
EBLearn: Open-Source Energy-Based Learning in C++

Pierre Sermanet Koray Kavukcuoglu Yann LeCun

Courant Institute of Mathematical Sciences
Computer Science Department

New York University
New York, NY, 10003, USA

{sermanet,koray,yann}@cs.nyu.edu

Abstract

Energy-based learning (EBL) is a general framework
to describe supervised and unsupervised training methods
for probabilistic and non-probabilistic factor graphs. An
energy-based model associates a scalar energy to config-
urations of inputs, outputs, and latent variables. Infer-
ence consists in finding configurations of output and la-
tent variables that minimize the energy. Learning consists
in finding parameters that minimize a suitable loss func-
tion so that the module produces lower energies for “cor-
rect” outputs than for all “incorrect” outputs. Learning
machines can be constructed by assembling modules and
loss functions. Gradient-based learning procedures are
easily implemented through semi-automatic differentiation
of complex models constructed by assembling predefined
modules. We introduce an open-source and cross-platform
C++ library called EBLearn1 to enable the construction of
energy-based learning models. EBLearn is composed of
two major components,libidx: an efficient and very flex-
ible multi-dimensional tensor library, andlibeblearn: an
object-oriented library of trainable modules and learning
algorithms. The latter has facilities for such models as con-
volutional networks, as well as for image processing. It also
provides graphical display functions.

1. Introduction

Energy-based learning [11](EBL) provides a unified
framework for probabilistic and non-probabilistic machine
learning methods. Energy based learning models have been
successfully used in a number of applications such as ob-
ject recognition [6, 16, 7], outdoor unstructured roboticsvi-
sion [5], signal processing [13], time series modeling [12],

1http://eblearn.sf.net

Figure 1. Energy Based Inference:Inference inEBL is
done by findingY that minimizesE(X,Y) for a given input
X. Input can be a set of image pixels and the output to be
predicted can be a class label as shown.

manifold learning [1, 4], financial prediction [2], document
recognition [10], natural language processing [3], unsuper-
vised learning of feature hierarchies [18, 15, 8] and text
classification [17]. Inference in energy based models for
a given inputX is performed by finding a configuration of
outputY and latent variablesZ that minimize anenergy
function E(X,Y). For Learning, the energy function is
parameterized by a parameter vectorW . Learning is per-
formed by minimizing a suitableloss functional with re-
spect toW . For a given inputX, the purpose of learn-
ing is to shape the energy surface so that corresponding
desired output configuration(s) have lower energy than all
other configurations.

A simplified EBL model is shown in Figure 1,X rep-
resents the inputs to the system (a sample from the data),
Y represents the output variable of the model. the inference
process is formulated as:

Y ∗ = arg min
Y ∈Y

E(X,Y) (1)

whereY is a set of possible outputs. WhenY is a discrete
set with few elements, exhaustive search can be used, but
whenY has high cardinality or is a continuous set, suitable
minimization algorithms must be employed. In unsuper-
vised scenarios, the energy function has no observationX,
and the modelE(Y) simply indicates whether a particular
Y is similar to training samples (low energies) or dissim-
ilar (higher energies). Different types of problems can be
formulated under this model, such as classification, detec-
tion, regression, ranking, density estimation, clustering, and
others.

Probabilistic models are a special case of EBL in which
the energy is integrable with respect toY . The distribution
can be obtained using the Gibbs formula:

P (Y |X) =
e−βE(X,Y)∫
y
e−βE(X,y)

(2)

whereβ is a positive constant, and the denominator is called
thepartition function(variableX is simply dropped for un-
supervised scenarios).

When latent variablesZ are present, they can be
minimized over or marginalized over. With mini-
mization, the energy function is simply redefined as
E(X,Y) = minZ∈Z E(X,Y,Z), and with marginaliza-
tion asE(X,Y) = − 1

β
log

∫
z
e−

1

β
E(X,Y,Z). If necessary.

this integral can be approximated through sampling or us-
ing variational methods.

Given a training set{(X1, Y 1), . . . (XP , Y P)}, training
a model consists in shaping the energy surfaceE(W,X, .)
(expressed as a function ofY) parametrized byW ∈ W
by minimizing a suitable loss functional with respect toW ,
averaged over the training set:

W ∗ = min
W∈W

1

P

∑
i

L(E(W,Xi, .), Y i) (3)

The loss can more simply be expressed as a function ofW :
1
P

∑
i L(W,Xi, Y i). The purpose of loss is to measure

whether the “correct” outputY i for a givenXi has lower
energy than all other outputs. As a result, the system pro-
duces lower energy values for regions around observedY

values, as shown in Figure 2. Building anEBL model can
therefore be achieved by designing:

1. thearchitectureof theE(W,X, Y),

2. theinference algorithmthat will be used to infer out-
putsY that minimizeE(W,X, Y) for a givenX and
fixedW ,

3. theloss functionL(E(W,X, .), Y) and

4. thelearning algorithmthat will be used to find the best
W that minimizes the loss averaged over a training set.

Figure 2. Energy Based Training: Before training, the
energy surface produced by anEBLmodel is not distinctive
around training data. After training, the energy surface is
shaped lower around training data.

1.1 Loss Functions for Energy-Based Learning

In energy based learning designing proper loss functions
for different types of architectures is required to avoid trivial
solutions where the energy surface becomes flat. Many dif-
ferent loss functions have been proposed in machine learn-
ing literature and in this section we formulate several popu-
lar loss functions in energy based learning framework.

Energy Loss: simply means that the loss function per
each sample is equal to the energy function:

Len(W,Xi, Y i) = E(W,Xi, Y i) (4)

Energy loss is the simplest possible loss function that can
be used in wide variety of cases. The energy loss will ensure
that the energy surface ispulled downaround desired data,
but it does not guarantee that the energy surface ispulled up
at all other locations. This might lead to situations where the
energy for all samples becomes constant. Linear regression
using mean squared error (MSE) can be formulated using
energy loss:

L(W,Xi, Y i) = E(W,Xi, Y i) = ||Y i − WXi||2 (5)

whereW is the matrix of parameters with respect to which
L is minimized.

Perceptron Loss:defined per each sample and over all
possible configurations of outputs takes the following form

Lperceptron(W,Xi,Y) = E(W,Xi, Y i)−min
y∈Y

E(W,Xi, y)

(6)
Perceptron loss pulls down the energy of the correct con-
figuration (first term) and it pulls up the energy of current
prediction. When the machine prediction is correct, the loss
is equal to zero and positive otherwise. One can see that,
this loss function does not enforce a margin between cor-
rect and incorrect configurations, thus might lead to almost
flat surfaces.

A simple binary classification problem can be formu-
lated using perceptron loss as follows.

E(W,Xi, Y i) = −Y GW (X), Y ∈ {−1,+1} (7)

L(W,Xi, Y i) = (sign(GW (X)) − Y i)GW (Xi)(8)

2

wheresign(Gw(X)) is the result of inference process.
Negative Log-Likelihood Loss: is suitable to train a

model to produce probability estimates forP (Y |X):

Lnll = E(W,Xi, Y i) +
1

β
log

∫
y

e−βE(W,Xi,y) (9)

where β ∈ R+. As in maximum likelihood solutions
for probabilistic models, the integral in the second term of
equation 9 might be intractable to compute or might not
have an analytical solution in most cases. Approximate so-
lutions to this integral can be obtained by approximate an-
alytical solutions, sampling methods and variational meth-
ods.

Contrastive Loss:enforces a gap between the energy of
correct answerY i and the energy of themost offending in-
correct answerȲ i, defined as thewrong answer with the
smallest energy:

Lcontrast = M(E(W,Xi, Y i), E(W,Xi, Ȳ i)) (10)

whereM is an increasing function of its first argument and a
decreasing function of its second argument. The most com-
monly used contrastive loss is the hinge loss:

Lhinge = max(0,m + E(W,Xi, Y i) − E(W,Xi, Ȳ i))
(11)

where m is the positive margin. The model is updated
whenever the energy of incorrect answer is less thanm

larger than energy of correct answer. Another type of con-
trastive loss (with infinite margin) is the log loss:

Llog = log(1 + eE(W,Xi,Y i)−E(W,Xi,Ȳ i)) (12)

1.2 Modules in Energy-Based Learning

Until now, we have stated that the energy function is
parametrized byW . In most supervised scenarios, this
is conveniently achieved by using a functional module
GW (X) which maps samples from input space to output
space, and by capping it with a “distance” module that mea-
sure the discrepancy betweenGW (X) and the outputY . A
very simple example of a functional module is a single ma-
trix multiplication that projects the input along the space
defined by its columns. In more complicated cases it can
be combination of linear and nonlinear functions. Common
modules include linear modules as explained, simple non-
linear modules that are applied on each element of the input
state independently, like sigmoid functions, and convolu-
tional modules that are very similar to linear modules, but
are applied as convolution operations on input image maps.
The loss functionL is minimized with respect to the param-
etersW of the functional modules.

Figure 3. Architectures for Energy Based Model:Left:
Regression can be formulated by using a squared distance
energy function combined with energy loss and a module
Gw(X). Right: Two class classification can be formulated
similarly using perceptron loss.

1.3 Architectures for Energy-Based Learning

In this section we provideEBL models for some widely
used learning algorithms.

Regression:is one of the most common algorithms used
in machine learning. A regressor model (Fig. 3) can be ob-
tained by using a squared error energy function

E(W,Xi, Y i) =
1

2
||GW (Xi) − Y i||2 (13)

together with energy loss. WhenGW is a linear operator,
this model becomes equivalent to solving the least squares
problem.

Two-Class Classification:can be formulated using a
simple energy function as shown in Figure 3.

E(W,Xi, Y i) = −Y iGW (Xi) (14)

Any of the perceptron loss, hinge loss or negative log like-
lihood loss can be used with this energy function to solve
two class classification problems.

Multi-Class Classification:can be done by replacing the
energy function in Figure 3 with

GW = [g1 g2 ... gc] (15)

E(W,Xi, Y i) =

c∑
k=1

δ(Y i − k)gk (16)

whereδ(u) is Kronecker delta function. As with the two-
class classification problem, perceptron, hinge and negative
log likelihood loss functions can be used.

One can imagine that complicated architectures can be
built by combining several functional modules and energy
functions as long as the combined energy function can be
minimized with respect to the desired outputsY and the

3

Figure 4. Modeling Factor Graphs: Left: A simple fac-
tor graph showing an observed variableX and a latent vari-
ableY . The factor node models the compatibility constraint
between the two states.Right: The factor node can be di-
vided into two directional nodes representing compatibility
between one node and transformation of the other.

final loss function can be minimized with respect to the pa-
rametersW .

It has to be noted that, any factor graph can also be mod-
eled using energy based learning. In a simple factor graph
an observed state is connected to a latent state through a fac-
tor node which models the constraint in between two states
as shown in left of Figure 4. The combination of two states
are assigned high likelihood under the compatibility con-
straint defined by the factor node. One can also separate the
dependency constraints between two states into two direc-
tional factor nodes representing the compatibility between
one node and transformation of the other.

Most unsupervised learning algorithms can be modeled
in this framework. In Figure 5, we show several com-
mon unsupervised learning algorithms.PCA is a linear
model, where the transformation from observed inputX

to latent representationY is a linear projection. Accord-
ingly, transformation fromY to input spaceX ′ is also a
linear projection. The model has to be trained under the re-
construction compatibility constraint such that transformed
reconstructionX ′ has to minimize the squared reconstruc-
tion error between original inputX and projected inputX ′.
Auto-encoder neural networksare very similar to PCA, ex-
cept the projection from inputX to latent variableY is
non-linear.Sparse Decomposition[14] is a uni-directional
model where, there is no direct projection form inputX to
latent variableY . Instead, for each inputX, the system
has to carry out an optimization process to infer latent rep-
resentationY . In addition to reconstruction compatibility
constraint, the latent representation has to minimize theL1

norm constraint.Predictive Sparse Decomposition[9] is an
extension to sparse coding models, where a nonlinear pre-
dictor function is also trained to infer latent variableY from
inputX without requiring any optimization process.

In the next sections, theEBLearnopen source machine
learning library will be introduced by demonstrating simple
coding examples. First, an overview of the underlying ten-
sor library will be provided. Then, the details for the func-
tional modules will be introduced. Finally, several comple-
mentary modules will be explained.

Figure 5. Modeling Unsupervised Learning Algo-
rithms: Many unsupervised learning algorithms can be rep-
resented in the factor graph model and trained with energy
based learning.

2. libidx: Tensor Descriptors and Operators

Theidx library (or libidx) provides convenient and effi-
cient tensor (multi-dimensional arrays) manipulations, used
as a basis for the eblearn library. There are three main com-
ponents to the library: tensor descriptors and iterators, con-
tent operators and image-specific operators.

2.1 idx: Tensor Descriptors

The idx class can be thought as a tensor pointer to a
chunk of memory (or ansrg class,srg standing for stor-
age). One idx could describe a tensor held by that entire
memory storage, and another could describe a tensor that is
a subset of it.

Thus anidx describe a tensor via the storage (srg) it
points to, its offset from the beginning of the storage, its
number of dimensions (or order), the size of each dimen-
sion, and the memory stride of each dimension. Declaring
a newidx will allocate and initialize to zero a new storage
of size and type specified to the constructor and class tem-
plate. Here for example, we create a 3-dimensional tensor
with double precision of size 32x32x3, which could also be
interpreted as a 32x32 RGB image:

idx<double> t(32, 32, 3);

Being relatively cheap memory and computationaly
wise, anidx can be manipulated efficiently like a tensor
pointer without affecting the actual tensor memory. For ex-
ample, the user can select at no cost the entire slice at posi-
tion p of thedth dimension of a tensor:

idx<double> slice = t.select(d, p);

4

Note that the tensorslice is now a 2-dimensional tensor
(or matrix). Similarly, the user can narrow a dimensiond to
sizes starting at positionp to create a 3-dimensional subset
of the 3d tensort:

idx<double> subset3d = t.narrow(d, s, p);

One can also change the order of the dimensions, e.g.
3x32x32, via the transpose method. The elements of the
tensor are accessed via the get and set methods.

Thesrg class is self garbage-collected by keeping a ref-
erence counter of the idx pointing to it. This means that a
storage will survive as long as anidx is pointing to it and
self destruct otherwise. Requiring no memory management,
idx manipulations are hence facilitated and flexible.

2.2 idx loops: Tensor Iterators

While tensor elements can be accessed individually via
set and get methods, one will mostly need to loop over entire
dimensions or entire tensors. For that effect, iterator classes
can be used for each tensor to iterate on. However looping
macros make it even easier allowing to loop over multiple
tensors of any type but of the same size at the same time.

For instance, theidx aloop2 macro loops over all ele-
ments of 2 tensors, theidx bloop3 macro loops over the first
dimensions of 3 tensors while theidx eloop1 loops over the
last dimension of 1 tensor. For each tensor to be iterated,
one must specify in order the name of the new lower-order
tensor, the name of the original tensor, and its type. Thus to
compute the sum of multiple tensors we could write:

idx<double> td3d(32, 32, 3);
idx<int> ti2d(32, 32);
int total = 0;
idx_bloop2(td2d, td3d, double, ti1d, ti2d, int) {

idx_bloop2(td1d, td2d, double, ti0d, ti1d, int) {
total += ti0d.get();
idx_bloop1(td0d, td1d, double)

total += (int) td0d.get(); }}

Or simply:

idx_aloop1(td0d, td3d, double) total += td0d.get();
idx_aloop1(ti0d, ti2d, int) total += ti0d.get();

2.3 Tensor Operators: Content Manipulations

While idx descriptors are inexpensive pointers, theidx

content operators work with the actual tensor data (also al-
lowed to modify it) yielding more expensive operations. We
now describe a few important operators among others.

• Copy operator: copy the content ofidx d1 tof2 (they
must have the same dimensions), automatically casting
the source type into the destination type:
idx<double> d1(32, 32, 3);
idx<float> f1(32, 32, 3);
idx_copy(d1, f1);

• I/O operators: save or load tensors :
save_matrix(f1, "im.mat");
idx<float> f2 = load_matrix<float>("im.mat");

• Additions, summations operators: add two tensors
into another or compute the sum of all elements:
idx_add(f1, f2, f1);
float sum = idx_sum(f1);

• Product operators: the dot product between two ten-
sors or the matrix-vector multiplication:
float dot = idx_dot(f1, f2);
idx<float> f3(32, 16), f4(16), f5(32);
idx_m2dotm1(f3, f4, f5);

• Non-linearity operators: apply the hyperbolic tan-
gent function to all elements oft1 and put the results
in t2:
idx_tanh(f1, f2);

2.4 Tensor-based Image Operators

In libidx, images are seen and can be manipulated like
tensors. We present here some key operators specific to im-
age tensors.

• Image I/O operators: load or save images:
idx<float> im = load_image<float>("im.jpg");
save_image(im, "im.png");

• Image Resizing:with bilinear interpolation:
im = image_resize(im, 16, 16);

• Image filtering: local, global or Mexican-hat normal-
ization:
idx<float> im2 = idx_copy<float>(im);
image_global_normalization(im);
image_local_normalization(im, im2, 9);
image_mexican_filter(im2, im, 5, 9);

3. libeblearn: Energy-Based Learning

The libeblearn library is mainly constituted of modules
of two types: module 1 1 which takes 1 input and pro-
duces 1 output andmodule 2 1 with 2 inputs and 1 out-
put (Fig. 6). In particular for anEBL model, we derive
the ebm 2 module frommodule 2 1 to output an energy
from its 2 inputs. Those two models are the basis for all
modules in the library. Consequently, elementary blocks
are easily assembled in any possible combination to form
elaborate blocks that can again be combined to reach any
level of complexity. This modularity provides a great flex-
ibility allowing users to combine their own modules with
preexisting modules.

5

Figure 6. The two basic types of modules.module 1 1
(left) has 1 input and 1 output andebm 2 has 2 inputs and
1 energy output. The dashedbprop method is used during
training only while theinfer2 method is used during infer-
ence only (fprop is used for both training and inference).
The intermediate results between modules are contained by
state idx objects (top and bottom), which store the results
of calls tofprop, bprop andbbprop methods.

Each module implements thefprop (forward propa-
gation), bprop (backward propagation) andbbprop (usu-
ally back propagation of second derivatives) methods.
module 2 1 also implements theinfer2 method (infer sec-
ond input). Whilebprop andbbprop methods are only used
during training andinfer2 during inference, thefprop

method is used during both phases. Intermediate results of
fprop, bprop andbbprop calls are held between modules in
state idx objects.

We now demonstrate some examples starting with pre-
existinglibeblearn modules. In the following sections we
first show how to build a simple linear regression architec-
ture, then we construct a full vision system in a few lines
usinglibeblearnand theNORBdataset2.

3.1 Example: Linear Regression

To build a linear regressor modeled by a linear least
square function, one can simply stack a linear module with
a bias module, encapsulate them with an euclidean energy
module and train this machine with the energy loss module
(see resulting architecture in Fig. 7):

parameter<double> w;
layers<double> linear(true);
linear.add(new linear_module(w, n_in, n_out);
linear.add(new bias_module(w, n_out));
euclidean_energy<double, int> eenergy;
machine<double, float> E(linear, eenergy);
energy_loss eloss;
supervised_trainer<double, float> trainer(E, eloss);

wherew are the trainable weights of the machine,n in

andn out are the number of inputs and outputs respectively,

2http://www.cs.nyu.edu/˜ylclab/data/norb-v1.0

Figure 7. Linear regression architecture. A linear and
bias modules are stacked together in thelayers class, en-
capsulated in amachine with an euclidean energy module.
During training, theenergy loss module is added to obtain
least square minimization with the euclidean energy.

double andfloat are the precision of respectively the ma-
chine and the targetsY .

3.2 Example: a Vision System

In this example, we build, train and execute in a few lines
of code a convolutional neural network capable of object
recognition as in [6]. The machine is a stack of convolu-
tion, subsampling and fully-connected modules (Fig. 8) that
takes an image as input and classifies it as belonging to one
of five categories. We now describe the construction of that
system:

1. Build E(W,X, Y), using a lenet7 neural network as
GW (X) and an euclidean energy module as energy function
(see Fig. 8 for corresponding architecture):

parameter<double> W;
layers<double> l7(true);
l7.add(new convolution_layer(W, 5, 5, 1, 1,

full_table(1, 8)));
l7.add(new subsampling_layer(W, 4, 4, 4, 4, 8));
l7.add(new convolution_layer(W, 6, 6, 1, 1,

random_table(8, 24, 4)));
l7.add(new subsampling_layer(W, 3, 3, 3, 3, 24));
l7.add(new convolution_layer(W, ki2, kj2, 1, 1,

full_table(24, 100)));
l7.add(new full_layer(W, 100, 5));
euclidean_energy<double, int> eenergy;
machine<double, int> E(l7, eenergy);

where the numbers are kernels sizes, strides and output
sizes. Those depend on the type of input and output and
the complexity of the task to learn. Thefull tableandran-
domtable functions provide full or sparse random connec-
tions between layers. One can use a shorter equivalent to
the previous code:

parameter<double> W;

6

Figure 8. A vision architecture (lenet7).Thismachine

combines a euclidean energy with a convolutional neural
network of 6 layers calledlenet7. During both training
and inference, the machine is first evaluated withfprop.
Then for training only (dashed lines), an energy loss module
comes on top of the machine and uses the training label to
back-propagate (bprop) the gradient of the loss through the
entire machine. During inference however, the loss module
is not used and the answer is inferred viainfer2 following
anfprop.

lenet7<double> l7(W);
euclidean_machine<double, int> E(l7);

2. Build the loss and the trainer:

energy_loss eloss;
supervised_trainer<double, int> trainer(E, eloss);

3. Train the system with the NORB dataset and a learn-
ing rate of 0.0001:

norb_datasource ds("/datasets/norb");
gd_param p(0.0001);
trainer.train(ds, p);

4. Execute the system:

idx<double> image = load_image<double>("im.jpg");
state_idx<double> input(image);
int answer = E.infer2(input);

When the input image produces a multi-dimensional out-
put (instead of a single output), use the multi-scale and
multi-dimensional detector (see Fig. 9) to obtain a vector
of bounding boxes around detected objects:

detector d(E, scales_number);
vector<bbox> answers = d.fprop(input);

Figure 9. Object detection example, using thedetector

class with thelenet7 architecture build in section 3.2 and
trained on the NORB dataset to classify objects between 5
categories: animal, car, human, plane, truck. Einstein is
correctly classified by the bounding box as human (left).
The internal states and kernels of the machine are shown on
the right, from the inputs on top to the 5 category outputs
(zoomed) at the bottom.

4 Complementary Tools

The EBLearn project contains in addition to the core li-
brarieslibeblearnand libidx a complete set of tools facili-
tating development around them:

7

• libidxgui: a cross-platform General User Interface
(GUI) library providing tensor-based display func-
tions.

• libeblearngui: a GUI library containing display classes
for each learning module (See Fig. 9).

• libeblearntools: a set of tools to create formatted
datasets from image directories, visualize datasets, and
automatically train learning machines with different
training configurations.

• tester: a unit-tester of EBLearn functionalities allows
developers to contribute safely to the project.

• demos: EBLearn contains a set of small demonstration
projects that users can take inspiration from.

5. Conclusion

Energy based learning has been used in many different
contexts of machine learning and provide a very efficient
and flexible framework. We have showed that many su-
pervised and unsupervised learning algorithms and factor
graphs can be modeled using energy based learning frame-
work. Inference and learning processes are formulated for
many popular problems. More importantly, in this work
we have presented an open source machine learning library
(EBLearn) that can be used to built energy based learning
models.EBLearnis developed usingC++ programing lan-
guage for maximum portability and flexibility. We have also
shown several code examples on how to useEBLearnand
several additional graphical display methods and image pro-
cessing methods that are also included.

With this work we introduce the availability of an open
source machine learning library that can be used to train
supervised, semi-supervised and unsupervised models. We
believe this library contains one of the most extensive col-
lection of machine learning algorithms.

References

[1] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification.
In Proc. of Computer Vision and Pattern Recognition Confer-
ence. IEEE Press, 2005.

[2] S. Chopra, T. Thampy, J. Leahy, A. Caplin, and Y. LeCun.
Discovering the hidden structure of house prices with non-
parametric latent manifold model. InProc. Knowledge Dis-
covery in Databases (KDD’07), 2007.

[3] R. Collobert and J. Weston. A unified architecture for natural
language processing: Deep neural networks with multitask
learning. InInternational Conference on Machine Learning,
ICML, 2008.

[4] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-
tion by learning an invariant mapping. InProc. Computer Vi-
sion and Pattern Recognition Conference (CVPR’06). IEEE
Press, 2006.

[5] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan,
K. Kavukcuoglu, U. Muller, and Y. LeCun. Learning
long-range vision for autonomous off-road driving.Journal
of Field Robotics, 26(2):120–144, February 2009.

[6] F.-J. Huang and Y. LeCun. Large-scale learning with svm
and convolutional nets for generic object categorization. In
Proc. Computer Vision and Pattern Recognition Conference
(CVPR’06). IEEE Press, 2006.

[7] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recogni-
tion? InProc. International Conference on Computer Vision
(ICCV’09). IEEE, 2009.

[8] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun.
Learning invariant features through topographic filter maps.
In Proc. International Conference on Computer Vision and
Pattern Recognition (CVPR’09). IEEE, 2009.

[9] K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast infer-
ence in sparse coding algorithms with applications to object
recognition. Technical report, Computational and Biological
Learning Lab, Courant Institute, NYU, 2008. Tech Report
CBLL-TR-2008-12-01.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition.Proceedings
of the IEEE, 86(11):2278–2324, November 1998.

[11] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang.
A tutorial on energy-based learning. In G. Bakir, T. Hofman,
B. Scḧolkopf, A. Smola, and B. Taskar, editors,Predicting
Structured Data. MIT Press, 2006.

[12] P. Mirowski and Y. LeCun. Dynamic factor graphs for time
series modeling. InProc. European Conference on Machine
Learning (ECML’09), 2009.

[13] P. Mirowski, Y. LeCun, D. Madhavan, and R. Kuzniecky.
Comparing svm and convolutional networks for epileptic
seizure prediction from intracranial eeg. InProc. Machine
Learning and Signal Processing (MLSP’08). IEEE, 2008.

[14] B. A. Olshausen and D. J. Field. Sparse coding with an over-
complete basis set: a strategy employed by v1?Vision Re-
search, 37:3311–3325, 1997.

[15] M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learn-
ing for deep belief networks. InAdvances in Neural Informa-
tion Processing Systems (NIPS 2007), 2007.

[16] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsu-
pervised learning of invariant feature hierarchies with ap-
plications to object recognition. InProc. Computer Vision
and Pattern Recognition Conference (CVPR’07). IEEE Press,
2007.

[17] M. A. Ranzato and M. Szummer. Semi-supervised learning
of compact document representations with deep networks. In
ICML ’08: Proceedings of the 25th international conference
on Machine learning, pages 792–799, New York, NY, USA,
2008. ACM.

[18] Y. W. Teh, M. Welling, S. Osindero, G. E. Hinton, T. won
Lee, J. francois Cardoso, E. Oja, and S. ichi Amari. Energy-
based models for sparse overcomplete representations.Jour-
nal of Machine Learning Research, 4:2003, 2003.

8

