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Abstract

In this paper we describe the problem of reading unconstrained
handwritten zip-codes and outline the strategies and methods of solu-
tion. We have designed a system that reads unconstrained handwritten
zip-codes taken from real U.S. Mail envelopes. This multi-digit system
is an extension of a previous system that recognizes isolated hand-
written digits using a multi-layered neural network. The new system
has been implemented on a digital signal processing board and has
achieved state of the art recognition rates.

The system is a hybrid of image processing, segmentation, and
neural network classification. The part of the system carrying out
segmentation ( “segmenter”) is “recognition driven”. That is, the image
may be segmented in a variety of ways, but the segmentation that is
chosen is that giving the highest recognition score when the recognition
scores for the individual digits are combined.

The strength of the segmenter is that it uses simple methods for
easy cases and more complex techniques for harder ones. Connected
components analysis handles the case of non-touching digits. Touching
or disconnected digits are handled by estimating vertical cut-points and
scoring the resulting segments using the neural network classifier. The
best combination of cut-points is found by using dynamic program-
ming. This approach ensures that the number of calls to the classifier
is minimal, hence processing time is minimized.

We discuss the speed and accuracy achieved by the implemented
system.



1 Introduction

Reading is a difficult task. Humans still outperform machines in most vision
tasks, in both speed and quality. Our goal is to design machines that can
read handwriting at levels approaching or exceeding human performance.
We have developed algorithms able to read strings of handwritten digits
using neural networks. These algorithms have been incorporated into a
system that reads handwritten zip-codes appearing on real U.S mail.

The main body of this paper describes the zip-code reader we have de-
veloped. Although we have used knowledge specific to this application, the
techniques we have used are applicable to many other handwriting recogni-
tion applications.

In the following subsection we introduce the motivation for the work in
this area. Section 2 serves as an introduction to handwritten digit recog-
nition. We list general requirements and techniques relevant to single digit
and multi-digit recognizers. In Section 3 we describe the postal application
followed by a description of the system we have developed. Sections 5 and 6
report the system’s recognition performance and implementation details.
We finally summarize and discuss future work.

Why is handwritten character recognition important ?

In recent years there has been a constant increase in documents on paper.
The number of mail pieces sent and checks written, grows from year to year.
Contrary to the belief that advances in electronic technology would help
create a paperless society, they have helped increase the average amount of
paper documents people and businesses handle every day. Therefore, there
is a great need for machines able to read paper documents.

The field of automated text reading is known as “Optical Character
Recognition (OCR)”. In a typical system, an image of a document is acquired
by camera or scanner (“image capture”). The system subsequently locates
the section of the image relevant to the application (e.g. the dollar amount
on a check, the address block on a mail piece, columns in a book, etc.). It
then proceeds to recognize the characters in the field of interest. Pattern
recognition techniques are used in conjunction with contextual information
particular to the application (e.g., spell checkers and grammars for written
prose, check digits on bank account numbers, etc...).



For machine printed documents, OCR systems have achieved consider-
able success. Single-font and relatively clean originals can be read at very
high accuracy and speed. State of the art recognition rates of individual
characters is above 99%. Typical systems that read pages of “clean” text
make less than 4 mistakes per page by the use of spell checkers and other
correction methods (for example see [1]). A good introduction to this field
is reference [2].

The success in reading machine printed documents is due to their reg-
ularity. Since print is typeset in straight rows and columns, locating and
recognizing the characters is relatively easy. This is not the case for hand-
writing.

Conveying the complexity of reading handwriting is not difficult; every-
one has experienced not being able to read another person’s ( in some cases
their own) handwriting.

The current “interface” between handwritten information on paper and
electronic media is a human visual processing system (i.e. a data entry
person). The potential savings of automating this process in terms of manual
effort and speed is large.

The above motivation has generated a considerable amount of research
in handwriting recognition over the past 30 years. However, only recently
have the strength of the algorithms and the power and cost of the computers
combined to make available, systems that are commercially feasible. For an
collection of state-of-the-art research papers in handwriting recognition see
reference [3].

2 Handwritten digits: from isolated digit recog-
nition to multi-digit recognition

2.1 Introduction

This section introduces the problem of classifying images of handwritten
digits. We proceed from the simple case of recognizing a single digit to the
case of a multi-digit string. We give a general description of the problems
addressed and the components needed to solve these problems. In Section 4
we describe in detail specific components for a zip-code recognizer based on
a neural network digit recognizer.



Figure 1: Examples of isolated digits.

2.2 Isolated digits

In Figure 1 some images of handwritten digits are presented?. We wish to
associate each image presented, with one of the ten classes: 0 to 9. This
problem of character recognition has been researched for over 30 years. Be-
low, we outline some requirements and possible solutions to this task. A
good introductory reference to some of the techniques we mention is [4].

Apart from assigning the input image to a class, we expect the recog-
nition algorithm to output a score associated with the classification. This
score represents the level of confidence in the classification. The score is
used for rejecting patterns with low confidence levels (see Figure 2). Some
recognition techniques estimate the probability of the correctness of the
classification, while others do not. We shall see below that generation of
probability estimates is important for multi-digit recognition.

Usually character recognition consists of three main processing stages:
preprocessing, feature extraction and classification (see Figure 3). We shall
briefly describe each of these stages and list some of the known techniques
for each stage.

2.2.1 Preprocessing

The preprocessing is designed to separate the signal from the noise, making
the following stages more robust. Noise in the case of handwriting is not
only dirt and interference in the image capture. It is also variability in

2These images and the remainder of the images presented in this paper are black and
white. However, most of the techniques we mention can be extended to grey-level images.
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Figure 2: Trading errors for rejects. In many applications we wish to
reject a pattern if the confidence in the classification is low. The motivation
is greater if the cost of an error is much greater than the cost to reject. For
example, it is more costly to send a letter by mistake to the wrong state
than have a human sorter look at the envelope. The score returned by the
clasifier is used for rejection. The typical form of an error versus rejection
graph is shown above. The “raw error rate” is the number of classification
errors the system made divided by the total number of patterns classified.
If we reject some of the lowest scoring classifications the error rate of the
patterns not rejected decreases. In the limit where we reject all patterns -
we make no mistakes. Error rates in this paper are the number of errors
divided by the number of patterns accepted (not rejected). In a real system
the decision on what percent to reject will depend on the cost model: what
are the costs of errors and rejections.
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Figure 3: Typical stages in single character recognition.

handwriting styles : the size, the slant, thinkness of the stokes and other
variables. Some preprocessing operations that may be taken are:

e Thresholding/Binarizing/Grey-level normalization - setting the pixel
quantization levels to those most suited to the feature extraction and
classification steps.

e Noise correction - corrections due to bad image capture. This may be
speck removal or image enhancement.

e Size normalization - rescaling the image to a standard size needed for
later stages.

e Slant correction - de-slant digits to a “normal” form.

e Thining - transform the image so the stroke width is only one pixel
wide. This is necessary for some feature extractors.

2.2.2 Feature Extraction

The feature extractor generates a set of features that will enable the clas-
sification algorithm to distinguish between patterns of various characters.
Examples of geometrical features that have been used: edges, end-points of



strokes, crossings of strokes and closed loops. Another class of features used
are generated by transformations such as the Fourier and Hough transforms.

2.2.3 Classification

The classification stage associates the feature vector® with a certain class,
returning the confidence level of the association. We shall mention three
classes of methods: template matching, syntactic classifiers and statistical
classifiers.

Template matching characterizes a given pattern (or feature vector)
by measuring its distance from a set of prototype patterns (feature vectors).
The distance may or may not be the Euclidean distance. The pattern is
classified to belong to the class of the closest prototype, and the confidence
score is some function of that distance. There are various extensions of
template matching such as K-nearest neighbors [4].

Syntactic methods describe each class as some specific combinations
of features. The set of “legal” combinations for each class is defined by rules
(a grammar). An example of a rule would be: “An eight is a loop on top of
another loop”.

Statistical classifiers use a set of training examples to estimate the
distribution of the various classes in pixel or feature space. This is analogous
to curve fitting. Using the set of training examples whose respective class is
known, we can tune a set of parameters governing the classifying function
to give the correct answer. Once the classifier is trained, when shown a new
pattern it will try to estimate the probability of that pattern belonging to
any class. A typical statistical classification technique is Parzen windows
[4]. Neural networks are often considered part of this family; in Section 4.2
we describe the neural network classifier we have designed.

State-of-the-art handwritten digit recognizers have “raw recognition rates”
4 of 95% and above (depending on the quality of the data). The leading algo-
rithms do not differ much in their raw performance. However, they do have
different characteristics such as : computation complexity, memory require-

3Some practitioners do not apply a feature extraction, but apply the classification
algorithm directly on the pixel pattern. One can view this as a feature vector where each
feature is a pixel in the image. We shall term this as a vector in pixel space. An extracted
feature set is termed a vector in feature space.

*We term the “raw recognition rate” as the recognition rate with no rejection



ments, training time and error rates at different rejection rates. The choice
of one over the other is dependent on the specific needs of the application.

An isolated digit recognizer can be useful for form reading applications,
where the digits are written in predefined boxes. Typical applications are
credit card slips and tax forms. The recognition system can locate the box
and classify the digit lying within the box. In the following subsection, we
shall discuss the problem of recognizing strings of digits where the writer is
not constrained to write each individual digit in a predefined box. We term
this as an “unconstrained string of digits”. The string may be confined to
a box located on a form (e.g. the dollar amount on a personal check) or
may appear anywhere in the document ( e.g. the zip-code on an addressed
envelope).

2.3 Multi-digit recognition

Assuming we have built a single digit recognizer, how can we use it to
recognize an unconstrained string of digits ?

2.3.1 Segmentation

In order to recognize a string of digits we need a component that will sep-
arate the whole image into subimages each containing a single digit. This
component is the “segmenter”. Each partial image (“segment”) is then in
turn classified by the recognizer (see Figure 4).

A string of three digits is shown in Figure 5a. A simple segmentation al-
gorithm can be constructed for this image; each segment will be a “blob” of
black pixels (a set of contiguous black pixels). The “blobs” are called “Con-
nected Components (CCs)”. “Connected Components Analysis (CCA)” is
an algorithms to locate all the CCs in an image. There are various methods
to implement CCA which we will not discuss.

Each of the three CCs in Figure 5a is an individual digit. This is not
always the case; in Figure 5b there are three digits and three CCs as well.
Not one of the CCs is an individual digit. The “4” and “0” are combined
to one CC and the “5” is disconnected into two CCs. A CCA segmenter
would fail on this example. There is need for a much more sophisticated
segmenter. The first CC must be bisected into two segments, and remaining
two CCs joined to one segment.
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Figure 5: Multi-digit strings. In string (a) each connected component is a
digit, in string (b) two digits have combined to one connected component
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Figure 6: Recognition based segmentation: segmentation is coupled to the
recognition unit.

Various methods to segment strings of handwritten characters have been
proposed. Some follow the strokes of the writer, others look at pixel projec-
tions, and others look at upper or lower contours of the image.

Whatever segmentation method is used, there are limitations in using
the pipeline scheme shown in Figure 4. The underlying assumption is that
segmentation and recognition can be decoupled. Except for the most simple
cases this is not true.

2.3.2 Recognition-based Segmentation

The latest developments in speech recognition have demonstrated the power
of using the recognition engine to score each segment in a candidate segmen-
tation [5, 6], The individual segment scores are combined to give a global
score for a specific candidate segmentation. The segmentation that gives
the best combined score is chosen. This “recognition driven” segmentation
is usually used in conjunction with dynamic programming to efficiently find
the optimal solution. In this approach the recognition engine and the seg-
menter are tightly coupled (see Figure 6). This is a method we believe to
be applicable to multi-character recognition.

The number of possible segmentations of a specific image is extremely
large. Even if we could rely only on the recognition unit to determine the
correct segmentation, it would not be feasible to try scoring all possible seg-
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ments, even with an extremely fast classifier; we could not reach a solution in
reasonable computing time. It is necessary to limit the number of candidate
segmentations as much as possible. We would like to limit the candidates
we consider, to the smallest possible set while retaining high confidence that
the correct solution is a member of it. Generation of segmentation candi-
dates can be based on segmentation methods mentioned in section 2.3.1. In
the zip-code reader we have used a hybrid of CCA and vertical cuts of the
image to generate the candidate segmentations.

2.3.3 Hybrid methods

Hybrid methods have been used character recognition (see for example [7])
and other fields of engineering. Most of the algorithms known for OCR have
certain areas of weakness, giving rise to misclassifications of certain types of
patterns. If two or more methods err on different patterns, then using some
combination of their answers can decrease the overall error rate. Using a
hybrid method for segmentation can be useful in the same manner.

Using multiple methods does not necessarily imply executing all of them
for every image. The decision to pass to a various method may be based
on the data itself or the success of a previous attempt. A reasonable rule
for building an efficient hybrid solution is to use the fastest and simplest
method for the easiest cases and try applying more complex method to the
more difficult cases. Doing so can give an increase in performance rates
while keeping processing speed minimal.

3 An introduction to the postal problem

About 15 percent of the addresses on 1st class mail are handwritten (hand-
printed or cursive). This relatively small percentage translates to over ten
billion mail pieces annually. Current OCR systems can read machine printed
mail. However, handwritten mail pieces are rarely read. Reading even a
fraction of them at high confidence will yield potential savings of millions of
dollars per year.

The zip-code recognizer we have designed is only part of a total system
that would read addresses from mail-pieces. An overview of other necessary
components is:

11



1. Image capture — machinery is needed to take a picture of the correct
side of the envelope.

2. Address block locator - a process to locate the area on the image
containing the addressee’s address, and return in the correct orienta-
tion

3. Line and field locator - this process locates lines and various fields
in the address block. Such as city , state and zip-code.

4. Field recognizers - these might be general character recognizers or
might be specialized for a specific field (e.g. the zip-code).

5. Contextual analysis — this unit may be incorporated into other parts
of the system. It uses partial knowledge from the image and other
information (such as mailing statistics and the postal address data-
base) to generate hypotheses for subfields or the whole address.

Our system is built on the assumption the first three parts exist and
have succeeded in providing a right-side-up image of the zip-code field that
holds a 5 or 9 digits zip-code. However, there may be intruding strokes from
other fields. A schematic view and data flow of a whole system are shown
in figure 7.

We trained and tested our system on approximately 10,000 images, 5
and 9 digit zip-code fields taken from live mail. The images are black and
white scanned at 212 pixels per inch. The zip-code database was created
by contractors to the U.S. Postal Service. The zip-code fields were located
by humans and extracted by drawing rectangular boxes around the field.
We used 7,000 images for training purposes, and the remaining 3,000 for
testing. Several examples of zip-code fields supplied to our system are shown
in figure 8.

4 The zip-code reader

4.1 Overview of system

The novelty of this system is the recognition based segmenter. The seg-
menter is a hybrid of CCA, vertical cuts and a neural network recognizer.
One of the experiments we conducted before designing our system was to
measure the performance a CCA segmenter with our recognizer on a test
set of zip-codes. The number of zip-codes correctly recognized was about

12



address block
location

John Doe
42 Orange Grove
Deer Valley, TN 87654

John Doe
42 Orange Grove
Deer Valley, TN 87654

"87654"

Figure 7: Data flow of images from the image capture to the zip-code rec-
ognizer.
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Figure 8: Examples of zip-codes.

35%. CCA is destined to fail when two or more digits are touching or one
digit is disconnected. We wished to build a system that would have higher
recognition performance while retaining the CCA to handle the easier cases.
Our choice of an additional segmentation algorithm was vertical cuts of de-
skewed images.

Both segmenters may be used for a particular image; connected compo-
nents that are single digits will be handle by CCA. CCs that are combined
or dissected digits will be handled by the vertical cut segmenter.

The main stages of processing are the following (see figure 9):

Preprocessing — The image is converted to a standard form by remov-
ing noise and de-slanting the digits.

CCA segmentation and recognition — Each connected component
is evaluated by the recognition unit. If the score is above a certain threshold
the the connected component is considered solved. Segments below with
scores below threshold are handled by the next level of segmentation.

Vertical cut-point estimation and segmentation — Parts of the
image that have not been deemed as solved are segmented in various ways
using vertical cuts. Each segment is classified and scored by the classifier.
The segmentation that gives rise to the best combined score is chosen.

14
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Figure 9: System overview.
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Figure 10: A schematic view of the recognizer. The network is fed a pixel
image. The image signal is propagated through a set of feature extracting
neurons to an output layer consisting of 10 output units, one for each class.

Directory lookup - Answers that do not appear in the zip-code direc-
tory are rejected and the vertical cut segmenter is recalled to generate the
next highest scoring candidate.

4.2 The digit recognizer

Both segmentation components call the digit recognizer. This is a neural
network that has been trained using back-propagation. This recognizer has
been described in detail in [8]. A schematic figure of the network is shown
in Figure 10

The main feature of this neural network is that it is directly fed with
a pixel image, rather than feature vectors. This eliminates the need to
design a complex feature extraction stage. The only preprocessing done is
normalizing the input image to a 20 by 20 pixel grey scale image using a
linear transformation. The grey levels are scaled to fall within the range —1
to +1.

The output is composed of 10 units, one for each digit. The desired
output for a pattern belonging to class ¢ is is +1 for the :th output unit,

16



and —1 for the other output units.

Back-Propagation networks are composed of several layers of intercon-
nected elements (units) arranged in a feed-forward architecture: connections
can only go from lower layers to higher layers. Each unit resembles a “soft”
linear classifier, computing a weighted sum of its input, and transforming
this sum through a non-linear squashing function (usually a sigmoid function
such as tanh). Learning is performed by iteratively modifying the weights
on each connection so as to minimize an objective function. A popular ob-
jective function is the mean squared error between the actual output of the
network and a desired output. Minimizing the objective function is per-
formed by a gradient descent procedure which requires the computation of
the gradient of the objective function with respect to connection weights.
Back-Propagation is just an efficient way to compute this gradient.

The design of the connections between the computing layers must be
guided by our knowledge about shape recognition. Because there are well-
known advantages to performing shape recognition by detecting and com-
bining local features, our network has only local connections in all but the
last layer. Furthermore, salient features of a distorted character might be
displaced slightly from their position in a typical character, or the same
feature can appear at different locations in different characters. Therefore
a feature detector that is useful on one part of the image, is likely to be
useful on other parts of the image as well. Specifying this knowledge can be
performed by forcing a set of units, located at different places on the image,
to have identical weight vectors. The outputs of such a set of neurons con-
stitute a feature map. This operation is equivalent to a convolution with a
small size kernel, followed by a squashing function. Figure 11 depicts two
convolutional type feature maps operating on an input map.

The idea of local, convolutional feature maps can be applied to subse-
quent hidden layers as well, to extract features of increasing complexity and
abstraction. Interestingly, higher level features require less precise coding of
their location. Reduced precision on the position is actually advantageous,
since a slight distortion or translation of the input will have reduced effect
on the representation. Thus, each feature extraction layer in our network is
followed by an additional layer which performs a local averaging and a sub-
sampling, reducing the resolution of the feature map. This layer introduces a
certain level of invariance to distortions and translations, due to the smooth-
ing nature of the averaging. Our designed architecture is a “bi-pyramid”:
The loss of spatial resolution in the feature maps (due to subsampling) is

17
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Figure 11: Two convolutional feature maps from the first layer in the net-
work. The size of each unit specifies the magnitude of the activation and
the color the sign. The values of the connection weights are plotted above
the connection.

partially compensated by an increase in the number of feature types.

The network architecture is composed of 5 layers of processing. The first
is a convolutional layer followed by a subsampling layer. The third is an
additional convolutional layer, again followed by a subsampling layer. The
fourth layer is fully connected to the 10 units of the output layer. There are
6465 nodes in the network. There are approximately 150,000 connections.
Since many of them are constrained to have the same value the number of
free parameters is only 3658. All these are free to adjust during training.
The internal states of all the units in the network when presented with an
example “6” are shown in Figure 12.

Training was done using back-propagation. The network used for the
zip-code recognizer was bootstraped from a network trained on about 10,000
isolated digits described in [8]. After we were able to segment a considerable
number of zip-codes using the whole system, the network was retrained on
digits that had been segmented by the system, thus tuning it to recognize
isolated digits generated by the segmenter it has to cooperate with.

A problem we encountered while developing the system was that the

18
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Figure 12: The internal states of the network for a specific pattern.
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recognizer would assign reasonable score to segments that were not digits.
A solution we applied to this problem was found by training these non-digit
segments as counter-examples. That is, setting their target to “none of the
above”. This was achieved by setting the desired state for these examples
to —1 for all ten output units.

Converting the output activation layers to scores

We wish the output of the classifier to be an estimate of the probability
of correct classification. In oreder to achieve this we apply the Softmax
normalization scheme for classifiers with N mutually-exclusive outcomes [9].
This scheme is applied as a post-processor to the “raw outputs” of the neural
network. Softmax’s appeal is that its outputs are positive and sum to 1,
thus satisfying the axioms of probability theory. Each Softmax output is
an increasing function of the corresponding raw output (when the other
outputs are held constant) and preserves the ordering of the classes. There
are other interesting theoretical qualities of Softmax, such as its connection
to the entropy of the system [9]. The modified form of Softmax, we use, is
the following:

80

Sy = e + 3, €90k
Where O, is the activation level of output unit ¢ and S, is the Softmax
score for class i. & and 3 are adjustable parameters.

The term involving a essentially represents the activation level of the
artificial N+1st category, the “none of the above” category. It will cause
reduction of the score when the highest active unit has a low absolute value.

Experiments we have conducted show that the Softmax scores are good
estimations of the probability of correct classification[10]. This is of great
importance, since it enables us to combine the individual digits’ scores into
a combined score for a given segmentation.

Dash recognition
Dashes are not recognized by the neural network. A separate module was

designed to recognize dashes that are located, more or less, in the vertical
center of the image.

20



4.3 Image preprocessing

The preprocessing stage is essential to ensure robustness of the system. The
goal is to transform the input image to a standard form with minimum
noise. We shall describe the preprocessing by following the transformation
of an example image. Figures 13b-13e show the preprocessing stages for the
zip-code shown in 13a.

Underline removal (13b)

A line underneath the zip-code is very common. We have found that it is
beneficial to remove it first since other stages are effected by its existence
and it is more difficult to remove at later stages. The line is detected as
a strong peak in the pixel projection onto the vertical axis. The removal
is governed by the projection profile and by neighboring pixel analysis. In
cases where the line is touching the digits above it, two actions may be
taken, part of the digits may be lost (in many cases the loss is not enough
to disrupt correct recognition) or the line may not be removed.

Image enhancement (13c)

In many cases the images captured have missing scan lines. A simple algo-
rithm that fills missing pixels is applied.

Slant and skew adjustment (13d)

Many people tend to write so that the characters are slanted. For most right
handed people the slant is to the right (figures 8a, 8d, 8f and 8g), in less
typical cases the slant is to the left (figure 8b). In other cases there is no
noticeable slant (figures 8¢ and 8h). We wish to de-slant the images so that
vertical cuts will be sufficient to separate neighboring characters.

The skew of an image in OCR applications is usually a rotation of the
original image, and the correction is to align the image’s horizontal axis
parallel to the internal horizontal axis. This definition of de-skewing is more
suited for machine print where one can define a baseline for a line of text. In
handwriting the characters need not be on a straight line due to the writer
shifting his hand during writing (e.g. figure 8c). In that case a rotation will
not place the digits on one line. We wish to transform the image so that the

21



a. Original image

b. Delete underline

c¢. Fill missing scanlines

e. Clip border and remove flyspecks

f. Remove digits solved by CCA

Figure 13: Preprocessing stages and CCA.
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character will lie more or less on a horizontal line. Our assumption (based
on the data we worked with) is that the skew is relatively small, therefore
the operation we perform for slant correction, applied along the vertical axis,
should supply adequate skew correction.

Slant correction is done by rotating one axis while keeping the other
fixed. The best new angle for the vertical axis is found by generating
pixel projections for each rotation (see figure 14). The best angle is when
the peaks are sharpest, corresponding to the dominant direction of the
strokes. To find the corresponding angle we maximize the “entropy” °
S = %, piln(p,). Where p, is the normalized value of the pixel projection at
site ¢.

Noise cleanup (13e)

Flyspecks (small connected components) and intruding marks from other
fields are removed. This is done by the CCA, which is presented in the
following section, but we consider it part of the preprocessing. Following
the cleanup, surrounding white space around the image is clipped.

Parameter estimation

After preprocessing is done several estimates about the image can be made.
Using the aspect ration between the width and height of the image the sys-
tem decides if this is a 5 or 9 digit zip-code. This decision can be reconsidered
at various other stages of the process.

Given the number of estimated digits, we can estimate the expected
width of each one (the “pitch”). We can estimate the stroke width of the
digits by measuring the average number of contiguous black pixels in the
horizontal direction (the average “run-length”).

4.4 The segmenter
4.4.1 Connected Component Analysis (CCA)

In this process each set of adjoining pixels is grouped to a connected com-
ponent (CC). Two connected components can be united into one if they are

5Maximizing any convex function of p, would serve the same purpose
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Figure 14: The pixel projections through various angles for the exam-
ple zip-code. The entropy is printed next to the projection. The image
is de-slanted according to the angle (0.7) with the highest entropy. The

de-slanted image is shown at the bottom of the figure.
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sufficiently close one to another.

Each CC is checked to see if it is too small or too large to be a reasonable
digit. If it is very small it is regarded as a “flyspeck” and discarded. If it
is too large it probably consists of two or more connected digits and will be
handled by the next level of segmentation.

CCs that pass the validity check are evaluated by the recognizer that
scores them. Those scored above a certain threshold are designated as
solved. The rest are passed on to the next level. Figure 13f shows the
remaining parts of an image that have not been solved by CCA. The esti-
mate number of digits determined at preprocessing is re-examined in light
of the CCs found.

In the case when all CCs are recognized with scores above threshold and
the number of segments completed is 5 or 9 (or 9 and a dash) then the
segmentation is concluded.

4.4.2 Vertical cut-point estimation and segmentation

At this stage the segmenter must recognize all parts of the image not solved
by the CCA. The CCs marked as solved are erased from the image (see
Figure 13f) and the vertical pixel projection of the remaining image is cal-
culated.

The number of remaining digits is determined by subtracting the number
of digits recognized by CCA from the estimated number of digits. The and
the estimate average pitch for the remaining digits is calculated by dividing
the remaining width by the number of remaining digits. The vertical cut
segmenter will try to find the best cuts that will give the correct number of
remaining digits. The number of necessary cuts is one less than the number
of remaining digits. Figure 15 follows the vertical cut segmentation process
for the zip-code shown in Figure 8. For the sake of the explanation the CCA
segmenter has been de-activated. Had it been active the approach to the
correct solution would be much simpler.

The vertical pixel projection of the remaining image is passed through
a ﬁltfar inth a decay parameter of - sm:;fgfm;h"?f’fhok -. The resulting
function is close to value +1 at areas of white space and gives a score close
to zero when the projection value is well over the estimated stroke width. We
term this function the “prior probability” of cuts. This function is smoothed

and the maxima points are located. These will be the candidate cut points.
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Figure 15: Vertical cut segmentation. The preprocessed image with its
horizontal and vertical projections is shown on top. Candidate cuts with
related scores inferred from the vertical projection are shown imediately
beneath. Though only four are with relatively high scores there are others
that are hard to see at this figure’s scale. Two of the candidate cuts are
marked as obvious, leaving two additional ones to find. Each line shows a
various segmentation of the two leftgpost segments. The images passed to
the recognizer and the resulting scores are shown to the right. The best
combined segmentation is given at the bottom.



Each cut-point has a score associated with it.

A candidate cut-point with a prior probability greater than a certain
threshold (we have set this to 0.9) is termed an “obvious cut”. Cuts that
are too close to the sides of the image or one to another are deleted from
the set of obvious cuts.

If the number of remaining obvious cuts is equal to the number of nec-
essary cuts then the set of obvious cuts is the solution. If the number is
less than needed the system proceeds to find the additional cuts using the
recognizer. In the case that there are more obvious cuts than needed, it
is assumed that there is a problem in this image and all obvious cuts will
be discarded, and the system will proceed to find all missing cuts using the
recognizer.

The cuts determined implicitly by the CCA and the obvious cuts divide
the image into a number of segments. (if there are no cuts there is only
one segment). Using the estimated pitch we can get an upper and lower
estimate on the number of digits in each segment. In the the example shown
in Figure 15 there are three segments. Therefore two cuts are missing. The
first is estimated to have 2 or 3 digits, the second to have 1 or 2 digits,
and the third is estimated to have one only. A candidate segmentation is
generated for each segment for each possible number of digits in it.

The cuts are chosen in the following way: The prior probabilities of the
candidate cuts are multiplied by a Gaussian centered around equi-distant
partitions of the segments. The cut with the maximum score near each
equi-distant cut is chosen. All these cuts are checked for consistency , that
is that they are not too close and that they enclose a reasonable amount of
ink. If they are not consistent, another set is generated.

Each of the sub-segments are sent to the recognizer for scoring and the
results are multiplied® The final result is a score for each segment given it
has a certain number of digits within it.

The system then evaluates all combinations of the various sub-segments
giving rise to the correct number of digits. The best score is the chosen
segmentation. In our simple example there are only two combinations: two
cuts in the first segment and none in the second or one cut in each. The first
possibility has a higher combined score therefore it is chosen as the answer.

SThe scores returned by the recognizer are estimated probabilities. We make the as-
sumption that the probabilities are independent and therefore multiplying the individual
scores gives an estimated probability for correctness of the digit string.
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The process is designed so that the same partial image is not evaluated
twice by the recognizer, but the result is kept for other solutions encorpo-
rating the same sub-solution.

In many cases more possibilities are explored than in the example shown.
Still due to the fact we use both CCA and obvious cuts, enables the system
to prune the search and explore more possibilities for the remaining cuts.
The overall number of calls to the digit recognizer is small (in our example
9 call where made). For 5 digit zip-codes the average number of calls is 10.
This is a factor of two over the minimum number of calls needed ( If we
knew a priori what the correct segmentation was).

We have added a small amount of contextual processing by comparing
the first five digits in the resulting answer to a zip-code validation table. In
case the resulting zip-code is not valid, the segmenter will generate the next
highest ranking interpretation, until a valid zip-code is found.

5 Segmentation & recognition performance re-
sults

The total system was tested on 2585 image of 5 and 9 digit zip-codes. The
results for various tests are summarized in Table 1, The best performance
this system has achieved without use of the zip-code table is 73.85% correct
and 26.15% incorrect.

In a real application, errors are traded for rejections, according to the
cost of an error versus the cost of a rejection. In the postal world this
translates to the cost of sending the mail to the wrong post office versus
the cost of a human looking at the envelope in question. A cost model is
usually much more complex since the error cost depends on the error itself.
For example an error in the first digit of the zip-code is more “serious” than
one in the last digit.

We have not tried to incorporate cost into our rejection scheme. The
rejection parameter we use is a function of the digit recognizer scores. The
score assigned to a recognized image is the multiplication of all the individual
digit scores. In order to reject both the 5 digit and 9 digit zip-codes on the
same scale, the rejection parameter was set to the 5th or 9th root of the
zip-code score. A benchmark we have used is the error rate when we reject
40% of the lowest scoring images. The error rate of the remaining images at

28



this rejection rate was was 5.47%. ( error rate = errors/(1 — reject rate)
).
For the postal application the crucial digits are the first five. When the

measure of correctness is only on the first five digits, the raw error rate
(errors when none where rejected) decreases to 24.53

The zip-code table was used to discard illegal answers. The raw error
when the validation table was used, was 23.83% and was 3.22% at 40% reject.
Given the fact that there are roughly only 40% legal 5 digit zip-codes out
of the possible 10,000 one would expect a greater change.

An interesting question is what is the contribution of the hybrid segmen-
tation approach. We have already stated that during the design we took into
consideration that CCA could solve about 35% of the cases. What would
be the performance of the vertical cut segmenter if the CCA component was
deactivated ? After checking this case we found the raw error to be 35.59%
and 6.95% at 40% reject.

We have analyzed the errors with the highest scores. About 50% are
recognition errors, 30% are segmentation errors and the remaining errors
are due to bad preprocessing. These numbers are for the highest scoring
errors the distribution is probably different over all errors, but since low
scoring patterns are rejected, we are less interested in them.

The recognition errors are cases where the segmentation into individual
digits were correct, but at least one digit was misclassified. Some cases are
ambiguous even to the human eye. Others are due to lack of resolution or
training data.

The segmentation errors are cases were the zip-code was incorrectly seg-
mented. Since most of the segmentation is governed by the recognizer -
this is also a problem with the recognizer giving reasonable scores to wrong
segmentations.

The preprocessing errors are cases were the preprocessor was unable to
remove noise or intruding marks, that caused the segmenter or recognizer to
err. On the other hand there are cases where important parts of the image
were incorrectly removed as noise.
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| system [ raw error | error at 40% reject |

whole zip-code 26.15 5.47
first 5 24.53 4.64
first 5 + zip directory 23.83 3.22
first 5 , zip directory , no CCA 35.59 6.95

Table 1: Raw errors and errors at 40% rejection for various versions of the
system.

6 Implementation

The system was initially prototyped on a Sun4 workstation using the neural
network simulator SN2[11]. The system was then developed on a C++ test
bed version on a Sun4. The code has been ported with minor changes to
run on a AT&T DSP32C resident on an ARIEL DSP32C board that resides
on a AT&T PC 386 bus.

The system'‘s average time per zip-code image is 3.1 seconds. The pro-
cessing time is approximately shared between preprocessing, segmentation
and recognition . However, the code is not fully optimized and we expect it
to be able to run at a higher rate. The total time (especially preprocessing)
is dependent in the size of the input image. The preprocessing time could be
reduced considerably with a modest degradation in recognition performance,
if the input images are reduced in size scale.

7 Summary & future work

We have presented a system that recognizes unconstrained strings of digits
at state of the art performance levels. The system is is based on what we
term “recognition based segmentation” The segmenter’s decision is governed
by the scores returned by the recognizer for the individual segments. The
interpretation chosen is the one that give the best global score.

This scheme is not necessarily computationally expensive. If the can-
didates evaluated are chosen carefully the additional computation can be
small. We have chosen a hybrid solution of connected components analysis
and vertical cuts to generate the candidate segmentation set. The average
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call to the recognizer in the system is roughly a factor of two of number of
digits in the image.

This is a first stab at this problem and can, with no doubt be improved.
We have identified that the majority of high scoring errors was due to mis-
classifications of the recognizer. Many of the segmentation errors are also
due to the recognizer. It is quite clear that we need classifiers with perfor-
mance exceeding approximately 95% correct at the single digits level.

We have chosen recognizing unconstrained digits as a first problem, be-
cause they are the easiest problem in their class. Our goal is to recognize
unconstrained alpha-numeric handwriting. The methods described in this
paper are dependent on various heuristic that are hard to optimize together.
It is not clear if they can be extended to more general problems.

We are currently exploring techniques that rely less on heuristics to
generate the cuts and are more strongly coupled to the recognizer during
training. These methods use a Maximum A Posteriori approach to reach
the best interpretation. Preliminary results of combining our new approach
with the one described above have shown remarkable improvement. The
raw error rate has gone down to 19% and the error at 40% reject is less than
1.5%.
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