
 

 

 

  

Abstract— Recent research suggests that electrophysiological 

changes develop minutes to hours before the actual clinical 

onset in focal epileptic seizures. Seizure prediction is a major 

field of neurological research, enabled by statistical analysis 

methods applied to features derived from intracranial 

Electroencephalographic (EEG) recordings of brain activity. 

However, no reliable seizure prediction method is ready for 

clinical applications. In this study, we use modern machine 

learning techniques to predict seizures from a number of 

features proposed in the literature. We concentrate on 

aggregated features that encode the relationship between pairs 

of EEG channels, such as cross-correlation, nonlinear 

interdependence, difference of Lyapunov exponents and wavelet 

analysis-based synchrony such as phase locking. We compare 

L1-regularized logistic regression, convolutional networks, and 

support vector machines. Results are reported on the standard 

Freiburg EEG dataset which contains data from 21 patients 

suffering from medically intractable focal epilepsy. For each 

patient, at least one method predicts 100% of the seizures on 

average 60 minutes before the onset, with no false alarm. 

Possible future applications include implantable devices capable 

of warning the patient of an upcoming seizure as well as 

implanted drug-delivery devices. 

I. INTRODUCTION 

PILEPSY is a chronic illness that affects approximately 

1 to 2% of the world’s population [1]. Among them, 

approximately 30-40% suffers from medication-refractory 

epilepsy, and may require surgical measures for either 

curative or palliative therapy. For those individuals, the 

prospect of experiencing unpredictable seizures during daily 

activity can be harrowing. A significant amount of research 

investigations have been recently pursued that focus on 

techniques that predict seizures prior to their onset. This is of 

marked value to patients with refractory epilepsy, and may 

allow them to take preparatory steps to protect themselves 

from injury or to attempt to take medication preventively. 
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Additionally, seizure prediction mechanisms may play a 

critical value in implantable seizure prevention devices in the 

future (i.e. brain stimulators or intracranial drug delivery 

devices), signaling activation of these devices in the period 

prior to the impending seizure.  

A. Can Epileptic Seizures Be Predicted? 

Recent multi-center clinical studies showed evidence of 

premonitory symptoms in 6.2% of 500 epileptic patients [2]. 

Another interview-based study found that 50% of 562 

patients felt “auras” before seizures [3]. These clinical 

observations give an incentive to search for premonitory 

changes on Electroencephalographic (EEG) recordings from 

the brain. The epileptic brain consecutively transitions 

through different states of activity: from normal interictal 

(far from seizures) to preictal (minutes or sometimes hours 

before the seizure) then ictal (seizure) and postictal, before 

returning to the interictal state [4]. Despite the current lack 

of a complete neurological understanding of the preictal 

brain state, which is patient and condition specific, 

researchers increasingly hypothesize that brainwave 

synchronization patterns might differentiate interictal, 

preictal and ictal states [5]. 

The specific seizure prediction task thus becomes a 

classification problem where one aims at discriminating 

between interictal and preictal patterns of brain activity [4]. 

Ictal and postictal states are discarded from the classification 

because the task is not to detect undergoing seizures, but to 

warn the patient or clinician about future ones [4]. In this 

study, we arbitrarily define the preictal period as the 2 hours 

preceding a seizure. 

B. Seizure Prediction Using Intracranial EEG 

Each intracranial EEG electrode records local voltage 

potential over millions of brain cells. Multi-channel EEG can 

be viewed as an observation of a dynamical system 

generating electrophysiological waves.  

Most current seizure prediction approaches can be 

summarized into (1) extracting features from EEG and (2) 

classifying them (and hence the patient’s state) into preictal 

or interictal [4], [6]. 

The EEG is a temporal sequence of M-dimensional 

vectors X(t) in which each component xi(t) is a single 

electrode channel, at a fixed sampling rate. The data used in 

this paper has 6 channels sampled at 256Hz. We typically 

consider a window of N=1280 samples covering 5 seconds. 

The signal within this window is preprocessed to produce a 
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vector of features y(t). A common hypothesis is that 

brainwave synchronization patterns are different in interictal 

and preictal phases [5]. For this reason, recent reviews of 

seizure prediction techniques [6]-[8] have advocated the use 

of bivariate features (which measure some relationship 

between two neighboring or distant EEG channels xi and xj), 

rather than univariate features (computed on each EEG 

channel separately).  

C. Shortcomings of State-of-the-art Seizure Prediction 

Despite over three decades of seizure prediction research, 

even the best methods suffer from a trade-off between 

sensitivity (being able to predict seizures) and specificity 

(avoiding false alarms). No method has achieved clinical 

applicability yet, with both a very high sensitivity and zero 

false alarms per hour [6]-[8]. We suggest two main limitation 

of existing seizure prediction algorithms: (1) unnecessary 

reduction of the number of features, and (2) the use of 

simplistic classification. 

More specifically, the common approach is to average 

EEG-derived features (over time and/or over several EEG 

channels) and to ultimately perform binary classification of a 

single variable [6]. Binary classification consists in an a 

posteriori and in-sample tuning of a threshold (e.g. pre-ictal 

vs. interictal). In order to ensure the predictability, and in 

absence of testing data, this method requires sophisticated 

validation using the Seizure Time Surrogates method [9]. 

These typical shortcomings are illustrated in [10], where 

phase-locking synchrony is computed for all frequencies 

without band-pass filtering, and cross-correlation is 

computed for zero delay only. Bivariate features from 

several channels are collapsed to a single value. The final 

decision boundary is a simple line in a 2D space covered by 

the two bivariate features, unsurprisingly yielding very weak 

seizure prediction performance [10]. 

Machine Learning algorithms can alleviate these 

shortcomings, thanks to non-linear classification boundaries 

in a highly-dimensional features space, and by quantifying 

the efficiency of the learning process using in-sample 

learning (potentially with cross-validation) and out-of-

sample testing. So far, only Genetic Algorithms [11], K-

Means [12] and Quadratic Programming [13] have been 

applied, in a limited scope, to the seizure prediction problem, 

but only to select subsets of features and corresponding 

channels for further statistical classification, i.e. for data 

selection but not for the classification task itself. 

As explained in sections II and III, our first contribution 

consists in aggregating bivariate features into temporally- 

and spatially-varying patterns. Our second contribution is to 

apply regularized machine learning methods (logistic 

regression, convolutional networks and support vector 

machines) to robustly classify these patterns of brain activity 

into interictal (away from seizures) and preictal (preceding 

seizures). We explain in section IV how we obtained 100% 

sensitivity and no false alarm seizure prediction performance 

on the reference Freiburg EEG database [14] containing 

EEG from 21 patients suffering from medically intractable 

focal epilepsy. Our results are considerably better than the 

42% sensitivity and 3 false predictions per day reported on 

that dataset [15]-[19]. 

II. BIVARIATE FEATURES FROM EEG 

Bivariate features presented in this section and used in this 

study have the following common points: 

(a) Bivariate features are computed on 5s windows 

(N=1280 samples at 256Hz) of any two EEG channels xi 

and xj. 

(b) For M EEG channels, one computes features on 

( ) 21−× MM  pairs of channels (e.g. 15 pairs for M=6). 

(c) Features are aggregated for several consecutive time 

frames, e.g. 12 frames (1min) or 60 frames (5min). 

This section details 4 different types of bivariate features. 

A. Maximal Cross-Correlation [6] 

The simplest linear measure of dependence between two 

signals is cross-correlation. Due to both the 

electrophysiological and cognitive nature of the brainwaves, 

delays between two spatially distant EEG signals are 

possible. To account for these delays, cross-correlation Ci,j(τ) 

between pairs (xi, xj) of EEG channels xi(t) and xj(t) is 

computed at delays τ ranging from -0.5s to 0.5s, and only the 

maximal value of Ci,j(τ) is retained [6], as in: 
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B. Nonlinear Interdependence [20] 

Nonlinear Interdependence is another nonlinear bivariate 

statistics with good seizure prediction performance, and 

measures the distance, in state-space, between trajectories of 

two EEG channels [6], [20]. First, signals xi(t) and xj(t) from 

two EEG channels are time-delay embedded into respective 

vectors xi(t) and xj(t). We used embedding dimension d=10 

and time-delay τ=6 samples or 23ms following suggestions 

in [6]. Then one computes an asymmetric statistic measuring 

the Euclidian distance, in reconstructed state-space, between 

trajectories described by xi(t) and xj(t). For each time point t, 

{ }iKii ttt ,,, 21 K  are the time indices of the K=5 nearest 

neighbors of xi(t), { }jKjj ttt ,,, 21 K  are the time indices of the 

K nearest neighbors of xj(t), and the nonlinear dependence of 

channel xi on channel xj averaged on N time points is: 
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We use symmetric feature is Sij=(S(xi|xj)+S(xj|xi))/2. 

C. Difference of Short-Term Lyapunov Exponents [13] 

A common measure of chaos is the estimation, from the 

observed time-delay embedded time-series xi(t), of the 

largest Lyapunov exponent, i.e. the exponential rate of 

growth of an initial perturbation δxi(t). For EEG 

applications, short-time Lyapunov coefficients STLmax are 

typically [13] sampled and averaged on 5s windows, with 

time-delay τ=6 samples or 20ms, embedding dimension d=7 

and evolution time ∆t=12 samples or 47ms. Positive values 

of the largest Lyapunov exponent are an indication of a 

chaotic system, and this exponent increases with the 

unpredictability.  

Whereas STLmax characterizes the chaotic behavior of a 

single EEG channel xi(t), the difference of STLmax values 

between two channels measures the convergence of chaotic 

behavior of the epileptic brain as it transits from the interictal 

to ictal state. A classification algorithm relying on 

differences of STLmax achieved very high sensitivity and 

specificity for the seizure detection problem. 

A detailed implementation of the method is given in [13]. 

Assuming a perturbation evolution time ∆t, the short-time 

Lyapunov exponent on channel xi is estimated as: 
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The bivariate attribute is DSTLij= |STLmax (xi) - STLmax (xj)|. 

D. Wavelet Analysis Based Measure of Synchrony [12] 

An important family of bivariate features used in this 

study, which also yielded the best classification results, is 

phase synchrony. Frequency-specific and time-dependent 

phase φi,f(t) and φj,f(t) is extracted from the two respective 

EEG signals xi(t) and xj(t) using Wavelet Transform [21]. 

Statistics on the difference of phases between two channels 

are then made: phase-locking synchrony SPLV, entropy H of 

the phase difference and coherence Coh [21]. Phase-locking 

synchrony at frequency f is: 
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In this study, wavelet-based synchrony is computed at 

several frequencies and averaged on 7 different frequency 

bands corresponding to so-called EEG rhythms: delta (below 

4Hz), theta (4-7Hz), alpha (7-13Hz), low beta (13-15Hz), 

high beta (14-30Hz), low gamma (30-45Hz) and high 

gamma (65-100Hz). In other words, for a given time frame 

and given pair of channels, bivariate features consist in 7 

synchrony values. 

III. CLASSIFYING BIVARIATE EEG FEATURE PATTERNS  

The first contribution of this study consists in using all the 

bivariate features for classification. Features are computed 

for every pair of EEG channels, for every window of 5s, 

(and, in the case of synchrony, for every frequency band). 

Features are not averaged over all the channels and/or over a 

10min window [6]. To the contrary, they are aggregated to 

form highly dimensional patterns. In this study, patterns can 

be viewed as “movie” of 12 (1min) or 60 (5min) frames, 

each frame consisting of ( ) 21−× MM  pairs of EEG 

channels (possibly multiplied by 7 frequency bands), see Fig. 

1. The dimensionality of the feature patterns ranges from 180 

(e.g. cross-correlation on 1min windows, Fig. 1), to 6300 

(e.g. wavelet phase-locking synchrony on 5min windows). 

Let us note yt one pattern (sample of bivariate features, and zt 

the associated label (-1 for preictal, 1 for interictal). yt can 

either be one long vector or a matrix indexed by time and by 

channel pair and frequency band. 

The second innovation relies on nonlinear classification 

methods such as convolutional networks (section III.B) or 

support vector machines with Gaussian kernels (section 

III.C), even if a simple logistic regression yields good results 

in several patients (section III.A). 

A. Logistic Regression 

The decision function of a logistic regression classifier is  

( )bz t

T

t += ywsign , (9) 

where w is the weight parameter vector and b the bias. The 

optimal weight is obtained by minimizing loss function (10): 
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Loss (10) comprises an L1 regularization term to select 

features. We minimize it using stochastic gradient descent 

[22]. A sensitivity analysis to the inputs can be performed by 

simply looking at individual weights wi. We typically used 

 
Fig. 1. Examples of EEG and bivariate features on 1min windows for 

Patient 12: (a) 1min of interictal EEG and (b) corresponding interictal 

cross-correlation features, (c) 1min of preictal EEG and (d) 

corresponding preictal cross-correlation. On the feature patterns, time 

frames are on the horizontal axis, and channel pairs on the vertical axis. 



 

 

 

values of 0.001 for lambda. 

B. Convolutional Networks 

Convolutional networks [23] are trainable, multi-layer, 

non-linear systems that are specifically designed to extract 

and classify high-dimensional patterns from images or 

multivariate time-series. They can be seen as multi-layer 

neural networks in which each layer is a bank of finite-

impulse response filters followed by point-wise sigmoid 

squashing functions. All the layers are trained simultaneously 

using a version of the back-propagation learning algorithm. 

They can learn low-level features and high-level 

representations in an integrated manner. Their main 

advantage is that they can learn optimal time-invariant local 

feature detectors from input matrix yt (which is indexed by 

time) and thus build representations that are robust to time 

shifts of specific feature motifs. This technique has already 

been applied to raw EEG data [24].  

We use specific convolutional network architecture 

similar to [23]. For 12-frame patterns, the convolution 

kernels on the 1
st
, 3

rd
 and 5

th
 layers have sizes 1x5:Nx3:1x1, 

with 1x2:1x2 subsampling on the 2
nd
 and 4

th
 layer. For 60-

frame patterns, the corresponding convolution kernels have 

sizes 1x13:Nx9:1x1, with 1x2:1x2 subsampling on the 2
nd
 

and 4
th
 layer. In both cases, the second dimension is time and 

N is the number of pairs of channels (15) times the number 

of frequency bands (1 or 7). The thicknesses are 5:5 on the 

1
st
 and 3

rd
 layer. There are 2 output nodes (one for preictal, 

one for interictal), with respective target output vectors [1,-1] 

and [-1,1], and the loss is the mean square distance to the 

prototypes. Having 2 outputs nodes enabled an asymmetric 

learning that penalized more false positives (false preictal 

alarms) than false negatives (missed preictal alarms), as 

illustrated in section IV. 

Moreover, we evaluate the sensitivity of particular input 

features for the classification task, by back-propagating the 

gradients obtained for each testing sample onto the inputs, 

and then by summing the squares of these gradients on 

inputs. The input sensitivity analysis yields results 

comparable to logistic regression weights. 

C. Support-Vector Machines 

We use in this study support vector machines [25] with 

Gaussian kernels, implemented in the LibSVM library [26]. 

5-fold cross-validation helps to select the best 

regularization parameter C and the Gaussian parameter γ, 

using first a coarse grid search on [ ]931 2,...,2,2∈C  and 

[ ]11313 2,2,2 −−−∈γ  followed by a refined grid search 

for [ ]25.12

0 2,...,2,2 −−×∈CC , and [ ]25.12

0 2,...,2,2 −−−×∈γγ  

around the best candidates C0, γ0. 

IV. RESULTS  

A. 21 Patient EEG Database 

To test our machine-learning based classification of 

bivariate features from EEG, we use the Freiburg EEG 

database [14] containing invasive EEG recordings of 21 

patients suffering from medically intractable focal epilepsy. 

These EEG data had been acquired from intracranial grid-, 

strip-, and depth-electrodes at a 256 Hz sampling rate, and 

digitized to 16 bit by an analogue-to-digital converter. Then, 

three focal electrodes (1-3) were chosen from areas involved 

early in ictal activity, and three remaining electrodes (4-6) 

were selected as not involved during seizure spread. 

We further apply Infinite Impulse Response (IIR) 

elliptical filters [27] to clean some artifacts: a 49-51Hz band-

reject 12
th
-order filter to remove power line noise, a 120Hz 

cutoff low-pass 1
st
-order filter to avoid aliasing, and a 0.5Hz 

cutoff high-pass 5
th
-order filter to remove the dc component. 

B. Training and Testing Data Selection 

Each of the patients EEG recordings contains between 2 

and 6 seizures and at least 50 min of pre-ictal data for most 

seizures, as well as approximately 24 hours of EEG-

recordings without seizure activity and spanning the full 

wake-sleep cycle. Once bivariate features are computed for 

each patient, we select samples from the last 1 or 2 seizures 

(depending on their total number) and 33% of the interictal 

samples as testing data, and the rest as training data. In other 

words, we train the classifiers on the earlier seizures and on 

wake-sleep interictal data, and evaluate these classifiers on 

later seizures and on different wake-sleep interictal data. 

All data samples are scaled on a per patient basis, to either 

zero mean and unit variance (logistic regression and 

convolutional networks) or between -1 and 1 for SVMs. 

C. Classification Results on a the Freiburg Dataset 

Because the ultimate goal is more the epileptic patient’s 

quality of life rather than the classification task itself, seizure 

prediction performance is measured in terms of false 

positives (alarms) per hour and of sensitivity (number of 

seizures where at least one preictal sample is correctly 

classified). 

Table 1 summarizes, for each patient, feature type and 

classifier, the false positive rate and time to first (and 

second) seizure, i.e. “how early a preictal alarm is sent”, or 

how early is any preictal sample correctly classified. All 

results reported in Table 1 have less than 0.3 false positives 

per hour (as computed on total interictal time only) and each 

of the testing seizure has been predicted, i.e. there is at least 

one preictal alarm during the 2 hours preceding each seizure. 

In Table 1, crosses mark combinations of features and 

machines for which seizure prediction fails, i.e. with more 

than 0.3 false positives per hour or seizures not predicted. 

Results in bold indicate zero false alarm and 100% seizure 

prediction.  

Although we tested 1min-long (12 frames) and 5min-long 

(60 frames) patterns, we reported in Table 1 only results 

obtained with 5min-long patterns. 

Not all preictal samples are correctly classified: some are 

misclassified (false negatives) as interictal. We actually use 



 

 

 

the possibility of having some false negatives to achieve 

good seizure prediction results in patients 17, 19 and 21. 

During the stochastic gradient descent training of the 

convolutional network, we set a stronger penalty on false 

positives than on false negatives. These results are indicated 

in italic in Table 1.  

The main conclusion is that for each patient, at least one 

method predicts 100% of the seizures on average 60 

minutes before the onset, with no false alarm. The 

minimum prediction time is 3 minutes for patient 13, but has 

to be put on the account of very short preictal recording 

before the second seizure for that patient. 

Convolutional networks achieve a zero-false-alarm 

seizure prediction on 20 patients out of 21, compared to 

11 only using SVM (good results are obtained for patient 5 

though, contrary to convolutional networks). Surprisingly, 

the linear classification boundary of logistic regression 

enables perfect seizure prediction on 14 patients. 

It has to be noted that both for convolutional networks and 

logistic regression, the classification performance is 100% 

on the training dataset for reported results. The only 

exception are patients 17, 19 and 21, where we allow a larger 

penalty for false positives than for false negatives and obtain 

false negatives on the training dataset. In any case, we can 

claim that we obtain 100% sensitivity and no false positives 

on the full 88-seizure Freiburg dataset. 

D. Feature Selection and Input Sensitivity 

By enforcing sparse parameters through L1 regularization, 

and by observing the logistic regression weights or the 

convolutional networks input sensitivity, we see that only a 

subset of feature inputs is necessary, and that high frequency 

inputs are necessary for good classification (Fig. 2). 

Cross-correlation features enable good seizure predictions 

with less than 0.3 false positives per hour on 12 patients out 

of 21; nonlinear interdependence on 16, wavelet phase-

locking synchrony, phase difference entropy on 14, and 

wavelet coherence on 18 patients. The difference of short-

term Lyapunov exponents is the weakest, as it works only on 

2 patients. Unsurprisingly, 5min patterns achieve a better 

performance that 1min patterns (working respectively on 21 

vs. 15 patients). Although 5min patterns have more 

dimensions than the number of training samples, using 

separate training, cross-validation and testing datasets 

enables generalization properties of the classifiers. 

 
Table 1.  False positive rates fpr and time of alarm before seizure ts1 and ts2 obtained on the testing dataset of 21 patients [14], using log-reg logistic 

regression-, lenet5 convolutional networks- and svm support vector machines-based seizure prediction (classification of patterns of bivariate features 

into preictal and interictal). Features considered are maximal cross-correlation C, nonlinear interdependence S, difference of Lyapunov exponents 

DSTL, and three measures of wavelet analysis-based synchrony: phase-locking value SPLV, entropy H of phase difference and coherence Coh. Input 

patterns consisted of 5min (60 frames) of these features. For each patient, different classifiers and different features yielded different results. Crosses x 

mark combinations of features and machines for which seizure prediction failed, i.e. with more than 0.3 false positives per hour or seizures not 

predicted. Results in bold indicate zero false alarm and 100% seizure prediction. Results in italic indicate special training of the convolutional network. 



 

 

 

E. Implementation 

The software for computing features from EEG is 

implemented in Matlab but can also be run under its free 

open-source counterpart, Octave. Support vector machine 

classification is performed using LibSVM [26] and its 

Matlab/Octave interface. Convolutional networks are 

implemented Lush [28], an open-source programming 

environment. 

In order to translate seizure prediction research into 

engineering of human neuroprosthetic devices, we need to 

ensure a low computational complexity. Trained SVMs and 

convolutional networks can be run in real-time on test 

patterns, but the features detailed in this article are 

computationally expensive. We are currently investigating 

the use of neural networks to rapidly measure EEG 

synchronization. 
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Fig. 2.  Input sensitivity analysis for the seizure prediction task on patient 

8 and on 60-frame patterns of wavelet-based coherence. Time frames are 

on the horizontal axis, and channel pairs on the vertical axis, sorted by 7 

frequency bands. Thanks to L1 regularization, only some inputs play a 

significant role. We observe for this patient and set of features that the 

time dependence is much weaker than dependence on the frequency band 

and channel pair, and that high frequency coherence plays a significant 

role in the preictal/interictal classification task. 


