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Abstract

We present a new algorithm for topic modeling, text classification and retrieval,
tailored to sequences of time-stamped documents. Based on the auto-encoder ar-
chitecture, our nonlinear multi-layer model is trained stage-wise to produce in-
creasingly more compact representations of bags-of-words at the document or
paragraph level, thus performing a semantic analysis. It also incorporates sim-
ple temporal dynamics on the latent representations, to take advantage of the in-
herent structure of sequences of documents, and can simultaneously perform a
supervised classification or regression on document labels. Learning this model is
done by maximizing the joint likelihood of the model, and we use an approximate
gradient-based MAP inference. We demonstrate that by minimizing a weighted
cross-entropy loss between histograms of word occurrences and their reconstruc-
tion, we directly minimize the topic-model perplexity, and show that our topic
model obtains lower perplexity than Latent Dirichlet Allocation on the NIPS and
State of the Union datasets. We illustrate how the dynamical constraints help the
learning while enabling to visualize the topic trajectory. Finally, we demonstrate
state-of-the-art information retrieval and classification results on the Reuters col-
lection, as well as an application to volatility forecasting from financial news.

1 Introduction

We propose in this article a new model for sequences of observations of discrete data, specifically
word counts in consecutive (or time-stamped) text documents, such as online news, recurrent sci-
entific publications or periodic political discourses. We build upon the classical bag-of-words ap-
proach, ignoring the syntactic dependencies between words; we focus instead on the text semantics
by looking at vocabulary distributions at the paragraph or document level. Our method can automat-
ically discover and exploit sequences of low-dimensional latent representations of such documents.
Unlike most latent variable or topic models, our latent representations can be simultaneously con-
strained both with simple temporal dependencies and with document labels. One of our motivations
is the sentiment analysis of streams of documents, and has interesting business applications, such
as ratings prediction. In this work, we predict the volatility of a company’s stock, by capturing the
opinion of investors manifested in online news about that company.

Simple word counts-based techniques, such as the Term Frequency - Inverse Document Frequency
(TF-IDF) remain a standard method for information retrieval (IR) tasks (for instance returning doc-
uments of the relevant category in response to a query). TF-IDF can also be coupled with a classifier
(such as an SVM with linear or Gaussian kernels) to produce state-of-the-art text classifiers [1], [2].
We thus show in Results section 3.3 how our low-dimensional document representation measures
up to TF-IDF or TF-IDF + SVM benchmarks on information retrieval and text categorization tasks.
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Plain TF-IDF relies on a high-dimensional representation of text (over all V words in the vocabulary)
and compact representations are preferable for index lookup because of storage and speed issues. A
candidate for such low-dimensional representations is Latent Semantic Analysis (LSA) [3], which
is based on singular value decomposition (SVD). Alternatively, one can follow the dimensional-
ity reduction by independent components analysis (ICA), to obtain statistically independent latent
variables [4]. Unfortunately, because they perform lossy compression and are not trained discrimi-
natively w.r.t. the task, SVD and ICA achieve worse IR performance than the full TF-IDF.

Instead of linear dimensionality reduction, our approach is to build auto-encoders. An auto-encoder
is an architecture trained to provide with a latent representation (encoding) of its input, thanks to
a nonlinear encoder module and an associated decoder module. Auto-encoders can be stacked and
made into a deep (multi-layer) neural network architecture [5][6][7][8]. A (semi-)supervised deep
auto-encoder for text has been introduced in [9] and achieved state-of-the-art classification and IR.

There are three crucial differences between our model and Ranzato and Szummer’s [9]. First of all,
our model makes use of latent variables. These variables are inferred though the minimization of
an energy (over a whole sequence of documents) that involves the reconstruction, the temporal dy-
namics, the code prediction, and the category (during supervised learning), whereas in [9], the codes
are simply computed deterministically by feed-forward encoders (their inference does not involve
energy minimization and relaxation). It is the same difference as between a dynamic Bayesian net
and a simple feed-forward neural net. Secondly, our cross-entropy loss function is specifically con-
structed to minimize topic model perplexity, unlike in [9]. Instead of merely predicting word counts
(through an un-normalized Poisson regression), we predict the smoothed word distribution. This
allows us to actually model topics probabilistically. Lastly, our model has a hierarchical temporal
structure, and because of its more flexible nature, is applicable to a wider variety of tasks.

Several auto-encoders have been designed as probabilistic graphical models in order to model word
counts, using binary stochastic hidden units and a Poisson decoder [10], [8] or a Softmax de-
coder [11]. Despite not being a true graphical model when it comes to the inference of the latent
representation, our own auto-encoder approach is also based on the Softmax decoder, and, as ex-
plained in Methods section 2.3, we also do take into account varying document lengths when training
our model. Moreover, and unlike [10], [8] or [11], our method is supervised and discriminative, and
further allows for a latent dynamical model.

Another kind of graphical models specifically designed for word counts is topic models. Our bench-
mark is the Latent Dirichlet Allocation [12], which defines a posterior distribution of M topics over
each document, and samples words from sampled topics using a word-topic matrix and the latent
topic distribution. We also considered its discriminative counterpart, Supervised Topic Models [13]
with a simple linear regression module, on our financial prediction task (in Results section 3.4). We
show in Results section 3.1 that we managed to achieve lower perplexity than LDA.

Some topic models have introduced dynamics on the topics, modeled as Gaussian random
walks [14], or Dirichlet processes [15]. A variant to explicit dynamics consists in modeling the
influence of a ”time” variable [16]. Some of those techniques can be expensive: in Dynamic Topic
Models [14], there is one topic-word matrix per time step, used to model drift in topic definition.
Moreover, inference in such topic models is intractable and replaced either by complex Variational
Bayes, or by Gibbs sampling. Finally, all the above temporal topic models are purely generative.

The major problem with the Gaussian random walks underlying [14] is that they describe a smooth
dynamic on the latent topics. This might be appropriate for domains such as scientific papers, where
innovation spreads gradually over time [14], but might be inexact for political or financial news,
with sudden ”revolutions”. For this reason, we considered Laplace random walks, that allow for
”jumps”, and illustrated in section 3.2 the trajectory of the U.S. State of the Union speeches.

2 Methods

For each text corpus, we assume a vocabulary of V unique tokens, which can be words, word stems,
or named entities1. The input to the system is a V -dimensional bag-of-words representation xi of
each document i, in the form of a histogram of word counts ni,v , with Ni =

∑V
v=1 ni,v . To avoid

zero-valued priors on word occurrences, probabilities xi can be smoothed with a small coefficient β
(here set to 10−3): xi ≡ ni,v+β

Ni+βV
.

1We built a named-entity recognition pipeline, using libraries from the General Architecture for Text Engi-
neering (http://gate.ac.uk), and relying on gazetteer lists enriched with custom lists of company names.
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2.1 Auto-Encoder architecture on bag-of-words histograms

The goal of our system is to extract a hierarchical, compact representation from very high-
dimensional input vectors X = {xi}i and potential scalar or multivariate labels Y = {yi}i.
This latent representation consists in K layers Z{k} = {z{k}i }

{k}
i of decreasing dimensionality

V > M1 > M2 > . . . > MK (see Fig. 1a). We produce this representation using deep (multi-
layer) auto-encoders [5][6][7][8] with additional dynamical constraints on the latent variables. Each
layer of the auto-encoder is composed of modules, which consist in a parametric deterministic func-
tion plus an error (loss) term, and can be interpreted as conditional probabilities.
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ỹt

αcLc,t

αeLe,t

Ld,t

Ls,t

(b) Layer 1

Figure 1: Left: Factor graph representation of the deep auto-encoder architecture with dynamical
dependencies between latent variables. Right: Energy-based view of the first layer of the dynamic
auto-encoder. The reconstruction factor comprises a decoder module h with cross-entropy loss Ld,t
w.r.t. word distribution {xwt }Vw=1, and an encoder module f with Gaussian loss Le,t, for a total
factor’s loss αeLe,t + Ld,t. The latent variables zt are averaged by time unit into Zt′−1,Zt′ , . . .,
and the latter follow Gaussian or Laplace random walk dynamics defined by the dynamical factor
and associated loss αsLs,t′ (for simplicity, we assumed here 1 document for time unit t′ and one for
previous time unit t′ − 1). There is an optional supervised classification/regression module g (here
with a Gaussian regression loss αcLc,t).

The encoder module of the k-th layer transforms the inputs (word distribution xi if k = 1) or
variables from the previous layer z{k−1}

i into a latent representation z{k}i . The encoding function
fk(z{k−1}

i ) + εi = z{k}i or fk(xi) + εi = z{1}i is parametric (with parameters noted We). Typically,
we use the classical tanh sigmoid non-linearity, or a sparsifying non-linearity x3/(x2 + θ) where θ
is positive2. The mean square loss term εi represents Gaussian regression of latent variables.

Conversely, there is a linear decoder module (parameterized by Wd on the same k-th layer that re-
constructs the layer’s inputs from the latent representation hk(z{k}i )+ δi = z{k−1}

i , with a Gaussian
loss δi. Layer 1 is special, with a normal encoder but with a Softmax decoder h1 and a cross-entropy
loss term, as in [11]:

x̄vi =
exp(Wdvz

{1}
i )

∑
v′ exp(Wdv′z{1}i )

(1)

The dynamical module of the k-th layer corresponds to a simple random walk from a document at
time step t to next document at time step t+ 1: z{k}t+1 = z{k}t + ηi. The error term ηi can be either a

2The sparsifying nonlinearity is asymptotically linear but shrinks small values to zero. θ should be optimized
during the learning, but we decided, after exploratory analysis on training data, to set it to a fixed value of 10−4
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sum of squared element-wise differences (L2-norm) between the consecutive time-unit averages of
latent codes of documents (i.e. a Gaussian random walk, that enforces smooth dynamics), or a sum
of absolute values of those element-wise differences (L1-norm, i.e. Laplace random walk).

There can be multiple documents with the same timestamp, in which case, there should be no direct
constraints between za,t and zb,t of two documents a and b sharing the same time-stamp t. In the
case of such hierarchical temporal dynamics, we define a dynamic between consecutive values of the
averages < z >t of the latent variables from same time-unit documents (for a set It of Nt articles
published on the same day t, each average is defined as < z >t ≡ 1/Nt

∑
i∈It

zi). The intuition
behind the time-specific averages of topics is that they capture the topic ”trend” for each time stamp
(e.g. year for NIPS proceedings or for State-of-the-Union speeches).

Finally, there is a classification/regression module gk that classifies k-th layer latent variables. Typ-
ically, we considered multi-variate logistic regression (for classification problems) or linear regres-
sion with logistic loss or Gaussian loss, respectively.

Those models can be learned in a greedy, sequentially layer-wise approach [5], by considering
each layer as an approximated graphical model (see Fig. 1b) and by minimizing its negative log-
likelihood using an Expectation Maximization (EM) procedure with an approximate maximum-a-
posteriori inference (see next sub-section 2.2). We finally prove how our learning procedure mini-
mizes the topic model perplexity (sub-section 2.3).

2.2 Dynamic factor graphs and Maximum A Posteriori approximation

Factor graphs [18] are a convenient formalism for graphical models. They express the joint like-
lihood of all visible and hidden variables: each factor, that is connected to a subset of variables,
models the conditional dependencies between those variables. The likelihood of the model is the
product of likelihoods of each factor, and in log space, this product becomes a sum.

Using maximum a posteriori (MAP) inference, we do not marginalize over the latent variables by
integrating them out. Instead, we minimize the negative log-likelihood of the model by finding the
configuration of latent variables that minimizes a loss function that corresponds to an unnormal-
ized negative log-likelihood. We decide to ignore the partition function, which is intractable, and in
order not to reach degenerate solutions, we impose constraints on the latent variables during infer-
ence. This enables us to consider potentially nonlinear factors (modules). Our gradient-based EM
algorithm is a coordinate descent on the log-likelihood over the sequence:

L(X,Y; W) = min
Z
{Ld(X,Z; Wd) + αcLc(Z,Y; Wc) + αeLe(X,Z; We) + αsLs(Z)} (2)

Each iterative inference (E-step) and learning (M-step) consists in a full relaxation w.r.t. latent vari-
ables or parameters, like in the original EM algorithm. We use simple gradient descent to minimize
negative log-likelihood loss w.r.t. latent variables, and conjugate gradient with line search to mimize
L w.r.t. parameters. Because each relaxation is until convergence and done separately, everything
else being fixed, the various hyperparameters for learning the modules can be tuned independently,
and the only subtlety is in the choice of the weights αc, αe and αs. The α∗ coefficients control the
relative importance of the encoder, decoder, dynamics and supervised modules in the total energy,
and they can be chosen by cross-validation.

We add an additional Laplace prior on the weights and latent variables (using L1-norm regulariza-
tion, and multiplying learning rates by λw = λz = 10−4). Finally, we normalize the decoder to unit
column weights as in the sparse decomposition [19]. Because we initialize the latent variable by
first propagating the inputs of the layer through the encoder, then doing a relaxation, the relaxation
always gives the same latent variables for given parameters, inputs and labels.

As a variation on a theme, we can directly encode xi using the encoders f1, f2, . . . , fK , like in
[9], in order to perform fast inference (e.g. for information retrieval or for prediction, as we did on
experiments in sections 3.3. or 3.4).

2.3 Minimizing topic model perplexity

In the field of topic models, the perplexity measures the difficulty of predicting documents after
training model Ω, and is evaluated on held out test sets. Under an independence assumption, and on
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Algorithm 1 EM-type learning of the latent representation at layer k of the Dynamic Factor Graph

if k = 1 then
Use bag-of-words histograms X as inputs to the first layer

else
Use Mk−1-dimensional hidden representation Z{k−1} as inputs to layer k

end if
Initialize the latent variables Z{k} using Mk-dimensional ICA
while epoch ≤ nepochs do

// M-step on the full training sequence:
Optimize the softmax (k = 1) or Gaussian decoder hk by minimizing loss L w.r.t. Wd

Optimize the nonlinear encoder fk by minimizing loss L w.r.t. We

Optimize the logistic classifier or linear regressor gk by minimizing loss L w.r.t. Wc

// E-step on the full training sequence:
Infer the latent variables Z{k} using the encoder fk, and record associated loss L′(epoch)
Continue inference of Z{k} by minimizing loss L (Equation 7) w.r.t. Z{k} (relaxation)
if encoder-only loss L′(epoch) is the lowest so far then

Store the ”optimal” parameters {We,Wd,Wc}
end if

end while
Infer Z{k} using ”optimal” parameters and the encoder fk only
Optional: continue the inference by minimizing loss L w.r.t. Z{k}

a set {wi}Ti=1 of T documents, containing Ni words each, perplexity is defined in [12] as:

P ≡ p
(
{wi}Ti=1|Ω

)− 1∑T

i=1
Ni = exp

(
−
∑T
i=1 log p (wi|Ω)
∑T
i=1Ni

)
(3)

In most topic models, each document i is associated with a latent representation θi (e.g. the multi-
nomial posterior distribution over topics in LDA), and one assumes the document to be a bag of Ni
conditionally independent words wi = {wi,n}Ni

n=1. Hence, the marginal distribution of wi is:

p (wi|Ω) =
∫

θi

p (θi|Ω)

(
Ni∏

n=1

p(wi,n|θi,Ω)

)
dθi ≈

Ni∏

n=1

p(wi,n|θ̃i,Ω) (4)

In LDA, the topic assignment distribution θ̃i is inferred for each document d from observed word
occurrences, using variational inference [12] or Gibbs sampling [20]. In our maximum-a-posteriori
approach, we replace the full distribution over θi by a delta distribution with a mode at θ̃i that
maximizes the likelihood. We rewrite equation (4):

log p
(
wi|θ̃i,Ω

)
=

Ni∑

n=1

log p(wi,n|θ̃i,Ω) = Ni

V∑

v=1

ni,v
Ni

log p(v|θ̃i,Ω) (5)

By defining the empirical conditional distribution of words in document d as pi(v) ≡ ni,v

Ni
, which we

substitute in (5), and by noting the model conditional distribution as qi(v) ≡ p(v|θ̃i.Ω), equation (5)
become proportional to the cross-entropy between the empirical and the model conditional distribu-
tions over words for document i: H (pi(v), qi(v)) = −∑v pi(v) log qi(v). Given this derivation
and MAP approximation, the perplexity of our topic model can be expressed in terms of a weighted
sum of cross-entropies (the weights are proportional to the documents’ lengths):

P ≈ P̃ = exp

(
1

∑T
i=1Ni

T∑

i=1

NiH(pi, qi)

)
(6)

Minimizing LDA perplexity (3) is equivalent to minimizing the negative log-likelihood of the model
probabilities of words in all documents, i.e. to a maximum likelihood solution. This is what we do
in our approximate maximum-a-posteriori (MAP) solution, by minimizing a weighted cross-entropy
loss (7) with respect to both the model parameters Ω and the latent representations {θi}Ti=1. Using
an unnormalized latent document representation zi (instead of LDA’s simplex θi), and in lieu of
model distribution qi, our model reconstructs a V -dimensional output vector x̄i of positive values
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Table 1: Test set perplexity on NIPS articles using 100-30-10-2 DAE with 3 different dynamical
models: each layer of DAE is compared to LDA with the same number M of latent topics.

M LDA DAEαs=0, no dynamics DAEαs=1, L1 dynamics DAEαs=1, L2 dynamics

100 657 518 522 522
30 760 698 695 695
10 848 903 909 960

summing to 1 through the sequence of decoding functions (we write it x̃i = h(zi)). However,
instead of integrating over the latent variables as in (4), we minimize the reconstruction loss (7)
over the hidden representation. For a document i, the cross-entropy −∑v xi,v log x̄i,v is measured
between the actually observed distribution xi, and the predicted distribution x̄i.

Ld
(
{pi}Ti=1; Ω

)
≡ min

{qi}i

(
T∑

i=1

NiH(pi, qi)

)
= min

x̃i

(
−

T∑

i=1

xTi log x̃i

)
(7)

3 Results

3.1 Perplexity of unsupervised Dynamic Auto-Encoders

In order to evaluate the quality of Dynamic Auto-Encoders as topic models, we performed a compar-
ison of DAE vs. Latent Dirichlet Allocation. More specifically, for a 100-30-10-2 DAE architecture,
we compared the perplexity of 100-topic LDA vs. the perplexity of the 1st layer of the DAE, then
the perplexities of 30-topic LDA vs. the 2nd DAE layer, and so on for 10-topic and 2-topic LDA.

The dataset, consisting in 2483 NIPS articles published from 1987 to 2003, was separated into a
training set (2286 articles until 2002) and a test set (197 articles from 2003). We kept the top
V = 2000 words with the highest TF-IDF score. 100-, 30-, 10- and 2-topic LDA ”encodings”
[12] were performed using Gibbs sampling inference3 [20]. Our 100-30-10 DAE with encoding
weight αe = 0 achieved lower perplexity than LDA on the first two layers (see Table 1). We
also empirically compared L1 or L2 dynamical penalties vs. no dynamics (αs = 0). There was
little difference between the three types on the first 2 layers. However, L1 norm (Laplace) dynamics
instead of (Gaussian)L2 helped for further layers, as on the 3rd layer, no dynamics andL1 decreased
perplexity by 10%. Moreover, L1 allowed a large ”jump” in topic space between 2001 and 2002.

3.2 Visualization of topic trajectories

We reproduced a study on the U.S. State of the Union speeches from [15]. We selected the top
V = 2000 common words and named entities (using the same method as in section 3.4), and defined
a training set consisting in 17,350 paragraphs from 196 yearly speeches through 1989, and a test set
of 1965 paragraphs from 19 speeches (1990 to 2010). After training a 100-30-10-2 DAE with L1

dynamics, we visualized the 2D topic trajectories taken by the yearly averages of latent variables
on the 4th layer, and compared them with a non-dynamical DAE (same architecture) and a 3-topic
LDA (with 2 degrees of freedom). As Figure 2 shows, using dynamics on the latent variables during
the E-step inference helps to produce a latent representation (in the space spanned by the two hidden
units/topics) that can be useful when we expect a dynamical structure in the data.

The latter 2D latent representation provided us with a historical interpretation. It appeared that the
five strongest discontinuities in the L1 norm between 4-th hidden topics were, in that order: Harry
Truman (1946), Ronald Reagan (1982, inaugural), Andrew Jackson (1829, inaugural), Woodrow
Wilson (1913, inaugural) and Franklin Roosevelt (1934, inaugural), and on the test data, George
W Bush (2001, inaugural), William Clinton (1996) and Barack Obama (2009, inaugural), which
seemed to confirm historical intuitions.

3Using Xuan-Hieu Phan’s GibbsLDA++ package, available at http://gibbslda.sourceforge.net/, we trained
Gibbs-sampled sLDA for 2000 iterations, with standard priors α = 50/M and β = 20/V
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Hierarchical trajectory over time of latent topics (3−topic LDA)
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Figure 2: Left: 2D ”trajectory” in the latent space of the 4th layer of the 100-30-10-2 DAE, with
dynamical weight αs = 1. On each axis, ”vs.” opposes the words at the two extremes of that axis.
Latent variables were inferred per paragraph and averaged by year. Top right: same figure for a DAE
without dynamics (αs = 0). Bottom right: same figure for a 3-topic LDA (2 degrees of freedom).

3.3 Text categorization and information retrieval

The standard Reuters-21578 ”ModApt” collection4 contains 12,902 financial articles published by
the Reuters news aggregator, split into 9603 train and 3998 test samples. Each article belongs to
zero, one or more categories (in this case, the type of commodity described), and we considered the
traditional set of the 10 most populated categories (note that both [10] and [9] mistakenly interpreted
that collection as a dataset of 11,000 train and 4000 test single-class articles). We generated stemmed
word-count matrices from raw text files using the Rainbow toolbox5, selecting the top V = 2000
word stems with respect to an information gain criterion, and arranging articles by publication date.

To our knowledge, the state-of-the-art classification technique on that set remains Support Vector
Machines with linear or Gaussian kernels [1]. We used the standard SVM software packages lib-
linear6 and libsvm7, and performed a five-fold cross-validation to select the hyperparameters (reg-
ularization C, Gaussian width γ) through exhaustive search on a coarse, then on a fine grid. We
compared a 100-30-10-2 DAE with a neural network encoder8, to TF-IDF, ICA [4], SVD [3], LDA
[12], [20], and auto-encoders [9]. The area under the precision recall curve for retrieval of same-
category documents (interpolated as in [21]) by TF-IDF was 0.51, and 0.543 using 10-dimensional
ICA on TF-IDF (which was by far the best among unsupervised techniques). After optimizing the
inference weights on the training data (αe = 1, αs = 1 and αc = 100), we achieved 0.89, 0.63,
0.78 and 0.75 on the 1st, 2nd, 3rd and 4th layers, which compares with 0.87, 0.93, 0.89 and 0.70
for auto-encoders in [9] with the same architecture. In [9] though there is no relaxation step on the
latent variables during learning, only direct inference, which might help to better train the encoder
for IR.

For the multi-class classification task, we computed multi-class precision, recall and F1 using micro
and macro-averaging [1], [2]. Using an SVM with linear kernel trained on the latent variables, we

4Available at Alessandro Moschitti’s webpage: http://dit.unitn.it/∼moschitt/corpora.htm
5Andrew McCallum’s toolbox is available at http://www.cs.cmu.edu/∼mccallum/bow/rainbow/
6Available at http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
7Available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
8At each layer, we decided for the NN to have twice as many hidden nodes as outputs. Effectively, our

architecture could be called 200-100-60-30-20-10-4-2, but the inference/relaxation, as well as supervised label
information and dynamical information, were used only on the 100, 30, 10 and 2-dimensional hidden layers.
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Table 2: Prediction of median-adjusted log-volatility from 2008 financial news about the Dow 30
components, using a linear regression fit on bag-of-words-derived representations (V = 2000). We
report the coefficient of determination R2 on the test set (articles published after June 30).

TF-IDF+lin TF-IDF+SVR ICA100 LDA100 DAE100 DAE30 DAE10 DAE2

0.267 0.287 0.219 0.134 0.261 0.263 0.271 0.283

achieved a macro-averaged F1 score of 0.85 on the first 3 layers, and a micro-average F1 of 0.92
on the same layers, which compares to 0.85 and 0.92 respectively using [9] and to 0.83 and 0.91
for each score using TF-IDF. We can therefore claim that we are close to the state of the art for
information retrieval and text classification.

3.4 Prediction of stock market volatility using financial news from Bloomberg

There is some evidence in recent history that financial markets (over)react to public information. In
a simpler setting, one can restrict this observation to company-specific news and associated stock
movements, quantified with volatility σ2. The problem of volatility forecasting from financial news
has been formulated as a supervised text categorization problem and addressed in an intra-day set-
ting [22], where it was proved that the arrival of some ”shock” news about an asset j impacted its
volatility (by switching to a ”high-volatility” mode) for a duration of at least 15 min. In this article,
we tried to solve a slightly more difficult problem than in [22], by considering the volatility σ2

j,t es-
timated from daily stock prices9 of a company j. We normalized volatility dividing it by the median
volatility across all companies j on that same day, then taking its logarithm: yj,t = log σ2

j,t− log σ̄2
t .

Using the Bloomberg Professional service, we collected over 90,000 articles, published between
January 1 and December 31, 2008, on 30 companies that were components of the Dow Jones index
on June 30, 2008. We extracted each document’s time stamp and matched it to the log-volatility
measure yj,t at the earliest following market closing time. Common words and named entities were
extracted, and numbers (dollar amounts, percentages) were binned. In order to make the problem
challenging, we split the dataset into 51,362 test articles (after July 1, 2008, in a crisis market) and
38,968 training articles (up to June 30, 2008, corresponding to a more optimistic market).

As we report in Table 2, our DAE with a 100-30-10-2 architecture, tanh encoders f and linear
regressors g achieves, on all layers, a higher coefficient of determination R2 on the test set than
linear encodings (M -dimensional ICA on TF-IDF) or probabilistic topic models (M -topic LDA).
Most importantly, the low-dimensional DAE latent representations (3rd and 4th layer) outperforms
the full high-dimensional sparse representation (TF-IDF) with linear regression, and also matches
the R2 score of TF-IDF followed by nonlinear regression such as Support Vector Regression, which
is very slow and expensive to train on this large Bloomberg dataset (90k training examples) sLDA
[14] performed surprisingly poorly, with R2 < 0.1, for 100, 30, 10 or 2 topics.

Finally, those compact representations of the early 2008 financial articles highlighted informative
text features about stock market uncertainty: for instance, the two 2nd-layer hidden topics that were
the most positive regressors of log-volatility had the following topic definitions (top 10 words):
topic 1: GM, sale, US, vehicle, BOEING, world, +20%, automaker, +10%, plant and topic 2:
rating, credit, financial, information, debt, MOODY’S, FITCH, flow, security, AIG .

4 Conclusion

We have introduced a new method for information retrieval, text categorization and topic modeling,
that can be trained in a both purely generative and discriminative ways. It can give word probabilities
per document, like in a topic model, and incorporates temporal dynamics on the topics. Moreover,
learning and inference in our model is simple, as it relies on an approximate MAP inference and
a greedy approach for multi-layer auto-encoders. This results in a few hours of learning time on
moderately large text corpora, using unoptimized Matlab code. Our initial results on standard text
collections are very promising. As further avenues of work, we are planning on optimizing the
gradient-based algorithms for training individual components of the DAE.

9Stock market data were acquired at http://finance.yahoo.com. Volatility was estimated from daily open,
close, high and low prices using the Yang & Zhang formula, available at http://www.sitmo.com/eq/417.
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