
Learning Maneuver Dictionaries for Ground Robot Planning

Pierre Sermanet1,2 Marco Scoffier1,2 Chris Crudele2 Urs Muller2 Yann LeCun1

(1) Courant Institute of Mathematical Sciences
New York University
New York, NY, USA

(2) Net-Scale Technologies
Morganville, NJ, USA

Abstract— Vehicle dynamics is typically handled by models
whose parameters are found through system identification or
manually computed from the vehicle’s characteristics. While
these methods provide accurate theoretical dynamical models,
they may not take into account differences between individual
vehicles, lack adaptability to new environments and may not
handle sophisticated models, requiring hand-crafted heuristics
for backwards motion for example. Similarly to space and
aerial maneuver-based planning methods, we demonstrate a
simple and computationally fast planning method for ground
robots with obstacle avoidance. It bypasses the need for model
parameters identification and hand-crafted heuristics, learns
the particularities of individual vehicles, allows on-line adapta-
tion and sophisticated models. Human-driven or autonomously-
driven trajectories are recorded and stored into a trajectory
bank. While in learning mode, the robot records each traveled
trajectory and places it into a bank, indexed by the initial
speeds of each left and right wheels and the ending position
at a fixed radius. Only the best trajectories are stored in the
trajectory bank and then reused during autonomous runs for
optimal short-range planning. Pre-computed (but not recorded)
trajectories have been used in previous work and provide an
important computational advantage over on-line computation
methods, which are less practical in real-time applications
due to the high-dimensional search space. A collision-free
platform was developed without any hand-crafted heuristics
or knowledge about the vehicle’s characteristics. This method
is demonstrated on the LAGR platform, a non-holonomic
(differential drive) off-road mobile robot.

I. INTRODUCTION

As part as the LAGR program (Learning Applied to
Ground Robots), a software navigation platform was devel-
oped to support research in machine learning applied to long-
range vision. In order to demonstrate its full potential, high-
level and long-range perception must be free of the low-
level perception, planning and control matters. Collisions
and local planning optimization are mainly addressed by
a low-latency system [16] that can take into account the
vehicle’s dynamics. To build this collision-free system, a
multi-layered architecture was designed to split the long-
range deliberative perception and planning [5], [17] from
the fast and short-range reactive perception and planning.
The reactive module perceives and plans in real-time with a
low latency while taking into account dynamics. As part of
a complete collision-free navigation platform, we propose a
simple and computationally fast method to use sophisticated
dynamics models while avoiding complex and innacurate
modelling of traditional methods.

A. Related Work
Optimal control techniques [1] for motion planning pro-

vide optimal solutions but suffer from high computational
costs, making them impractical for real-time applications.
Most efforts have concentrated on curve-fitting for online
planning from line segments [20] or arcs [13] or clothoids [9]
or cubic spirals [8]. Curve-fitting relies on identification of

the parameters of a vehicle’s dynamical model. Our method
provides a simple and automatic indentification of model pa-
rameters while bypassing the complex curve-fitting problem
and resulting in a nearly null online computation cost. [15]
introduced maneuver-based planning in free environments
for aerial vehicles by recording human experts maneuvers,
and later developed a maneuver-based automaton [3] that
can concatenate trajectory primitives with a regular language.
While the concept of trajectory recording for maneuver-
based planning is the same, we extended it to perform
obstacle avoidance as well, and apply it for ground robots
non-holonomic planning. A similar pre-computed dynamics
planning architecture was introduced by [2] but using an
offline clothoids pre-computation method which still relies
on hand-crafted modelling. [10] points out the need for
a parametric trajectory representation in contrast to the
prohibitively large space required by pre-storing methods.
The practical results of [2] and this paper advocate in favor
of trajectory pre-storing. While recording and pre-storing can
certainly not address all nonholonomic planning problems,
its simplicity and efficiency make it worth considering for
some systems. Our recording method is currently limited to
2D planning and does not address the 3D challenges treated
in [19], [7].

B. LAGR Research Context

Our long-range vision learning approach briefly intro-
duced below is fully described in [5], [6]. The existing
paradigm for vision-based mobile robots relies on hand-
tuned heuristics: a stereo algorithm produces a (x,y,z) point
cloud and traversability costs are assigned to points based
on their proximity to a ground plane [11], [4]. However,
stereo algorithms that run in realtime often produce costmaps
that are short-range, sparse, and noisy. Our learning strategy
uses these stereo labels for supervision to train a realtime
classifier. The classifier then predicts the traversability of all
visible areas, from close-range to the horizon. For accurate
recognition of ground and obstacle categories, it is best to
train on large, discriminative windows from the image, since
larger windows give contextual information that is lacking
in color and texture features. Other research has explored
the use of online learning for mobile robots, but their
methods have been largely restricted to simple color/texture
correspondences [12], [14], [18].

II. SIMPLE TRAJECTORY RECORDING

The basic trajectory recording method described below
provides good navigation performance with a minimum
amount of development. Some refinements to increase per-
formance will be described in the following section.

Fig. 1. The LAGR platform is a non-holonomic (differential drive) off-
road mobile robot measuring 1.2m of length by 0.74m of width by 1.02m of
height. It weighs 109kg and can travel at up to 1.3 meters/seconds. Despite
its relatively small size, such a vehicle presents dynamics that cannot be
ignored in a collision-free autonomous navigation system.

A. Motivation

The vehicle used in the LAGR program (Fig 1) presents
dynamics that causes obstacle collisions if not incorporated
in the reactive tactical planning. Dynamics is traditionally
modeled using few model parameters found through param-
eter identification. Identification requires some knowledge
about the vehicle’s characteristics such as weight, dimen-
sions, etc. In addition, the theoretical model of the vehicle
does not account for specificities of individual vehicles.
On the contrary, trajectory recording bypasses the need
for parameters identification and can account for individ-
ual vehicle differences. Simple algorithms using theoretical
models usually don’t include complicated backward trajec-
tories whereas any complexity of trajectory can be recorded
without effort. Moreover, with its a great computational
advantage over online curve-fitting methods, pre-storing is
well suited for tight CPU budgets. To sum up, recording
and pre-storing answer the needs of practical applications
thanks to its simplicity of implementation, flexibility of use
and computational efficiency.

B. Recording Trajectories

Trajectories can be recorded every time the robot moves,
either in supervised mode (human driver) or self-supervised
(autonomous). On the LAGR platform, information about the
state of the vehicle is made available at 20Hz. This state
includes among other information an absolute timestamp, the
current pose and current speeds of each wheel. Similarly,
wheel commands are sent at 20Hz to the motors in either
manual or autonomous mode. These selected state variables
along with the wheel commands are grouped into a sample
every 50ms (20Hz). By recording this stream of samples,
a feasible trajectory reaching the current position and the
corresponding series of wheel commands are known at each
timestamp. In other words, the radius Rtra j to the current
vehicle center (Fig 2) can be reached by looking back in the
recorded sample stream and executing the wheel commands
found in the stream. Every 50ms a new trajectory is produced
and after some driving, enough trajectories are recorded to
reach radius Rtra j in all directions. The trajectory space has
other input dimensions: the initial state (LSpeed0,RSpeed0).
Composed of both wheel speeds obtained from the vehicle
state, the initial state allows the system to select the current
set of feasible trajectories. When disregarding terrain differ-
ences (ice vs. asphalt), left and right initial wheel speeds are
the main variables determining the current dynamics. For
example in Fig 2, initial state (4,9) means that the robot is

making a hard left turn at t = 0. By analysing the trajectories
going to the right, the figure makes clear that the dynamics of
the vehicle have been captured. From this start state (turning
hard left) in order for the vehicle to reach a candidate 90
degrees to the right it must make a large loop where left-
turning and forward moving momentum is tranformed into
a right turn. This curve has not been computed but simply
selected, it is the fastest set of commands seen so far for
getting the vehicle from a hard left turn to a hard right.

Fig. 2. Trajectory recording and execution. Trajectories are
extracted from streams of samples recorded at 20Hz. A sample
regroups information obtained from vehicle sensors (speeds and
pose) with commands sent to motors. By looking ahead in the
stream and recentering sample locations based on current location
(x,y,heading)t0 , feasible trajectories reaching the radius Rtra j of
2.5m can be reconstructed. On the left are all best trajectories
for state 49. Wheel speeds are approximately 0.2m/s for left
(LSpeedstate = 4) and 1.3m/s for right (RSpeedstate = 9), thus the
robot needs to execute large curves to reach candidates on the right.
At planning time, the optimal trajectory is selected based on the
current state and cost map (right), and executed using the series of
(Lcmd ,Rcmd).

Of course the accuracy of the trajectories depends on the
accuracy of the pose sensor, which in the LAGR platform
relies on a combination of the wheel odometers and an IMU.
This pose information is assumed to stay accurate enough in
the short term. If no visual odometry correction is available,
it is preferable to record trajectories only on surfaces with
low pose error rate (i.e. asphalt is preferable to ice). Once
trajectories are extracted from the sample streams, they need
to be sorted, compared and stored into the trajectory bank
(pre-storing).

C. Trajectory Bank
The trajectory bank or maneuver library holds all

best recorded trajectories. Each trajectory is indexed by
(LSpeed0,RSpeed0,AngleRtra j). LSpeed0 and RSpeed0 are
the left and right speeds at time 0 of each trajectory. The
LAGR vehicle drives at speeds ranging from -0.5m/s to
1.3m/s. This range is quantized into 10 different bins (0m/s
lies in index 3). There are thus 100 different possible initial
speed states. For each speed state, 160 AngleRtra j candidates
are evenly divided around the perimeter at Rtra j radius. In
Fig 3, speed states along the diagonal have similar left and
right wheel speeds at t0, whereas at the top right and bottom
left, the robot is steering harder right and left respectively.
Because very hard turns are less frequent, these corners are
more sparse than the area around the diagonal. A minimal
bank with only 15% of all states filled (extracted from
approximately 2 hours of human-driven recorded samples)
showed great driving performance as demonstrated by ex-
periment 9. The bank shown in Fig 3 is 64% full and was
obtained using 18 hours of human-driven and autonomous-
driven log-files (recorded during regular testing runs). The

0-0.5m/s 1.3m/s

0
-0.5

m
/s

1.3
m
/s

Left wheel speed

R
ig

h
t w

h
e
e
l sp

e
e
d

Fig. 3. Trajectories bank (100 states). This graph shows all
100 states, each containing a set of 100 trajectories, each reaching
out a different angle to a 2.5m radius around the vehicle. The
horizontal and vertical axes represent the speed of the left and the
right wheels. Each state is defined by a pair of initial velocities
(vle f t ,vright) at the vehicle center. States along the diagonal all
have vle f t = vright , therefor in all these diagonal states the vehicle
is initially moving straight forward. The absolute wheel speed
difference |vle f t − vright | increases when approaching the top right
and bottom left corners, where feasible trajectories are grouped to
one side. This bank is 64% full and was extracted from 18 hours
of human and autonomous recorded runs.

latter bank shows similar performance as in the experiment 9
but can deal with a wider range of situations.

1) Bank Parameters Tuning: The discretization of wheel
speeds and angular candidates as well as the radial distance
of the trajectories does require some tuning based on the
maximum driving speed of the vehicle and the available
computational budget. The higher the maximum speed of the
vehicle, the more wheel speed bins are required and the more
the trajectory radius must be increased. With more resolution
(more wheel states) in each input dimension, modeling
accuracy increases but so do computational requirements.
Moreover, the more states in the bank, the more trajectories
need to be recorded. It was empirically found that on the
LAGR platform, a minimum of 5 states per wheel was
sufficient to obtain decent driving. 10 states provided the
best results while keeping a rather small bank. The required
number of angular candidates is estimated from the local
map’s resolution. With a cell size of 10cm and a radius of
2.5m, approximately 160 candidates (2π∗25) are needed to
have 1 trajectory per cell on the perimeter. The 2.5m radius
was also chosen empirically and is based on the observation
that most of the immediate dynamics effects fall within this
range for this robot. It is better to keep the radius as small as
possible to limit the trajectory sampling space for memory
and bank-filling matters.

2) Scoring Criterias: Since in a race the vehicle is
expected to minimize traveling time, the simplest scoring
criteria for trajectory selection is the time it takes to reach

the radius Rtra j. When multiple trajectories are avaiable for
a same candidate, only the one with the lowest score is kept.
Different scoring formulas yielding additional trajectory
types for increased navigation performance are described in
further sections.

D. Planning with Trajectories
The first step in planning is to determine the current speed

state from the motor sensors, i.e. the speed of each wheel.
This speed state indexes from the bank the set of currently
feasible trajectories (based on what we have recorded). Next,
the set of trajectories is tested against the current costmap.
All trajectories passing through non-traversable cells are ig-
nored, the remaining set of possible trajectories are assigned
a costtra j based on the cost of the traversed cells in the map
and the recorded traveling time of the trajectory timetra j. Cell
costs represent traversibility difficulty in seconds per meter.
The minimum cost costmin of perfectly traversible terrain is
0.77s/m (vehicle’s maximum speed is 1.3m/s). Assuming
trajectories are recorded on easy ground (e.g. asphalt), the
minimum costtra j equals the sum of timetra j and an ”extra”
cost given by the cells as follows:

costtra j = timetra j +
ncells

∑
i

(costcelli − costmin)

This formula augments the real recorded time of the
trajectory by adding extra time based on the estimated
difficulty of traversing a cell whose terrain has been classified
by the perception modules.

Fig. 4. Multi-layer Perception and Planning Architecture. Each level of
planning and perception is protected against latencies and lower framerates
in the higher levels, by being able to operate without getting updates
from the higher more complex levels. For example, the low-level wheel
commands process holds the list of motor commands to execute for the
current trajectory and can operate independently until 2.5m away. It receives
of course a new list much before reaching the end of it.

The trajectory costs are added to higher-level planning
costs to form a global cost. The trajectory minimizing the
global cost is selected and sent to a lower level planning
execution process. This multi-layer perception and planning
architecture (Fig 4 and [16]) protects each level from la-
tencies in more complex (higher) levels. This allows us to
lower the framerate and give more computation time to the
higher and more complex levels. The top planning level is
computed at 1Hz using a Dijsktra algorithm on a 200m
radius hyperbolic-polar map described below and in [17]. It
computes the optimal paths from the goal to each cell of the
map and passes it on to the mid-level reactive planning which

runs at 5 to 10Hz. Computing paths to all cells of the map
is necessary because the mid-level perception and planning
moves relative to the high-level map, and thus uses different
interfacing cells at every mid-level iteration. Once the best
trajectory is selected, a list of wheel commands is sent to the
lowest-level process which is responsible for sending wheel
commands at 20Hz. The resulting multi-layer mapping and
planning is represented in Fig 5.

Fig. 5. Multi-layer Planning with Trajectories. Trajectories are
first evaluted against the current (hyperbolic polar) map up to the
2.5m radius. Trajectories going through obstacles are discarded,
others are given a cost based traversed cells costs and the trajec-
tory’s original traveling time. The cost of each feasible trajectory
is then added to corresponding optimals path costs from the goal
to all cells, as computed by the Dijkstra algorithm. Planning steps
are executed at different paces, trajectories are run at 5-10Hz while
Dijkstra is run at 1Hz. The globally optimal trajectory is finally
sent to the low-level controllers and executed at 20Hz.

E. Tail whacking
To reduce computation, the width of the robot is taken

into account by growing obstacles in the map by half the
vehicle width. This simple method is fast but assumes that
the length of the robot is null. Unaware of its length, the
robot would often whack obstacles with its tail while turning.
This issue is easily resolved by adding and keeping track of
one or more points along the robot’s length axis (Fig 6).
A trajectory is discarded during planning if either the head

or the tail trajectories encounter a non-traversable cell. With
only one additional point near the tail of the LAGR robot,
tail whacking completely disappeared during the numerous
field tests.

Fig. 6. Tail whacking. To account for the vehicle’s length
and to avoid hitting obstacles with the tail, one additional ”tail”
trajectory is computed from each recorded ”head” trajectory. (Width
is handled by obstacle growing.) During planning, a trajectory is
ignored if either the head or the tail of a trajectory encounters a
lethal cell. Multiple tail trajectories can be added depending on the
vehicle’s length, but only one tail trajectory was necessary to get
rid of the tail whacking issue on the LAGR vehicle.

F. Fail Safe
The vehicle may fall into a state that has no recorded

trajectory if it reaches a rare state (e.g. very hard turns), if
the bank is not full enough or if the vehicle is completely
boxed-in by obstacles. A simple solution is to stop the robot
if it is moving or turning to let it fall into another state where
there will be a useable trajectory. If it reaches the null speeds
state and still no trajectory is available then, a backup mode
is triggered (scripted driving straight backwards with a slight
turn) to move the vehicle away from obstacles until feasible
trajectories are available again. This simple solution has
proved to be efficient as the vehicle is never stuck standing
still nor stuck in backup mode in any of numerous field tests.

III. REFINEMENTS

The simple recording solution described above required
minimal engineering and tuning efforts while providing a
computationally cheap and collision-free navigation plat-
form. Following are few additions to the system which
brought further improvements. Other additions that increase
the robot’s self adaptability to changing environments are
described in the further work section.

When planning with obstacles, having only one trajectory
per initial wheel state and angular candidate can be restric-
tive. A single obstacle close the vehicle can wipe out all the
trajectories in a general direction. To give more opportunites
to the planner it is desirable to store multiple trajectories
taking different paths to the same candidate. Storing multiple
banks each with different criteria for selecting the trajectories
one can achieve this goal. For example, one might record
trajectories that take as straight a path as possible to the
candidate, as well as trajectories which steer to the left or
right before taking the fastest path to the candidate. This
allows the planner to pick a trajectory which contourns
an obstacle on its way towards the optimal candidate for
planning in the larger map.

By sampling only those trajectories which drive fastest
from where the vehicle is to the 160 angular candidates
around it, we are selecting the behavior we want from the
vehicle (to drive fast) but also greatly reducing the space
of all possible vehicle movements (all sequences of wheel
commands) and other desireable behaviors. By adding other

selection criteria we can more completely cover the space of
possible movements, and produce more complex behaviors.
For example in some situations, such as when the robot
has made a wrong turn and gotten boxed in, it is desirable
for the system to stop, turn in place and go straight rather
than keeping momentum by driving as fast as possible along
smooth curves. These different types of behaviors can be
obtained simply by using different scoring measures when
selecting trajectories from the recorded samples for a bank.

Fig. 7. Fast and safe trajectories: few examples of different trajectories
obtained for a same end point using different scoring measures. The measure
fast which rewards fastest trajectories, selected smooth trajectories with large
curves, maximizing the vehicle’s speed. The measure safe rewards maximum
initial alignment of the vehicle’s heading and the candidate heading and thus
selected trajectories which cause the vehicle to stop and turn in place before
driving straight to the candidate. Having dissimilar trajectories for a same
candidate helps the vehicle to properly handle different situations.

Two types of trajectories were extensively tested and
called fast and safe trajectories. The fast trajectories are
selected by minimizing the time to reach the 2.5m radius
and maximizing the distance traveled in the first few sam-
ples as follows. For all trajectories fulling a single slot in
the bank (LSpeed0,RSpeed0,AngleRtra j), retain the one that
minimizes:

timetra j−
ncmds−1

∑
k=0

|k,k−1| ∗decayk ∗ γdist

where ncmds is the number of wheel commands of the
trajectory and |k,k− 1| the euclidian distance between two
samples, measured by the vehicles wheel encoders. γdist is
the normalization term between the time measure and the
distance measure. By using the exponentiation of decay
(Fig 8), we ensure that only the distance at the beginning is
maximized. Because the fast planner picks a new trajectory
every 100-250ms, in practice only the first few commands
of a trajectory are actually driven therefore it is important to
have a term which forces the desired behavior to happen at
the beginning of the tragectory, hence the exponential decay
terms.

Safe trajectories, on the other hand try to minimize the
traveled distance and the angular difference between the
vehicle’s heading and the candidates heading, thus forcing
the vehicle to drive as closely as possible to the ray from
the vehicle to the candidate. To achieve this, the scoring
formula minimizes the traveled distance while maximizing
the initial turning toward the target heading anglecand . The
resulting behavior is turn on a dime and go straight in
the candidate’s direction. For all trajectories reaching a
single (LSpeed0,RSpeed0,AngleRtra j), retain the one that
minimizes:

ncmds−1

∑
k=0

|k,k−1|− |anglecand−anglek| ∗decayk ∗ γheading

Fig. 8. Trajectories types decays: a decay of 0.5 is exponentiated with the
wheel-command index in order to give more importance to first samples and
near no importance after 5 samples for the distance and heading measure
of the fast and safe trajectories.

where anglek is the heading of sample k. As in the fast
trajectories, decay (Fig 8) helps maximize turning in the first
few commands. γheading is the normalization term between
the distance measure and the heading measure.

IV. RESULTS

We compare our system of learned vehicle dynamics to
our previous system which uses a function of the steering
angle to determine which wheel commands to apply. The
vision, localization, mapping and planning of the two sys-
tems are identical, only the low level driving commands were
changed. Our previous system performed adequately and was
rated the first best performer in independent government
tests at the end of Phase I of the LAGR project. But the
lack of precise vehicle dynamics caused collisions which are
completely avoided with the new system. Both systems were
run several times over 5 different 30-meter courses, each
consisting of a different arrangement of buckets as obsta-
cles, with gradually increasing difficulty. Running times and
number of bumper hits were recorded and averaged in Fig 9.
As the difficulty increases, the running time and number of
hits increases dramatically when using the old system (called
”steering”). The most difficult course could not be tested
because the system would systematically destroy the bucket
arrangement. The new system with learned trajectories, on
the contrary, keeps a low running time over all courses and
a total of 0 collisions.

V. LIMITS

The following points were not actually limitating on the
LAGR vehicle because of its relatively low maximum speed.
However, some limits may appear with high speed vehicles
or with greater number of input variables. Indeed, it is not
clear what sampling precision is required for higher speeds
and the trajectory bank size may become too large in memory
and more difficult to fill as well. Increasing the number of
input variables, such as road slippery estimation for example,
would also greatly increase the memory requirements. An-
other limiting factor is the subsampling of the search space,
which may be sub-optimal. It did not appear to be a limiting
factor however in practice during testing. Moreover, similar
pre-storing technique was used in [2] to successfully drive up
to 35km/h, which suggest that pre-storing is still affordable
at higher speeds. To sum up, while online trajectory search
methods can give optimal solutions and do not require large
memory, trajectory recording is bound by memory and space

Running Time Obstacle hits Number of Runs
Course steering trajectories steering trajectories steering trajectories

1 wall (easy) 19s 16s 0 0 1 1
2 walls (easy) 20s 15s 0 0 1 1

3 walls (moderate) 36.5s 18s 3 0 2 1
Slalom (hard) 56s 26.33s 11 0 1 3

Scattered (hardest) X 24 X 0 0 1

Fig. 9. Comparison of old steering-angle system (red) versus new learned-trajectories system (green). Both systems were run 1 to
3 times over 5 different 30 meter courses each consisting of a different arrangement of buckets as obstacles with gradually increasing
difficulty (left: slalom course). Running times and number of obstacle hits are reported. The hardest course could not be completed by
the steering-angle system because the course was systematically destroyed by obstacle hits.
As the difficulty increases, the running time and number of hits of the steering-angle system increases dramatically. On the contrary, the
new system with learned trajectories keeps a low running time over all courses and a total of 0 collisions. The trajectory bank used in
this experiment was only 15% full and was extracted from 2 hours of human recorded runs.

subsampling. It gives however good approximations and very
fast online computation and has not yet presented any of
those limitations in practice.

VI. FURTHER WORK

Besides exploring more difference measures to cover more
of the trajectory search space as discussed above, another
interesting way of research is to increase the autonomy of
trajectory recording with online and offline methods, in order
to facilitate even more the recording process without any
human intervention and to constantly optimize trajectories
during navigation.

1) Offline Trajectories Search with Global Search Heuris-
tics: As in [3], a set of recorded maneuver primitives could
be used as a basis for a more complicated “language” of
trajectories. An offline algorithm could reconstruct new non-
recorded trajectories from pieces of those basic trajectories.
This way, all slots of the bank could get filled and optimized
more easily. To speed up the search of optimized trajectories,
global search heuristics such as genetics algorithms could
be used to take advantage of the best trajectory pieces
combinations.

2) Online Trajectories Recording in Production Mode:
When the vehicle runs in production mode, it is very cheap
to record and add new trajectories on the fly when more
optimized ones occur. With minimal effort, the robot can
constantly improve its driving skills through experience.

3) Online Trajectories Recording and Search in Self-
supervised Mode: Given a large obstacle-free training area,
the robot can try to fill its trajectory bank itself by knowing
which areas need trajectories or optimization. During this
self-supervised learning mode, the trajectory space could
be searched using simple wheel commands heuristics and
gradient descent to approach the desired target points.

VII. CONCLUSION

We have described a simple and efficient trajectory record-
ing method as part of a reliable collision-free navigation
platform. The LAGR vehicle dynamics was integrated with-
out any complex model parameter identification nor online
curve-fitting solution search and with minimal engineering
effort.

Acknowledgements

This work was supported in part by the DARPA LAGR program
under contract HR001105C0038.

REFERENCES

[1] A. E. Bryson and Y. C. Ho. Applied optimal control. In New York:
Hemisphere Publishing, 1975.

[2] D. Coombs, K. Murphy, A. Lacaze, and S. Legowik. Driving au-
tonomously offroad up to 35 km/h. In Intelligent Vehicles Symposium,
2000.

[3] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. In IEEE transactions
on robotics, 2005.

[4] S. B. Goldberg, M. Maimone, and L. Matthies. Stereo vision and robot
navigation software for planetary exploration. In IEEE Aerospace
Conf. Proc., March 2002.

[5] R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, and
Y. LeCun. Deep belief net learning in a long-range vision system
for autonomous off-road driving. In Proc. of Int’l Conf on Intelligent
Robots and Systems (IROS), 2008.

[6] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller,
and Y. LeCun. Online learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In Proc. of Robotics:
Science and Systems (RSS), 2007.

[7] T. Howard and A. Kelly. Terrain-adaptive generation of optimal
continuous trajectories for mobile robots. In International Symposium
on Artificial Intelligence, 2005.

[8] Y. Kanayama and B. Hartman. Smooth local path planning for
autonomous vehicles. In Technical Report, Dept. of Computer Science,
University of California, Santa Barbara, 1988.

[9] Y. Kanayama and N. Miyake. Trajectory generation for mobile robots.
In Robotics Research, MIT Press, Cambridge, 1985.

[10] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation
via parametric optimal control. In International Journal of Robotics
Research, 2003.

[11] A. Kelly and A. Stentz. Stereo vision enhancements for low-cost
outdoor autonomous vehicles. ICRA Workshop WS-7, May 1998.

[12] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and B. A. F. Traversibility
classification using unsupervised on-lne visual learning for outdoor
robot navigation. In IEEE Int’l. Conf. on Robotics and Automation
(ICRA), May 2006.

[13] K. Komoriya, S. Tachi, and K. Tanie. A method for autonomous
locomotion of mobile robots. In Journal of the Robotics Society of
Japan, vol 2, pp 222-231, 1984.

[14] R. Manduchi, A. Castano, A. Talukder, and L. Matthies. Obstacle
detection and terrain classification for autonomous off-road navigation.
Autonomous Robot, 18:81–102, 2003.

[15] M. PiedMonte and E. Feron. Aggressive maneuvering of autonomous
aerial vehicles: A human-centered approach. In International Sympo-
sium on Robotics Research, 1999.

[16] P. Sermanet, R. Hadsell, J. Ben, A. N. Erkan, B. Flepp, U. Muller,
and Y. LeCun. Speed-range dilemmas for vision-based navigation
in unstructured terrain. In Proc. 6th IFAC Symposium on Intelligent
Autonomous Vehicles, 2007.

[17] P. Sermanet, R. Hadsell, M. Scoffier, U. Muller, and Y. LeCun.
Mapping and planning under uncertainty in mobile robots with long-
range perception. In Proc. of Int’l Conf on Intelligent Robots and
Systems (IROS), 2008.

[18] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and A. Stentz. Improving
robot navigation through self-supervised online learning. In Proc. of
Robotics: Science and Systems (RSS), June 2006.

[19] M. Spenko, Y. Kuroda, S. Dubowsky, and K. Iagnemma. Hazard
avoidance for high-speed mobile robots in rough terrain. In Journal
of Field Robotics, 2006.

[20] T. Tsumura, N. Fujiwara, T. Shirakawa, and M. Hashimoto. An
experimental system for automatic guidance of a robotic vehicle
following a route stored in memory. In Proceedings of the 11th
International Symposium on Industrial Robots, pp 187-193, 1981.

