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Abstract— Recent advances in self-supervised learning have
enabled very long-range visual detection of obstacles and
pathways (to 100 hundred meters or more). Unfortunately,
the category and range of regions at such large distances
come with a considerable amount of uncertainty. We present a
mapping and planning system that accurately represents range
and category uncertainties, and accumulates the evidence from
multiple frames in a principled way. The system relies on
a hyperbolic-polar map centered on the robot with a 200m
radius. Map cells are histograms that accumulate evidence
obtained from a self-supervised object classifier operating on
image windows. The performance of the system is demonstrated
on the LAGR off-road robot platform.

I. I NTRODUCTION

Building a robust vision-based perception and navigation
system for complex outdoor environments is one of the
main challenges of field robotics. A key component of such
a system is a long-range perception system that can label
obstacles and pathways 100 meters away or more. Without
long-range vision, a mobile robot acts in a “myopic” fashion,
running into cul-de-sacs and systematically exploring long
rows of obstacles, not detecting distant pathways that are
obvious to human observers. Our group has developed a
long-range vision system, described in a companion paper,
that accurately labels each pixel in outdoors images into
such categories as traversable ground, obstacle foot, and
obstacle, as far as 100 meters away. The system uses self-
supervised on-line learning to train a classifer operatingon
feature vectors produced by a convolutional network. One
problem, however, is that the range estimates and category
labels obtained from a single frame have a considerable
amount of uncertainty in the far range.

This paper presents a method for representing spatial
and categorical uncertainty in long-range maps. The method
allows the accumulation of evidence from multiple frames
in a principled manner. The geometry of the map accurately
reflects the range uncertainty associated with image-plane
obstacle labeling. Furthermore, the map can represent an
effectively infinite radius with a finite number of cells. Lastly,
the information in the map allows to dynamically adjust
the planning policy so as to be more aggressive or more
conservative.

Our map representation is based on two key concepts:
1. hyperbolic range mapping; 2. representing categorical
evidence by accumulated histograms. In the image plane,
a single pixel covers a constant angular extent, but covers a
wildly varying range of distances. A single pixel on nearby
ground (near the bottom of the image) covers a few cm, while
a pixel near the horizon covers an essentially infinite range

of distances. For a flat ground plane, the mapping of image-
plane pixels to distances is hyperbolic from the bottom of the
image to the horizon. For this reason, we propose to represent
the environment through a robot-centeredhyperbolic-polar
map (h-polar). This representation allows to map the entire
world to a finite number of cells, while being faithful to the
type of uncertainty afforded by image-plane labels. To allow
the accumulation of evidence for the label of a cell as the
robot moves and collects data, each cell in the map contains
a histogram of accumulated probabilities for each category.
At each frame, the classifier produces likelihood values for
each category that are accumulated in the histogram in the
corresponding map cell. The performance of the system is
demonstrated on the LAGR platform (Learning Applied to
Ground Robots) which is equiped with two pairs of stereo
cameras (Fig4).

A. Previous Work

The main focus of the LAGR program is the application
of machine learning to field robotics [6], particularly for
the problem of long-range perception. Mapping with uncer-
tainty has been explored with Bayesian techniques [3] and
other methods [12]. We propose a histogram-based approach
suitable for multi-class classifiers. Previous work on robot-
centered, non-uniform mapping include log-polar represen-
tations [10] and multi-resolution grid-based maps [1]. The
main advantage of the h-polar approach over these methods
is the ability to represent an effectively infinite radius with
a finite number of cells. Even more important is a represen-
tation of range uncertainty that directly corresponds to that
associated with image-plane labeling. Pure image-plane la-
beling and planning [15], or visual motion planning, presents
the advantage of being free of expensive transformations and
pose errors, but can only operate with one single frame at
the time. The accumulation of evidence over multiple frames
can greatly reduce the perception uncertainty and noise that
single frame planning is subject to. In addition, visual motion
planning relies on the goal being within the current field-
of-view, an dangerous assumption in complicated outdoor
scenes. A previous version of our system [5] used a robot-
centered, tactical Cartesian grid mapping with a radius of
30m. Each time the robot moves and a new video frame is an-
alyzed, the robot-centered map must be translated and rotated
before the results from the new frames are incorporated. This
process become impracticably expensive for large Cartesian
maps. With our new perception system with a range of
100m, a robot-centered Cartesian map with 20cm resolution
would have required an impractical 500x500 cells. The h-
polar representation offers a considerably more efficient use



of memory.

Fig. 1. Neural network output: 5 classes.
The input image (left) is fed into the neural network for classifica-
tion at resolution 512x384, producing traversibility labels (overlaid
on the right image) up to 100 meters and more. The last layer of
the neural network is trained online, using the stereo labels (center)
up to 12 meters as training information.

II. L ONG RANGE V ISION

The existing paradigm for vision-based mobile robots
relies on hand-tuned heuristics: a stereo algorithm produces
a (x,y,z) point cloud and traversability costs are assigned
to points based on their proximity to a ground plane [8],
[4]. However, stereo algorithms that run in realtime often
produce costmaps that are short-range, sparse, and noisy.
Our learning strategy uses these stereo labels for supervision
to train a realtime classifier. The classifier then predicts the
traversability of all visible areas, from close-range to the
horizon. For accurate recognition of ground and obstacle
categories, it is best to train on large, discriminative windows
from the image, since larger windows give contextual infor-
mation that is lacking in color and texture features. Other
research has explored the use of online learning for mobile
robots, but their methods have been largely restricted to
simple color/texture correspondences [9], [11], [14]. See[5]
for more details about the long-range vision module.

A. Classifier Output

The network produces a floating-point value for each of
the 5 following classes (Fig1) detected by the stereo mod-
ule: super-ground, ground, footline, obstacle, super-obstacle.
Having more visually-consistent classes helps the network
to produce better classification in comparison to a binary
classifier as used in previous versions of the system. In
addition, it conveniently suits the histogram scheme used
in our planning cost decision algorithm described in the
following section.

III. L ABEL UNCERTAINTY: COST FROMHISTOGRAM

Label uncertainty can be caused by differences of view
points, sensor noise or learning phase of the online neural
network. Mapping with label uncertainty in mobile robotics
has been addressed by several approaches from Bayesian
techniques [3] to fuzzy logic [12]. Trivial approaches suchas
using latest labels only or running averages are simple and
fast but lack confidence and accuracy and would cause an
early fusion of the multi-class network outputs. We use an
histogram approach (Fig2) suited for multiple classes and
able to delay the traversibility decision to planning time:each
cell constainsK bins, each bin corresponding to a class (or
a range of traversibility for single class outputs). Each new
label is merged in a cell through a simple addition. Before
planning, the histogram is translated into a traversibility

cost (Fig3). At that time, the traversibility decision can be
modulated by the current planning policy: conservative vs.
aggressive. As label uncertainty increases with distance,a
distance decay must be applied to incoming frames.

Fig. 2. Histogram to cost process.
The output of the classifier is multiplied by the current learning
confidence and added to an existing histogram. Before converting
the histogram to a planning cost, it is normalized. Finally,the
current planning policy modulates the mapping from the normalized
histogram to a single planning cost.

A. Histogram to cost transformation

Let ∑k bink+c be the sum of all bins of an histogram with
an added constantc which brings confidence to 0 when the
sum is small. Let∑k wkbink be the weighted sum of all bins.
The normalized sumS tuned by gain parametersγ is defined
by:

S= γ ∑k wkbink

∑k bink +c

S is then used to compute the planning costcost:

If (S<= 0)
cost= costunexplored+S∗ (costunexplored−costmin)

Else if (S<= 1)
cost= costunexplored+S∗ (costlethal−costunexplored)

Elsecost= costlethal
cost= MAX(cost,costmin)

Fig. 3. Planning cost mapping from normalized histogram sum.
A sum of 0 represents the full uncertainty, -1 and below are given
the minimum ground cost, and 1 or higher the maximum cost.

IV. RANGE UNCERTAINTY: HYPERBOLIC POLAR MAP

Cartesian maps are commonly used in autonomous robots
to represent the environment. While this space is convenient
for implementation, it is computationaly impractical for long-
range vision applications and does not naturaly suit the image
resolution distribution. Visual motion planning [15] has its
limits. Log-polar mapping [10] and multi-resolution grid-
based mapping [1] cannot represent range up to infinity



because of their geometric growth. We propose a pseudo-
image space approach named hyperbolic-polar (or h-polar)
able to handle infinitely long range vision and planning in
an efficient and natural manner. Along with the histogram
approach, this hyperbolic mapping allows to build confidence
over multiple input frames and provide more stable maps
than cartesian or linear-polar representations for visionappli-
cations. It is important to note that the hyperbolic distribution
allows to map infinity in a limited number of cells (cf. Fig.7).

A. Overall Process

Overall processing of the h-polar map from image labeling
to planning:

1) Image labeling (Fig. 4): Each pixel of the input
images (512x384 in our system) is labeled with an
histogram, representing confidences in each class.

2) Plane extraction (Fig.4): A single plane is found us-
ing the short-range stereo points (up to 12m). Remain-
ing points with no disparity information are projected
onto the single plane and given a disparity.(r,c,d) is
then converted to vehicle-centered(x,y,z).

3) Point cloud transmission: The point cloud of
(x,y,z,histogram) is sent over to the h-polar module.

4) Recentering memory:Previously accumulated frames
are recentered onto the last available pose.

5) Adding new point cloud: Each point of the new point
cloud is merged into the h-polar internal point cloud.

6) Produce planning map (Fig. 5): A temporary map
for planning and display is produced from the h-polar
point cloud.

7) Planning: Best paths from the goal to all points of the
map are computed and sent to the reactive planning
layer. Optimal path is shown in white in (Fig.5).

Fig. 4. Plane extraction and traversibility classification.
To assign disparity information to non-stereo points, a single ground
plane is found using the stereo points. This ground plane is also used
to normalize 2D bands of images to be fed to the neural network
for classification.

B. Geometry Details

The h-polar space is not the exact image space given by the
real cameras of the robot, but rather a pseudo-image space
defined by the pseudo-camera parametershcam andhRmin (cf.
Fig. 6) and able to integrate multiple frames together.

As shown on Fig.6, the h-polar uses 2 different resolution
distributions in the radial dimension:

• From the center of the map to the first hyperbolic cell,
the resolution isconstant, each cell has the same radial
size.

Fig. 5. H-polar cost (left) and RGB (right) maps.
Groundplane-projected pixels with their traversability labels from
left and right eyes are merged together with previous framesinto
the h-polar map. Once recentered onto the vehicle center, driving
costs are computed and planning takes place in the cost map (left).
The resulting optimal path in white leads to the goal (white blob).
The RGB h-polar map (right) is used only for display and is very
convenient for humans to figure out what the robot is looking at
and how good the classification is. The vehicle is alway facing the
top of the map. The orange curves in the 2.5m radius representthe
currently feasible trajectories of the reactive low-levelplanner
taking in account the vehicle dynamics.

Fig. 6. H-polar side and top views.
The radial resolution is constant from 0 to 15 meters with 20cm
radius. Then from 15m to 200m and more, cells range from .2m to
25m. IntegersrP andtP are the h-polar coordinates of the cell into
which cartesian pointP(xP,yP,zP) falls.

• From the first hyperbolic cell to infinity, the radial cell
size increases in anhyperbolic manner (equation ofrP
is of type 1

radius).
The radius of the first hyperbolic cell is determined based

on the desired cell sizeCres in the constant resolution area.
In our system, we estimated a cell size of 20cm would be
sufficient for our purpose. Thus to keep continuity in the cell
sizes between the constant and the hyperbolic area, the first
hyperbolic cell must begin at a radiusRmin of 15.26m, given
the parametershcam and hRmin of our pseudo-camera and
hRdim, the hyperbolic radial dimension.Rmin is determined
by the following equation:

Rmin = Cres∗ (
hcam∗hRdim

hRmin
−1)

Following are the values used in our system in the real-
life tests conducted the LAGR Government Team in January
2008:

Cres = 0.2m, cell radial size in the constant area.
Rmin = 15.26m, radius of the first hyperbolic cell.
hCam = 1m, height of the peusdo-camera.
hRmin = 0.97m, height of the pseudo-image at radiusRmin.
Rdim = 75, cells in the constant area.
hRdim = 75, cells in the hyperbolic area.
Tdim = 400, cells in the angular dimension.



Given those parameters, Fig.7 plots the cell index versus
the cell radius. Note that cells range up to 350m. In practice
however, because uncertainty increases with distance and
because only 150 cells are used in the radial dimension,
the system is considered to be accurate up to 100m. But
no there are no theoratical boundaries to this limit, which
can be increased as computation budget permits.

Fig. 7. H-polar cell radius versus cell radial index with current
configuration. Given our pseudo-camera and h-polar parameters,
the radial resolution is constant (20 cm) from cell 0 to 74 with
radiuses ranging from 0 to 15.06 meters. From cell 75 to 150, the
resolution is hyperbolic and radiuses range from 15.26m to 350m.
Cells sizes range from .2m to 80m. If few more radial cells were
added to our map, infinity would lay in cell 153.

1) Cartesian to H-polar Transformation (x,y,z) to (r,t,z):
Transformation formulas (for the hyperbolic area) from carte-
sian coordinates(xP,yP,zP) in local pose coordinate system
to h-polar coordinates(rP, tp,zP) (zP remains unchanged) of
point P (Fig. 6) :

rP = (
Rmin∗ (zP−hCam)

√

xP
2 +yP

2
+hCam)∗

hRdim

hRmin
+Rdim

tP = arctan(
yP

xP
)∗

Tdim

2π

Those transformations are called many times. To re-
main efficient, their computation must be optimized: pre-
computing a look-up table of all the discreteTdim useful
values resulting from thearctan function provides a non-
negligible speed-up. Note also that only the integer part of
(rP,tP) is used to determine which cell a point falls into.

2) H-Polar to Cartesian Transformation (r,t,z) to (x,y,z):
Transformation formulas (for the hyperbolic area) from h-
polar (real) coordinates(rP, tp,zP) of point P (Fig. 6) to
cartesian coordinates(xP,yP,zP) in local pose coordinate
system (zP unchanged):

radiusP =
Rmin∗ (zP−hCam)

(rP−Rdim)∗ hRmin
hRdim

−hCam

α = tP∗
2π
Tdim

xP = cosα ∗ radiusP yP = sinα ∗ radiusP

Fig. 8. RGB h-polar map in pseudo-image and Cartesian
spaces.
The center part of the h-polar map has a constant radial resolution
whereas the cylindrical part has a hyperbolic radial resolution or
pseudo-image space. When flattened down into cartesian space, the
cylindrical part takes hyperbolically more space.
To transform coordinates between the pseudo-image space and the
cartesian space, a pixel is projected onto the Cartesian space along
the line coming from the omniscient camera at the center of the
map at heighthCam. The reverse transform projects a point from
Cartesian space into the pseudo-image space.

C. Implementation Details

1) Hyperbolic-polar Organized Point-Cloud:Internally,
h-polar is a point cloud, each point being defined by
(x,y,z,histogram,counter). For practical reasons, the number
of points must be bound and it is desirable to keep a uniform
distribution of points in the map. Therefore, points are kept
using the h-polar distribution, i.e. 1 point per cell, in an array
of points of dimensions((Rdim + hRdim) ∗ Tdim ∗ Pointdim).
The dimensions of this map do not have to be the same
as the final cost map used for planning. In fact, there are 4
times more cells internally than in this final map. To avoid
accumulation of integer imprecisions during recentering and
frame additions, the exact(x,y,z) coordinates are kept all
times. Only the integer part of(r,t) is used to find the target
cell of a point.

2) Translation and Rotation:The map is internally fixed
onto the local pose coordinate system. It never needs to be
rotated except for display. The rotation is extremely simple,
a single (ring) offsetto f f set is added to the angular indext
before access. When recentering, no rotation is necessary,
only translation is applied as described in the following
section.

3) Recentering:Before adding a new frame to the current
memory, the latter needs to be recentered to take in account
the movement given by the latest available pose. As pointed
out above, recentering of the h-polar map only requires
translation of the(x,y) components of each point:

1) Compute translation(x,y)trans between the memory’s
pose and the last known pose in the local pose coor-
dinate system (z variations are ignored):

(x,y)trans = (x,y)memPose− (x,y)lastPose

2) For all ((Rdim+hRdim)∗Tdim) points:
• Add (x,y)trans to (x,y) components of point.
• Move point into new h-polar cell: if the new cell

exists, merge point into that cell, else delete point.



After recentering, the current angular offsetto f f set of the
heading of the vehicle (αlastPose) must be saved in order to
render a map fixed to the vehicle coordinate system:
to f f set= αlastPose∗

Tdim
2π

Later,to f f set simply needs to be added to eacht index before
accessing the cells for render.

4) Adding a New Frame:A new frame comes as a
cloud of (x,y,z,histogram) points centered on the vehicle’s
coordinate system at the time of the input image capture.
Before adding new points to the memory (already recentered
with last known pose), translation and rotation need to be
applied to take in account the last known position of the
robot:

(x,y)trans = (x,y)imgPose− (x,y)lastPose

The rotation corresponds to the headingαimgPoseof the robot
in the local pose coordinate system, given byimgPose, the
pose of the image. Hence the following transformation matrix
(z remains unchanged and can be ignored) produces the
centered coordinates(x,y)′:

[

x
y

]

′

=

[

cosα −sinα xtrans
sinα cosα ytrans

]

.

[

x
y
1

]

To add the recentered new frame to the recentered memory,
simply loop through all points of the image point cloud and
merge each into their corresponding h-polar cell.

5) Points Merging:When recentering memory or adding
a new frame, several points may fall into a same h-polar cell
and need to merge together since only one point per cell is
kept. There are two different merging operations to consider:

• Data merging: Using the histogram scheme, merging
is a simple addition. Keeping a counter of the number
of points merged can be useful to normalize the RGB
display and for coordinates merging.

• Coordinates merging: The new coordinates can be an
interpolation of each point’s coordinates weighted by
their counter, thus giving more importance to points
seen many times. However in our system, because
of a low computation budget, coordinates are simply
overwritten by the last added point.

6) Blocking after Obstacles:To avoid projecting down to
the ground the part of obstacles for which az estimate is
missing, typically points beyond stereo range, those points
are “blocked” after an obstacle. For example, a tree trunc can
appear as a giant path or obstacle in the map if not blocked
after its foot. Therefore, all points withoutz information
following an obstacle in the radial direction are ignored when
adding a new frame.

7) Subsampled and Smoothed Mapping for Planning:
The internal high resolution h-polar map is scattered because
points can merge during the translation process. This can
produce erratic path planning between unknown cells and
create holes inside lethal obstacles. To cope with this issue,
a lower resolution map is produced for the actual planning:
every low-resolution cell is a sum of 4 neighboring cells. In
addition to subsampling, as some holes may subsist, the 8
neighbors of each cells are added, thus providing a smooth
dense map. Note that no normalization is required since the
histogram scheme handles addition of multiple histograms
by modulation of confidence.

D. Registration

In comparison to traditional cartesian representations, the
pseudo-image space representation could allow to efficient
registration of patches to correct for pose imprecisions.

E. Limitations and Further Work

Current limitations prevent the h-polar representation from
offering a complete mapping solution. Those shortcomings
may be resolved in further research:

• Lack of global map: h-polar is used as a vehicle-
centered local map and information fades away when
the robot moves. Thus planning is limited to the h-polar
radius and precise maps of visited areas may be lost.
Coupling h-polar with a grid based global map or using
a single quad-tree global map as in [7] may address this
problem.

• Points coverage (merging and splitting):It is assumed
that new data appears in front of the vehicle when mov-
ing forward, then merging with previous data. Points
moving outside of the field-of-view into cells covering
smaller areas scatter into tiny dots when they used to
represent a bigger area. Merging and splitting heuristics
may be improved to cope with those issues but it is not
clear if it can solve the issue and at what price. However,
this is in practice rarely an issue thanks to subsampling,
smoothing and because points appear in front of the
vehicle. Thus most points outside of the field-of-view,
compress together when moving away from the center.

• Ground plane assumption: Although 3D coordinates
are kept internally, planning is executed in a flat 2D
world. Z costs could be incorporated in the planning to
reflect terrain relief.

V. PLANNING USING H-POLAR

A. Grid-based Planning with Pre-computed Transition Costs

Any grid-based planning algorithm can be used here by
using the pre-computed transitions costs between the center
of each cell to their 8 neigbors (the transition cost is simply
the euclidian distance of the(x,y) real coordinates of each
cell’s center).

B. Layered Planning

We use a layered architecture [2] to allow decoupled levels
of planning in the system [13]: reactive short-range planning
which takes in account the vehicle dynamics, and deliberative
long-range planning. The reactive planner runs between 5
and 10 Hz independently of the h-polar planner which runs
at 1Hz. Thus, all possible paths need to be precomputed in
h-polar once, in order to provide the the reactive planner
all optimal paths to the goal at every fast iteration. We use
the Dijkstra algorithm from the goal to every cell of the h-
polar map as our single-source to multi-targets planner. Thus
every h-polar cell contains the optimal path to the goal. The
reactive planner computes the cost from the vehicle center
to a finite number of candidates at a certain radius (5m),
then queries and add the remaining cost for each of those
candidates, beforehand translated into h-polar coordinates.
The candidate with minimum cost contains the optimal path.
Finally, the list of wheel commands of the trajectory that
initiated the best path is executed until the next iteration.



Fig. 9. H-polar maps along heterogeneous outdoor course.
Each h-polar map accurately represents the real environment shown
in the sattelite image, and plans around obstacle from an approxi-
mate distance of 50 meters.

Fig. 10. Result runs with long-range vision activated in Sandy
Hook.
The top images are left and right input images. The middle
images show classification for left and right. At the bottom is the
corresponding h-polar map.

VI. RESULTS

The complete system with long-range vision was in-
tensively tested in outdoors environments and consistently
showed improvement over the same system with long-range
vision disabled. Here are two examples of runs conducted
in Sandy Hook, NJ. (Fig10): each course was run with the
long-range module on or off. When the module was off,
the robot took 321s and 196.1s to reach the goal with a
travel distances of 271.9m and 207.5m and 3 and 1 human
interventions to get the robot out of trouble. With the long-
range vision enabled, it took the robot 155.5s and 142.2s to
reach the goal, travelling 166.8m and 165.1m and it required
no human intervention for neither runs.

VII. C ONCLUSION AND FURTHER WORK

Long-range data and its uncertainties were successfully
integrated and used to perform real-time long-range nav-
igation. Using a layered planning architecture with low-
level reactive obstacle detection including vehicle dynamics
and a high-level deliberative long-range and hyperbolic-
polar planner, the system reliably performed during intensive
field tests by an independent testing team. For tactical
planning architectures, where the local map is tied to the
vehicle coordinate system and needs to be recentered at
every iteration, h-polar mapping provides a computationaly
efficient way to handle always increasing vision range as
well as classification and range uncertainties. However the
h-polar mapping is limited by the lack of global map. It is
questionable whether there is a need of a high-level tactical
map when a lower-level perception and planning module
already serves this purpose. Further work would explore the
global multi-resolution direction given by [7] with a global
hyperbolic-polar-like mapping to replace the current h-polar
tactical mapping.
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