assigned
low confidence by the first network. The computation increase is just the
fraction of cases that need to be passed on for “a second opinion.” For case
A+B that appears in table 1, one needs to pass only 14% percent of the
digits to a second recognition to maintain the same level of performance for
the 1% and 2% error rate. In order to maintain the performance for 0.5%
error rate, one has to pass 39% to a second recognizer.

3 Classification Probability Estimation

The output of a network is the set of activation levels of the output layer.
In the previous section, the task was simply to choose, according to these
values, one of eleven possible outcomes: rejection, or classification into one
of the ten classes. No attempt was made to assign probabilities to the
possible outcomes. In this section we present a method to normalize the
output activation levels, and show that it forms a good estimator of these
probabilities.

The ability to estimate the probability of the input belonging to class 1 is
of great theoretical and practical importance. Given this ability we are able
to model the classifier’s performance. Combining this with a cost model we
can tune the system to minimize cost. This is not a possibility when dealing
with activity levels of the output layer. For the case of character recognition,
knowledge of the probability of single character recognition makes it possible
to calculate the probability for a multiple character recognition and to reject

on a per-field basis.

John Bridle recently proposed an normalization scheme for classifiers
with ¥ mutually-exclusive outcomes (Bridle, 1989). This scheme, which he
has named Softmax, is applied as a post-processor to the “raw outputs” of
the neural network. Softmax’s appeal is that its outputs are positive and sum
to 1, thus satisfying the axioms of probability theory. Each Softmax output
is an increasing function of the corresponding raw output (when the other
outputs are held constant) and preserves the ordering of the classes. There
are other interesting theoretical qualities of Softmax, such as its connection
to the entropy of the system (Bridle, 1989). The form of Softmax is the
following:

80,
S, = =
3 €POx
Where O, is the activation level of output unit ¢, and S, is the Softmax
score for class i. We have slightly modified this function by adding an
additional term to the denominator:

250,
S‘ = e + Z:k eﬂok

The term involving a essentially represents the activation level of an
artificial /V+1st category, the “none of the above” category. It will cause
reduction of the score when the highest active unit has a low absolute value.

Softmax considers competition between the most-active unit and all the
others (whereas the simple rejection scheme used in the previous section
considers only competition between the top two classes). Tests we have con-
ducted show that using Softmax with appropriate values of 3 gave essentially
identical rejection performance to the simpler scheme. This indicates that
there are relatively few cases where there is a many-way tie for second place.

For a discrete (“go/no-go”) single-digit rejection decision, o is immate-
rial; its main importance is that it enables us to tune Softmax to be a reliable
probability estimator for the most probable candidate classes returned by
the neural network classifier. In figure 2 the Softmax score for the “winner”
class is plotted versus the percentage of the cases that this class was in fact
the correct answer. The distribution of the Softmax scores is also plotted.
Since the raw recognition rate is well over 90% most of the population is
concentrated in a small part of the histogram. Even so, one can see that the

% CORRECT % OF TOTAL PATTERNS
1

9] 9]
8] 8
7] 7]
6] 6
5] 5]
44 4]
3] 3]
2] 2]
1] 1]
0l 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 71 8 9
(@ SOFTMAX SCORE ®) SOFTMAX SCORE

Figure 2: (a) Percentage of correct classification vs. the Softmax score
supplied by the classifier for the highest scoring candidate (8 = 3.75, a = 5).
The population distribution of this score on all the test set is plotted in (b).

Softmax score gives a good indication of the probability of correctness of
the classification. In figure 3 the same functions are plotted for the second
highest scoring class (“runner up”). In this case most of the population is
concentrated in the low scoring values. Here, as well, Softmax seems to give
a good estimation of the probability for this class to be the correct answer.

4 Cost, Rejection and Errors

In the previous sections we have discussed methods to process the output
layer of a neural network in order to enhance the productivity of our clas-
sifying system. This post-processing stage is of great practical importance
in making acceptance/rejection decisions. An issue of that is not addressed
the full extent of its importance is cost of acceptance/rejection/error. The
parameters that are usually minimized in the lab are the rejection rate at
a constant error rate or vice versa. These are good measures for assessing
the technology and measuring one’s technical advancement. However in a
real-world system, the true parameter one wants to minimize is the cost,
therefore, the cost model must be incorporated into the rejection parame-
ter. A typical example of this are the digits in a zip code. An error in the
first digit is much more costly than an error in the last digit. This infor-
mation must be encoded into the rejection value for the digit in question.

% CORRECT % OF TOTAL PATTERNS
1

9|
8 |
7]
6.
5]
4.
3]
2
1
0l
6 1 2 3 4 5 6 7 8 9 6 1 2 3 4 5 6 7 8 9
(a) SOFTMAX SCORE ®) SOFTMAX SCORE

Figure 3: (a) Percentage of correct classification vs. the Softmax
score supplied by the classifier for the second highest scoring candidate
(8 = 3.75,a = 5). The population distribution of this score for the sec-
ond candidate on all the test set is plotted in (b).

The conclusion is that even though the recognition engine would be the
same, the acceptance/rejection decision would have to be tuned ta the local
problem. Knowledge that the majority of the mail stream is local can be
incorporated into the rejection scheme to enhance the cost/performance on
typical zipcodes.

Summary

We have presented two techniques for enhancing neural network classifica-
tion and have applied them to a zipcode digit recognition problem. The
results presented are far from a systematic study, but are promising enough
to encourage further work.

This and other work (Denker and Le Cun, 1990) has brought us to view
the propagation through a neural network as the first stage of a classification
process. The output from the network is then fed into a post-processing stage
that uses knowledge about the neural network and about the problem we
are trying to solve. The two stage process generates superior performance
to that one would expect from a stand-alone neural-network.

Acknowledgements

We thank the US Postal Service and its contractors for providing us with
the zipcode database. We thank Henry Baird for providing the printed
font database. We are grateful to Rodolfo Milito for comments on this
manuscript.

References

Bridle, J. S. (1989). Probabilistic Interpretation of Feedforward Clas-
sification Network Outputs with Relationships to Statistical Pattern
Recognition. In Fougelman-Soulie, F. and Hérault, J., editors, Neuro-
computing: algorithms, architectures and applications. Springer-Verlag.

Denker, J. S. and Le Cun, Y. (1990). Unpublished.

Graf, H. P. and Henderson, D. (1990). A Reconfigurable CMOS Neural
Network. In ISSCC Dig. Tech. Papers. IEEE Int. Solid-State Circuits

Conference.

Jackel, L. D., Graf, H. P., Boser, B., Denker, J. S., Le Cun, Y., Howard,
R. E., Matan, O., and Baird, H. S. (1990). Hardware Considerations
for Neural-net Character Recognition Systems. In Simon, J., editor,
From Pizels to Features II, (Bonas, France 1990).

Le Cun, Y., Matan, O., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., Jackel, L. D., and Baird, H. S. (1990). Handwrit-
ten Zip Code Recognition with Multilayer Networks. In Proceedings
of the 10th International Conference on Pattern Recognition, (Atlantic
City, NJ, 1990). IEEE Computer Society Press.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
internal representations by error propagation. In Parallel distributed
processing: Ezplorations in the microstructure of cognition, volume I,
pages 318-362. Bradford Books, Cambridge, MA.

