
Sparse Feature Learning for Deep Belief Networks

Marc’Aurelio Ranzato1 Y-Lan Boureau2,1 Yann LeCun1

1 Courant Institute of Mathematical Sciences, New York University
2 INRIA Rocquencourt

{ranzato,ylan,yann@courant.nyu.edu}

Abstract

Unsupervised learning algorithms aim to discover the structure hidden in the data,
and to learn representations that are more suitable as inputto a supervised machine
than the raw input. Many unsupervised methods are based on reconstructing the
input from the representation, while constraining the representation to have cer-
tain desirable properties (e.g. low dimension, sparsity, etc). Others are based on
approximating density by stochastically reconstructing the input from the repre-
sentation. We describe a novel and efficient algorithm to learn sparse represen-
tations, and compare it theoretically and experimentally with a similar machine
trained probabilistically, namely a Restricted BoltzmannMachine. We propose a
simple criterion to compare and select different unsupervised machines based on
the trade-off between the reconstruction error and the information content of the
representation. We demonstrate this method by extracting features from a dataset
of handwritten numerals, and from a dataset of natural imagepatches. We show
that by stacking multiple levels of such machines and by training sequentially,
high-order dependencies between the input observed variables can be captured.

1 Introduction

One of the main purposes of unsupervised learning is to producegood representations for data, that
can be used for detection, recognition, prediction, or visualization. Good representations eliminate
irrelevant variabilities of the input data, while preserving the information that is useful for the ul-
timate task. One cause for the recent resurgence of interestin unsupervised learning is the ability
to producedeep feature hierarchies by stacking unsupervised modules on top of each other, as pro-
posed by Hinton et al. [1], Bengio et al. [2] and our group [3, 4]. The unsupervised module at one
level in the hierarchy is fed with the representation vectors produced by the level below. Higher-
level representations capture high-level dependencies between input variables, thereby improving
the ability of the system to capture underlying regularities in the data. The output of the last layer in
the hierarchy can be fed to a conventional supervised classifier.

A natural way to design stackable unsupervised learning systems is the encoder-decoder
paradigm [5]. Anencoder transforms the input into the representation (also known asthe code
or the feature vector), and adecoder reconstructs the input (perhaps stochastically) from the repre-
sentation. PCA, Auto-encoder neural nets, Restricted Boltzmann Machines (RBMs), our previous
sparse energy-based model [3], and the model proposed in [6]for noisy overcomplete channels are
just examples of this kind of architecture. The encoder/decoder architecture is attractive for two rea-
sons: 1. after training, computing the code is a very fast process that merely consists in running the
input through the encoder; 2. reconstructing the input withthe decoder provides a way to check that
the code has captured the relevant information in the data. Some learning algorithms [7] do not have
a decoder and must resort to computationally expensive Markov Chain Monte Carlo (MCMC) sam-
pling methods in order to provide reconstructions. Other learning algorithms [8, 9] lack an encoder,
which makes it necessary to run an expensive optimization algorithm to find the code associated
with each new input sample. In this paper we will focus only onencoder-decoder architectures.

1



In general terms, we can view an unsupervised model as defining a distribution over input vectors
Y through an energy functionE(Y, Z, W ):

P (Y |W ) =

∫

z

P (Y, z|W ) =

∫

z
e−βE(Y,z,W )

∫

y,z
e−βE(y,z,W )

(1)

whereZ is the code vector,W the trainable parameters of encoder and decoder, andβ is an arbitrary
positive constant. The energy function includes thereconstruction error, and perhaps other terms
as well. For convenience, we will omitW from the notation in the following. Training the machine
to model the input distribution is performed by finding the encoder and decoder parameters that
minimize a loss function equal to the negative log likelihood of the training data under the model.
For a single training sampleY , the loss function is

L(W, Y ) = −
1

β
log

∫

z

e−βE(Y,z) +
1

β
log

∫

y,z

e−βE(y,z) (2)

The first term is theminimum of the free energy Fβ(Y ). Assuming that the distribution overZ is
rather peaked, it can be simpler to approximate this distribution overZ by its mode, which turns the
marginalization overZ into a minimization:

L(W, Y ) = E(Y, Z∗(Y )) +
1

β
log

∫

y

e−βE(y,Z∗(y)) (3)

whereZ∗(Y ) is the maximum likelihood valueZ∗(Y ) = argminzE(Y, z), also known as the
optimal code. We can then define an energy for each input point, that measures how well it is
reconstructed by the model:

F∞(Y ) = E(Y, Z∗(Y )) = lim
β→∞

−
1

β
log

∫

z

e−βE(Y,z) (4)

The second term in equation 2 and 3 is called thelog partition function, and can be viewed as a
penalty term for low energies. It ensures that the system produces low energyonly for input vectors
that have high probability in the (true) data distribution,and produces higher energies for all other
input vectors [5]. The overall loss is the average of the above over the training set.

Regardless of whether onlyZ∗ or the whole distribution overZ is considered, the main difficulty
with this framework is that it can be very hard to compute the gradient of the log partition function
in equation 2 or 3 with respect to the parametersW . Efficient methods shortcut the computation by
drastically and cleverly reducing the integration domain.For instance, Restricted Boltzmann Ma-
chines (RBM) [10] approximate the gradient of the log partition function in equation 2 bysampling
values ofY whose energy will be pulled up using an MCMC technique. By running the MCMC for
a short time, those samples are chosen in the vicinity of the training samples, thereby ensuring that
the energy surface forms a ravine around the manifold of the training samples. This is the basis of
the Contrastive Divergence method [10].

The role of the log partition function is merely to ensure that the energy surface is lower around
training samples than anywhere else. The method proposed here eliminates the log partition function
from the loss, and replaces it by a term thatlimits the volume of the input space over which the energy
surface can take a low value. This is performed byadding a penalty term on the code rather than on
the input. While this class of methods does not directly maximize the likelihood of the data, it can be
seen as a crude approximation of it. To understand the method, we first note that if for each vector
Y , there exists a corresponding optimal codeZ∗(Y ) that makes the reconstruction error (or energy)
F∞(Y ) zero (or near zero), the model can perfectly reconstruct anyinput vector. This makes the
energy surface flat and indiscriminate. On the other hand, ifZ can only take a small number of
different values (low entropy code), then the energyF∞(Y ) can only be low in a limited number of
places (theY ’s that are reconstructed from this small number ofZ values), and the energy cannot
be flat.

More generally, a convenient method through which flat energy surfaces can be avoided is tolimit
the maximum information content of the code. Hence,minimizing the energy F∞(Y ) together with
the information content of the code is a good substitute for minimizing log the partition function.

2



A popular way to minimize the information content in the codeis to make the code sparse or low-
dimensional [5]. This technique is used in a number of unsupervised learning methods, including
PCA, auto-encoders neural network, and sparse coding methods [6, 3, 8, 9]. In sparse methods,
the code is forced to have only a few non-zero units while mostcode units are zero most of the
time. Sparse-overcomplete representations have a number of theoretical and practical advantages,
as demonstrated in a number of recent studies [6, 8, 3]. In particular, they have good robustness to
noise, and provide a good tiling of the joint space of location and frequency. In addition, they are
advantageous for classifiers because classification is morelikely to be easier in higher dimensional
spaces. This may explain why biology seems to like sparse representations [11]. In our context, the
main advantage of sparsity constraints is to allow us to replace a marginalization by a minimization,
and to free ourselves from the need to minimize the log partition function explicitly.

In this paper we propose a new unsupervised learning algorithm called Sparse Encoding Symmetric
Machine (SESM), which is based on the encoder-decoder paradigm, and which is able to produce
sparse overcomplete representations efficiently without any need for filter normalization [8, 12] or
code saturation [3]. As described in more details in sec. 2 and 3, we consider a loss function which
is a weighted sum of the reconstruction error and a sparsity penalty, as in many other unsupervised
learning algorithms [13, 14, 8]. Encoder and decoder are constrained to besymmetric, and share
a set of linear filters. Although we only consider linear filters in this paper, the method allows
the use of any differentiable function for encoder and decoder. We propose an iterative on-line
learning algorithm which is closely related to those proposed by Olshausen and Field [8] and by us
previously [3]. The first step computes the optimal code by minimizing the energy for the given
input. The second step updates the parameters of the machineso as to minimize the energy.

In sec. 4, we compare SESM with RBM and PCA. Following [15], weevaluate these methods by
measuring the reconstruction error for a given entropy of the code. In another set of experiments,
we train a classifier on the features extracted by the variousmethods, and measure the classification
error on the MNIST dataset of handwritten numerals. Interestingly, the machine achieving the best
recognition performance is the one with the best trade-off between RMSE and entropy. In sec. 5, we
compare the filters learned by SESM and RBM for handwritten numerals and natural image patches.
In sec.5.1.1, we describe a simple way to produce a deep belief net by stacking multiple levels of
SESM modules. The representational power of this hierarchical non-linear feature extraction is
demonstrated through theunsupervised discovery of the numeral class labels in the high-level code.

2 Architecture

In this section we describe a Sparse Encoding Symmetric Machine (SESM) having a set of linear fil-
ters in both encoder and decoder. However, everything can beeasily extended to any other choice of
parameterized functions as long as these are differentiable and maintain symmetry between encoder
and decoder. Let us denote withY the input defined inRN , and withZ the code defined inRM ,
whereM is in general greater thanN (for overcomplete representations). Let the filters in encoder
and decoder be the columns of matrixW ∈ RM×N , and let the biases in the encoder and decoder
be denoted bybenc ∈ RM andbdec ∈ RN , respectively. Then, encoder and decoder compute:

fenc(Y ) = WT Y + benc, fdec(Z) = Wl(Z) + bdec (5)

where the functionl is a point-wise logistic non-linearity of the form:l(x) = 1/(1 + exp(−gx)),
with g fixed gain. The system is characterized by an energy measuring the compatibility between
pairs of inputY and latent codeZ, E(Y, Z) [16]. The lower the energy, the more compatible (or
likely) is the pair. We define the energy as:

E(Y, Z) = αe‖Z − fenc(Y )‖2
2 + ‖Y − fdec(Z)‖2

2 (6)

During training we minimize the following loss:

L(W ) = E(Y, Z) + αsh(Z) + αr‖W‖1

= αe‖Z − fenc(Y )‖2
2 + ‖Y − fdec(Z)‖2

2 + αsh(Z) + αr‖W‖1 (7)

The first term tries to make the output of the encoder as similar as possible to the codeZ. The
second term is the mean-squared error between the inputY and the reconstruction provided by the
decoder. The third term ensures thesparsity of the code by penalizing non zero values of code units;

3



this term acts independently on each code unit and it is defined ash(Z) =
∑M

i=1 log(1 + l2(zi)),
(corresponding to a factorized Student-t prior distribution on the code units [8]). The last term
is an L1 regularization on the filters to suppress noise and favor more localized filters. The loss
formulated in equation 7 combines terms that characterize also other methods. For instance, the
first two terms appear in our previous model [3], but in that work, the weights of encoder and
decoder were not tied and the parameters in the logistic wereupdated using running averages. The
second and third terms are present in the “decoder-only” model proposed in [8]. The third term
was used in the “encoder-only” model of [7]. Besides the already-mentioned advantages of using
an encoder-decoder architecture, we point out another goodfeature of this algorithm due to its
symmetry. A common idiosyncrasy for sparse-overcomplete methods using both a reconstruction
and a sparsity penalty in the objective function (second andthird term in equation 7), is the need
to normalize the norm of the basis functions in the decoder during learning [8, 12] with somewhat
ad-hoc technique, otherwise some of the basis functions collapse to zero, and some blow up to
infinity. Because of the sparsity penalty and the linear reconstruction, code units become tiny and
are compensated by the filters in the decoder that grow without bound. Even though the overall
loss decreases, training is unsuccessful. Unfortunately,simply normalizing the filters makes less
clear which objective function is minimized. Some authors have proposed quite expensive methods
to solve this issue: by making better approximations of the posterior distribution [15], or by using
sampling techniques [17]. In this work, we propose to enforce symmetry between encoder and
decoder (through weight sharing) so as to have automatic scaling of filters. Their norm cannot
possibly be large because code units, produced by the encoder weights, would have large values as
well, producing bad reconstructions and increasing the energy (the second term in equation 6 and
7).

3 Learning Algorithm

Learning consists of determining the parameters inW , benc, andbdec that minimize the loss in
equation 7. As indicated in the introduction, the energy augmented with the sparsity constraint is
minimized with respect to the code to find the optimal code. Nomarginalization over code distribu-
tion is performed. This is akin to using the loss function in equation 3. However, the log partition
function term is dropped. Instead, we rely on the code sparsity constraints to ensure that the energy
surface is not flat.

Since the second term in equation 7 couples bothZ andW andbdec, it is not straightforward to
minimize this energy with respect to both. On the other hand,onceZ is given, the minimization
with respect toW is a convex quadratic problem. Vice versa, if the parametersW are fixed, the
optimal codeZ∗ that minimizesL can be computed easily through gradient descent. This suggests
the following iterative on-line coordinate descent learning algorithm:
1. for a given sampleY and parameter setting, minimize the loss in equation 7 with respect toZ by
gradient descent to obtain the optimal codeZ∗

2. clamping both the inputY and the optimal codeZ∗ found at the previous step, doone step of
gradient descent to update the parameters.
Unlike other methods [8, 12], no column normalization ofW is required. Also, all the parameters
are updated by gradient descent unlike in our previous work [3] where some parameters are updated
using a moving average.

After training, the system converges to a state where the decoder produces good reconstructions from
a sparse (rectified) code, and the optimal code is predicted by a simple feed-forward propagation
through the encoder.

4 Comparative Coding Analysis

In the following sections, we mainly compare SESM with RBM inorder to better understand their
differences in terms of maximum likelihood approximation,and in terms of coding efficiency and
robustness.

RBM As explained in the introduction, RBMs minimize an approximation of the negative log
likelihood of the data under the model. An RBM is a binary stochastic symmetric machine defined
by an energy function of the form:E(Y, Z) = −ZT WT Y − bT

encZ − bT
decY . Although this is not

4



obvious at first glance, this energy can be seen as a special case of the encoder-decoder architecture
that pertains to binary data vectors and code vectors [5]. Training an RBM minimizes an approxima-
tion of the negative log likelihood loss function 2, averaged over the training set, through a gradient
descent procedure. Instead of estimating the gradient of the log partition function, RBM training
uses contrastive divergence [10], which takes random samples drawn over a limited regionΩ around
the training samples. The loss becomes:

L(W, Y ) = −
1

β
log

∑

z

e−βE(Y,z) +
1

β
log

∑

y∈Ω

∑

z

e−βE(y,z) (8)

Because of the RBM architecture, given aY , the components ofZ are independent, hence the sum
over configurations ofZ can be done independently for each component ofZ. Samplingy in the
neighborhoodΩ is performed with one, or a few alternated MCMC steps overY , andZ. This means
that only the energy of points around training samples is pulled up. Hence, the likelihood function
takes the right shape around the training samples, but not necessarily everywhere. However, the
code vector in an RBM is binary and noisy, and one may wonder whether this does not have the
effect of surreptitiously limiting the information content of the code, thereby further minimizing the
log partition function as a bonus.

SESM RBM and SESM have almost the same architecture because they both have a symmetric
encoder and decoder, and a logistic non-linearity on the topof the encoder. However, RBM is trained
using (approximate) maximum likelihood, while SESM is trained by simply minimizing the average
energyF∞(Y ) of equation 4 with an additional code sparsity term. SESM relies on the sparsity
term to prevent flat energy surfaces, while RBM relies on an explicit contrastive term in the loss, an
approximation of the log partition function. Also, the coding strategy is very different because code
units are “noisy” and binary in RBM, while they are quasi-binary andsparse in SESM. Features
extracted by SESM look like object parts (see next section),while features produced by RBM lack
an intuitive interpretation because they aim at modeling the input distribution and they are used in a
distributed representation.

4.1 Experimental Comparison

In the first experiment we have trained SESM, RBM, and PCA on the first 20000 digits in the
MNIST training dataset [18] in order to produce codes with 200 components. Similarly to [15] we
have collected test image codes after rectification (exceptfor PCA which is linear), and we have
measured the root mean square error (RMSE) and the entropy. SESM was run for different values
of the sparsity coefficientαs in equation 7 (while all other parameters are left unchanged, see next

section for details). The RMSE is defined as1
σ

√

1
PN

‖Y − fdec(Z̄)‖2
2, whereZ̄ is theuniformly

quantized code produced by the encoder,P is the number of test samples, andσ is the estimated
variance of units in the inputY . Assuming to encode the (quantized) code units independently and
with the same distribution, the lower bound on the number of bits required to encode each of them
is given by:Hc.u. = −

∑Q

i=1
ci

PM
log2

ci

PM
, whereci is the number of counts in thei-th bin, andQ

is the number of quantization levels. The number of bitsper pixel is then equal to:M
N

Hc.u.. Unlike
in [15, 12], the reconstruction is done taking the quantizedcode in order to measure the robustness
of the code to the quantization noise. As shown in fig. 1-C, RBMis very robust to noise in the
code because it is trained by sampling. The opposite is true for PCA which achieves the lowest
RMSE when using high precision codes, but the highest RMSE when using a coarse quantization.
SESM seems to give the best trade-off between RMSE and entropy. Fig. 1-D/F compare the features
learned by SESM and RBM. Despite the similarities in the architecture, filters look quite different
in general, revealing two different coding strategies: distributed for RBM, and sparse for SESM.

In the second experiment, we have compared these methods by means of asupervised task in order to
assess which method produces the most discriminative representation. Since we have available also
the labels in the MNIST, we have used the codes (produced by these machines trained unsupervised)
as input to thesame linear classifier. This is run for 100 epochs to minimize the squared error
between outputs and targets, and has a mild ridge regularizer. Fig. 1-A/B show the result of these
experiments in addition to what can be achieved by a linear classifier trained on the raw pixel data.
Note that: 1) training on features instead of raw data improves the recognition (except for PCA
when the number of training samples is small), 2) RBM performance is competitive overall when

5



(A)
0.5 1 1.5

0

5

10

15

20

25

30

35

40

ENTROPY (bits/pixel)

E
R

R
O

R
 R

A
T

E
 %

10 samples

0.5 1 1.5

2

4

6

8

10

12

14

16

ENTROPY (bits/pixel)

E
R

R
O

R
 R

A
T

E
 %

100 samples

0.5 1 1.5

4

5

6

7

8

9

ENTROPY (bits/pixel)

E
R

R
O

R
 R

A
T

E
 %

1000 samples

 

 

RAW: train

RAW: test

PCA: train

PCA: test

RBM: train

RBM: test

SESM: train

SESM: test

(B)
0 0.1 0.2

0

5

10

15

20

25

30

35

40

RMSE

E
R

R
O

R
 R

A
TE

 %

10 samples

0 0.1 0.2

2

4

6

8

10

12

14

16

RMSE

E
R

R
O

R
 R

A
TE

 %

100 samples

0 0.1 0.2

4

5

6

7

8

9

RMSE

E
R

R
O

R
 R

A
TE

 %

1000 samples

(C)
0 0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

Entropy (bits/pixel)

Symmetric Sparse Coding − RBM − PCA

 

 

PCA: quantization in 5 bins
PCA: quantization in 256 bins
RBM: quantization in 5 bins
RBM: quantization in 256 bins
Sparse Coding: quantization in 5 bins
Sparse Coding: quantization in 256 bins

(D)

(E) (F)

(G) (H)

Figure 1:(A)-(B) Error rate on MNIST training (with 10, 100 and 1000 samples per class) and test
set produced by a linear classifier trained on the non-linearly transformed codes produced by SESM,
RBM, and PCA. The entropy and RMSE refers to a quantization into 256 bins. The comparison
has been extended also to the same classifier trained on raw pixel data (showing the advantage of
extracting features). The error bars refer to 1 std. dev. of the error rate for 10 random choices of
training datasets (same splits for all methods). The parameterαs in eq. 7 takes values: 1, 0.5, 0.2,
0.1, 0.05.(C) Comparison between SESM, RBM, and PCA when quantizing the code into 5 and
256 bins.(D) Random selection from the 200 linear filters that were learned by SESM (αs = 0.2).
(E) Some pairs of original and reconstructed digit from the codeproduced by the encoder in SESM
(feed-forward propagation through encoder and decoder).(F) Random selection of filters learned by
RBM. (G) Back-projection in image space of the filters learned in the second stage of the hierarchical
feature extractor. The second stage was trained on the rectified codes produced by the first stage
machine. The back-projection has been performed by using a 1-of-10 code in the second stage
machine, and propagating this through the second stage decoder and first stage decoder. The filters
at the second stage discover the class-prototypes (manually ordered for visual convenience) even
though no class label was ever used during training.(H) Feature extraction from 8x8 natural image
patches: some filters that were learned. 6



few training samples are available, 3) the best performanceis achieved by SESM for a sparsity level
which trades off RMSE for entropy (overall for large training sets), 4) the method with the best
RMSE is not the one with lowest error rate, 5) compared to a SESM having the same error rate
RBM is more costly in terms of entropy.

5 Experiments

This section describes some experiments we have done with SESM. The coefficientαe in equation 7
has always been set equal to 1, and the gain in the logistic have been set equal to 7 in order to achieve
a quasi-binary coding. The parameterαs has to be set by cross-validation to a value which depends
on the level of sparsity required by the specific application.

5.1 Handwritten Digits

Fig. 1-B/E shows the result of training a SESM withαs is equal to 0.2. Training was performed
on 20000 digits scaled between 0 and 1, by settingαr to 0.01 (in equation 7) with a learning rate
equal to 0.001 (decreased exponentially). Filters detect the strokes that can be combined to form a
digit. Even if the code unit activation has a very sparse distribution, reconstructions are very good
(no minimization in code space was performed).

5.1.1 Hierarchical Features

A hierarchical feature extractor can be trained layer-by-layer similarly to what has been proposed
in [19, 1] for training deep belief nets (DBNs). We have trained a second (higher) stage machine on
the rectified codes produced by the first (lower) stage machine described in the previous example.
Again training was performed on 20000 codes to produce a higher level representation with just 10
components. Since we aimed to find a 1-of-10 code we increasedthe sparsity level (in the second
stage machine) by settingαs to 1. Despite the completelyunsupervised training procedure, the
feature detectors in the second stage machine look like digit prototypes as can be seen in fig. 1-G.
The hierarchical unsupervised feature extractor is able tocapture higher order correlations among
the input pixel intensities, and to discover the highly non-linear mapping from raw pixel data to the
class labels. Changing the random initialization can sometimes lead to the discover of two different
shapes of “9” without a unit encoding the “4”, for instance. Nevertheless, results are qualitatively
very similar to this one. For comparison, when training a DBN, prototypes are not recovered because
the learned code is distributed among units.

5.2 Natural Image Patches

A SESM with about the same set up was trained on a dataset of 30000 8x8 natural image patches
randomly extracted from the Berkeley segmentation dataset[20]. The input images were simply
scaled down to the range[0, 1.7], without even subtracting the mean. We have considered a 2
times overcomplete code with 128 units. The parametersαs, αr and the learning rate were set to
0.4, 0.001, and 0.003 respectively. Some filters are localized Gabor-like edge detectors in different
positions and orientations, other are more global, and someencode the mean value (see fig. 1-H).

6 Conclusions

There are two strategies to train unsupervised machines: 1)having a contrastive term in the loss
function minimized during training, 2) constraining the internal representation in such a way that
training samples can be better reconstructed than other points in input space. We have shown that
RBM, which falls in the first class of methods, is particularly robust to channel noise, it achieves very
low RMSE and good recognition rate. We have also proposed a novel symmetric sparse encoding
method following the second strategy which: is particularly efficient to train, has fast inference,
works without requiring any withening or even mean removal from the input, can provide the best
recognition performance and trade-off between entropy/RMSE, and can be easily extended to a
hierarchy discovering hidden structure in the data. We haveproposed an evaluation protocol to
compare different machines which is based on RMSE, entropy and, eventually, error rate when also
labels are available. Interestingly, the machine achieving the best performance in classification is the

7



one with the best trade-off between reconstruction error and entropy. A future avenue of work is to
understand the reasons for this “coincidence”, and deeper connections between these two strategies.

Acknowledgments
We wish to thank Jonathan Goodman, Geoffrey Hinton, and Yoshua Bengio for helpful discussions. This work
was supported in part by NSF grant IIS-0535166 “toward category-level object recognition”, NSF ITR-0325463
“new directions in predictive learning”, and ONR grant N00014-07-1-0535 “integration and representation of
high dimensional data”.

References

[1] G.E. Hinton and R. R Salakhutdinov. Reducing the dimensionality of data with neural networks.Science,
313(5786):504–507, 2006.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In
NIPS, 2006.

[3] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an
energy-based model. InNIPS 2006. MIT Press, 2006.

[4] Y. Bengio and Y. LeCun. Scaling learning algorithms towars ai. In D. DeCoste L. Bottou, O. Chapelle
and J. Weston, editors,Large-Scale Kernel Machines. MIT Press, 2007.

[5] M. Ranzato, Y. Boureau, S. Chopra, and Y. LeCun. A unified energy-based framework for unsupervised
learning. InProc. Conference on AI and Statistics (AI-Stats), 2007.

[6] E. Doi, D. C. Balcan, and M. S. Lewicki. A theoretical analysis of robust coding over noisy overcomplete
channels. InNIPS. MIT Press, 2006.

[7] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse overcomplete
representations.Journal of Machine Learning Research, 4:1235–1260, 2003.

[8] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by
v1? Vision Research, 37:3311–3325, 1997.

[9] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.Nature,
401:788–791, 1999.

[10] G.E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Computation,
14:1771–1800, 2002.

[11] P. Lennie. The cost of cortical computation.Current biology, 13:493–497, 2003.

[12] J.F. Murray and K. Kreutz-Delgado. Learning sparse overcomplete codes for images.The Journal of
VLSI Signal Processing, 45:97–110, 2008.

[13] G.E. Hinton and R.S. Zemel. Autoencoders, minimum description length, and helmholtz free energy. In
NIPS, 1994.

[14] G.E. Hinton, P. Dayan, and M. Revow. Modeling the manifolds of images of handwritten digits.IEEE
Transactions on Neural Networks, 8:65–74, 1997.

[15] M.S. Lewicki and T.J. Sejnowski. Learning overcomplete representations.Neural Computation, 12:337–
365, 2000.

[16] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.J. Huang. A tutorial on energy-based learning. In
G. Bakir and al.., editors,Predicting Structured Data. MIT Press, 2006.

[17] P. Sallee and B.A. Olshausen. Learning sparse multiscale image representations. InNIPS. MIT Press,
2002.

[18] http://yann.lecun.com/exdb/mnist/.

[19] G.E. Hinton, S. Osindero, and Y.-W. Teh. A fast learningalgorithm for deep belief nets.Neural Compu-
tation, 18:1527–1554, 2006.

[20] http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.

8


