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Abstract 

Objective: Research in seizure prediction from intracranial EEG has highlighted the usefulness of bivariate 

measures of brainwave synchronization. Spatio-temporal bivariate features are very high-dimensional and cannot be 

analyzed with conventional statistical methods. Hence, we propose state-of-the-art machine learning methods that 

handle high-dimensional inputs. 

Methods: We computed bivariate features of EEG synchronization (cross-correlation, nonlinear interdependence, 

dynamical entrainment or wavelet synchrony) on the 21-patient Freiburg dataset. Features from all channel pairs and 

frequencies were aggregated over consecutive time points, to form patterns. Patient-specific machine learning-based 

classifiers (support vector machines, logistic regression or convolutional neural networks) were trained to 

discriminate interictal from preictal patterns of features. In this explorative study, we evaluated out-of-sample 

seizure prediction performance, and compared each combination of feature type and classifier. 

Results: Among the evaluated methods, convolutional networks combined with wavelet coherence successfully 

predicted all ouf-of-sample seizures, without false alarms, on 15 patients, yielding 71% sensitivity and 0 false 

positives. 

Conclusions: Our best machine learning technique applied to spatio-temporal patterns of EEG synchronization 

outperformed previous seizure prediction methods on the Freiburg dataset. 

Significance: By learning spatio-temporal dynamics of EEG synchronization, pattern recognition could capture 

patient-specific seizure precursors. Further investigation on additional datasets should include the seizure prediction 

horizon. 
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1. Introduction 

Recent multi-center clinical studies showed evidence of premonitory symptoms in 6.2% of 500 patients with 

epilepsy (Schulze-Bonhage et al., 2006). Another interview-based study found that 50% of 562 patients felt “auras” 

before seizures (Rajna et al., 1997). Such clinical observations give an incentive to search for premonitory changes 

on EEG recordings from the brain, and to implement a device that would automatically forewarn the patient. 

However, and despite decades of research, research in seizure prediction is still qualified as a “long and winding 

road” (Mormann et al., 2007). 

 

Most current seizure prediction approaches (Arnhold et al., 1999; Iasemidis et al., 2005; Lehnertz and Litt, 2005; 

Lehnertz et al., 2007; Le Van Quyen et al., 2005; Litt and Echauz, 2002, Mormann et al., 2006, 2007) can be 

summarized into (1) extracting measurements from EEG over time and (2) classifying them into a preictal or 

interictal state. The ictal and postictal states are discarded from the classification, because the task is not to detect 

undergoing seizures, but eventually to warn the patient about future ones, so that the patient, the clinician, or an 

implanted device can act accordingly. 

 

The method described in this article follows a similar methodology: (1) feature extraction, followed by (2) binary 

classification of patterns of features into preictal or interictal states. Section 1.1 of the Introduction overviews 

existing techniques for feature extraction from EEG (1), while Methods section 2.2 and Appendix A detail specific 

features used in the proposed method.  

 

The breakthrough of our technique lies in the pattern recognition and machine learning-powered classification of 

features (2). The proposed pattern-based classification is described in Methods sections 2.3 through 2.5. As can be 

seen in Introduction section 1.2, the proposed method takes advantage of decade of research in image processing and 

vision, but is also a novelty in the field of seizure prediction. Moreover, Results section 3 shows that our method 

achieves superior seizure prediction results on the Freiburg EEG dataset (described in section 2.1). Finally, section 4 

discusses the limitations of the proposed method. 

 

1.1. Feature extraction from EEG 

Seizure prediction methods have in common an initial building block consisting of the extraction of EEG features. 

All EEG features are computed over a short time window of a few seconds to a few minutes. One can distinguish 

between univariate measures, computed on each EEG channel separately, and bivariate (or multivariate) measures, 

which quantify some relationship, such as synchronization, between two or more EEG channels. Although a 

plethora of univariate features has been investigated for seizure prediction (Esteller et al., 2005; Harrison et al., 

2005; Jerger et al., 2005; Jouny et al., 2005), none of them has succeeded in that task, as illustrated in an extensive 

study comparing most univariate and bivariate techniques (Mormann et al., 2005), which also confirmed the 

superiority of bivariate measurements for seizure prediction. 

 

In parallel to comparative study (Mormann et al., 2005), and despite the current lack of a complete neurological 

understanding of the preictal brain state, researchers increasingly hypothesize that brainwave synchronization 

patterns might differentiate interictal, preictal and ictal states (Le Van Quyen et al., 2003). From clinical 

observations on the synchronization of neural activity, it has been suggested that interictal phases correspond to 

moderate synchronization within the brain at large frequency bands, and that there is a preictal decrease in the beta 

range synchronization between the epileptic focus and other brain areas, followed by a subsequent hyper-

synchronization at the seizure onset. These considerations motivated our choice of bivariate EEG features. 

 

As described in Methods sections 2.2 and Appendix A, this article evaluates four kinds of EEG synchronization 

(bivariate) features: one simple linear feature called Maximum Cross-Correlation (Mormann et al., 2005; Appendix 

A.1) and three nonlinear features. The first and popular nonlinear measure is Nonlinear Interdependence, which 

measures the distance, in state-space, between time-delay embedded trajectories of two EEG channels (Arnhold et 

al., 1999; Mormann et al., 2005) (see Appendix A.2). The second measure, also called Dynamical Entrainment, is 

based on the measure of chaos in the EEG. It estimates from any two observed time-series, the difference of their 

largest Lyapunov exponents, i.e. the exponential rates of growth of an initial perturbation (see Appendix A.3). 

Finally, a third type of nonlinear bivariate measures that takes advantage of the frequency content of EEG signals is 

phase synchronization. First, two equivalent techniques can be employed to extract the frequency-specific phase of 
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EEG signal: bandpass filtering followed by Hilbert transform or Wavelet transform (Le Van Quyen et al., 2001). 

Then, statistics on the difference of phases between two channels (such as phase-locking synchrony) are computed 

for specific combinations of channels and frequencies (Le Van Quyen et al., 2005). 

 

1.2. Feature classification for seizure prediction 

Once univariate or bivariate, linear or nonlinear measurements are derived from EEG, the most common approach 

for seizure prediction is the simple binary classification of a single variable (Lehnertz et al., 2007; Mormann et al., 

2005). Their hypothesis is that there should be a preictal increase or decrease in the values of an EEG-derived 

feature. Statistical methods consist in an a posteriori and in-sample tuning of a binary classification threshold (e.g. 

pre-ictal vs. interictal) on that unique measure extracted from EEG. 

 

The usage of a simple binary threshold has limitations detailed in the Discussion section 4.2. Essentially, it does not 

allow using high-dimensional features. By contrast, machine learning theory (sometimes also called statistical 

learning theory) easily handles high-dimensional and spatio-temporal data, as illustrated in its countless applications 

such as video or sound recognition. 

 

Most importantly, machine learning provides both with a methodology for learning by example from data, and for 

quantifying the efficiency of the learning process (Vapnik, 1995). The available data set is divided into a training set 

(“in-sample”) and a testing set (“out-of-sample”). Training consists in iteratively adjusting the parameters of the 

machine in order to minimize the empirical error made on in-sample data, and a theoretical risk related to the 

complexity of the machine (e.g. number of adjustable parameters). The training set can be further subdivided into 

training and cross-validation subsets, so that training is stopped before over-fitting when the cross-validation error 

starts to increase.  

 

As a paramount example of machine learning algorithms, feed-forward Neural Networks (NN) can learn a mapping 

between multi-dimensional inputs and corresponding targets. The architecture of a neural network is an ensemble of 

interconnected processing units, organized in successive layers. Learning consists in tuning the connection weights 

by back-propagating the gradient of classification errors through the layers of the NN (Rumelhart et al., 1986). 

Convolutional networks are a further specialized architecture able to extract distortion-invariant patterns such as for 

handwriting recognition. One such convolutional network architecture, called LeNet5, is currently used in the 

verification of handwriting on most bank checks in the United States (LeCun et al., 1998a) and has been more 

recently shown to enable autonomous robot navigation from raw images coming from two (stereoscopic) cameras 

(LeCun et al., 2005). This sophisticated neural network successfully learnt a large collection of highly noisy visual 

patterns and was capable of avoiding obstacles in unknown terrain. 

 

Another machine learning algorithm used for multi-dimensional classification is called Support Vector Machines 

(SVM). SVMs first compute a metric between all training examples, called the kernel matrix, and then learn to 

associate the right target output to a given input, by solving a quadratic programming problem (Cortes and Vapnik, 

1995; Vapnik, 1995). 

 

Machine learning techniques have been applied, in a very limited scope, mostly to select subsets of features and 

corresponding EEG channels for further statistical classification, but rarely to the classification task itself. Examples 

of such algorithms for channel selection included Quadratic Programming (Iasemidis et al., 2005), K-means 

(Iasemidis et al., 2005; Le Van Quyen et al., 2005), and Genetic Optimization (D’Alessandro et al., 2003, 2005). An 

example of a more sophisticated machine learning procedure for seizure prediction (Petrossian et al., 2000) 

consisted in feeding raw EEG time series and their wavelet transform coefficients into a Recurrent Neural Network 

(RNN), i.e. a neural network that maintains a “memory” of previous inputs and thus learns temporal dependencies 

between consecutive samples. The RNN was trained to classify each EEG channel separately as being in an 

interictal or preictal state. That RNN however did not take advantage of bivariate measurements from EEG. Most 

importantly, the dataset was very short (minutes before a seizure) and the technique has not been validated on large 

case studies. 

 

Our article compares three types of machine learning classifiers: logistic regression, SVMs and convolutional 

networks, all described in Methods sections 2.4. Instead of relying on one-dimensional features, the classifiers were 

trained to handle high-dimensional patterns (detailed in section 2.3) and managed to select subsets of features 
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(channels and frequencies) during the learning process (see section 2.5). 

 

2. Methods 

Our entire seizure prediction methodology can be decomposed as following: selection of training and testing data, as 

well as EEG filtering (section 2.1), computation of bivariate features of EEG synchronization (section 2.2), 

aggregation of features into spatio-temporal, or spatio-temporal and frequency-based, patterns (section 2.3), machine 

learning-based optimization of a classifier that inputs patterns of bivariate features and outputs the preictal or 

interictal category (section 2.4) and retrospective sensitivity analysis to understand the importance of each EEG 

channel and  frequency band within the patterns of features (section 2.5). 

 

2.1. Data and preprocessing 

We developed and evaluated our seizure prediction methodology on the publicly available EEG database at the 

Epilepsy Center of the University Hospital of Freiburg, Germany (https://epilepsy.uni-freiburg.de/freiburg-seizure-

prediction-project/eeg-database/), containing invasive EEG recordings of 21 patients suffering from medically 

intractable focal epilepsy. Previous analysis of this dataset (Aschenbrenner-Scheibe et al., 1999; Maiwald et al., 

2004; Schelter et al., 2006 a,b; Schulze-Bonhage et al., 2006) yielded at best a seizure prediction performance of 

42% sensitivity and an average of 3 false positives per day. These EEG data had been acquired from intracranial 

grid-, strip-, and depth-electrodes at a 256 Hz sampling rate, and digitized to 16 bit by an analogue-to-digital 

converter. In the source dataset, a certified epileptologist had previously restricted the EEG dataset to 6 channels, 

from three focal electrodes (1-3) involved in early ictal activity, and three electrodes (4-6) not involved during 

seizure spread. 

 

Each of the patients’ EEG recordings from the Freiburg database contained between 2 and 6 seizures and at least 50 

min of pre-ictal data for most seizures, as well as approximately 24 hours of EEG-recordings without seizure 

activity and spanning the full wake-sleep cycle. We set apart preictal samples preceding the last 1 or 2 seizures 

(depending on that patient’s total number of seizures) and 33% of the interictal samples: these were testing (out-of-

sample) data. The remaining samples were training (in-sample) data. Further 10% or 20% of training data were 

randomly selected for cross-validation. The training procedure (section 2.4) would be stopped either after a fixed 

number of iterations, or we would use cross-validation data to select the best model (and stop the training procedure 

prematurely). In summary, we trained the classifiers on the earlier seizures and on wake-sleep interictal data, and 

evaluated these same classifiers on later seizures and on different wake-sleep interictal data. 

 

We further applied Infinite Impulse Response (IIR) elliptical filters, using code from EEGLab (Delorme and 

Makeig, 2004) to clean some artifacts: a 49-51Hz band-reject 12
th
-order filter to remove power line noise, a 120Hz 

cutoff low-pass 1
st
-order filter, and a 0.5Hz cutoff high-pass 5

th
-order filter to remove the dc component. All data 

samples were scaled on a per patient basis, to either zero mean and unit variance (for logistic regression and 

convolutional networks) or between -1 and 1 (for support vector machines). At this stage, let us denote xi(t) the time 

series representing the i-th channel of the preprocessed EEG. 

 

2.2. Extraction of bivariate features 

A bivariate feature is a measure of a certain relationship between two signals. Bivariate features presented in this 

section and used in this study have the following common points: 

(a) Bivariate features are computed on 5s windows (N=1280 samples at 256Hz) of any two EEG channels xa and xb. 

(b) For EEG data consisting of M channels, one computes features on 2)1( −× MM  pairs of channels (e.g. 15 

pairs for M=6 in the Freiburg EEG dataset).  

Some features are also specific to a frequency range.  

 

We investigated in our study 6 types of bivariate features known in the literature, and which we explain in details in 

Appendix A. The simplest feature was cross-correlation C, a linear measure of dependence between two signals 

(Mormann et al., 2005) that also allows fixed delays between two spatially distant EEG signals to accommodate 

potential signal propagation. The second feature was nonlinear interdependence S (Arnhold et al., 1999), which 

measures the distance in state-space between the trajectories of two EEG channels. The third feature was dynamical 
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entrainment DSTL (Iasemidis et al., 2005) i.e. the difference of short-term Lyapunov exponents, based on a common 

measure of the chaotic nature of a signal. Finally, the last three features that we investigated were based on phase 

synchrony (Le Van Quyen et al., 2001; Le Van Quyen et al., 2005). First, frequency-specific and time-dependent 

phase φa,f(t) and φb,f(t) were extracted from the two respective EEG signals xa(t) and xb(t) using Wavelet Transform. 

Then, three types of statistics on the difference of phases between two channels were made: phase-locking 

synchrony SPLV, entropy H of the phase difference and coherence Coh. 

 

2.3. Aggregation of bivariate features into spatio-temporal patterns 

We define in this article a pattern as a structured collection of features described in previous section. A pattern 

groups features along the spatial, time and frequency dimensions. A simplistic analogy is that a feature is like the 

color of a pixel at a specific location in an image. In this article, we formed 2D patterns by aggregating features from 

all 15 pairs of channels (across rows) and over several consecutive time frames (across columns). Specifically, we 

formed 1min or 5min-long patterns of 12 or 60 frames respectively. In the case of frequency-based features, we also 

stacked patterns, row-wise and from all frequency ranges into one pattern. The dimensionality of the feature patterns 

ranged from 180 (e.g. cross-correlation on 1min windows, Fig. 1), to 6300 (e.g. wavelet phase-locking synchrony on 

5min windows). As mentioned in the Results section 3.1, 5min-long patterns achieved superior results to 1min-long 

patterns, and the article therefore reports seizure prediction results on 5min-long patterns only. 

 

Throughout the article, we denote as yt a pattern at time t (i.e. a sample of bivariate features), and zt the associated 

label (-1 for preictal, 1 for interictal). yt can either be one long vector or a matrix indexed by time and by channel 

pair and frequency band. 

[Insert Figure 1] 

 

2.4. Machine learning classification of patterns of bivariate features 

Bivariate patterns yt described in previous sections and representing a “snapshot” of EEG synchronization around 

time t were input into a decision system that would classify them as preictal or interictal. The parameters of that 

classifier were learned on the training subset of the dataset using machine learning. Let us note zt the label of pattern 

yt (-1 for preictal, 1 for interictal) and tz  the output of the classifier. Although we used three different types of 

classifiers, with their respective machine learning algorithms, all training algorithms had in common minimizing, for 

every training sample yt, the error between output tz  and target zt. The error between the output and the target is one 

term of the loss function: we explain in section 2.5 the second term (regularization). Finally, and most importantly, 

test data were set apart during the training phase: in other words, we validated the performance of the classifiers on 

out-of-sample data. 

 
The first classifier that we tried was logistic regression, i.e. a linear classifier parameterized by weights w and bias b, 

and optimized by minimizing a loss function with stochastic gradient descent (Rumelhart et al., 1986; LeCun et al., 

1998a). In a nutshell, this linear classifier performs a dot product between pattern yt and weight vector w, and adds 

the bias term b (see Appendix B.1). In the loss function, an additional L1-norm penalty on the weight vector helps 

selecting a sparse subset of weights and enables feature selection (see sections 2.5 and 3.4). 

 

The second classifier that we tried was built on convolutional networks (LeCun et al., 1998a). Convolutional 

networks are trainable, multi-layer, non-linear systems that are specifically designed to extract and classify high-

dimensional patterns from images or multivariate time-series. They can be seen as multi-layer neural networks in 

which each layer is a bank of finite-impulse response filters followed by point-wise sigmoid squashing functions. 

One could make a parallel between convolutional networks and an extremely simplified model of the V1 visual 

cortex, because each layer processes locally inputs from the previous layer, and because this processing is replicated 

over the input pattern. All the layers are trained simultaneously using a version of the back-propagation learning 

algorithm. They can learn low-level features and high-level representations in an integrated manner. Their main 

advantage is that they can learn optimal time-invariant local feature detectors from input matrix yt (which is indexed 

by time) and thus build representations that are robust to time shifts of specific feature motifs. This technique has 

already been applied to raw EEG data (Mirowski et al., 2007).  

[Insert Figure 2] 
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We used a specific convolutional network architecture similar to LeNet5 (LeCun et al., 1998a) (Fig. 2) consisting in 

a stack of 5 layers of neural network connections (also called weight layers). Weight layers 1, 3 and 5 were 

convolutional layers, and layers 2 and 4 were mere subsampling layers. Each layer would compute a weighted sum 

over a “local” subset of inputs. Let p be the number of pairs of channels (15) times the number of frequency bands 

(1 or 7). Then, 12-frame patterns (i.e. 1min-long) were processed in the following way: the 1
st
 layer would perform 5 

different 5-point convolutions over the time dimension; the 3
rd
 layer would perform 5 different 3-point convolutions 

over time and p-point convolutions over all channels and frequency bands; and the 5
th
 layer was fully connected 

between all its inputs (i.e. the outputs the 4
th
 layer) and the 2 output nodes (one for “preictal” and one for 

“interictal”). The 2
nd
 and 4

th
 layer merely averaged two consecutive time points (i.e. subsampled in time). 60-frame 

patterns (i.e. 5min-long) were processed slightly differently: the 1
st
 layer would perform 5 different 13-point 

convolutions over the time dimension; and the 3
rd
 layer would perform 5 different 9-point convolutions over time 

and p-point convolutions over all channels and frequency bands. As mentioned in the Results section 3.1, 5min-long 

patterns achieved superior seizure prediction results to 1min-long patterns, and the latter 5min-long architecture is 

the one for which we report seizure prediction results. As a side remark, we chose to have 2 output nodes because it 

enabled an asymmetric learning that penalized more false positives (false preictal alarms) than false negatives 

(missed preictal alarms). 

 

Finally, we compared the two neural network architectures (logistic regression, linear, and convolutional networks, 

highly non-linear) with a third type of classifiers, called Support-Vector Machines (SVM) (Cortes and Vapnik, 

1995). SVM are pattern matching-based classifiers that compare any input pattern yt to a set of support vectors ys. 

We used in this study standard SVMs with Gaussian kernels, and optimized the Gaussian standard deviation hyper-

parameter γ and regularization hyper-parameter C selected by cross-validation over a grid of values (see Appendix 

B.2). SVMs were implemented using the LibSVM library (Chang and Lin, 2001).  

 

2.5. Feature selection 

Training algorithms for neural network classifiers such as logistic regression and convolutional networks enable to 

easily add a regularization term on the weights (parameters) w. Typically, regularization consists in minimizing the 

norm of vector w. Specifically, we added an L1-norm (sum of absolute values) regularization term to the loss 

function (Eq. 2) that is minimized during gradient descent. We typically used values of 0.001 for lambda. This L1 

term uniformly pulls the weights towards zero during gradient-based optimization. As a consequence, only a subset 

{wi} of these weights “survive”, and the final solution w* contains a minimal set of weights that simultaneously 

minimizes the error on the training dataset. This L1-norm weight selection is also called the “LASSO” algorithm 

(Tibshirani, 1996). We used it as a task-specific way to select features, as opposed to a task-agnostic selection of 

features prior to the training algorithm. In other words, the only non-zero (or non-negligible) features are the ones 

that specifically discriminate between interictal and preictal patterns of that given patient. 

 

After training the neural network, a sensitivity analysis on the inputs was performed to see which features were 

important for the discrimination. In the case of Logistic Regression, we simply looked at individual weights wi.  

For convolutional networks, we back-propagated the gradients obtained for each testing sample onto the inputs, and 

then summed the squares of these gradients on inputs. 

 

3. Results 

This section shows how high-dimensional spatio-temporal patterns of bivariate features allow for better separation 

between interictal and preictal recordings (section 3.1). We then report results obtained with machine learning-

trained classifiers:  for each patient, we could find at least one combination of methods that would predict all the test 

seizures of the given patient without false alarm; one specific combination (convolutional networks with wavelet 

coherence) worked for 15 patients out of 21 and achieved 71% sensitivity and 0 false positives (sections 3.2 and 

3.3). We explain how neural network-based classifiers enable a-posteriori selection of channels and frequency bands 

relevant for seizure prediction (section 3.4). Finally, we investigated whether there was a link between seizure 

prediction performance and the patient’s condition (section 3.5). 

3.1. Increased separability of patterns instead of individual features 

First, we tried to compare the discriminative power of patterns of features as opposed to individual features. As 
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defined in Methods section 2.3, a pattern aggregates features across successive time frames and over all pairs of 

channels. We believed that there was no need to prove the utility of considering information from all pairs of EEG 

channels, instead of taking into account only one single pair of channels or just an average value across all channels, 

as in (Mormann et al., 2005). An image processing analogy of the latter methods would be to try to detect faces on 

an image by looking at the average color of all the pixels in the image or by looking at the color of a few pixels only. 

By consequence, we limited our analysis to a comparison between patterns across channels vs. patterns across time 

and channels, and this way we assessed the benefit of adding the time dimension to patterns. 

 

We performed a Principal Component Analysis (PCA) of patterns of bivariate features with different lengths of 

aggregation across time. Namely, we investigated purely spatial patterns (1 single time-frame, where features had 

been computed on a 5s window), short spatio-temporal patterns (12 time-frames covering 1min) and long spatio-

temporal patterns (60 time-frames covering 5min). To account for the variability between patients, we performed 

this PCA individually for each patient and for each type of feature (cross-correlation, nonlinear interdependence, 

difference of Lyapunov exponents, phase-locking value, wavelet coherence and entropy of phase difference). We 

visually inspected the projections of all the interictal, preictal and ictal/postictal patterns along their first two 

principal components. These top PCA components corresponded to the directions of highest variability of the 

feature values. We observed that the 2D projections of preictal and interictal 1-frame patterns overlapped 

considerably, more than the projections of 12-frame or 60-frame patterns. An illustration of this phenomenon is 

given on Figure 3, which shows the PCA projection of patterns of phase-locking values for patient 1: whereas it is 

difficult to see a boundary between the interictal and preictal clusters of 1-frame patterns (without time aggregation), 

the boundary becomes more apparent for time-aggregated 12-frame patterns, and even more apparent for 60-frame 

patterns. 

[Insert Figure 3] 

 

This intuitive observation about spatio-temporal patterns was later empirically confirmed, since seizure prediction 

performance was superior for 5min-long patterns than for 1min-long patterns. More precisely, 1min-long patterns of 

features could predict seizures without false positives only in 8 patients out of 21 (i.e. that there was at least one 

such combination of 1min-long pattern feature and classifier for each patient), and the best combination (1min-long 

pattern of wavelet coherence with SVM classifier) predicted seizures perfectly only in 4 patients out of 21. For this 

reason, the next section reports only results obtained with 5min-long patterns. 

 

3.2. Classification results 

As introduced earlier, we investigated in this seizure prediction study different combinations of one type of feature 

patterns (cross-correlation C, nonlinear interdependence S, difference of Lyapunov exponents DSTL, phase-locking 

synchrony SPLV, entropy of phase difference H and distribution or wavelet coherence Coh) and one type of 

classifier (Logistic Regression log reg, convolutional networks conv-net or SVM). For each patient, there were 18 

possible combinations of 6 types of features and 3 types of classifiers; however, because the DSTL feature did not 

yield good results with SVM classifiers, we discontinued evaluating the DSTL feature with the two other classifiers, 

and for this reason report results for only 16 combinations in Tables 1 and 4. 

 

Because the goal of seizure prediction is the epileptic patient’s quality of life, we report the following classification 

performance results in terms of false alarms per hour and sensitivity, i.e. number of seizures where at least one 

preictal sample is classified as such. 

 

For each patient, at least one of our combined methods could predict all the test seizures, on average 60 min before 

the onset and with no false alarm. On the other hand, not all combinations of feature and classifier yielded perfect 

prediction: to the contrary, many combinations of feature and classifier failed the seizure prediction task either 

because there were more than 0.25 false positives per hour (i.e. more than 3 false positives per day) or because the 

seizure was not predicted. The main limitation of our patient-specific multiple-method approach lies in the lack of a 

criterion for choosing the best combination of methods for each patient, other than cross-validating each method on 

long EEG recordings.  

 

The best results were obtained using patterns of wavelet coherence Coh features classified using convolutional 

networks (zero false positive and all test seizures predicted on 15 patients out of 21, i.e. 71% sensitivity), then 

patterns of phase-locking synchrony SPLV using a similar classifier (13 patients out of 21, i.e. 62% sensitivity). Both 
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Coh patterns classified using logistic regression log-reg, as well as patterns of phase difference entropy H classified 

using conv-net predicted all test seizures without false positive on 11 patients (52% sensitivity). Finally, SPLV 

classified using log-reg and nonlinear interdependence S classified using conv-net worked without false alarm on 10 

patients (48% sensitivity). Table 1 summarizes the above sensitivity results. Results on our best classifier and 

features outperform previously published 42% sensitivity and 3 false positives per day on the Freiburg dataset. 

 

Irrespective of the EEG feature, convolutional networks achieved a zero-false alarm seizure prediction on 20 

patients out of 21, compared to 11 only using SVM (however, good results were obtained for patient 5, contrary to 

convolutional networks). Surprisingly, the linear classification boundary of logistic regression enabled perfect 

seizure prediction on 14 patients. 

 

Tables 1-4 recapitulate how many patients had “perfect prediction” of their test seizures, i.e. zero-false alarm during 

interictal phases and at least one alarm during pre-ictal phases, given a combination of feature and classifier (see 

Table 1), as well as given each type of feature pattern (see Table 2) or classifier (see Table 3). Table 4, organized by 

patient, feature type and classifier, displays the frequency of false alarm per hour, and how many minutes ahead 

were the one or two test seizures predicted. Figure 4 shows the times of preictal alarms for each patient, achieved 

using the best patient-specific method.  

[Insert Figure 4] 

 

It has to be noted that both for convolutional networks and logistic regression, 100% of training samples (patterns of 

bivariate features) were correctly classified. The only exceptions were patients 17, 19 and 21, where we allowed a 

larger penalty for false positives than for false negatives. On these three patients we obtained only some false 

negatives and no false positive on the training dataset, while managing to predict all train seizures. 

 

We did not evaluate the classification results obtained by a combination of all 6 types of features because of two 

reasons. First, combining a large number of features would yield very high-dimensional inputs. Secondly, the 

computational cost of the features could make it impractical to compute many types of features at once in a runtime 

setting (see section 4.3). 

 

3.3. Verification of EEG for artifacts 

Analysis of Table 4 reveals that for a given patient and a given test seizure, most feature-classifier combinations 

share the same time of first preictal alarm. The simple justification is that most of these time-aligned first preictal 

alarms also correspond to the beginning of the preictal recording. Going back to the original raw EEG, and with the 

help of a trained epileptologist, we performed additional sanity checks. First, we verified that there were no 

recording artifacts that would have helped differentiate interictal from preictal EEG, and second, we verified that 

EEG segments corresponding to the pattern at the time of the first preictal alarm were not artifacts either. Through 

visual inspection, we compared several EEG segments: at the time of the first preictal alarm, right before the seizure 

and a few randomly chosen 5min segments of normal interictal EEG.  

 

We noticed that there seemed to be high frequency artifacts on preictal recordings for patients 4 and 7, and that no 

such artifacts were visible on interictal recordings. However, for all other patients, short artifacts were 

indiscriminately present on both preictal and interictal segments. Moreover, we observed what appeared to be sub-

clinical events or even seizures on the preictal EEG of patients 3, 4, 6, and 16: we hypothesize that these sub-clinical 

events might have been (correctly) classified by our system as preictal alarms. 

 

3.4. Feature selection results 

The additional functionality of our seizure prediction algorithm is the feature selection mechanism detailed in 

Methods section 2.5. This feature selection could help narrowing down the set of input bivariate features. When 

learning the parameters of the logistic regression or convolutional network classifiers (but not the support vector 

machine), weight parameters are driven to zero thanks to L1-norm regularization, and the few remaining non-zero 

parameters are those that enable successful classification on the training, cross-validation and testing datasets. We 

performed a sensitivity analysis on individual classifier inputs and identified which couples of EEG channels were 

discriminative between preictal and interictal patterns. We observed that out of the 15 pairs of channels, generally 

only 3 or 4 pairs were actually necessary for seizure prediction when using non-frequency-based features (cross-
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correlation C and nonlinear interdependence S). Similarly, only a subset of frequency bands was discriminatory for 

seizure prediction classification when using wavelet-analysis based measures of synchrony (phase-locking SPLV, 

coherence Coh or entropy H). Interestingly, that subset always contained high frequency synchronization features 

(see Figure 5). 

[Insert Figure 5] 

 

3.5. Prediction results vs. patient condition 

Finally, we investigated whether the epileptic patient’s condition can impact the seizure prediction task, and 

compared the number of combinations of feature and classifier that achieved perfect seizure prediction performance, 

versus several characteristics of the patients. These characteristics, summarized for the Freiburg dataset in table 2 of 

(Maiwald et al., 2004), included the Engel classification of epilepsy surgery outcome (I through IV), the types of 

epilepsy (simple partial, complex partial, or generalized tonic-clonic) and the localization of the epileptogenic focus 

(hippocampal or neo-cortical). Like in the rest of our study, we defined perfect seizure prediction as having no false 

positives and all test seizures predicted for a given patient. We did not observe any significant correlation between 

the patient condition and the number of successful feature-classifier combinations for that same patient. For 

instance, only 3 combinations of feature and classifier worked flawlessly for patient 6, who was seizure-free after 

surgery, whereas most combinations of feature and classifier worked perfectly for patients 2 and 12, whose 

condition did not improve much or even worsened after surgery. Patients 3 and 10 presented the opposite case. 

Therefore, we cannot draft at that stage of our investigations any hypothesis, neither about the applicability of our 

seizure prediction method to specific cases of epilepsy, or about how well it predicts the surgery outcome. It seems 

that albeit being patient-specific, our method is not condition-specific, and should be applied individually to predict 

seizures in various types of localized epilepsies. 

 

4. Discussion 

As detailed in the Results section, this article introduced a new approach to seizure prediction. We presented 

machine learning techniques that outperform previous seizure prediction methods, as our best method achieved 71% 

sensitivity and 0 false positives on the Freiburg dataset. Such results were enabled by our pattern recognition 

approach applied to spatio-temporal patterns of EEG synchronization features. The following section discusses the 

uniqueness and advantages of pattern recognition approaches to seizure prediction, running-time considerations; we 

also explain the need for further validation on other datasets, and for an alternative to our current binary 

classification approach. 

 

4.1. Choice of linear or nonlinear features 

An important task for seizure prediction is the choice of type of EEG features. Generally, among bivariate (or 

multivariate) features, one can make two distinct assumptions about the nature of the model underlying the observed 

EEG; indeed, EEG can either be viewed as a realization of a noise-driven linear process, or as an observation of a 

non-linear, possibly chaotic, dynamical system (Stam, 2005). The linear or nonlinear hypotheses imply different sets 

of mathematical tools and measurements to quantify EEG. 

 

On one hand, linear methods for EEG analysis assume that over short durations of time, the EEG time series are 

generated by a system of linear equations with superimposed observation noise. Although this hypothesis is 

restrictive, maximum cross-correlation (Mormann et al., 2005), was shown to achieve quite a good discrimination 

performance between interictal and preictal stages. 

 

The other assumption about the EEG signal is its nonlinearity. Although deterministic by nature, systems of 

nonlinear differential equations can generate highly complex or even unpredictable (“chaotic”) time series. The 

trajectory or “attractor” of the generated sequence of numbers can be extremely sensitive to initial conditions: any 

perturbation in those conditions can grow at an exponential rate along the attractor. Nonlinear, chaotic, dynamical 

systems have become a plausible model for many complex biological observations, including EEG waveforms 

(Stam, 2005). Even if not all the variables of a chaotic system are observed, one can theoretically reconstruct the 

original chaotic attractor, thanks to time-delay embedding of the time series of the limited subset of observed 

variables, assuming the right embedding dimension and time delay (Takens, 1981). Similarly, although one cannot 

know all the variables behind the chaotic dynamical system of the neuronal networks of the brain, one can try to 
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reconstruct, in the state-space, attractors from time-delay embedded observed EEG. 

 

As described in Results section 3.2, this study seems to discard the difference of Lyapunov exponents, and tends to 

favor nonlinear interdependence and wavelet-analysis-based statistics of synchrony. From the analysis of seizure 

prediction results on 21 patients, there was however no specific EEG feature that would work for every patient. 

Moreover, the superiority of nonlinear features over linear features could not be demonstrated in other comparative 

studies (Mormann et al., 2005). 

 

4.2. Comparison with existing threshold-based seizure prediction methods 

Most current seizure prediction techniques resort to a simple binary threshold on a unique EEG feature. Such an 

approach has two major limitations. First, in order to ensure the predictability, and in absence of testing data, binary 

thresholds require validation using the Seizure Time Surrogates method (Andrzejak et al., 2005). Besides, simple 

statistical classification not only uses simplistic linear decision boundaries, but also requires reducing the number of 

variables. A typical shortcoming of an ill-designed binary classification algorithm is illustrated in (Jerger et al., 

2005). Hilbert-based phase-locking synchrony is computed for all frequencies without prior band-pass filtering, and 

cross-correlation is computed for zero delay only. Bivariate measurements from several channels are collapsed to 

single values. Finally, the final decision boundary is a simple line in a 2D space covered by the two bivariate 

measurements. Unsurprisingly, the seizure prediction performance of (Jerger et al., 2005) is very weak. We believe 

that the explanation for such unsatisfying results is that relevant seizure-discriminative information has been lost as 

the dimensionality of the features has been reduced to two. 

 

Let us now make a crude analogy between the feature derived from one or two EEG signals around time t, and the 

value of a “pixel” in a “movie” at time t. Most current seizure prediction methods look at “individual pixels” of the 

EEG-based feature “image” instead of looking at the “full picture”, i.e. the relationship between the “pixels” within 

that “image”; moreover they forego the dynamics of that “movie”, i.e. do not try to capture how features change 

over time. By contrast, our method learns to recognize patterns of EEG features. 

 

4.3. Running-time considerations 

The patent-pending system described in this article (Mirowski et al., patent application filed in 2009) does not 

require extensive computational resources. Although our seizure prediction method is still under evaluation and 

refinement, we consider in this section whether it could be implemented as real-time dedicated software on an 

embedded computer connected to the patient’s intracranial EEG acquisition system. 

 

The whole software process, from raw numerical EEG to the seizure prediction alarm can be decomposed in 3 

stages: EEG preprocessing, feature computation and pattern classification. The first stage (EEG preprocessing) is 

implemented by 4 standard Infinite Impulse Response (IIR) filters that have negligible runtime even in real-time 

signal processing. The third stage (pattern classification) is done only every minute or every 5 minutes (depending 

on the pattern size) and corresponds to a few matrix-vector multiplications and simple floating-point numerical 

operations (addition, multiplication, exponential, logarithm), involving vectors with a few thousand dimensions. The 

most computationally expensive part is the training (parameter fitting) of the classifier, but it is done offline and thus 

does not affect the runtime. The second stage (feature computation from EEG) is also relatively fast: it takes in the 

order of seconds to process a 5 minute-long window of 6-channel EEG and extract features such as wavelet 

analysis-based synchrony (SPLV, Coh or H), nonlinear interdependence S or cross-correlation C. However, since the 

5min patterns are not overlapping, stage 2 is only repeated every minute or 5 minutes (like stage 3). It has to be 

noted that this running time analysis was done on a software prototype that could be further optimized for speed. 

 

The software for computing features from EEG was implemented in Matlab
TM
 and can be run under its free open-

source counterpart, Octave
TM
. Support vector machine classification was performed using LibSVM

TM
 (Chang and 

Lin, 2001) and its Matlab/Octave interface. Convolutional networks and logistic regression were implemented in 

Lush
TM
, an open-source programming environment (Bottou and LeCun, 2002) with extensive machine learning 

libraries. 

 

4.4. Overcoming high number of EEG channels through feature selection 
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In addition to real-time capabilities during runtime, the training phase of the classifier has an additional benefit. Our 

seizure prediction method enables further feature selection through sensitivity analysis, namely the discovery of 

subsets of channels (and if relevant, frequencies of analysis), that have a strong discriminative power for the preictal 

versus interictal classification task. 

 

This capability could help the system cope with a high number of EEG channels. Indeed, the number of bivariate 

features grows quadratically with the number of channels M, and this quadratic dependence on the number of EEG 

channels becomes problematic when EEG recordings contain many channels, e.g. one or two 64-channel grids with 

additional strip electrodes. This limitation might slow down both the machine learning (training) and even the 

runtime (testing) phases. Through sensitivity analysis, one could narrow down the subset of EEG channels necessary 

for a good seizure prediction performance. One could envision the following approach: first, long and slow training 

and evaluation phases using all the EEG channels, followed by channel selection with respect to their discriminative 

power, and a second, faster, training phase, with, as end product, a seizure prediction classifier running on a 

restricted number of EEG channels. The main advantage of this approach is that the channel selection is done a 

posteriori with respect to the seizure prediction performance, and not a priori as in previous studies (D’Alessandro et 

al., 2003; Le Van Quyen et al., 2005). In our method, the classifier decides by itself which subset of channels is the 

most appropriate. 

 

4.5. Statistical validity 

One of the recommended validation methods for seizure prediction algorithms is Seizure Time Surrogates (STS) 

(Andrzejak et al., 2005). As stated in the introduction, STS is a necessary validation step required by most current 

statistical seizure prediction methods, which use all available data to find the boundary thresholds (in-sample 

optimization using the ROC curve) without proper out-of-sample testing. STS consists in repeatedly scrambling the 

preictal and interictal labels and checking that the subsequent fake decision boundaries are statistically different 

from the true decision boundary. 

 

Such surrogate methods are however virtually unknown in the abundant machine learning literature and its countless 

applications, because the validation of machine learning algorithms relies instead on the Statistical Learning Theory 

(Vapnik, 1995). The latter consists in regularizing the parameters of the classifier (as described in section 2.5), and 

in separating the dataset into a training and cross-validation set for parameter optimization, and a testing set that is 

unseen during the optimization phase (as described in details in section 2.1). 

 

On one hand, the use of a carefully designed separate and unseen testing set verifies that the classifier works well in 

the general case, within the limits of the testing dataset. Given the long time required to train a machine learning 

classifier, such an approach is less computationally expensive than surrogate methods. 

 

On the other hand, the regularization permits to choose, among the infinity of configurations of parameter values 

(e.g. the “synaptic” connection weights of a convolutional network or the matrix of logistic regression), the 

“simplest” one, generally satisfying a criterion such as choosing the feasible parameter vector with the smallest 

norm. The regularized classifier does not overfit the training dataset (e.g. it does not learn the training set patterns 

“by heart”) but has instead good generalization properties, i.e. a low theoretical error on unseen testing set patterns. 

Moreover, regularization enables to cope with datasets where the number of inputs is greater than the number of 

training instances. This is for instance the case with machine-learning based classification of biological data, where 

very few micro-array measurements (each micro-array being a single instance in the learning dataset) contain tens of 

thousands of genes or protein expression levels. 

 

Nevertheless, let us devise the following combinatorial verification of the results. Since our study focused on non-

overlapping 5min-long patterns, and since our patient-specific predictors would ignore the time stamp of each 

pattern, we consider a random predictor that gives independent predictions every 5 minutes on one patient’s data, 

and emits a preictal alarm with probability p. Each patient’s recording consists of at least 24h of interictal data (out 

of which, at least 8h are set apart for testing), which contain, respectively, at least ni=288 or ni=96 patterns, and m 

preictal recordings of at most 2h each (out of which, one or two are set apart for testing), with at most np=24 patterns 

per preictal recording. Using binomial distributions, we can compute the probability: ),;0()( pnfpA i=  of not 

emitting any alarm during the interictal phase, as well as the probability of emitting at least one alarm before each 
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seizure: ),;0(1)( pnfpB p−= . The probability of predicting each seizure of a patient, without false alarm, is a 

function of the predictor’s p: 
mpBpApC )()()( = .  

 

After maximization with respect to the random predictor “firing rate” p, the optimal random predictor could predict, 

without false alarm during the 8h of out-of-sample interictal recording, one test seizure with over 8% probability and 

two test seizures with over 2% probability. In our study, we evaluated 16 different combinations of features and 

classifiers. If one tried 16 different random predictors for a given patient, and using again binomial distributions, the 

expected number of successful predictions would be computed as 1.3 for one test seizure, and 0.4 for two test 

seizures. Considering that the random predictor also needs to correctly classify patterns from the training and cross-

validation dataset, in other words to correctly predict the entire patient’s dataset (this was the case of the successful 

classifiers reported in Table 1), then, by a similar argument, this expected number of successful predictions goes 

down from 0.05 for a 2-seizures dataset to 10
-4
 for a 6-seizures dataset. 

 

Although the above combinatorial analysis only gives an upper bound on the number of “successful” random 

predictors for a given patient, it motivates a critical look at the results reported in Table 4. Specifically, seizure 

prediction results obtained for certain patients where only 1 or 2 classifiers (out of 16) succeeded in predicting 

without false alarm should be considered with reserve (such is the case for patients 13, 17, 19 and 21). 

 

4.6. Limitations of binary classification for seizure prediction 

A second limitation of our method lies in our binary classification approach. When attempting seizure prediction, 

binary classification is both a simplification and an additional challenge for training the classifier. In our case, 2-

hour-long preictal periods imply a 2-hour prediction horizon, which naturally drives the sensitivity up. At the same 

time, the classifier is forced to consider patterns as remote as 2 hours prior to a seizure as “preictal”, whereas there 

might be no difference between such a pattern and an interictal pattern.  

 

For this reason, we suggest, as further refinements of our method, to replace the binary classification by regression. 

For instance, one could regress a function of the inverse time to the seizure, taking a value of 0 away from a seizure 

then continuously increasing up to a value of 1 just before the seizure. Such an approach would naturally integrate a 

seizure prediction horizon and could be considered a variation of the Seizure Prediction Characteristic (Winterhalder 

et al, 2004) formulated into a machine learning problem. 

 

4.7. Importance of long, continuous EEG recordings 

As suggested in the above discussion about testing datasets, one could see a third potential limitation of the EEG 

Freiburg database: indeed, while it provides, for each patient, with at least 24 hours of interictal and a few hours of 

preictal, ictal and postictal recording, it does not cover the whole duration of the patient monitoring, and there are 

sometimes gaps of several days between the preictal segments and the interictal segments (e.g. this is the case for 

patient 12). One could therefore argue that what has been picked by our EEG classification algorithm was not a 

preictal vs. interictal signal, but a large time-scale physiological, medical or acquisition artifact. However, there are 

also patients where preictal and interictal segments are interleaved. An example is patient 8, where one continuous 

EEG recording spans a long interictal segment and then a preictal segment, including the transition from interictal to 

preictal. As illustrated on Figure 6, our algorithm succeeded in raising several preictal alarms before the test seizure, 

without emitting any false alarms.  

 

Unfortunately, no information about the patient’s circadian variations, level of medication, or state of vigilance is 

available in the 21-patient Freiburg dataset; it is therefore necessary for our method to be further validated on 

different datasets. While our algorithm passed certain sanity checks (e.g. patient 8 in the Freiburg dataset), we 

reiterate the guideline (Lehnertz et al., 2007) for seizure prediction studies, which stipulates that datasets need to 

contain long, continuous and uninterrupted EEG recordings so that one can prove that a seizure prediction algorithm 

works round the clock. 
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Appendix A. Bivariate features computed on the EEG 

A.1. Maximal cross-correlation 

Cross-correlation (C) values Ci,j(τ) between pairs (xi,xj) of EEG channels xi(t) and xj(t) are computed at delays τ 

ranging from -0.5s to 0.5s, in order to account for the propagation and processing time of brainwaves, and only the 

maximal value of such cross-correlation values is retained (Mormann et al., 2005), as in: 
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and N is the number of time points within the analysis window (N=1024 in this study). 

 

A.2. Nonlinear interdependence 

Nonlinear interdependence (S) is a bivariate feature that measures the Euclidian distance, in reconstructed state-

space, between trajectories described by two EEG channels xa(t) and xb(t) (Arnhold et al, 1999).  

First, each EEG channel x(t) is time delay-embedded into a local trajectory x(t) (Stam, 2005), using delay τ=6 

(approximately 23ms) and embedding dimension d=10, as suggested in (Arnhold et al., 1999; Mormann et al., 

2005):  

(A2) { })(),(,),)1(()( txtxdtxt ττ −−−= Kx . 

After time-delay embedding of EEG waveforms into respective sequences of vectors xa(t) and xb(t), one computes a 

non-symmetric statistic S(xi|xj): 
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where the distance of xa(t) to its K nearest neighbors in state space is defined as (A3) and  the distance of xa(t) to the 

K nearest neighbors of xb(t) in state space is defined as (A4): 
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where: 

(A5) { }aKaa ttt ,,, 21 K  are the time indices of the K nearest neighbors of xa(t) and 

(A6) { }bKbb ttt ,,, 21 K  are the time indices of the K nearest neighbors of xb(t). 

In this research, K=5. The nonlinear interdependence feature is a symmetric measure: 
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A.3. Difference of short-term Lyapunov exponents 

The difference of short-term Lyapunov exponents (DSTL), also called dynamical entrainment, is based on chaos 
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theory (Takens, 1981). First, one estimates the largest short-time Lyapunov coefficients STLmax on each EEG 

channel x(t), by using moving windows on time-delay embedded time-series x(t). STLmax is a measure of the average 

exponential rates of growth of perturbations δx(t) (Winterhalder et al., 2003; Iasemidis et al., 1999):  
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where ∆t is the time after which the perturbation growth is measured. Positive values of the largest Lyapunov 

exponent are an indication of a chaotic system, and this exponent increases with the unpredictability. In this 

research, where EEG is sampled at 256Hz, time delay is τ=6 samples or 20ms, embedding dimension is d=7 and 

evolution time ∆t=12 samples or 47ms, as suggested in (Iasemidis et al., 1999, 2005). The bivariate feature is the 

difference of STLmax values between any two channels: 

(A9) DSTLa,b= |STLmax (xa)- STLmax (xb)|. 

 

A.4. Wavelet-based measures of synchrony 

Three additional frequency-specific features are investigated in this study, based on wavelet analysis measures of 

synchrony (Le Van Quyen et al., 2001, 2005). First, frequency-specific and time-dependent phase φi,f(t) and φj,f(t) 

are extracted from the two respective EEG signals xi(t) and xj(t) using wavelet transform. Then, three types of 

statistics on these differences of phase are computed: phase-locking synchrony SPLV (Eq. A10), entropy H of the 

phase difference (Eq. A11) and coherence Coh. For instance, phase-locking synchrony SPLV at frequency f is: 
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where ]))()(Pr[( ,, mfafam ttp Φ∈−= ϕϕ  is the probability that the phase difference falls in bin m and M is the 

total number of bins. 

Synchrony is computed and averaged in 7 different frequency bands corresponding to EEG rhythms: delta (below 

4Hz), theta (4-7Hz), alpha (7-13Hz), low beta (13-15Hz), high beta (14-30Hz), low gamma (30-45Hz) and high 

gamma (65-120Hz), given that the EEG recordings used in this study is sampled at 256Hz. Using 7 different 

frequency bands increased the dimensionality of 60-frame, 15-pair synchronization patterns from 900 to 6300 

elements. 

 

Appendix B. Bivariate features computed on the EEG 

B.1. Logistic regression 

Logistic regression is a fundamental algorithm for training linear classifiers. The classifier is parameterized by 

weights w and bias b (Eq. B1), and optimized by minimizing loss function (Eg. B2). In a nutshell, this classifier 

performs a dot product between pattern yt and weight vector w, and adds the bias term b. The positive or negative 

sign of the result (Eg. B1) decides whether pattern yt is interictal or preictal. By consequence, this algorithm can be 

qualified as a linear classifier: indeed, each feature yt,i of the pattern is associated its own weight wi and the 

dependency is linear. Weights w and bias b are adjusted during the learning phase, through stochastic gradient 

descent (Rumelhart et al., 1986; LeCun et al., 1998a). 
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B.2. Support Vector Machines with Gaussian kernels 

Support-Vector Machines (SVM) (Cortes and Vapnik, 1995) are pattern matching-based classifiers that compare 

any input pattern yt to a set of support vectors ys. Support vectors are a subset of the training dataset and are chosen 

during the training phase. The function used to compare two patterns yt and ys is called the kernel function K(yt, ys) 

(Eq. B3). The decision function (Eq. B4) is a weighted combination of the kernel functions. We used in this study 

SVMs with Gaussian kernels (Eq. B3). The set S of support vectors ys, the Lagrange coefficients α and bias b were 
optimized using Quadratic Programming. Gaussian standard deviation parameter γ and regularization parameter 

were selected by cross-validation over a grid of values. The whole classifier and training algorithm was 

implemented using the LibSVM library (Chang and Lin, 2001).  
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Figure 1. Examples of two 1-minute EEG recordings (upper panels) and corresponding patterns of cross-correlation 

features (lower panels) for interictal (left panels) and preictal (right panels) recordings from patient 012. EEG was 

acquired on M=6 channels. Cross-correlation features were computed on 5s windows and on p=M×(M-1)/2=15 pairs 

of channels. Each pattern contains 12 frames of bivariate features (1min). Please note that channel TLB3 shows a 

strong, time-limited artifact; however, the patterns of features that we use for classification are less sensitive to 

single time-limited artifacts than to longer duration or repeated phenomena. 
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Figure 2. Convolutional network used for the classification of patterns of bivariate features containing 60 

consecutive frames (5min) of p simultaneous features. Convolutional networks are a deep neural network 

architecture with a small number of parameters (weights) that are replicated over large patterns. Convolutional 

networks behave like successive arrays of small convolution filters. Inputs to hidden layers 1, 3 and 5 result from 

convolutions and inputs to hidden layers 2 and 4 are result from subsampling. Computations done between hidden 

layer 5 and the output layer of the convolutional networks correspond to a low-dimensional linear classifier. Thanks 

to alternated convolutional and subsampling layers, filters on the first hidden layer cover small areas of the input 

pattern, while filters on layers 3 and 5 cover increasingly larger areas of the original input pattern. For the specific 

problem of seizure prediction, convolutions are done only across time, with the exception of layer 3, which 

convolves input from all pairs of channels and all frequencies. Layer 1 can be seen as a simple short time pattern 

extractor, while layers 3 and 5 perform highly nonlinear spatio-temporal pattern recognition. For M=6 EEG 

channels, p=M×(M-1)/2=15 for non-frequency-based features and p= M×(M-1)/2×7=105 for wavelet synchrony-

based features computed on 7 frequency bands. 
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Figure 3. 2D projections of all the interictal, preictal and ictal patterns for patient 001, into the subspace defined by 

their first 2 principal components. Principal Component Analysis (PCA) was performed on a) 1-frame (5s), b) 12-

frame (1min) and c) 60-frame (5min) patterns of wavelet synchrony SPLV features. Patterns a) are vectors 

containing 15×7=105 elements (15 pairs of channels times 7 frequency bands). Patterns b) are (15×7)×12 matrices 

containing 1260 elements. Patterns c) are (15×7)×60 matrices containing 6300 elements. As the duration (number of 

frames) of patterns increases, the separation between the preictal and interictal patterns becomes more apparent; this 

explains why a simple linear classifier (logistic regression) obtained good seizure prediction results on 60-frame 

patterns. 
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Figure 4. Best results obtained of the Freiburg dataset. For each patient, the figure shows the total duration of 

preictal EEG recordings (light gray) before each test seizure, and the times of preictal alarms. Some patients had one 

seizure used for test, other patients two, depending on the total number of seizures available for that patient in the 

dataset. The type of bivariate features and classifier are indicated on the left. 
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Figure 5. Sensitivity analysis for patient 012 (top panel a) and patient 008 (bottom panel b). Both images represent 

the input sensitivity of convolutional networks performed on 5min patterns of nonlinear interdependence (a) and 

wavelet coherence (b) respectively. Wavelet coherence in (b) is the only frequency-specific feature. Classifier (a) 

appears sensitive to interdependence features measure between two extrafocal EEG channels TLB2 and TLB3, 

whereas classifier (b) appears sensitive mostly to synchronization features in the high gamma range and in the alpha 

range. 
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Figure 6. Detail of the performance of the seizure prediction system on patient 8, on a test dataset comprising a 

segment of EEG going from December 8, 11:20 AM through December 9, 5:51 AM. Only the segment after 23:51 

PM is shown. The classifier was a convolutional network, and the 5min-long patterns consisted of wavelet 

coherence features. Dark grey boxes show successful predictions for each pattern (true negatives when the pattern is 

interictal and true positives when the pattern is preictal). Light gray boxes show false negatives (missed preictal 

alarms). There were no false positives/alarms. 
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DSTL

log reg conv net svm log reg conv net svm svm log regconv net svm log reg conv net svm log regconv net svm

4 9 4 3 10 5 1 10 13 7 9 11 7 11 15 8
19% 43% 19% 14% 48% 24% 5% 48% 62% 33% 43% 52% 33% 52% 71% 38%

CohCPerfect 

seizure 

prediction 
(test set)

S SPLV H

Table 1. Number of patients with perfect seizure prediction resuts (no false positives, all seizures predicted) on the 

test dataset, for each combination of feature type and classifier. 

 

C S DSTL SPLV H Coh

11 19 2 14 11 13

Perfect 

seizure 

prediction 

(test set)

Type of bivariate features
No frequency information Frequency-based

 
Table 2. Number of patients with perfect seizure prediction results on the test dataset, as a function of the type of 

EEG feature. 

 

log reg conv net svm

14 20 11

Type of classifierPerfect seizure 

prediction (test set)

 
Table 3. Number of patients with perfect seizure prediction results on the test dataset, as a function of the type of 

classifier. 
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pat 1 pat 2 pat 3 pat 4 pat 5 pat 6 pat 7 pat 8 pat 9 pat 10 pat 11
feature classifier fpr ts1 fpr ts1 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 fpr ts1 fpr ts1 fpr ts1 ts2 fpr ts1 ts2 fpr ts1

C log reg x x x x x x x x x x x x x x x 0 46 x x x x x 0 79 73 x x

conv net 0 68 0 40 x x x 0 54 61 0 25 52 x x 0 56 x x x x x x x x x x

svm 0,23 68 0 40 x x x x x x x x x 0,12 66 0 36 x x x x x 0,12 79 73 x x

S log reg x x x x 0 48 3 0 54 61 x x x x x 0 56 x x x x x x x x x x

conv net 0 68 0 40 0 48 3 0 54 61 x x x x x 0 56 x x 0 51 78 x x x 0 67

svm 0,23 68 0 40 x x x 0,13 39 61 0 45 52 0,12 16 0 56 0 9 0,13 51 43 0,12 79 73 0,25 67

DSTL svm x x x x x x x 0 39 51 x x x x x x x x x x x x 0,24 9 3 x x

SPLVlog reg 0 68 0 40 0 48 3 0 54 61 x x x 0 66 0 56 x x 0 51 78 x x x 0 57

conv net 0 68 0 40 0 48 3 0 54 61 x x x x x 0 56 0 39 0 51 78 0 79 73 0 67

svm 0,12 68 0 40 0 48 3 0 54 41 x x x 0,12 66 0 56 x x 0 51 78 0,24 79 73 0 27

H log reg x x 0 40 0 48 3 0 54 61 x x x x x 0 56 x x 0 51 78 x x x 0 67

conv net 0 68 0 40 0 48 3 0 54 61 x x x x x 0 56 x x 0 51 78 x x x 0 67

svm 0,23 68 0 40 0 48 3 0 54 61 x x x 0,12 66 0 56 x x 0 51 78 0,24 79 73 0 27

Coh log reg 0 68 0 40 0 48 3 0 54 61 x x x 0 66 0 56 x x 0 51 78 x x x 0 37

conv net 0 68 0 40 0 48 3 0 54 61 0 45 52 0 71 0 56 0 44 0 51 78 0 79 73 0 67

svm 0,12 68 0 40 0 48 3 0 54 61 x x x 0,12 66 0 56 x x 0 51 78 0,24 79 73 0 32

pat 12 pat 13 pat 14 pat 15 pat 16 pat 17 pat 18 pat 19 pat 20 pat 21
feature classifier fpr ts1 fpr ts1 fpr ts1 fpr ts1 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 fpr ts1 ts2 fpr ts1 ts2

C log reg 0 25 0 2 x x x x x x x x x x x x x x x x x x x x x

conv net 0 25 0 7 x x x x 0 65 25 x x x x x x x x 0 91 96 x x x

svm 0 25 x x x x x x 0 60 20 x x x x x x x x x x x 0,12 99 70

S log reg 0 25 x x x x x x x x x x x x x x x x x x x x x x x

conv net 0 25 x x x x x x x x x x x x x x x 0 28 0 91 96 x x x

svm x x x x 0,13 33 0,12 90 0 55 55 x x x x x x x x x x x x x x

DSTL svm x x x x x x x x x x x x x x x x x x x x x x x x x

SPLVlog reg 0 25 x x x x x x x x x x x x x x x x x x x x 0 99 75
conv net 0 25 x x x x 0 90 x x x x x x 0 20 70 0 28 x x x x x x

svm x x x x 0,26 33 0 80 x x x x x x x x x x x x x x 0,12 99 80

H log reg 0 25 x x 0 33 0 70 x x x x x x x x x x x x x x x x x

conv net 0 25 x x 0 33 0 90 x x x 0 78 113 x x x x x x x x x x x

svm x x x x 0,13 33 0 85 x x x x x x x x x x x x x x 0,12 14 75

Coh log reg 0 25 x x x x 0 45 0 60 10 x x x x x x x x x x x x x x

conv net 0 25 x x x x 0 90 x x x x x x 0 25 90 x x 0 99 20 x x x

svm x x x x 0,26 28 0 85 0 60 5 x x x 0,23 15 90 x x x x x 0,12 99 75

Table 4. Seizure prediction results on the test dataset, as a function of the type of EEG feature and type of classifier. 

For each patient, the false positives rate (in false alarms per hour) as well as the time to seizure at the first preictal 

alarm (in minutes), for one or two test seizures, are indicated. Gray crosses mark combinations of EEG feature type 

and classifier type that failed to predict the test seizures or that had more than 0.3 false positives per hour. 

 


