Memory Based Character Recognition Using
a Transformation Invariant Metric

Patrice Y. Simard Yann Le Cun

John S. Denker

AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract

Memory-based classification algorithms such as Radial Basis Functions
or K-nearest neighbors often rely on simple distances (Euclidean distance,
Hamming distance, etc.), which are rarely meaningful on pattern vectors.
More complex, better suited distance measures are often expensive and
rather ad-hoc (elastic matching, deformable templates). We propose a
new distance measure which (a) can be made locally invariant to any set
of transformations of the input and (b) can be computed efficiently. We
tested the method on large handwritten character databases provided by
the Post Office and the NIST. Using invariances with respect to trans-
lation, rotation, scaling, skewing and line thickness, the method outper-
formed all other systems on small (less than 10,000 patterns) database
and was competitive on our largest (60,000 patterns) database.

1 INTRODUCTION

Distance-based classification algorithms such as radial basis functions or K-
nearest neighbors often rely on simple distances (such as Euclidean distance,
Hamming distance, etc.). As a result, they suffer from high sensitivity to sim-
ple transformations of the input patterns that should leave the classification
unchanged (e.g. translation or scaling for 2D images). This is illustrated in
Fig. 1 where an unlabeled image of a “9” must be classified by finding the clos-
est prototype image out of two images representing respectively a “9” and a
“4” . According to the Euclidean distance (sum of the squares of the pixel to
pixel differences), the “4” is closer even though the “9” is much more similar
once it has been rotated and thickened. The result is an incorrect classification.
The key idea is to construct a distance measure which is invariant with respect
to some chosen transformations such as translation, rotation and others. The
special case of linear transformations has been well studied in statistics and is

Pattern to

be classified Prototype A Prototype B

Figure 1: What is a good similarity measure? According to the Euclidean
distance the pattern to be classified is more similar to prototype B. A better
distance measure would find that prototype A is closer because it differs mainly
by a rotation and a thickness transformation, two transformations which should
leave the classification invariant.

sometimes referred to as Procrustes analysis (Sibson, 1978). It has been applied
to signature verification (Hastie et al., 1991) and on-line character recognition
(Sinden and Wilfong, 1992).

This paper considers the more general case of non-linear transformations
such as geometric transformations of gray-level images. Remember that even a
simple image translation corresponds to a highly non-linear transformation in
the high-dimensional pixel spacel. In previous work (Simard et al., 1992b), we
showed how a neural network could be trained to be invariant with respect to
selected transformations of the input. We now apply similar ideas to distance-
based classifiers.

When a pattern P is transformed (e.g. rotated) with a transformation s
that depends on one parameter o (e.g. the angle of the rotation), the set of
all the transformed patterns Sp = {z | 3& for which # = s(&, P)} is a one-
dimensional curve in the vector space of the inputs (see Fig. 2). In certain
cases, such as rotations of digitized images, this curve must be made contin-
uous using smoothing techniques (see (Simard et al., 1992b)). When the set
of transformations is parameterized by n parameters «; (rotation, translation,
scaling, etc.), Sp is a manifold of at most n dimensions. The patterns in Sp
that are obtained through small transformations of P, i.e. the part of Sp that is
close to P, can be approximated by a plane tangent to the manifold Sp at the
point P. Small transformations of P can be obtained by adding to P a linear
combination of vectors that span the tangent plane (tangent vectors). The im-
ages at the bottom of Fig. 2 were obtained by that procedure. Tangent vectors
for a transformation s can easily be computed by finite difference (evaluating
9s(a, P)/0a); more details can be found in (Simard et al., 1992b; Simard et al.,

1If the image of a “3” is translated vertically upward, the middle top pixel will oscillate
from black to white three times.

S -{ = True rotations of P
75°

15°

Transformations of P

P,){angent

S — + - >
’ Pixel space
= I ‘-_.-HBH'-_.‘{\ '-{
a=—0.2 a=-0.1 P a=0.1 a=0.2 P

Figure 2: Top: Small rotations of an original digitized image of the digit “3”.
Middle: Representation of the effect of the rotation in pixel space (if there were
only 3 pixels). Bottom: Images obtained by moving along the tangent to the
transformation curve for the same original digitized image P by adding various
amounts («) of the tangent vector (T.V.).

1992a).

As we mentioned earlier, the Euclidean distance between two patterns P
and F is often sub-optimal because it is sensitive to irrelevant transformations
of P and of E. In contrast, the distance D(E, P) defined to be the minimal
distance between the two manifolds Sp and Sg is truly invariant with respect
to the transformations used to generate Sp and Sg. Unfortunately, these man-
ifolds have no analytic expression in general, and finding the distance between
them is a hard optimization problem with multiple local minima. Besides, true
invariance is not necessarily desirable since a rotation of a “6” into a “9” does
not preserve the correct classification.

Our approach consists of computing the minimum distance between the lin-
ear surfaces that best approximate the non-linear manifolds Sp and Sg. This
solves three problems at once: 1) linear manifolds have simple analytical expres-
sions which can be easily computed and stored, 2) finding the minimum distance
between linear manifolds is a simple least squares problem which can be solved
efficiently and, 3) this distance is locally invariant but not globally invariant.

Euclidean distance
between P and E

Distance between
S, and S,

Figure 3: Illustration of the Euclidean distance and the tangent distance be-
tween P and E

Thus the distance between a “6” and a slightly rotated “6” is small but the
distance between a “6” and a “9” is large. The different distances between P
and E are represented schematically in Fig. 3.

The figure represents two patterns P and E in N-dimensional space. The
manifolds generated by s are represented by one-dimensional curves going through
FE and P respectively. The linear approximations to the manifolds are repre-
sented by lines tangent to the curves at £ and P. These lines do not intersect
in N dimensions and the shortest distance between them (uniquely defined)
is D(E, P). The distance between the two non-linear transformation curves
D(FE, P) is also shown on the figure.

An efficient implementation of the tangent distance D(E, P) will be given in
the next section. Although the tangent distance can be applied to any kind of
patterns represented as vectors, we have concentrated our efforts on applications
to image recognition. Comparison of tangent distance with the best known
competing method will be described. Finally we will discuss possible variations
on the tangent distance and how it can be generalized to problems other than
pattern recognition.

2 IMPLEMENTATION

In this section we describe formally the computation of the tangent distance. Let
the function s transform the input point u to s(&, u) according to the parameter
@. We require s to be differentiable with respect to @ and u, and require
s(0,u) = u. If uw is a 2 dimensional image for instance, s(&,u) could be a
rotation of u by the angle &@. If we are interested in all transformations of
images which conserve distances (isometry), s(&,«) would be a rotation by «,
followed by a translation by «g, oy of the image u. In this case & = (a,, ag, ay)
is a vector of parameters of dimension 3. In general, & = (ag, ..., ®m_1) is of

dimension m.

Since s is differentiable, the set S, = {z | 3& for which z = s(&,u)} is
a differentiable manifold which can be approximated to the first order by a
hyperplane T,,. This hyperplane is tangent to .S, at u and is generated by the
columns of matrix

_ 0s(d,u)
Lu= oa

(1)

_ [83(07, u) ds(@, u)

Yoy
6@0 6C¥m_1 3=0

which are vectors tangent to the manifold. If F and P are two patterns to be
compared, the respective tangent planes T and Tp can be used to define a new
distance D between these two patterns. The tangent distance D(E, P) between
FE and P is defined by

D(E,P) = i — y|? 2
(B, P)=_ iz -y (2)

The equation of the tangent planes Tr and Tp is given by:

P'(d@p) = P+ Lpdp (4)

where Lg and Lp are the matrices containing the tangent vectors (see Eq. 1)
and the vectors &g and @p are the coordinates of £’ and P’ in the corresponding
tangent planes. The quantities Lg and Lp are attributes of the patterns so in
many cases they can be precomputed and stored.
Computing the tangent distance
D(E,P) = min ||E'(dE) — P'(@p)|l* (5)

aR,x

amounts to solving a linear least squares problem. The optimality condition is
that the partial derivatives of D(FE, P) with respect to &p and &g should be
7ero:

%@;m = Q(E’(E;[E) _ PI(C_’ZP))TLE -0 ®)
% = Q(P’(&P) _ El(&E))TLp -0)

Substituting F’ and P’ by their expressions yields to the following linear system
of equations, which we must solve for &p and @g:

Ly E—P—Lpdp+ Lpdg) =0 (8)
LL(E—P—Lpdp+ Lpdg) =0 9)

The solution of this system is
(LeeLgppLg — Lp)(E — P) = (LpeLgpLep — Lpp)dp (10)
(LepLppLp — Lp)(E = P)=(Lee — LepLppLre)dn (11)

where LEE = LELE; LPE = L};LE, LEP = LELP and Lpp = L};LP. LU
decompositions of Lgg and Lpp can be precomputed. The most expensive part
in solving this system is evaluating Lgp (Lpg can be obtained by transposing
Lgp). Tt requires mg X mp dot products, where mg is the number of tangent
vectors for £ and mp is the number of tangent vectors for P. Once Lgp has been
computed, dp and &g can be computed by solving two (small) linear system
of respectively mg and mp equations. The tangent distance is obtained by
computing ||E'(&g) — P'(&p)|| using the value of &p and &g in equations 3 and
4. If n is the length of vector E (or P), the algorithm described above requires
roughly n(mg + 1)(mp + 1) + 3(m%, + m%) multiply-adds. Approximations to
the tangent distance can be computed more efficiently, as we now discuss.

3 OPTIMIZATION

Memory based algorithms are generally limited by the extensive computational
requirements due to the large number of distance computations. If no optimiza-
tion technique is used, the computational cost is given in equation 12.

number of distance

computational cost = prototypes X complexity (12)

Fortunately these algorithms are well suited for optimization using hierarchies
of prototypes, and that this is even more true when the distance complexity is
high. In this section, we increase the recogntion speed in two ways: 1) Finding
the closest prototype can be done by recursively searching included subsets of
the database using distances of increasing complexity. This is done by using a
hierarchy of tangent distances (increasing the number of tangent vectors from 0
to its maximum) and multiresolution (using wavelets). 2) A confidence level can
be computed for each distance. If the confidence in the classification is above a
threshold early on, there is no need to compute the more expensive distances.

3.1 FILTERING USING A HIERARCHY OF DISTANCES

Our goal is to compute the distance from one unknown pattern to every proto-
type in a large database in order to determine which one is the closest. Some
patterns are so different from each other that a very crude approximation of
our distance can tell us so. There is a wide range of variation in computation
time (and performance) depending on the choice of the distance. For instance,
computing the Euclidean distance with n pixels is n/k times as expensive as
computing it with k& pixels. Similarly, at a given resolution, computing the tan-
gent distance with m tangent vectors is (m+1)? times as expensive as computing
the Euclidean distance (m = 0 tangent vectors).

This observation provided us with a hierarchy of about a dozen different
distances ranging in computation time from 4 multiply-adds (Euclidean dis-
tance on a 2 x 2 averaged image) to 20,000 multiply-adds (tangent distance,

Unknown Pattern

y —

Prototypes Euc. Dist Euc. Dist il'fng.[t)ist Category
— s oy axd e e vectors|
10,000 3,500 500 5 16x16
Cost: 4 Cost: 16 Cost: 20000
Confidence Confidence Confidence

Figure 4: Pattern recognition using a hierarchy of distance. The filter proceed
from left (starting with the whole database) to right (where only a few proto-
types remain). At each stage distances between prototypes and the unknown
pattern are computed, sorted and the best candidate prototypes are selected for
the next stage. As the complexity of the distance increases, the number of pro-
totypes decreases, making computation feasible. At each stage a classification
is attempted and a confidence score is computed. If the confidence score is high
enough, the remaining stages are skipped.

7 tangent vectors, 16 x 16 pixel images). The resulting filtering algorithm is
straightforward and is diagrammed in Figure 4.

The general idea is to store the database of prototypes several times at dif-
ferent resolutions and with different tangent vectors. Each of these resolutions
and groups of tangent vectors defines a distance d;. These distances are ordered
in increasing accuracy and complexity. The first distance d; is computed on
all (Kg) prototypes of the database. The closest K patterns are then selected
and identified to the next stage. This process is repeated for each of the dis-
tances; i.e. at each stage i, the distance d; is computed on each K;_; patterns
selected by the previous stage. Of course, the idea is that as the complexity of
the distance increases, the number of patterns on which this distance must be
computed decreases. At the last stage, the most complex and accurate distance
is computed on all remaining patterns to determine the classification.

The only difficult part is to determine how many K; prototypes should be
selected at each stage to maximize speed without compromising accuracy. Note
that if the last distance used is the most accurate distance, setting all K; to the
number of patterns in the database will give optimal performance (at the most
expensive cost). Increasing K; always improves the performance in the sense
that it allows to find patterns that are closer for the next distance measure d; 1.

The simplest way to determine K is by selecting a validation set and plotting
the performance on this validation set as a function of K;. The optimal K; is
then determined graphically.

This method is very useful when the performance is not degraded by choosing
small K;. In this case, the distance evaluation is done using distance metrics
which are relatively inexpensive to compute. The computation cost becomes:

number of distance
computational cost /2 Z prototypes X complexity (13)
i at stage @ at stage 1

3.2 PRUNING THE SEARCH USING CONFIDENCE
SCORES

If a confidence score is computed at each stage of the distance evaluation, it is
possible for certain patterns to avoid computing the most expensive distances
for certain patterns. In the extreme case, if the Euclidean distance between
two patterns is 0, there is really no need to compute the tangent distance. A
crude but effective way to compute a confidence score at a given stage i is to
find the closest prototype (for distance d;) in each of the possible classes. The
distance difference between the closest class and the next closest class gives an
approximation of a confidence of this classification. A simple algorithm is then
to compare at stage 7 the confidence score ¢;, of the current unknown pattern p
to a threshold #;, and to stop the classification process for this pattern as soon
as ¢;p > 0;. The classification will then be determined by the closest prototype
at this stage. The computation time will therefore be different depending on
the pattern to be classified. Easy patterns will be recognized very quickly while
difficult patterns will need to be compared to some of the prototypes using the
most complex distance. The total computation cost is therefore:

number of distance probability
computational cost /2 Z prototypes X complexity X to reach (14)
F at stage 1 at stage ¢ stage ¢

Note that if all 8; are high, the performance is maximized but so is the
cost. We therefore wish to find the smallest value of §; which does not degrade
the performance (increasing 6; always improves the performance). As in the
previous section, the simplest way to determine the optimal 6; is graphically
with a validation set.

3.3 DISCUSSION

Several hierarchies of distance are possible for optimizing the search process.
One of the main advantages of the multiresolution approach is that it is easily
implemented with wavelet transforms (Mallat, 1989), and that in the wavelet

space, the tangent distance is conserved (with orthonormal wavelet bases). Fur-
thermore, the multiresolution decomposition is completely orthogonal to the
tangent distance decomposition. In our experiments, the Haar transform was
used.

An incremental nearest neighbor search algorithm based on k-d tree (Broder,
1990) was also implemented. The k-d tree structure was interesting because it
can potentially be used with tangent distance. It turned out however that in
large dimensional space, the distance from a point to a hyperplane is almost
always smaller than the distance between any pair of points. As a result, the
unknown pattern must be compared to many prototypes to have a reasonable
accuracy. The speed up factor was comparable to our multiresolution approach
in the case of Euclidean distance (about 10), but we have not been able to obtain
both good performance and high speedup with the k-d tree algorithm applied
to tangent distance. This algorithm was not used in our final experiments.

Our most successful hierarchy consisted of adding tangent vectors one by
one, on both sides. Even though this implies solving a new linear system at
each stage, the computational cost is dominated by computing dot products
between tangent vectors. These dot products are then reused in the subsequent
stages to create larger linear systems (involving more tangent vectors). This
hierarchy has the advantage that the first stage is only twice as expensive, yet
much more accurate, than the Euclidean distance. Each subsequent stage brings
a lot of accuracy at a reasonable cost. (The cost increases quicker toward the
later stages since solving the linear system grows with the cube of the number
of tangent vectors.) The last stage is exactly the full tangent distance.

Obviously, the tangent vectors can be added in different orders. We did not
try to find the optimal order. For character recognition applications, adding
translations first, followed by hyperbolic deformations, scalings, thickness de-
formations and rotations yielded good performance.

Using the multiresolution scheme and adding the tangent vectors incremen-
tally gave a total speed-up of about 500 (i.e. 3 characters per second on a
10,000 prototype database). The computation was spread among the various
stages (more than 50% of the computation was done at resolutions of 8 x 8 or
smaller, with Euclidean distance).

4 RESULTS

Before giving the results of handwritten digit recognition experiments, we would
like to demonstrate the property of “local invariance” of tangent distance. A
16 x 16 pixel image similar to the “3” in Fig 2 was translated by various amounts.
The tangent distance (using the tangent vector corresponding to horizontal
translations) and the Euclidean Distance between the original image and its
translated version were measured as a function of the magnitude k& (in pixels)
of the translation. The result is plotted in Fig. 5. It is clear that the Euclidean

10

Euclidean
Distance

Distance
Tangent
Distance

0
-8 6 -4 -2 0 2 4 6 8

of pixels by which image is translated

Figure 5: Euclidean and tangent distances between a 16x16 handwritten digit
image and its translated version as a function of the amount of translation
measured in pixels.

Distance increases steeply and more-or-less linearly with £ while the tangent dis-
tance remains very small for translations as large as two pixels. This indicates
that, while Euclidean Distance is not invariant to translation, tangent distance
is locally invariant. The extent of the invariance can be increased by smooth-
ing the original image, but significant features may be blurred away, leading to
confusion errors. The figure is not symmetric for large translations because the
translated image is truncated to the 16 x 16 pixel field of the original image.
In the following experiments, smoothing was done by convolution with a Gaus-
sian of standard deviation ¢ = 0.75. This value, which was estimated visually,
turned out to be nearly optimal (but not critical).

4.1 Handwritten Digit Recognition

Experiments were conducted to evaluate the performance of tangent distance
for handwritten digit recognition. An interesting characteristic of digit images
is that we can readily identify a set of local transformations which do not affect
the identity of the character, while covering a large portion of the set of possible
instances of the character. Seven such image transformations were identified:
X and Y translations, rotation, scaling, two hyperbolic transformations (which
can generate shearing and squeezing), and line thickening or thinning. The first
six transformations were chosen to span the set of all possible linear coordinate
transforms in the image plane (nevertheless, they correspond to highly non-
linear transforms in pixel space). Additional transformations have been tried
with less success.

US Postal Service database: In the first experiment, the database con-
sisted of 16 x 16 pixel size-normalized images of handwritten digits, coming from
US mail envelopes. The entire training set of 9709 examples of was used as the

10

error (%)

O P N W DM g o

Human T-Dist Boosting O.margin NNet K-NN

Figure 6: Comparison of the error rate of tangent nearest neighbors and other
methods on two handwritten digit databases

prototype set. The test set contained 2007 patterns. The best performance was
obtained with the “one nearest neighbor” rule. The results are plotted in Fig. 6.
The error rate of the method is 2.5%. Two members of our group labeled the
test set by hand with an error rate of 2.5% (using one of their labelings as the
truth to test the other also yielded 2.5% error rate). This is a good indicator of
the level of difficulty of this task?.

The performance of a standard neural network (called “leNet 17, (Le Cun
et al., 1990)) is 4% raw error while our best neural network using boosting
(Drucker, Schapire and Simard, 1993) achieves 2.6%. The optimal margin clas-
sifier yielded 3.3% while the performance of one nearest neighbor with the Eu-
clidean distance was 5.9%. These results show that tangent distance performs
as well or better than both standard K-nearest neighbor and neural networks
on small database.

NIST database: The second experiment was performed on a large database
provided by the National Institute of Standards and Technology. NIST had
divided the data into two sets which unfortunately had different distributions
(the original training and testing sets). In our experiments we conbined these
two sets 50/50 to make a training set of 60,000 patterns and a testing set of
10,000 patterns, both having the same charateristics.

On these sets we tested several algorithms. The description of each of these
algorithms and their performance are reported in a companion paper (Bottou
et al., 1994). Tangent distance was used with 3 nearest neighbors and the
same set of tangent vectors and optimizations as with the USPS experiments.
Remarquably, large neural networks, optimal margin classifier and tangent dis-
tance all tied at 1.1% raw error performance. Boosting, however, yielded better
performance with 0.7% raw error.

2This is an extremely difficult test set. Procedures that achieve less than 0.5% error on
other handwritten digit tasks barely achieve 4% on this one

11

A close examination of the errors made by tangent distance showed that
many of the errors were due to pairing of testing pattern with prototypes which
were very close in pixel space exept for a small differences such as open/closed
loop (“5” versus “6”, “9 versus 8”, etc...). This suggest that if tangent distance
were computed in a better feature space than the pixel space, the performance
would improve.

5 DISCUSSION

The tangent distance algorithm described in the implementation section can
be improved/adjusted in at least four ways: 1) choosing a better feature space
than pixel space, 2) modifying the distance function itself, 3) changing the set
of transformations/tangent vectors, and 4) using the tangent distance with clas-
sification algorithms other than K-nearest neighbors, perhaps in combination,
to minimize the number of prototypes. We will discuss each of these aspects in
turn.

Feature space: All the experiments discribed in the result section were
computing distance in pixel space. We are well aware that this is one of the
worst possible spaces to compare images. One very good candidate algorithm
for better performance would be to use a trained neural network to do the
preprocessing and feature extraction, and then use tangent distance in this
feature space. The drawback of this method is that the tangent vectors in such
a feature space cannot be computed from the new image in that space. They
must either be stored (at additional cost in memory) or be propagated through
the network (at additional cost in recognition time).

New distance function: Tangent distance can be viewed as one iteration
of a Newton-type algorithm which finds the points of minimum distance on the
true transformation manifolds. The vectors o and op are the coordinates
of the two closest points in the respective tangent spaces, but they can also
be interpreted for real (non-linear) transformations. If ag; is the amount of
the translation tangent vector that must be added to F to make it as close as
possible to P, we can compute the true translation of image £ by ag ; pixels.
In other words, E'(ag) and P'(ap) are projected onto close points of Sg and
Sp. This involves a resampling but can be done efficiently. Once this new image
has been computed, the corresponding tangent vectors can be computed for this
new image and the process can be repeated. Eventually this will converge to a
local minimum in the distance between the two transformation manifold of P
and E. The tangent distance needs to be normalized for this iteration process
to work.

Other tangent vectors: The a prior: knowledge embodied in the tangent
vectors depends greatly on the application. For character recognition, thickness
was one of the most important transformations, reducing the error rate from
3.3% to 2.6%. Such a transformation would be meaningless in, say, speech or

12

face recognition. Other transformations such as local rubber sheet deformations
may be interesting for character recognition. Transformations can be known a
priort or learned from the data.

Other algorithms, reducing the number of prototypes: Tangent dis-
tance is a general method that can be applied to problems other than image
recognition, with classification methods other than K-nearest neighbors. Many
distance-based classification schemes could be used in conjunction with tan-
gent distance, among them LVQ (Kohonen, 1984), and radial basis functions.
Since all the operators involved in the tangent distance are differentiable, it is
possible to compute the partial derivative of the tangent distance (between an
object and a prototype) with respect to the tangent vectors, or with respect
to the prototype. Therefore the tangent distance operators can be inserted in
gradient-descent based adaptive machines (of which LVQ and RBF are particu-
lar cases). The main advantage of learning the prototypes or the tangent vectors
is that fewer prototypes may be needed to reach the same (or superior) level of
performance as, say, regular K-nearest neighbors.

In conclusion, tangent distance can greatly improve many of the distance-
based algorithms. Tangent distance used with K-nearest neighbors outper-
formed all existing techniques on a standard classification task. This success
is probably largely due to the fact that a prior: knowledge can be very effec-
tively expressed in the form of tangent vectors. Many other algorithms are based
on computing distances and can be adapted to express a prior: knowledge in a
similar fashion. Promising candidates include Parzen windows, learning vector
quantization and radial basis functions.

References

Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, 1., Jackel, L. D., Le-
Cun, Y., Muller, U. A, Sackinger, E., Simard, P., and Vapnick, V. (1994).
Comparison of Classifier Methods: A Case Study in Handwritten Digit
Recognition. In International conference on pattern recogntion (submitted).

Broder, A. J. (1990). Strategies for Efficient Incremental Nearest Neighbor
Search. Pattern Recognition, 23:171-178.

Drucker, H., Schapire, R., and Simard, P. Y. (1993). Boosting Performance in
Neural Networks. International Journal of Pattern Recognition and Artifi-

ctal Intelligence, 7, No. 4:705-719.

Hastie, T., Kishon, E., Clark, M., and Fan, J. (1991). A Model for Signature
Verification. Technical Report 11214-910715-07TM, AT&T Bell Laborato-

ries.

Kohonen, T. (1984). Self-organization and Associative Memory. In Springer
Sertes in Information Sciences, volume 8. Springer-Verlag.

13

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-
bard, W., and Jackel, L. D. (1990). Handwritten digit recognition with a
back-propagation network. In Touretzky, D., editor, Advances in Neural
Information Processing Systems 2 (NIPS*89), Denver, CO. Morgan Kauf-
man.

Mallat, S. G. (1989). A Theory for Multiresolution Signal Decomposition: The
Wayvelet Representation. IEEFE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11, No. 7:674-693.

Sibson, R. (1978). Studies in the Robustness of Multidimensional Scaling: Pro-
crustes Statistices. J. R. Statist. Soc., 40:234-238.

Simard, P. Y., LeCun, Y., Denker, J., and Victorri, B. (1992a). An Efficient
Method for Learning Invariances in Adaptive classifiers. In International

Conference on Pattern Recognition, volume 2, pages 651-655, The Hague,
Netherlands.

Simard, P. Y., Victorri, B., LeCun, Y., and Denker, J. (1992b). Tangent Prop
— A formalism for specifying selected invariances in an adaptive network.
In Neural Information Processing Systems, volume 4, pages 895-903, San

Mateo, CA.

Sinden, F. and Wilfong, G. (1992). On-line Recognition of Handwritten Sym-
bols. Technical Report 11228-910930-02IM, AT&T Bell Laboratories.

14

