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Abstract— Recent advances in self-supervised learning have of distances. For a flat ground plane, the mapping of image-
enabled very long-range visual detection of obstacles and plane pixels to distances is hyperbolic from the bottom ef th
pathways (to 100 hundred meters or more). Unfortunately, jmage to the horizon. For this reason, we propose to represen

the category and range of regions at such large distances . .
come with a considerable amount of uncertainty. We present a the €nvironment through a robot-centeiggberbolic-polar

mapping and planning system that accurately represents rage  Map (h-polar). This representation allows to map the entire
and category uncertainties, and accumulates the evidenceomm  world to a finite number of cells, while being faithful to the
multiple frames in a principled way. The system relies on type of uncertainty afforded by image-plane labels. Tovallo
a_hyperbolic-polar map centered on the robot with @ 200m  the gccumulation of evidence for the label of a cell as the

radius. Map cells are histograms that accumulate evidence . .
obtained from a self-supervised object classifier operatig on robot moves and collects data, each cell in the map contains

image windows. The performance of the system is demonstrate @ histogram of accumulated probabilities for each category

on the LAGR off-road robot platform. At each frame, the classifier produces likelihood values for
each category that are accumulated in the histogram in the
|. INTRODUCTION corresponding map cell. The performance of the system is

demonstrated on the LAGR platform (Learning Applied to
Building a robust vision-based perception and navigatioGround Robots) which is equiped with two pairs of stereo
system for complex outdoor environments is one of theameras (Figt).
main challenges of field robotics. A key component of such )
a system is a long-range perception system that can lalfel Previous Work

obstacles and pathways 100 meters away or more. WithoutThe main focus of the LAGR program is the application
long-range vision, a mobile robot acts in a “myopic” fashionof machine learning to field robotics [6], particularly for
running into cul-de-sacs and systematically exploringglonthe problem of long-range perception. Mapping with uncer-
rows of obstacles, not detecting distant pathways that agginty has been explored with Bayesian techniques [3] and
obvious to human observers. Our group has developedogher methods [12]. We propose a histogram-based approach
long-range vision system, described in a companion papeuitable for multi-class classifiers. Previous work on tebo
that accurately labels each pixel in outdoors images inigentered, non-uniform mapping include log-polar represen
such categories as traversable ground, obstacle foot, a@gions [10] and multi-resolution grid-based maps [1]. The
obstacle, as far as 100 meters away. The system uses sgifin advantage of the h-polar approach over these methods
supervised on-line learning to train a classifer operating is the ability to represent an effectively infinite radiusttwi
feature vectors produced by a convolutional network. Ong finite number of cells. Even more important is a represen-
problem, however, is that the range estimates and catega#tion of range uncertainty that directly corresponds tat th
labels obtained from a single frame have a considerabigsociated with image-plane labeling. Pure image-plane la
amount of uncertainty in the far range. beling and planning [15], or visual motion planning, preisen

This paper presents a method for representing spatidle advantage of being free of expensive transformatiods an
and categorical uncertainty in long-range maps. The meth@dse errors, but can only operate with one single frame at
allows the accumulation of evidence from multiple frameshe time. The accumulation of evidence over multiple frames
in a principled manner. The geometry of the map accuratetyan greatly reduce the perception uncertainty and noige tha
reflects the range uncertainty associated with image-plastgle frame planning is subject to. In addition, visual it
obstacle labeling. Furthermore, the map can represent planning relies on the goal being within the current field-
effectively infinite radius with a finite number of cells. ltgs  of-view, an dangerous assumption in complicated outdoor
the information in the map allows to dynamically adjusiscenes. A previous version of our system [5] used a robot-
the planning policy so as to be more aggressive or moksentered, tactical Cartesian grid mapping with a radius of
conservative. 30m. Each time the robot moves and a new video frame is an-

Our map representation is based on two key conceptatyzed, the robot-centered map must be translated an@dotat
1. hyperbolic range mapping; 2. representing categorichefore the results from the new frames are incorporated. Thi
evidence by accumulated histograms. In the image plangrocess become impracticably expensive for large Cartesia
a single pixel covers a constant angular extent, but coversn@aps. With our new perception system with a range of
wildly varying range of distances. A single pixel on nearbyl00m, a robot-centered Cartesian map with 20cm resolution
ground (near the bottom of the image) covers a few cm, whilwould have required an impractical 500x500 cells. The h-
a pixel near the horizon covers an essentially infinite rangeolar representation offers a considerably more efficiset u



of memory.
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Fig. 1. Neural network output: 5 classes.

The input image (left) is fed into the neural network for cifisa-
tion at resolution 512x384, producing traversibility l&béoverlaid
on the right image) up to 100 meters and more. The last layer
the neural network is trained online, using the stereo fafmnter)

cost (Fig3). At that time, the traversibility decision can be
modulated by the current planning policy: conservative vs.
aggressive. As label uncertainty increases with distaace,
distance decay must be applied to incoming frames.
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Fig. 2. Histogram to cost process.
dihe output of the classifier is multiplied by the current teag
confidence and added to an existing histogram. Before ctinger
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the histogram to a planning cost, it is normalized. Finathe
current planning policy modulates the mapping from the radized
histogram to a single planning cost.

up to 12 meters as training information.

II. LONG RANGE VISION
The existing paradigm for vision-based mobile robot#\. Histogram to cost transformation

relies on hand-tuned heuristics: a stereo algorithm presiuc | gt 5 «bin, + ¢ be the sum of all bins of an histogram with
a (xy,z) point cloud and traversability costs are assignegdn added constamtwhich brings confidence to 0 when the
to points based on their proximity to a ground plane [8]gym is small. Lety ,wibin be the weighted sum of all bins.

[4]. However, stereo algorithms that run in realtime ofter_q—he normalized surStuned by gain parameteysis defined
produce costmaps that are short-range, sparse, and nojsy.

Our learning strategy uses these stereo labels for supervis S K Wicbin

to train a realtime classifier. The classifier then prediots t = W;

traversability of all visible areas, from close-range t@ th )

horizon. For accurate recognition of ground and obstacf@is then used to compute the planning cosst
categories, it is best to train on large, discriminativedaows f (S<=0)

from the image, since larger windows give contextual infor-  ~ogt— COStinexploredt S (COStnexplored— COSknin)
mation that is lacking in color and texture features. Other gige jf (S<=1)

research has explored the use of online learning for mobile  ogt— COShnexploredt S (COStethal — COStinexplored
robots, but their methods have been largely restricted t0 E|se cost= coSternal

simple color/texture correspondences [9], [11], [14]. e cost= MAX(cost COStin)

for more details about the long-range vision module.

A. Classifier Output

The network produces a floating-point value for each of
the 5 following classes (Fid) detected by the stereo mod-
ule: super-ground, ground, footline, obstacle, supeteuis.
Having more visually-consistent classes helps the network
to produce better classification in comparison to a binary
classifier as used in previous versions of the system. In
addition, it conveniently suits the histogram scheme used
in our planning cost decision algorithm described in the e
following section.
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I11. L ABEL UNCERTAINTY: COST FROMHISTOGRAM

Label uncertainty can be caused by differences of view

points, sensor noise or learning phase of the online neurl_al . . . .

. . . : : - Fig. 3. Planning cost mapping from normalized histogram sum.
network. Mapping with label uncertainty in mobile roboticsy“gm of 0 represents the full uncertainty, -1 and below averyi
has been addressed by several approaches from Bayesi@minimum ground cost, and 1 or higher the maximum cost.
techniques [3] to fuzzy logic [12]. Trivial approaches sash
using latest labels only or running averages are simple and
fast but lack confidence and accuracy and would cause anlV: RANGE UNCERTAINTY: HYPERBOLIC POLAR MAP
early fusion of the multi-class network outputs. We use an Cartesian maps are commonly used in autonomous robots
histogram approach (Fig) suited for multiple classes and to represent the environment. While this space is convénien
able to delay the traversibility decision to planning tirrach  for implementation, it is computationaly impractical fonig-
cell constainK bins, each bin corresponding to a class (orange vision applications and does not naturaly suit thgéna
a range of traversibility for single class outputs). Eactv neresolution distribution. Visual motion planning [15] has i
label is merged in a cell through a simple addition. Beforémits. Log-polar mapping [10] and multi-resolution grid-
planning, the histogram is translated into a traversibilitbased mapping [1] cannot represent range up to infinity

; | |
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because of their geometric growth. We propose a pseu O:‘z;";ﬁ st
image space approach named hyperbolic-polar (or h—poleixf A
able to handle infinitely long range vision and planning irf8

an efficient and natural manner. Along with the histograr®=""=
approach, this hyperbolic mapping allows to build configenc
over multiple input frames and provide more stable mag
than cartesian or linear-polar representations for visjopli-
cations. It is important to note that the hyperbolic disttibn
allows to map infinity in a limited number of cells (cf. Fig).
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A. Overall Process Fig. 5. H-polar cost (left) and RGB (right) maps.
. ) . . Groundplane-projected pixels with their traversabiligpéls from
Overall processing of the h-polar map from image I""be“ngﬂ and right eyes are merged together with previous frames

to planning: the h-polar map. Once recentered onto the vehicle centieingir
1) Image labeling (Fig. 4): Each pixel of the input Ccosts are computed and planning takes place in the cost ek (I

; ; ; ; he resulting optimal path in white leads to the goal (whiigbh
gT‘ages (512x384 In our syfs_tem) IS .Iabeleﬁ Vl\”th ar1he RGB h-polar map (right) is used only for display and is very
istogram, representing confidences in each class. conyenient for humans to figure out what the robot is looking a

2) Plane extraction (Fig.4): A single plane is found us- and how good the classification is. The vehicle is alway fa¢he
ing the short-range stereo points (up to 12m). Remairep of the map. The orange curves in the 2.5m radius repréisent
ing points with no disparity information are projectedcurfenﬂy feasible trajectories of the reactive low-levelplanner
onto the single plane and given a disparityc,d) is  2King in account the vehicle dynamics.

then converted to vehicle-centerédy,z). it et —
3) Point cloud transmission: The point cloud of . polar Cortesian views

Pseudo Rmin

(x,y,z histogran) is sent over to the h-polar module. e
4) Recentering memory:Previously accumulated frames,__ |

are recentered onto the last available pose. \
5) Adding new point cloud: Each point of the new point 0 5 ] 506 Radus (meters)

cloud is merged into the h-polar internal point ClOUd. ce s mam 73 i) celisize ot 25m e 75 cels
6) Produce planning map (Fig.5): A temporary map

for planning and display is produced from the h-polaFig. 6. H-polar side and top views.

point cloud. The radial resolution is constant from 0 to 15 meters withn20c
7) Planning: Best paths from the goal to all points of ther2a5d'us' Then from 15m to 200m and more, cells range from .2m to

. - 25m. Integergp andtp are the h-polar coordinates of the cell into

ayer. Optmal path i Shown n white in (Fg). e Caesian pone(re yp.2) als.

ide view

X (m)

(Tdim: 400 cells)

« From the first hyperbolic cell to infinity, the radial cell
size increases in almyperbolic manner (equation afp
l F il is of type rac}ius)'
Rightieje! il e The radius of the first hyperbolic cell is determined based
e Pt S8 on the desired cell siz€s in the constant resolution area.
In our system, we estimated a cell size of 20cm would be

sufficient for our purpose. Thus to keep continuity in the cel

Obstacle Foot Obstacle  Ground

hyperbolic cell must begin at a radi&,, of 15.26m, given
Fig. 4. Plane extraction and traversibility classification. the parameter$icam and hRyin of our pseudo-camera and

To assign disparity information to non-stereo points, algiground hRaim: the hyperbolic radial dimensiofRyin is determined
plane is found using the stereo points. This ground planis@used by the following equation:
to normalize 2D bands of images to be fed to the neural network

for classification. R = Creg (hcam* hRgim 1)
hRmin
) Following are the values used in our system in the real-
B. Geometry Details life tests conducted the LAGR Government Team in January

The h-polar space is not the exact image space given by tR808:
real cameras of the robot, but rather a pseudo-image spaee.
defined by the pseudo-camera paramettggis andhRmin (cf. Rmin 15.26m, radius of the first hyperbolic cell.
Fig. 6) and able to integrate multiple frames together. h — 1m, height of the peusdo-camera.

As shown on Fig6, the h-polar uses 2 different resolutionh(lz_;:‘nn:n — 0.97m, height of the pseudo-image at radBin.

= 0.2m, cell radial size in the constant area.

distributions in the radial dimension: Rym = 75 cells in the constant area.
« From the center of the map to the first hyperbolic cellhRyim = 75, cells in the hyperbolic area.
the resolution iconstant, each cell has the same radialTyi,, = 400, cells in the angular dimension.

size.

sizes between the constant and the hyperbolic area, the first



Optimal Path
. Pseudo Camera

Given those parameters, Fig.plots the cell index versus
the cell radius. Note that cells range up to 350m. In practic
however, because uncertainty increases with distance a
because only 150 cells are used in the radial dimensio , , S
the system is considered to be accurate up to 100m. B , . > Car‘:g's?;:s'ace
no there are no theoratical boundaries to this limit, whicl '

can be increased as computation budget permits.

Point P in pseudo
image space
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N
L Fig. 8. RGB h-polar map in pseudo-image and Cartesian
+ spaces.
+ ] The center part of the h-polar map has a constant radialutisol
f whereas the cylindrical part has a hyperbolic radial ragmiuor
] pseudo-image space. When flattened down into cartesiae,sih&c

200

150 -
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100 —
cylindrical part takes hyperbolically more space.
o 7 To transform coordinates between the pseudo-image spacthan
cartesian space, a pixel is projected onto the Cartesiaresgang

H T [ A A S
0 7 ‘ ‘ s the line coming from the omniscient camera at the center ef th

0 20 40 60 80 100 120 140 ? 160 . . .
Cell radial index Verlical asymplota map at heighthCam The reverse transform projects a point from
Cartesian space into the pseudo-image space.

Fig. 7. H-polar cell radius versus cell radial indexwith current
configuration. Given our pseudo-camera and h-polar pamset
the radial resolution is constant (20 cm) from cell 0 to 74hwit C. Implementation Details

radiuses ranging from O to 15.06 meters. From cell 75 to 1%, t
resolution is hyperbolic and radiuses range from 15.26m5@n8 1) Hyperbolic-polar Organized Point-Cloudinternally,

Cells sizes range from .2m to 80m. If few more radial cellsewerh_po|ar is a point cloud, each point being defined by

added to our map, infinity would lay in cell 153. (x,,z, histogramcountes. For practical reasons, the number

) ) of points must be bound and it is desirable to keep a uniform
1) Cartesian to H-polar Transformation (x,y,z) to (1t,2): distribution of points in the map. Therefore, points aretkep

Transformation formulas (for the hyperbolic area) fromtear ysing the h-polar distribution, i.e. 1 point per cell, in areg

sian coordinate$xp,yp,zp) in local pose coordinate system of points of dimensiong (Ryim + hRgim) * Tgim * Pointgim).

to h-polar coordinate§p, tp,zp) (zp remains unchanged) of The dimensions of this map do not have to be the same

point P (Fig. 6) : as the final cost map used for planning. In fact, there are 4
Ruin* (20 — hcam) hRy; times more cells internally than in this final map. To avoid
rp=(—n" P _cam | hcam) * =2 + Ryim accumulation of integer imprecisions during recenterind a
V/Xp? +yp? hRnmin frame additions, the exadk,y,z) coordinates are kept all
times. Only the integer part df,t) is used to find the target
" Tdim cell of a point.

Yp
tp = arctan(—
P n(xP) 2 2) Translation and RotationThe map is internally fixed

Those transformations are called manv times. To ro_nto the local pose coordinate system. It never needs to be
i Zﬁ'c'ents et (I:orr? tation must be yo l‘m'séd' eefotated except for display. The rotation is extremely s&npl

: t'l : I kl ¢ brl)u f' I thus di 1?' 12 f Fr a single (ring) offsetyfser is added to the angular indéx
\(jolmpu Irng ?tinoofr-ur[r)] t% (ratonefl n t? n 'str:r(\e/iglm usi un before access. When recentering, no rotation is necessary,
alues resulting 1ro @rctan function provides a non- nly translation is applied as described in the following
negligible speed-up. Note also that only the integer part action
(re,tp) is used to deter_mlne which cell_a point falls into. 3) RecenteringBefore adding a new frame to the current

2) H-Polar to Cartesian Transformation (r,t,z) 1 (X,Y.2): memory, the latter needs to be recentered to take in account
Transformation formulas (for the hyperbolic area) from hyne moyement given by the latest available pose. As pointed
polar (real) coordinatesre,tp,ze) of point P (Fig. 6) 0 ot apove, recentering of the h-polar map only requires
cartesian coordinate§e,yp,zp) in local pose coordinate ..,slation of the(x,y) components of each point:

system £ unchanged): 1) Compute translatioifx, y)ians between the memory’s
) Rmin * (20 — hcam) pose and the last known pose in the local pose coor-
radius = . hRon dinate systemzvariations are ignored):
(rp — Rgim) * ARyim hcam
(X, Y)trans = (X, Y)memPose— (X, Y)lastPose
a=tpx TZ_n 2) For all ((Rgim+ hRgim) * Tgim) points:
dim o Add (X,Y)trans t0 (X,y) components of point.

Xp = cosa * radiuse Yp = sina = radiusp  Move point into new h-polar cell: if the new ce_II
exists, merge point into that cell, else delete point.



After recentering, the current angular offégtser Of the  D. Registration
hea(;jmg of thef_veglcleoﬁ]astposg_ TUSt bea_saved in order o, comparison to traditional cartesian representatidmes, t
render a map fixed to the vehicle coordinate system: pseudo-image space representation could allow to efficient

loffset = lastPose* Téﬂ registration of patches to correct for pose imprecisions.
Later,tof tset SIMmply ﬁeeds to be added to eadndex before g P P P
accessing the cells for render. E. Limitations and Further Work

4) Adding a New Frame:A new frame comes as a
cloud of (x,y,z histogran) points centered on the vehicle’s : ) - .
coordinate system at the time of the input image captur@f€ring a complete mapping solution. Those shortcomings
Before adding new points to the memory (already recenterdd®y Pe resolved in further research:
with last known pose), translation and rotation need to be « Lack of global map: h-polar is used as a vehicle-
applied to take in account the last known position of the  centered local map and information fades away when

Current limitations prevent the h-polar representatiomfr

robot: the robot moves. Thus planning is limited to the h-polar
(X,Y)trans = (X,Y)imgPose— (X, Y)lastPose radius and precise maps of visited areas may be lost.
. . Coupling h-polar with a grid based global map or using
The rotation corresponds to the headmggroseof the robot a single quad-tree global map as in [7] may address this
in the local pose coordinate system, givenimgPose the problem.

pose of the image. Hence the following transformation matri , points coverage (merging and splitting)it is assumed
(z remains unchanged and can be ignored) produces the that new data appears in front of the vehicle when mov-

centered coordinate,y)": ing forward, then merging with previous data. Points
, ) X moving outside of the field-of-view into cells covering

{ X } _ | cosa  —sSInd  Xrans } y smaller areas scatter into tiny dots when they used to

y Sina COSa  VYirans 1 represent a bigger area. Merging and splitting heuristics

may be improved to cope with those issues but it is not
To add the recentered new frame to the recentered memory, clearifit can solve the issue and at what price. However,

simply loop through all points of the image point cloud and s js in practice rarely an issue thanks to subsampling,
merge each into their corresponding h-polar cell. smoothing and because points appear in front of the
, , i , vehicle. Thus most points outside of the field-of-view,
5) Points Merging:When recentering memory or adding  compress together when moving away from the center.
a new frame, several points may fall into a same h-polar cell , sound plane assumption: Although 3D coordinates
and need to merge together since only one point per cell is 5.0 kept internally, planning is executed in a flat 2D
kept. There are two different merging operations to conside world. Z costs could be incorporated in the planning to

« Data merging: Using the histogram scheme, merging reflect terrain relief.
is a simple addition. Keeping a counter of the number
of points merged can be useful to normalize the RGB V. PLANNING USING H-POLAR
display and for coordinates merging.

« Coordinates merging: The new coordinates can be an
interpolation of each point’'s coordinates weighted by Any grid-based planning algorithm can be used here by
their counter, thus giving more importance to pointgising the pre-computed transitions costs between the rcente
seen many times. However in our system, becausd each cell to their 8 neigbors (the transition cost is simpl
of a low computation budget, coordinates are simplyhe euclidian distance of the,y) real coordinates of each
overwritten by the last added point. cell’s center).

6) Blocking after ObstaclesTo avoid projecting down to .
the ground the part of obstacles for whictz@stimate is B L@vered Planning
missing, typically points beyond stereo range, those point We use a layered architecture [2] to allow decoupled levels
are “blocked” after an obstacle. For example, a tree trunc caf planning in the system [13]: reactive short-range plagni
appear as a giant path or obstacle in the map if not blockaehich takes in account the vehicle dynamics, and deliberati
after its foot. Therefore, all points without information long-range planning. The reactive planner runs between 5
following an obstacle in the radial direction are ignorecewh and 10 Hz independently of the h-polar planner which runs
adding a new frame. at 1Hz. Thus, all possible paths need to be precomputed in

7) Subsampled and Smoothed Mapping for Planning:h-polar once, in order to provide the the reactive planner
The internal high resolution h-polar map is scattered beeauall optimal paths to the goal at every fast iteration. We use
points can merge during the translation process. This cahne Dijkstra algorithm from the goal to every cell of the h-
produce erratic path planning between unknown cells armblar map as our single-source to multi-targets plannarsTh
create holes inside lethal obstacles. To cope with thisissuevery h-polar cell contains the optimal path to the goal. The
a lower resolution map is produced for the actual planningeactive planner computes the cost from the vehicle center
every low-resolution cell is a sum of 4 neighboring cells. Irto a finite number of candidates at a certain radius (5m),
addition to subsampling, as some holes may subsist, thett&en queries and add the remaining cost for each of those
neighbors of each cells are added, thus providing a smoatandidates, beforehand translated into h-polar coorefénat
dense map. Note that no normalization is required since tfidne candidate with minimum cost contains the optimal path.
histogram scheme handles addition of multiple histograntanally, the list of wheel commands of the trajectory that
by modulation of confidence. initiated the best path is executed until the next iteration

A. Grid-based Planning with Pre-computed Transition Costs



Fig. 9. H-polar maps along heterogeneous outdoor course.

Each h-polar map accurately represents the real enviranshemn
in the sattelite image, and plans around obstacle from amapp

mate distance of 50 meters.

Fig. 10. Result runs with long-range vision activated in Sandy
Hook.

VIlI. CONCLUSION AND FURTHER WORK

Long-range data and its uncertainties were successfully
integrated and used to perform real-time long-range nav-
igation. Using a layered planning architecture with low-
level reactive obstacle detection including vehicle dyitam
and a high-level deliberative long-range and hyperbolic-
polar planner, the system reliably performed during intens
field tests by an independent testing team. For tactical
planning architectures, where the local map is tied to the
vehicle coordinate system and needs to be recentered at
every iteration, h-polar mapping provides a computatipnal
efficient way to handle always increasing vision range as
well as classification and range uncertainties. However the
h-polar mapping is limited by the lack of global map. It is
guestionable whether there is a need of a high-level tdctica
map when a lower-level perception and planning module
already serves this purpose. Further work would explore the
global multi-resolution direction given by [7] with a globa
hyperbolic-polar-like mapping to replace the current tapo
tactical mapping.
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