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Statistical Machine Learning and
Dissolved Gas Analysis: A Review

Piotr Mirowski, Member, IEEE, and Yann LeCun

Abstract—Dissolved Gas Analysis (DGA) of the insulation oil
of power transformers is an investigative tool to monitor their
health and to detect impending failures by recognizing anomalous
patterns of DGA concentrations. We handle the failure predic-
tion problem as a simple data mining task on DGA samples,
optionally exploiting the transformer’s age, nominal power and
voltage, and consider two approaches: binary classification and
regression of the time-to-failure. We propose a simple logarithmic
transform to preprocess DGA data in order to deal with long-
tail distributions of concentrations. We also investigate the
applicability of semi-supervised learning to exploit the knowledge
about the DGA concentration distributions in large unlabeled
datasets of transformers. We have reviewed and evaluated 15
standard statistical machine learning algorithms on that task, and
reported quantitative results both on a small but published set of
power transformers, and on proprietary data from thousands of
network transformers of an utility company. Our results confirm
that nonlinear decision functions such as neural networks,
support vector machines with Gaussian kernels, or local linear
regression can theoretically give a slightly better performance
than linear classifiers or regressors. Software and part of the
data are available at http://www.mirowski.info/pub/dga.

I. INTRODUCTION

D ISSOLVED Gas Analysis (DGA) has been used for
more than 30 years [1]–[3] for the condition assessment

of functioning electrical transformers. DGA measures the
concentrations of hydrogen (H2), methane (CH4), ethane (C2H6),
ethylene (C2H4), acetylene (C2H2), carbon monoxide (CO) and
carbon dioxide (CO2) dissolved in transformer oil. CO and CO2
are generally associated with the decomposition of cellulosic
insulation; usually, small amounts of H2 and CH4 would be ex-
pected as well. C2H6, C2H4, C2H2 and larger amounts of H2 and
CH4 are generally associated with the decomposition of oil. All
transformers generate some gas during normal operation, but
it has become generally accepted that gas generation, above
and beyond that observed in normally operating transformers,
is due to faults that lead to local overheating or to points of
excessive electrical stress that result in discharges or arcing.

A. About the Difficulty of Interpreting DGA Measurements

Despite the fact that DGA has been used for several decades
and is a common diagnostic technique for transformers, there
are no universally accepted means for interpreting DGA re-
sults. IEEE C57-104 [3] and IEC 60599 [4] use threshold
values for gas levels. Other methods make use of ratios of
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gas concentrations [2], [5] and are based on observations that
relative gas amounts show some correlation with the type,
the location and the severity of the fault. Gas ratio methods
allow for some level of problem diagnosis whereas threshold
methods focus more on discriminating between normal and
abnormal behavior.

The amount of any gas produced in a transformer is ex-
pected to be influenced by age, loading and thermal history,
the presence of one or more faults, the duration of any faults,
and external factors such as voltage surges. The complex
relationship between these is, in large part, the reason why
there are no universally acceptable means for interpreting
DGA results. It is also worth pointing out that the bulk of
the work, to date, on DGA has been done on large power
transformers. It is not at all clear how gas thresholds, or even
gas ratios, would apply to much smaller transformers, such as
network transformers, which contain less oil to dilute the gas.

B. Supervised Classification of DGA-based Features

Because of the complex interplay between various factors
that lead to gas generation, numerous data-centric machine
learning techniques have been introduced for the prediction of
transformer failures from DGA data [6]–[17]. These methods
rely on DGA samples that are labelled as being taken either
on a “healthy” or on a “faulty” (alternatively, failure-prone)
transformer. As we will review them in Section II, we will
see that it is not obvious, from their description, how each
algorithm contributed to a good classification performance,
and why should one be specifically chosen over any other.
Neither are we aware of comprehensive comparative studies
that would benchmark those techniques on a common dataset.

In a departure from previous work, we propose not to add
a novel algorithm to the library, but instead to review in
Section IV common, well-know statistical learning tools that
are readily available to electrical engineers. An extensive com-
putational evaluation of all those techniques is conducted on
two different datasets, one (small) public dataset of large-size
power transformers (Section V-B), and one large proprietary
dataset of thousands of network transformers (Section V-C).

Additionally, the novel contributions of our work lie in the
use of a logarithmic transform to handle long-tail distributions
of DGA concentrations (Section III-B), in approaching the
problem by regressing the time-to-failure, and in considering
semi-supervised learning approaches (Section IV-C).

All the techniques previously introduced, as well as those
presented in this article, have in common the following steps:
1) the constitution of a dataset of DGA samples (section III-A),
and 2) the extraction of mathematical features from DGA
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data (section III-B), followed by 3) the construction of a
classification tool that is trained in supervised way on the
labelled features (section IV).

II. REVIEW OF RELATED WORK

A. Collection of AI Techniques Employed

We briefly review here previous techniques for transformer
failure prediction from DGA. All of them follow the methodol-
ogy enunciated in Section I-B, consisting in feature extraction
from DGA, followed by a classification algorithm.

The majority of them are techniques [6], [7], [9]–[13], [15],
[16] built around a feed-forward neural-network classifier, that
is also called Multi-Layer Perceptron (MLP) and that we
explain in Section IV. Some of these papers introduce further
enhancements to the MLP: in particular, neural networks that
are run in parallel to an expert system in [10], Wavelet
Networks (i.e. neural nets with a wavelet-based feature ex-
traction) in [16], Self-Organizing Polynomial Networks in [9]
and Fuzzy Networks in [6], [12], [13], [15].

Several studies [6], [8], [12], [13], [15], [16] resort to fuzzy
logic [18] when modeling the decision functions. Fuzzy logic
enables logical reasoning with continuously-valued predicates
(between 0 and 1) instead of binary ones, but this inclusion of
uncertainty within the decision function is redundant with the
probability theory behind Bayesian reasoning and statistics.

Stochastic optimization techniques such as genetic program-
ming are also used as an additional tool to select features for
the classifier in [8], [12], [14], [16], [17].

Finally, Shintemirov et al. [17] conduct a comprehensive
comparison between k-nearest neighbors, neural networks
and support vector machines (three techniques that we ex-
plain in Section IV), each of them combined with genetic
programming-based feature selection.

B. Limitations of Previous Methods

1) Insufficient Test Data: Some earlier methods that we re-
viewed would use a test dataset as small as a few transformers
only, on which no statistically significant statistics could be
drawn. For instance, [6] evaluate their method on a test set of
3 transformers, and [7] on 10 transformers. Later publications
were based on larger test sets of tens or hundreds of DGA
samples; however, only [12], [17] employed cross-validation
on test data to ensure that their high performance was stable
for different splits of train/test data.

2) No Comparative Evaluation with the State-of-the-art:
Most of the studies conducted in the aforementioned arti-
cles [8]–[10], [12]–[14] compare their algorithms to standard
multi-layer neural networks. But only [17] compares itself to
two additional techniques, Support Vector Machines (SVM)
and k-nearest neighbors, and solely [13] and [15] make nu-
merical comparisons to previous DGA predictive techniques.

3) About the Complexity of Hybrid Techniques: Much of
the previous work introduces techniques that are a combination
of two different learning algorithms. For instance [17] use
Genetic Programming (GP) optimization on top of neural
networks or SVM, while [16] use GP in combination with
wavelet networks; similarly, [15] build a self-organizing map

followed by a neural-fuzzy model. And yet, the DGA datasets
generally consist of a few hundred samples of a few (typically
7) noisy gas measurements. Employing complex and highly
parametric models on small training sets increases the risk of
over-fitting the training data and thereby, of worse “generaliza-
tion” performance on the out-of-sample test set. This empirical
observation has been formalized in terms of minimizing the
structural (i.e. model-specific) risk [19], and is often referred
to as the Occam’s razor principle1. The additional burden
of hybrid learning methods is that one needs to test for the
individual contributions of each learning module.

4) Lack of Publicly Available Data: To our knowledge,
only [1] provides a dataset of labeled DGA samples and
only [15] evaluate their technique on that public dataset.
Combined with the complexity of the learning algorithms, the
research work documented in other publications becomes more
difficult to reproduce.

Capitalizing upon the lessons learned from analyzing the
state-of-the-art transformer failure prediction methods, we
propose in our paper to evaluate our method on two different
datasets (one of them being publicly available), using as
large test sets as possible and establishing comparisons among
15 well-known, simple and representative statistical learning
algorithms described in section IV.

III. DISSOLVED GAS ANALYSIS DATA

Although dissolved gas analysis measurements of trans-
former oil provide concentrations of numerous gases, such
as nitrogen N2, we restrict ourselves to key gases suggested
in [3], i.e. to hydrogen (H2), methane (CH4), ethane (C2H6),
ethylene (C2H4), acetylene (C2H2), carbon monoxide (CO) and
carbon dioxide (CO2).

A. (Im)balanced Transformer Datasets

Transformer failures are by definition rare events. Therefore,
and similarly to other anomaly detection problems, transformer
failure prediction suffers from the lack of data points acquired
during (or preceding) failures, relatively to the number of data
points acquired in normal operating mode. This data imbalance
may impede some statistical learning algorithms: for example,
if only 5% of the data points in the dataset correspond to faulty
transformers, a trivial classifier could obtain an accuracy of
95% simply by ignoring its inputs and by classifying all data
points as normal.

Two strategies are proposed in this paper to balance the
faulty and normal data. The first one consists in data re-
sampling for one of the two classes, and may consist in
generating new data points for the smaller class: for instance,
during experiments on the public Duval dataset, the ranges
of DGA measures for normally operating transformers were
known, and we randomly generated new data points within
those ranges (see Section V-B). The second strategy consists
in selecting a subset of existing data, as we did for instance
on our second series of experiments (in Section V-C).

1The Occam’s razor principle could be paraphrased as “all things being
considered equal, the simplest explanation is to be preferred”.
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Fig. 1. Histogram of log-concentration of methane CH4 among samples taken
from faulty (red) and normal operating (blue) network transformers (utility
data from Section V-C).

B. Pre-processing DGA Data

1) Logarithmic Transform of DGA Concentrations: Dis-
solved gas concentrations typically present highly skewed
distributions, where the majority of the transformers have
low concentrations of a few ppm (parts per million), but
where faulty transformers can often attain thousands or tens
of thousands of ppm [1]–[3]. This fat-tail distribution is at the
same time difficult to visualize, and the extreme values can be
source of numerical imprecisions and overflows in a statistical
learning algorithm.

For this reason, we assert that the most informative feature
of DGA data are the order of magnitude of the DGA con-
centrations, rather than their absolute values. A natural way to
account for these changes of magnitude is to rescale DGA data
using the logarithmic transform. For ease of interpretation, we
used the log10. We assumed that the DGA measuring device
might not discriminate between an absence of gas (0 ppm)
and a negligible quantity (say 1 ppm), and for this reason,
we lower-thresholded all the concentrations at 1 (conveniently,
this also avoided us dealing with negative log feature values).
We illustrate on Figure 1 how the log-transform can ease the
visualization of key gas distributions and even highlight the
log-normal distribution of some gases.

2) Relationship to Key Gas Ratios: Conventional methods
of DGA interpretation rely on gas ratios [1]–[3]. We notice
that log-transforming the DGA concentrations enables to ex-
press the ratios as subtractions, e.g.: log [C2H2]

[C2H4]
= log[C2H2] −

log[C2H4]. Because most of the parametric algorithms ex-
plained in the next section perform at some point linear
combinations between their inputs (which are log-transformed
concentrations), they may learn to evaluate ratio-like relation-
ships between the raw gas concentrations.

3) Standardizing the DGA Data for Learning Algorithms:
In order to keep the numerical operations stable, the values
taken by the input features should be close to zero and have
a small range of the order of a few units. This requirement
stems from the statistical learning algorithms described in the
next section, some of whom rely on the assumption that the
input data are normally distributed, with a zero mean and unit
diagonal covariance matrix. For some other algorithms, such
as neural networks, a considerable speed-up in the convergence
can be obtained when the mean value of each input variable
is close to zero, and the covariance matrix is diagonal and
unitary [20]. Therefore, and although we will not de-correlate
the DGA measurements, we propose at least to standardize

all the features to zero mean and unit variance over the entire
dataset. Data standardization simply consists here, for each
gas variable X , in subtracting its mean value E[X] over all
examples and then dividing the result by the standard deviation√
V ar[X] of the variable, to obtain X−E[X]√

V ar[X]
. The result of a

logarithmic transformation of DGA values, followed by their
standardization, is exemplified on Fig. 2, where we plot 167
datapoints (marked as crosses and circles) from a DGA dataset
in a two-dimensional space (CH4 vs. C2H4). The ranges of the
log-transformed and standardized DGA values on Fig. 2 go
from about -2.5 to 2.5 for both gases, with mean values at 0.

C. Additional Features

1) Total Gas: In addition to the concentrations of individual
gases, it might be useful to know the total concentration of
inflammable carbon-containing gases, that is [CO + CH4 +
C2H2 + C2H4 + C2H6]. As with the other concentrations, we
suggest to take the log10 of that sum. We immediately see
that including this total gas concentration as a feature en-
ables us to express Duval Triangle-like ratios [1], [2], e.g.
log %C2H2 = log [C2H2]

[total gas] = log[C2H2]− log[total gas].
2) Transformer-specific Features: The age of the trans-

former (in years), its nominal power (in kVA) and its voltage
(in V) are three potential causes for the large variability among
transformers’ gas production, and could be taken into account
for the failure classification task. Because these features are
positive and may have a large scale, we also propose to
normalize them by taking their log10.

D. Summary: Inputs to the Classifier

At this point, let us note xi a vector containing the input
features associated to a specific DGA measurement i. These
features consist in 7 gas concentrations, optionally enriched by
such features as total gas, the transformer’s age, its nominal
power and voltage. We propose to log10-normalize and to
standardize all the features. The next section explains how
we find the “label” yi, and most importantly, how we build a
classifier that predicts yi from xi.

IV. METHODS FOR CLASSIFYING DGA MEASUREMENTS

This section focuses on our statistical machine learning
methodology for transformer failure prediction. We begin by
formulating the problem from two possible viewpoints: classi-
fication or regression (Section IV-A). Then we recapitulate the
most important concepts of predictive learning in Section IV-B
before enumerating selected classification and regression algo-
rithms, as well as their semi-supervised version that can exploit
unlabeled DGA data points, in Section IV-C. These algorithms
are described in more depth in the online Appendix to this
paper and are implemented as Matlab code libraries: both are
available at http://www.mirowski.info/pub/dga.

A. A Classification or Regression Problem

1) Formulation as a Binary Classification Problem: Al-
though DGA can diagnose multiple reasons for transformer
failures [1]–[3] (e.g. high-energy arcing, hot spots above
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400oC, or corona discharges), the primordial task can be
expressed as binary classification: “is the transformer at risk
of failure?” From a dataset of DGA measures collected on the
pool of transformers, one can identify DGA readings recorded
shortly before failures, and separate them from historical
DGA readings from transformers that kept on operating for
an extended period of time. We use the convention that
measurement i is labeled yi = 0 in the “faulty” case and
yi = 1 in the “normal” case. In the experiments described
in the paper, we arbitrarily labeled DGA measurement xi as
“normal” if it was taken at least 5 years prior to a failure, and
“faulty” otherwise.

2) Classifying Measurements Instead of Transformers: As
a transformer ages, its risk of failure should increase and the
DGA measurements are expected to evolve. Our predictive
task therefore shifts from “transformer classification” to “DGA
measurement classification”, and we associate to each mea-
surement xi taken at time t, a label yi that characterizes the
short-term or middle-term risk of failure relative to time t.
In the experiments described in the paper, some transformers
had more than a single DGA measurement taken across their
lifetime (e.g. xi,xi+1, . . .), but we considered the datapoints
(xi, yi) , (xi+1, yi+1) , . . . separately.

3) Formulation as a Regression Problem: The second
dataset investigated in the paper also contained the time-
stamps of DGA measurements, along with information about
the time of failure. We used this information to obtain more
informative labels yi ∈ [0, 1], where yi = 0 would mean
“bound to fail”, yi = 1 would mean “should not fail in the
foreseeable future”, and values yi between those two extremes
would quantify the risk of failure. A predictor trained on
such dataset could have a real-valued output that would help
prioritize the intervention by the utility company2.

4) Labeled Data for the Regression Problem: We obtained
the labels for the regression task in the following way. First, we
gathered for each DGA measurement, both the date at which
the DGA measurement was taken, and the date at which the
corresponding transformer failed, and computed the difference
in time, expressed in years. Transformers that had their DGA
samples done at the time of or after the failure were given
a value of zero, while transformers that did not fail were
associated an arbitrary high value. These values corresponded
to the Time-To-Failure (TTF) in years. Then, we considered
only the DGA samples from transformers that (ultimately)
failed, and sorted the TTF in order to compute their empirical
Cumulated Distribution Function (CDF). TTFs of zero would
correspond to a CDF of zero, while very long TTFs would
asymptotically converge to a CDF of one. The CDF can be
simply implemented using a sorting algorithm; on a finite set
of TTF values, the CDF value itself corresponds to the rank
of the sorted value, divided by the number of elements. Our
proposed approach to obtain labels for the regression task of
the Time-to-failure (TTF) is to employ the values of the CDF
as the labels. Under that scheme, all “normal” DGA samples
from transformers that did not fail (yet) are simply labeled 1.

2Note that many classification algorithms, although trained on binary
classes, can provide with probabilities.

B. Commonalities of the Learning Algorithms
1) Supervised Learning of the Predictor: Supervised learn-

ing consists in fitting a predictive model to a training dataset
(X,y) (which consists here in pairs {(xi, yi)} of DGA
measurements xi and associated risk-of-failure labels yi). The
objective is merely to optimize a “black-box” function f such
that for each data point xi, the prediction ȳi = f (xi) is as
close as possible to the ground truth target yi.

2) Training, Validation and Test Sets: Good statistical ma-
chine learning algorithms are capable of extrapolating knowl-
edge and of generalizing it on unseen data points. For this
reason, we separate the known data points into a training (in-
sample) set, used to define model f , and a test (out-of-sample)
set, used exclusively to quantify the predictive power of f .

3) Selection of Hyper-parameters by Cross-validation:
Most models, including the non-parametric ones, need the
specification of a few hyperparameters (e.g. the number of
nearest neighbors, or the number of hidden units in a neural
network); to this effect, a subset of the training data (called
the validation set) can be set apart during learning, in order
to evaluate the quality of fit of the model for various values
of the hyperparameters. In our research, we resorted to cross-
validation, i.e. multiple (here 5-fold) validation on five non-
overlapping sets. More specifically, for each choice of hyper-
parameters, we performed five cross-validations on five sets
that contained each 20% of the available training data, while
the remaining 80% would be used to fit the model.

C. Machine Learning Algorithms
1) Classification Techniques: We considered k-Nearest

Neighbors (k-NN) [21], C-45 Decision Trees [22], neural
networks with one hidden tanh layer [23] and trained by
stochastic gradient descent [20], [24], as well as Support
Vector Machines [25] with three different types of kernels:
linear, polynomial and Gaussian.

Some algorithms strive at defining boundaries that would
cut the input space of multivariate DGA measurements into
“faulty” or “normal” ones. It is the case of decision trees,
neural networks and linear classifiers such as an SVM with
linear or polynomial kernel, which can all be likened to the
tables of limit concentrations used in [3] to quantify whether a
transformer has dissolved gas-in-oil concentrations below safe
limits. Instead of pre-determined key gas concentrations or
concentration ratios, all these rules are however automatically
learned from the supplied training data.

The intuition for using k-NN and SVM with Gaussian
kernels, can be described as “reasoning by analogy”: to assess
the risk of a given DGA measurement we compare it to the
most similar DGA samples in the database.

2) Regression of the Time-to-Failure: The algorithms that
we considered were essentially the regression counterpart
to the classification algorithms: Linear Regression and reg-
ularized LASSO regression [26] (with linear dependencies
between the log-concentrations of gases and the risk of fail-
ure), Weighted Kernel Regression [27] (a continuously-valued
equivalent of k-NN), Local Linear Regression (LLR) [28],
Neural Network Regression and Support Vector Regression
(SVR) [29] with linear, polynomial and Gaussian kernels.
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Fig. 2. Comparison of 6 regression or classification techniques on a simplified two-dimensional version of the Duval dataset consisting of log-transformed and
standardized values of dissolved gas analysis measures for CH4 and C2H4. There are 167 datapoints: 117 “faulty” DGA measures (marked as red or magenta
crosses) and 50 “normal” ones (blue or cyan circles). Because the training datapoints are not easily separable in 2D, the accuracy and Area Under the Curve
(see paper) on the training set are generally not 100%. The test data points consist in the entire DGA values space. Output of the 6 decision functions goes
from white (ȳ = 1, meaning “no impending failure predicted”) to black (ȳ = 0, meaning “failure is deemed imminent”); for most classification algorithms,
we plot the continuously-valued probability of having ȳ = 1 instead of the actual binary decision (ȳ = 0 or ȳ = 1). The decision boundary (at ȳ = 0.5)
is marked in green. Note that we do not know the actual labels for the test data - this figure provides instead with an intuition of how the classification and
regression algorithms operate. k-Nearest Neighbors (KNN, top left) partitions the space in a binary way, according to the Euclidian distances to the training
datapoints. Weighted Kernel Regression (WKR, bottom middle) is a smoothed version of KNN, and Local Linear Regression (LLR, top middle) performs
linear regression on small neighborhoods, with an overall nonlinear behavior. Neural Networks (bottom left) cut the space into multiple regions. Support
Vector Machines (SVM, right) use only a subset of the datapoints (so-called support vectors, in cyan and magenta) to define the decision boundary. Linear
kernel SVMs (top right) behave like logistic regression and perform linear classification, while Gaussian kernel SVMs (bottom right) behave like WKR.

3) Semi-Supervised Algorithms: In presence of large
amounts of unlabeled data (as was the case for the utility
company’s dataset explained in the paper), it can be helpful
to include them along the labeled data when training the pre-
dictor. The intuition behind Semi-Supervised Learning (SSL)
is that the learner could get better preparation for the test
set “exam” if it knew the distribution of the test data points
(aka “questions”). Note that the test set labels (aka “answers”)
would still not be supplied at training time.

We tested two SSL algorithms that obtained state-of-the-
art results on various real-world datasets: Low Dimensional
Scaling (LDS) [30], [31] (for classification) and Local Linear
Semi-supervised Regression (LLSSR) [32]. Their common
point is that they try to place the decision boundary between
“faulty” and “normal” DGA samples in regions of the DGA
space where there are few (unlabeled, test) DGA samples. This
follows the intuition that the decision between a “normal” and
“faulty” transformer should not change drastically with small
DGA value changes.

4) Illustration on a 2D Toy Dataset: We illustrate on Fig. 2
how a few classification and regression techniques behave on
two-dimensional data. We trained six different classifiers or
regressors on a two-dimensional, two-gas training set Dtr of
real DGA data (that we extracted from the seven-gas Duval
public dataset, and we plot on Fig. 2 failure prediction results
of each algorithm on the entire two-gas DGA subspace. Some
algorithms have a linear decision boundary at ȳ = 0.5, while
other ones are non-linear, some smoother than others. For
each of the six algorithms, we also report the accuracy on
the training set Dtr. Not all algorithms fit the training data
Dtr perfectly; as can be seen on these plots, some algorithms
obtain very high accuracy on the training set (e.g. 100% for
k-NN), whereas their behavior on the entire two-gas DGA
space is incorrect; for instance, very low concentrations of both
DGA gases, here standardized log10(CH4) and log10(C2H4)
with values below -1.5, are classified as “faulty” (in black)
by k-NN. The explanation is very simple: real DGA data
are very noisy and two DGA gases (namely CH4 and C2H4
in this example) are not enough to discriminate well between
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“faulty” and “normal” transformers. For this reason, we see
on Fig. 2 “faulty” datapoints (red crosses) that have very
low concentrations of CH4 and C2H4, lower than “normal”
datapoints (blue circles): those faulty datapoints may have
other gases at much higher concentrations, and we most likely
need to consider all seven DGA gases (and perhaps additional
information about the transformer) to discriminate well. This
figure should also serve as a cautionary tale about the risk of
a statistical learning algorithm that overfits the training data
but that generalizes poorly on additional test data.

V. RESULTS AND DISCUSSION

We compared the classification and regression algorithms
on two distinct datasets. One dataset was small but publicly
available (see Section V-B), while the second one was large,
had time-stamped data, but was proprietary (see Section V-C).

A. Evaluation Metrics

Three different metrics were considered: accuracy, R2 cor-
relation and Area Under the ROC Curve; each metric had
different advantages and limitations.

1) Accuracy (acc): Let us assume that we have a collection
of binary (0- or 1-valued) target labels y = {yi}, as well as
corresponding predictions ȳ = {ȳi, }. When ȳ are not binary
but real-valued, we make them binary by thresholding. Then
the accuracy of a classifier is simply the percentage of correct
predictions over the total number of predictions: 50% means
random and 100% is perfect.

2) R2 correlation: For regression tasks, i.e. when
the targets (signal) y and predictions ȳ are real-valued
(e.g. between 0 and 1), the R2 correlation (equal to
1 −

(∑
i(ȳi − yi)2

)
/
(∑

i(yi − E[y])2
)
) quantifies how

“aligned” the predictions are with the targets. When the
magnitude of the errors {yi−ȳi} is comparable to the standard
deviation of the signal, then R2 = 0. R2 = 1 means perfect
predictions. Note that we can still apply this metric when the
target is binary.

3) Area Under the ROC Curve: In a binary classifier, the
ultimate decision (0 or 1) is often the function of a threshold
where one can vary the value of β0 to get more or fewer
“positives” (alarms) ȳi = 1 or, inversely, “negatives” ȳi = 0.
Other binary classifiers, such as SVM or logistic regression,
can predict the probability P (yi = 1|xi) which is then
thresholded for the binary choice. Similarly, one can threshold
the output of a regressor’s prediction ȳi.

The Receiver-Operating Characteristic (ROC) [33] is a
graphical plot of the True Positive Rate (TPR) as a function
of the False Positive Rate (FPR) as the criterion of the
binary classification (the above-mentioned threshold) changes.
In the case of DGA-based transformer failure prediction, the
true positive rate is the number of data samples predicted as
“faulty” and that were indeed faulty, over the total number of
faulty transformers, while the false positive rate is the number
of false alarms over the total number of “normal” transformers.
The Area Under the Curve (AUC) of the ROC can be
approximately measured by numerical integration. A random
predictor (e.g. an unbiased coin toss) has TPR ≈ FPR, and

we have AUC = 0.5, while a perfect predictor first finds all
the true positives (e.g. the TPR climbs to 1) before making
any false alarms, and thus AUC = 1.

Because of the technicalities involved in maintaining a pool
of power or network transformers based on periodic DGA
samples (namely because a utility company cannot suddenly
replace all the risky transformers, but needs to prioritize
these replacements based on transformer-specific risks), a real-
valued prediction ȳi is more advantageous than a mere binary
classification, as it introduces an order (ranking) of the most
risky transformers. The AUC, which evaluates the decision
function at different sensitivities (i.e. “thresholds”), is therefore
the most appropriate metric.

B. Public “Duval” Dataset of Power Transformers

In a first series of experiments, we compared 15 well-known
classification and regression algorithms on a small-size dataset
of power transformers [1]. These public data DDuval contain
log-transformed DGA values of seven gas concentrations (see
Section III) from 117 faulty and 50 functional transformers.
Note that because DGA samples in this dataset have no time
stamp information, the labels are binary (i.e. yi = 0 “faulty”
vs yi = 1 “normal”), even for regression-based predictors. In
summary, the input data consisted in 117 + 50 = 167 pairs
(xi, yi),∀i ∈ {1, 2, . . . , 167}, where each xi ∈ R7 was a 7-
dimensional vector of log-transformed and standardized DGA
measurements from 7 gases (see Section III-B).

[1] also provides with ranges of gas concentrations I ⊂ R7

for the normal operating mode, which we used to randomly
generate 67 additional “normal” data points (beyond the 167
data points from the original dataset) uniformly sampled
within that interval. This way, we obtained a new, balanced
dataset D∗

Duval with 50+67 = 117 “normal” and 117 “faulty”
DGA samples. We evaluating the 15 methods on those new
DGA data to investigate the impact of the label imbalance
on the prediction performance. For a given dataset D (either
DDuval or D∗

Duval) and a given algorithm algo, we ran the
following learning evaluation:

Algorithm 1 Learn(algo,D)
Randomly split D (80%,20%) into train/test sets Dtr, Dte

5-fold cross-validate hyper-parameters θ of algo on Dtr

Train algorithm algo(θ) on {(xi, yi)} ⊂ Dtr

Test algorithm algo(θ) on {(xi, yi)} ⊂ Dte

Obtain predictions ȳ from X where X,y ⊂ Dte

Compute Area Under ROC Curve (AUC) of ȳ given y
if classification algo then Compute accuracy acc
else Compute correlation R2

For each algorithm algo, we repeated the learning experi-
ment fifty times and computed the mean values of AUCalgo

as well as accalgo for classification algorithms and R2
algo for

regression algorithms. These results are summarized in Table I
using the AUC metric and for the original Duval data only
(117 “faulty” and 50 “normal” transformers) or after balancing
the dataset with 66 additional “normal” DGA data points
sampled within I .
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TABLE I
PERFORMANCE OF THE CLASSIFICATION AND REGRESSION ALGORITHMS

ON THE DUVAL DATASET, MEASURED IN TERMS OF AVERAGE AUC .

Algorithm Original Dataset DDuval Balanced Dataset D∗
Duval

AUC acc R2 AUC acc R2

k-NN 91% 93%
C-4.5 85% 88%
SVM lin. 0.92 85% 0.90 89%
SVM quad. 0.93 88% 0.93 90%
SVM gauss. 0.95 90% 0.97 92%
NN log. 0.94 89% 0.96 92%
LDS 0.90 88% 0.96 92%
Lin. reg. 0.88 0.27 0.88 0.37
LASSO reg. 0.84 0.23 0.58 0.04
NN reg. 0.94 0.48 0.96 0.61
SVR quad. 0.94 0.35 0.92 0.35
SVR gauss. 0.95 0.44 0.94 0.54
WKR 0.95 0.60 0.94 0.70
LLR 0.96 0.55 0.97 0.64
LLSSR 0.94 0.43 0.94 0.47

From this extensive evaluation, it appears that the top
performing classification algorithms on the Duval dataset are
1) SVM with Gaussian kernels, 2) one hidden-layer neural
networks with logistic outputs, 3) k-nearest neighbors (albeit
they do not provide probability estimates, which prevents
us from evaluating their AUC) and 4) the semi-supervised
Low-Dimensional Scaling. These four nonlinear classifiers
dominate linear classifiers (here, an SVM with linear kernels)
by 3 points of accuracy, suggesting both that the manifold that
can separate Duval DGA data is non-linear, and that non-linear
methods are more adapted. These results are unsurprising,
since Gaussian kernel SVMs and neural networks have proved
their applicability and superior performance in many domains.

Similarly, the top regression algorithms in terms of R2

correlation are the 1) non-parametric Local Linear Regression,
2) single hidden-layer neural networks with linear outputs,
3) SVR with Gaussian kernels, and 4) Weighted Kernel
Regression. Again, these four algorithms are non-linear. All
of them exploit a notion of local smoothness, but they express
a complex decision function in terms of DGA gas concentra-
tions, contrary to linear or Lasso regression.

Finally, we evaluate the impact of an increased fraction f
of “normal” data points over the total number of data points.
We notice that while the R2 correlation and the accuracy
markedly increase when we balance the data (e.g. from 90%
accuracy with unbalanced data to over 96% accuracy with
balanced data for Gaussian SVM), with the exception of
LASSO regression and SVR with quadratic kernels, the Area
Under the Curve does not change as drastically: notably, the
AUC of SVM with linear or quadratic kernels, and of most
regression algorithms, does not show an upward trend. We can
find an obvious explanation for the linear algorithms: the more
points are added to the dataset, the less linear the decision
boundary, hence the worse the performance of linear classifiers
and regressors. We nevertheless advocate for richer (larger)
datasets, and conservatively recommend to stick to the data
mining rule of thumb of balanced datasets.

C. Large Proprietary Dataset of Network Transformers
1) A Large Dataset of Network Transformers: The second

dataset on which we evaluate the algorithms was given by
an electrical power company that manages several thousand
network transformers.

To constitute our dataset, we gathered time-stamped DGA
measures and information about transformers (age, power,
voltage, see Section III-C) from two disjoint lists that we
call F and N. List F contained 1,796 DGA measures from all
transformers that failed or that were under careful monitoring,
and list N contained about 30,500 DGA measures from the
operating ones. There were about 32,300 DGA measures in
total, most conducted within the past 10 years, and some
transformers had multiple DGA measures across time.

In the failed transformers list F, we qualified 1,167 DGA
measures from transformers that failed because of gas- or
pressure-related issues as “positives” and we discarded 629
remaining DGA measures from non-DGA-fault-related cor-
roded transformers. Then, using the difference between the
date of the DGA test and the date of failure, we computed
a Time-To-Failure (TTF) in years; we further removed 26
transformers that failed more than 5 years since the last DGA
test and qualified them as “negatives”. Finally, we converted
these TTF to numbers between 0 and 1 using the Cumulated
Distribution Function (CDF) of the TTF, with values of yi = 0
corresponding to “immediate failure” and values of y1 = 1
corresponding to “failure in 5 or more year”.

By definition, transformers in the “normal” transformer list
N were not labeled, since they did not fail. We, however,
assumed that DGA samples taken taken more than 5 years ago
could be considered as “negatives”: this represented additional
1,480 data points {yi = 1}. The remaining ∼ 29, 000
measurements collected within the last 5 years could not be
directly exploited as labeled data.

Like in the public Duval dataset, the input data con-
sisted in pairs (xi, yi), where each xi ∈ R11 was a 11-
dimensional vector of log-transformed and standardized DGA
measurements from 7 gases, concatenated with the stan-
dardized values of: log10[total gas], log10[age in years],
log10[nominal power in kVA] and log10[voltage in V] (see
Sections III-B and III-C), and our dataset D consisted in 2,647
data points, plotted on Figure 3.

2) Comparative Analysis of 12 Predictive Algorithms: We
performed the analysis on the proprietary, utility data, similarly
to the way we did on the Duval dataset, with the exception
that we did not add or remove data points.

We investigated only 12 out of the 15 algorithms previously
used, discarding k-Nearest Neighbors and C-45 classification
trees (for which one cannot evaluate the AUC) as well as
SVR with quadratic kernels (because of computational cost,
that was not justified by a mediocre performance on the Duval
dataset).

For each algorithm algo, we repeated the learning exper-
iment Learn(algo,D) (see Algorithm 1) twenty-five times.
We plotted the 25-run average ROC curve on held-out 20%
test sets on Figure 4, along with the average AUC curves.

Overall, the classification algorithms performed slightly
better than regression algorithm, despite not having access to
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Fig. 4. Comparison of classification and regression techniques on the
proprietary, utility dataset. The faulty transformer prediction problem is
considered as a retrieval problem, and the Receiver-Operating Characteristic
(ROC) is computed for each algorithm, as well as its associated Area Under
the Curve (AUC). The learning experiments were repeated 25 times and we
show the average ROC curves over all experiments.

subtle information about the Time-To-Failure. The best (classi-
fication) algorithms were indeed SVM with Gaussian kernels
(AUC = 0.94), LDS (AUC = 0.93) and neural networks
with logistic outputs (AUC = 0.93). Linear classifiers or
regressors did almost as well as non-linear algorithms.

On one hand, one could deplore the slightly disappointing
performance of statistical learning algorithms, as compared
to the Duval results, where the best algorithms reached a
very high AUC = 0.97. On the other hand, this might
highlight some crucial differences between the maintenance

of small, numerous network transformers and large, scarce
power transformers. We conjecture that the data set may have
some imprecisions in the labeling, or that we missed some
transformer-related discriminative features.

Nevertheless, we demonstrated the applicability of sim-
ple, out-of-the-box machine learning algorithms for DGA of
network transformers who can achieve promising numerical
performance on a large dataset. Indeed, and as visible on
Figure 4, at 1% of false alarm rate, between 30% and 50% of
faulty DGA samples were detected (using SVM with Gaussian
kernels, neural network classifiers or LDS); for the same
classifiers and at 10% of false positives, 80% to 85% of faulty
DGA samples were detected. This performance still needs to
be validated, over an extended period of time, on real-life
transformer maintenance.

3) Applicability of Semi-Supervised Algorithms to DGA:
In a last, inconclusive, series of experiments, we incorporated
knowledge about the distribution of the 29,000 recent DGA
measurements. Those were discarded from dataset D because
they were not labeled (but they should be mostly taken from
“healthy” transformers). We relied on two semi-supervised al-
gorithms (see Section IV-C): Low-Dimensional Scaling (LDS,
classification) and Local Linear Semi-Supervised Regression
(LLSSR), where unlabeled test data were supplied at learning
time. The AUC of the semi-supervised algorithms dropped,
which can be explained by the fact that the unlabeled test set
was probably heavily biased towards “normal” transformers
whereas these algorithms are designed for balanced data sets.

VI. CONCLUSION

We addressed the problem of Dissolved Gas Analysis for
the failure prediction of power and network transformers from
a statistical machine learning angle. Our predictive tools would
take as input log-transformed DGA measurements from a
transformer and provide, as an output, the quantification of
the risk of an impending failure.

To that effect, we conducted an extensive study on a small
but public set of published DGA data samples, and on a very
large set of thousands of network transformers belonging to a
utility company. We evaluated 15 straightforward algorithms,
considering linear and nonlinear algorithms for classification
and regression. Nonlinear algorithms performed better than
linear ones, hinting at a nonlinear boundary between DGA-
samples from “failure-prone” and those from “normal”. It
was hard to choose between a subset of high-performing
algorithms, including Support Vector Machines (SVM) with
Gaussian kernels, neural networks, and Local Linear Regres-
sion, as their performances were comparable. There seemed
to be no specific advantage in trying to regress the Time-To-
Failure rather than performing a binary classification; but there
was a need to balance the dataset in terms of “faulty” and
“normal” DGA samples. Finally, as shown through repeated
experiments, a robust classifier such as SVM with Gaussian
kernel could achieve an Area Under the ROC Curve of
AUC = 0.97 on the Duval dataset, and of AUC = 0.94 on
the utility dataset, making this DGA-based tool applicable to
prioritizing repairs and replacements of network transformers.
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We have made our Matlab code and part of the dataset avail-
able at http://www.mirowski.info/pub/dga in order to ensure
reproducibility and to help advance the field.
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