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We present a novel method for real-time continuous pose recovery of mark-
erless complex articulable objects from a single depth image. Our method
consists of the following stages: a randomized decision forest classifier for
image segmentation, a robust method for labeled dataset generation, a con-
volutional network for dense feature extraction and finally an inverse kine-
matics stage for stable real-time pose recovery. As one possible application
of this pipeline, we show state-of-the-art results for real-time puppeteering
of a skinned hand-model.
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1. INTRODUCTION

Inferring the pose of articulable objects from depth video data is
a difficult problem in markerless motion capture. Requiring real-
time inference with low-latency for real-time applications makes
this even harder. The difficulty arises because articulable objects
typically have many degrees of freedom (DOF), constrained pa-
rameter spaces, self-similar parts, and suffer from self-occlusion.
All these factors make fitting a model directly to the depth data
hard, and even undesirable in practice, unless the fitting process is
able to account for such missing data.

One common approach to “fill in” missing data is to combine
multiple simultaneous video streams; but this is a costly demand on
the end-user and may prohibit widespread use of otherwise good
solutions. A second common approach, called “supervised learn-
ing” in computer vision and machine learning, is to train a model
on ground-truth data, which combines the full pose of the object
in the frame with the depth image. The trained model can then use
a priori information from known poses to make informed guesses
about the likely pose in the current frame.

Large ground-truth datasets have been constructed for impor-
tant articulable objects such as human bodies, and robust real-time
pose inference systems have been trained on them using super-
vised learning. Unfortunately, most articulable objects, even com-
mon ones such as human hands, do not have publicly available
datasets, or these datasets do not adequately cover the vast range
of possible poses. Perhaps more importantly, it may be desirable to
infer the real-time continuous pose of objects that do not yet have
such datasets. The vast majority of objects seen in the world fall
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Fig. 1: Pose Recovery Pipeline Overview

into this category, and a general method for dataset acquisition of
articulable objects is an important contribution of this work.

The main difficulty with using supervised learning for training
models to perform real-time pose inference of a human hand is
in obtaining ground-truth data for hand pose. Typical models of
the human hand have 25-50 degrees of freedom [Erol et al. 2007]
and exclude important information such as joint angle constraints.
Since real hands exhibit joint angle constraints that are pose depen-
dent, faithfully expressing such limits is still difficult in practice.
Unfortunately, without such constraints, most models are capable
of poses which are anatomically incorrect. This means that sam-
pling the space of possible parameters using a real hand is more
desirable than exploring it with a model. With the advent of com-
modity depth sensors, it is possible to economically capture con-
tinuous traversals of this constrained low-dimensional parameter
space in video, and then robustly fit hand models to the data to re-
cover the pose parameters [Oikonomidis et al. 2011].

In this work, we present a solution to the difficult problem of in-
ferring the continuous pose of a human hand by first constructing
an accurate database of labeled ground-truth data in an automatic
process, and then training a system capable of real-time inference.
Since the human hand represents a particularly difficult kind of ar-
ticulable object to track, we believe our solution is applicable to a
wide range of articulable objects. Our method has a small latency
equal to one frame of video, is robust to self-occlusion, requires
no special markers, and can handle objects with self-similar parts,
such as fingers. To allow a broad range of applications, our method
works when the hand is smaller than 2% of the 640×480 = 307kpx
image area.

Our method can be generalized to track any articulable object
that satisfies three requirements: 1) the object to be tracked can be
modeled as a 3D boned mesh, 2) a binary classifier can be made
to label the pixels in the image belonging to the object, and 3) the
projection from pose space (of the bones) to a projected 2D image
in depth is approximately one-to-one. The model is used to auto-
matically label depth video captured live from a user. This data
is used to train a Randomized Decision Forest (RDF) architecture
for image segmentation as well as a Convolutional Network (Con-
vNet) to infer the position of key model features in real-time. We
also suggest a simple and robust inverse kinematics (IK) algorithm
for real-time, high degree of freedom pose inference from the Con-
vNet output. The system can accommodate multiple commodity
depth cameras for generating training data, but requires only a sin-
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gle depth camera for real-time tracking. We believe the key tech-
nical contribution of this work is the creation of a novel pipeline
for fast pose inference, which is applicable to a wide variety of ar-
ticulable objects. An overview of this pipeline is shown in Figure
1.

As a single example, training our system on an open-source
linear-blend-skinning model of a hand with 42 degrees of free-
dom takes less than 10 minutes of human effort (18,000 frames
at 30fps), followed by two days of autonomous computation time.
Tracking and pose inference for a person’s hand can then be per-
formed in real-time using a single depth camera. Throughout our
experiments, the camera is situated in front of the user at approxi-
mately eye-level height. The trained system can be readily used to
puppeteer related objects such as alien hands, or real robot linkages,
and as an input to 3D user interfaces [Stein et al. 2012].

2. RELATED WORK

A large body of literature is devoted to real-time recovery of pose
for markerless articulable objects, such as human bodies, clothes,
and man-made objects. As the primary contribution of our work is
a fast pipeline for recovery of the pose of human hands in 3D, we
will limit our discussion to the most relevant prior work.

Many groups have created their own dataset of ground-truth la-
bels and images to enable real-time pose recovery of the human
body. For example, Wang et al. [Wang et al. 2011] use the Cyber-
Glove II Motion Capture system to construct a dataset of labeled
hand poses from users, which are re-rendered as a colored glove
with known-texture. A similar colored glove is worn by the user
at run-time, and the pose is inferred in real-time by matching the
imaged glove in RGB to their database of templates [Wang and
Popović 2009]. In later work, the CyberGlove data was repurposed
for pose inference using template matching on depth images, with-
out a colored glove. Wang et al. have recently commercialized their
hand-tracking system (which is now proprietary and is managed by
3Gear Systems [3Gear 2014]) and now uses a PrimeSenseTMdepth
camera oriented above the table to recognize a large range of pos-
sible poses. This work differs from 3Gear’s in a number of ways:
1) we attempt to perform continuous pose estimation rather than
recognition by matching into a static and discrete database and 2)
we orient the camera facing the user and so our system is optimized
for a different set of hand gestures.

Also relevant to our work is that of Shotton et al. [Shotton et al.
2011], who used randomized decision forests to recover the pose of
multiple bodies from a single frame by learning a per-pixel classi-
fication of the depth image into 38 different body parts. Their train-
ing examples were synthesized from combinations of known poses
and body shapes. In similar work, Keskin et al. [Keskin et al. 2011]
created a randomized decision forest classifier specialized for hu-
man hands. Lacking a dataset based on human motion capture, they
synthesized a dataset from known poses in American Sign Lan-
guage, and expanded the dataset by interpolating between poses.
Owing to their prescribed goal of recognizing sign language signs
themselves, this approach proved useful, but would not be feasible
in our case as we require unrestricted hand poses to be recovered.
In a follow on work [Keskin et al. 2012], Keskin et al. presented
a novel shape classification forest architecture to perform per-pixel
part classification.

Several other groups have used domain-knowledge and tempo-
ral coherence to construct methods that do not require any dataset
for tracking the pose of complicated objects. For example, Wiese
et al. [Weise et al. 2009] devise a real-time facial animation system
for range sensors using salient points to deduce transformations on

an underlying face model by framing it as energy minimization. In
related work, Li et al. [Li et al. 2013] showed how to extend this
technique to enable adaptation to the user’s own facial expressions
in an online fashion. Melax et al. [Melax et al. 2013] demonstrate
a real-time system for tracking the full pose of a human hand by
fitting convex polyhedra directly to range data using an approach
inspired by constraint-based physics systems. Ballan et al. [Ballan
et al. 2012] show how to fit high polygon hand models to multiple
camera views of a pair of hands interacting with a small sphere, us-
ing a combination of feature-based tracking and energy minimiza-
tion. In contrast to our method, their approach relies upon inter-
frame correspondences to provide optical-flow and good starting
poses for energy minimization.

Early work by Rehg and Kanade [Rehg and Kanade 1994]
demonstrated a model-based tracking system that fits a high-degree
of freedom articulated hand model to greyscale image data us-
ing hand-designed 2D features. Zhao et al. [Zhao et al. 2012] use
a combination of IR markers and RGBD capture to infer offline
(at one frame per second) the pose of an articulated hand model.
Similar to this work, Oikonomidis et al. [Oikonomidis et al. 2011]
demonstrate the utility of Particle Swarm Optimization (PSO) for
tracking single and interacting hands by searching for parameters
of an explicit 3D model that reduce the reconstruction error of a z-
buffer rendered model compared to an incoming depth image. Their
work relies heavily on temporal coherence assumptions for efficient
inference of the PSO optimizer, since the radius of convergence
of their optimizer is finite. Unfortunately, temporal coherence can-
not be relied on for robust real-time tracking since dropped frames
and fast moving objects typically break this temporal coherency
assumption. In contrast to their work, which used PSO directly for
interactive tracking on the GPU at 4-15fps, our work shows that
with relaxed temporal coherence assumptions in an offline setting,
PSO is an invaluable offline tool for generating labeled data.

To our knowledge, there is no published prior work on using
ConvNets to recover continuous 3D pose of human hands from
depth data. However, several groups have shown ConvNets can re-
cover the pose of rigid and non-rigid 3D objects such as plastic
toys, faces and even human bodies. For example, LeCun et al. [Le-
Cun et al. 2004] used ConvNets to deduce the 6DOF pose of 3D
plastic toys by finding a low-dimensional embedding which maps
RGB images to a six dimensional space. Osadchy et al. [Osadchy
et al. 2005] use a similar formulation to perform pose detection of
faces via a non-linear mapping to a low-dimensional manifold. Tay-
lor et al. [Taylor et al. 2011] use crowd-sourcing to build a database
of similar human poses from different subjects and then use Con-
vNets to perform dimensionality reduction to a low-dimensional
manifold, where similarity between training examples is preserved.
Lastly, Jiu et al. [Jiu et al. 2013] use ConvNets to perform per-pixel
classifications of depth images (whose output is similar to [Shot-
ton et al. 2011]) in order to infer human body pose, but they do not
evaluate the performance of their approach on hand pose recogni-
tion.

Couprie et al. [Couprie et al. 2013] use ConvNets to perform
image segmentation of indoor scenes using RGB-D data. The sig-
nificance of their work is that it shows that ConvNets can perform
high level reasoning from depth image features.

3. BINARY CLASSIFICATION

For the task of hand-background depth image segmentation we
trained an RDF classifier to perform per-pixel binary segmenta-
tion on a single image. The output of this stage is shown in Fig-
ure 2. Decision forests are well-suited for discrete classification of
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(a) Ground-Truth Labels (b) Labels Inferred by RDF

Fig. 2: Decision Forest Data: learned labels closely match target

body parts [Shotton et al. 2011]. Furthermore, since decision forest
classification is trivially parallelizable, it is well-suited to real-time
processing in multi-core environments.

After Shotton et al., our RDF is designed to classify each pixel
in a depth image as belonging to a hand or background. Each tree
in the RDF consists of a set of sequential deterministic decisions,
called weak-learners (or nodes), that compare the relative depth of
the current pixel to a nearby pixel located at a learned offset. The
particular sequence of decisions a pixel satisfies induces a tentative
classification into hand or background. Averaging the classification
from all trees in the forest induces a final probability distribution
for each pixel. As our implementation differs only slightly from
that of Shotton et al., we refer interested readers to their past work,
and focus on the innovations particular to our implementation.

While full body motion capture datasets are readily avail-
able [Allen et al. 2003], these datasets either lack articulation data
for hands or else do not adequately cover the wide variety of poses
that were planned for this system. Therefore, it was necessary to
create a custom database of full body depth images with binary
hand labeling for RDF training (Figure 2). We had one user paint
their hands bright red with body paint and used a simple HSV-based
distance metric to estimate a coarse hand labeling on the RGB im-
age. The coarse labeling is then filtered using a median filter to
remove outliers. Since commodity RGB+Depth (RGBD) cameras,
typically exhibit imperfect alignment between depth and RGB, we
used a combination of graph cut and depth-sensitive flood fill to
further clean up the depth image labeling [Boykov et al. 2001].

In order to train the RDF we randomly sample weak-learners
from a family of functions similar to [Shotton et al. 2011]. At a
given pixel (u, v) on the depth image I each node in the decision
tree evaluates:

I

(
u+

∆u

I (u, v)
, v +

∆v

I (u, v)

)
− I (u, v) ≥ dt (1)

Where I (u, v) is the depth pixel value in image I , ∆u and ∆v
are learned pixel offsets, and dt is a learned depth threshold. Ex-
perimentally, we found that (1) requires a large dynamic range of
pixel offsets during training to achieve good classification perfor-
mance. We suspect that this is because a given decision path needs
to use both global and local geometry information to perform ef-
ficient hand-background segmentation. Since training time is lim-
ited, we define a discrete set of weak-learners that use offset and
threshold values that are linear in log space and then we randomly
sample weak-learners from this space during training.
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Fig. 3: Linear Blend Skinning (LBS) Model [Šarić 2011] with 42 DOF

4. DATASET CREATION

The goal of this stage is to create a database of RGBD sensor im-
ages representing a broad range of hand gestures with accurate
ground-truth estimates (i.e. labels) of joint parameters in each im-
age that may be used to train a ConvNet. The desired ground-truth
label consists of a 42-dimensional vector describing the full degree
of freedom pose for the hand in that frame. The DOF of each hand-
joint is shown in Figure 3. After the hand has been segmented from
the background using the RDF-based binary classification just de-
scribed, we use a direct search method to deduce the pose param-
eters based on the approach of Oikonomidis et al. [Oikonomidis
et al. 2011]. An important insight of our work is that we can capture
the power of their direct search method in an offline fashion, and
then use it to train ConvNets (or similar algorithms) that are better
suited to fast computation. One advantage of this decoupling is that
during offline training we are not penalized for using more compli-
cated models, which are more expensive to render, and which better
explain the incoming range data. A second advantage is that we can
utilize multiple sensors for training, thereby mitigating problems of
self-occlusion during real-time interaction with a single sensor.

The algorithm proposed by Oikonomidis et al. [Oikonomidis
et al. 2011] and adopted with modifications for this work is as fol-
lows; starting with an approximate hand pose, a synthetic depth im-
age is rendered and compared to the depth image using an scalar ob-
jective function. This depth image is rendered in an OpenGL-based
framework, where the only render output is the distance from the
camera origin and we use a camera with the same properties (e.g.
focal length) as the PrimeSenseTMIR sensor. In practice the hand
pose is estimated using the previous frame’s pose when fitting a se-
quence of recorded frames. The pose is manually estimated using a
simple UI for the first frame in a sequence. This results in a single
scalar value representing the quality of the fit given the estimated
pose coefficients. The particle swarm optimization with partial ran-
domization (PrPSO) direct search method [Yasuda et al. 2010] is
used to adjust the pose coefficient values to find the best fit pose
that minimizes this objective function value. An overview of this
algorithm is shown in Figure 4.

Since PSO convergence is slow once the swarm positions are
close to the final solution (which is exacerbated when partial ran-
domization is used to prevent premature swarm collapse on early
local minima), we then use a robust variant of the Nelder-Mead
optimization algorithm [Tseng 1995] after PSO has completed.
The Nelder-Mead optimization algorithm is a simplex-based direct-
search optimization algorithm for non-linear functions. We have
found that for our optimization problem, it provides fast conver-
gence when sufficiently close to local optima.
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Fig. 4: Algorithm Pipeline For Dataset Creation

Since this dataset creation stage is performed offline, we do not
require it to be fast enough for interactive frame rates. Therefore
we used a high-quality, linear-blend-skinning (LBS) model [Šarić
2011] (shown in Figure 3) as an alternative to the simple ball-
and-cylinder model of Oikonomidis et al. After reducing the LBS
model’s face count to increase render throughput, the model con-
tains 1,722 vertices and 3,381 triangle faces, whereas the high den-
sity source model contained 67,606 faces. While LBS fails to accu-
rately model effects such as muscle deformation and skin folding, it
represents many geometric details that ball-and-stick models can-
not.

To mitigate the effects of self-occlusion we used three sensors
(at viewpoints separated by approximately 45 degrees surrounding
the user from the front), with attached vibration motors to reduce
IR-pattern interference [Butler et al. 2012] and whose relative posi-
tions and orientations were calibrated using a variant of the Iterative
Closest Point (ICP) algorithm [Horn 1987]. While we use all three
camera views to fit the LBS model using the algorithm described
above, we only use depth images taken from the center camera to
train the ConvNet. The contributions from each camera were accu-
mulated into an overall fitness function F (C), which includes two
a priori terms (Φ (C) and P (C)) to maintain anatomically correct
joint angles as well as a data-dependant term ∆(Is, C) from each
camera’s contribution. The fitness function is as follows:

F (C) =
3∑

s=1

(
∆(Is, C)

)
+ Φ (C) + P (C) (2)

Where Is is the s sensor’s depth image and C is a 42-dimensional
coefficient vector that represents the 6 DOF position and orienta-
tion of the hand as well as 36 internal joint angles (shown in Figure
3). P (C) is an interpenetration term (for a given pose) used to
invalidate anatomically incorrect hand poses and is calculated by
accumulating the interpenetration distances of a series of bounding
spheres attached to the bones of the 3D model. We define interpen-
etration distance as simply the sum of overlap between all pairs of
interpenetrating bounding spheres. Φ (C) enforces a soft constraint
that coefficient values stay within a predetermined range (Cmin and
Cmax):

Φ (C) =
n∑

k=1

wk [max (Ck − Ckmax, 0) + max (Ckmin − Ck, 0)]

Where, wk is a per-coefficient weighting term to normalize penalty
contributions across different units (since we are including error
terms for angle and distance in the same objective function). Cmin
and Cmax were determined experimentally by fitting an uncon-
strained model to a discrete set of poses which represent the full
range of motion for each joint. Lastly ∆(Is, C) of Equation (2),
measures the similarity between the depth image Is and the syn-
thetic pose rendered from the same viewpoint:

∆ (Is, C) =
∑
u,v

min (|Is(u, v)−Rs(C, u, v)| , dmax)

Where, Is(u, v) is the depth at pixel (u, v) of sensor s,Rs(C, u, v)
is the synthetic depth given the pose coefficient C and dmax is a
maximum depth constant. The result of this function is a clamped
L1-norm pixel-wise comparison. It should be noted that we do not
include energy terms that measure the silhouette similarity as pro-
posed by Oikonomidis et al. since we found that when multiple
range sensors are used these terms are not necessary.

5. FEATURE DETECTION

While Neural Networks have been used for pose detection of a lim-
ited set of discrete hand gestures (for instance discriminating be-
tween a closed fist and an open palm) [Nagi et al. 2011; Nowlan
and Platt 1995], to our knowledge this is the first work that has
attempted to use such networks to perform dense feature extrac-
tion of human hands in order to infer continuous pose. To do this
we employ a multi-resolution, deep ConvNet architecture inspired
by the work of Farabet et al. [Farabet et al. 2013] in order to per-
form feature extraction of 14 salient hand points from a segmented
hand image. ConvNets are biologically inspired variants of multi-
layered perceptrons, which exploit spatial correlation in natural im-
ages by extracting features generated by localized convolution ker-
nels. Since depth images of hands tend to have many repeated local
image features (for instance fingertips), ConvNets are well suited
to perform feature extraction since multi-layered feature banks can
share common features, thereby reducing the number of required
free parameters.

We recast the full hand-pose recognition problem as an interme-
diate collection of easier individual hand-feature recognition prob-
lems, which can be more easily learned by ConvNets. In early ex-
periments we found inferring mappings between depth image space
and pose space directly (for instance measuring depth image geom-
etry to extract a joint angle), yielded inferior results to learning with
intermediate features. We hypothesize that one reason for this could
be that learning intermediate features allows ConvNets to concen-
trate the capacity of the network on learning local features, and on
differentiating between them. Using this framework the ConvNet
is also better able to implicitly handle occlusions; by learning com-
pound, high-level image features the ConvNet is able to infer the
approximate position of an occluded and otherwise unseen feature
(for instance, when making a fist, hidden finger-tip locations can be
inferred by the knuckle locations).

We trained the ConvNet architecture to generate an output set of
heat-map feature images (Figure 5). Each feature heat-map can be
viewed as a 2D Gaussian (truncated to have finite support), where
the pixel intensity represents the probability of that feature occur-
ring in that spatial location. The Gaussian UV mean is centered at
one of 14 feature points of the user’s hand. These features repre-
sent key joint locations in the 3D model (e.g., knuckles) and were
chosen such that the inverse kinematics (IK) algorithm described in
Section 6 can recover a full 3D pose.
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Fig. 5: Depth image overlaid with 14 feature locations and the heat-map for
one fingertip feature.
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Fig. 6: Convolutional Network Architecture

We found that the intermediate heat-map representation not only
reduces required learning capacity but also improves generaliza-
tion performance since failure modes are often recoverable. Cases
contributing to high test set error (where the input pose is vastly dif-
ferent from anything in the training set) are usually heat-maps that
contain multiple hotspots. For instance, the heat-map for a finger-
tip feature might incorrectly contain multiple lobes corresponding
to the other finger locations as the network failed to discriminate
among fingers. When this situation occurs it is possible to recover
a reasonable feature location by simple heuristics to decide which
of these lobes corresponds to the desired feature (for instance if an-
other heatmap shows higher probability in those same lobe regions
then we can eliminate these as spurious outliers). Similarly, the in-
tensity of the heat-map lobe gives a direct indication of the system’s
confidence for that feature, which is an extremely useful measure
for practical applications.

Our multi-resolution ConvNet architecture is shown in Figure 6.
The segmented depth image is initially pre-processed, whereby the
image is cropped and scaled by a factor proportional to the mean
depth value of the hand pixels, so that the hand is in the center and
has size that is depth invariant. The depth values of each pixel are
then normalized between 0 and 1 (with background pixels set to 1).
The cropped and normalized image is shown in Figure 5.

The preprocessed image is then filtered using local contrast nor-
malization [Jarrett et al. 2009], which acts as a high-pass filter to
emphasize geometric discontinuities. The image is then downsam-
pled twice (each time by a factor of 2) and the same filter is ap-
plied to each image. This produces a multi-resolution band-pass
image pyramid with 3 banks (shown in Figure 7), whose total spec-
tral density approximates the spectral density of the input depth
image. Since experimentally we have found that hand-pose extrac-
tion requires knowledge of both local and global features, a single

(a) 96×96px (b) 48×48px (c) 24×24px

Fig. 7: Neural Network Input: Multi-Resolution Image Pyramid
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Fig. 8: High-Resolution Bank Feature Detector: each stage:
(Nfeatures × height× width)

resolution ConvNet would need to examine a large image window
and thus would require a large learning capacity; as such a multi-
resolution architecture is very useful for this application.

The pyramid images are propagated through a 2-stage ConvNet
architecture. The highest resolution feature bank is shown in Figure
8. Each bank is comprised of 2 convolution modules, 2 piecewise
non-linearity modules, and 2 max-pooling modules. Each convo-
lution module uses a stack of learned convolution kernels with an
additional learned output bias to create a set of output feature maps
(please refer to [LeCun et al. 1998] for an in-depth discussion). The
convolution window sizes range from 4x4 to 6x6 pixels. Each max-
pooling [Nagi et al. 2011] module sub-samples it’s input image by
taking the maximum in a set of non-overlapping rectangular win-
dows. We use max-pooling since it effectively reduces computa-
tional complexity at the cost of spatial precision. The max-pooling
windows range from 2x2 to 4x4 pixels. The nonlinearity is a Rec-
tify Linear Unit (ReLU), which has been shown to improve training
speed and discrimination performance in comparison to the stan-
dard sigmoid units [Krizhevsky et al. 2012]. Each ReLU activation
module computes the following per-pixel non-linear function:

f (x) = max (0, x)

Lastly, the output of the ConvNet banks are fed into a 2-stage neu-
ral network shown in Figure 9. This network uses the high-level
convolution features to create the final 14 heat-map images; it does
so by learning a mapping from localized convolution feature acti-
vations to probability maps for each of the bone features. In prac-
tice these two large and fully-connected linear networks account
for more than 80% of the total computational cost of the ConvNet.
However, reducing the size of the network has a very strong impact
on runtime performance. For this reason, it is important to find a
good tradeoff between quality and speed. Another drawback of this
method is that the neural network must implicitly learn a likelihood
model for joint positions in order to infer anatomically correct out-
put joints. Since we do not explicitly model joint connectivity in the
network structure, the network requires a large amount of training
data to perform this inference correctly.
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Fig. 9: 2-Stage Neural Network To Create The 14 Heat Maps (with sizing
of each stage shown)

ConvNet training was performed using the open-source machine
learning package Torch7 [Collobert et al. 2011], which provides
access to an efficient GPU implementation of the back-propagation
algorithm for training neural networks. During supervised training
we use stochastic gradient descent with a standard L2-norm error
function, batch size of 64 and the following learnable parameter
update rule:

∆wi = γ∆wi−1 − λ
(
ηwi −

∂L

∂wi

)
wi+1 = wi + ∆wi (3)

Where wi is a bias or weight parameter for each of the network
modules for epoch i (with each epoch representing one pass over
the entire training-set) and ∂L

∂wi
is the partial derivative of the error

functionLwith respect to the learnable parameterwi averaged over
the current batch. We use a constant learning rate of λ = 0.2, and a
momentum term γ = 0.9 to improve learning rate when close to the
local minimum. Lastly, an L2 regularization factor of η = 0.0005
is used to help improve generalization.

During ConvNet training the pre-processed database images
were randomly rotated, scaled and translated to improve general-
ization performance [Farabet et al. 2013]. Not only does this tech-
nique effectively increase the size of the training set (which im-
proves test / validation set error), it also helps improve performance
for other users whose hand size is not well represented in the orig-
inal training set. We perform this image manipulation in a back-
ground thread during batch-training so the impact on training time
is minimal.

6. POSE RECOVERY

We formulate the problem of pose estimation from the heat-map
output as an optimization problem, similar to inverse kinematics
(IK). We extract 2D and 3D feature positions from the 14 heat-
maps and then minimize an appropriate objective function to align
3D model features to each heat-map position.

To infer the 3D position corresponding to a heat-map image, we
need to determine the most likely UV position of the feature in the
heatmap. Although the ConvNet architecture is trained to output
heat-map images of 2D Gaussians with low-variance, in general,
they output multimodal grayscale heat-maps which usually do not
sum to 1. In practice, it is easy to deduce a correct UV position
by finding the maximal peak in the heat-map (corresponding to the
location of greatest confidence). Rather than use the most likely

heat-map location as the final location, we fit a Gaussian model to
the maximal lobe to obtain sub-pixel accuracy.

First we clamp heat-map pixels below a fixed threshold to get
rid of spurious outliers. We then normalize the resulting image so
it sums to 1, and we fit the best 2D Gaussian using Levenberg-
Marquardt, and use the mean of the resulting Gaussian as the UV
position. Once the UV position is found for each of the 14 heat-
maps, we perform a lookup into the captured depth frame to obtain
the depth component at the UV location. In case this UV location
lies on a depth shadow where no depth is given in the original im-
age, we store the computed 2D image for this point in the original
image space. Otherwise, we store its 3D point.

We then perform unconstrained nonlinear optimization on the
following objective function:

f (m) =

n∑
i=1

[∆i (m)] + Φ (C) (4)

∆i (m) =

{ ∥∥ (u, v, d)ti − (u, v, d)mi
∥∥
2

If dti 6= 0∥∥ (u, v)ti − (u, v)mi
∥∥
2

otherwise

Where (u, v, d)ti is the target 3D heat-map position of feature i and
(u, v, d)mi is the model feature position for the current pose esti-
mate. Equation (4) is an L2 error norm in 3D or 2D depending
on whether or not the given feature has a valid depth component
associated with it. We then use a simple linear accumulation of
these feature-wise error terms as well as the same linear penalty
constraint (Φ (C)) used in Section 4. We use PrPSO to minimize
Equation (4). Since function evaluations for each swarm particle
can be parallelized, PrPSO is able to run in real-time at interactive
frame rates for this stage. Furthermore, since a number of the 42
coefficients from Section 4 contribute only subtle behavior to the
deformation of the LBS model at real time, we found that remov-
ing coefficients describing finger twist and coupling the last two
knuckles of each finger into a single angle coefficient significantly
reduces function evaluation time of (4) without noticeable loss in
pose accuracy. Therefore, we reduce the complexity of the model
to 23 DOF during this final stage. Fewer than 50 PrPSO iterations
are required for adequate convergence.

This IK approach has one important limitation; the UVD target
position may not be a good representation of the true feature posi-
tion. For instance, when a feature is directly occluded by another
feature, the two features will incorrectly share the same depth value
(even though one is in front of the other). However, we found that
for a broad range of gestures this limitation was not noticeable. In
future work we hope to augment the ConvNet output with a learned
depth offset to overcome this limitation.

7. RESULTS

For the results to follow, we test our system using the same experi-
mental setup that was used to capture the training data; the camera
is in front of the user (facing them) and is at approximately eye
level height. We have not extensively evaluated the performance of
our algorithm in other camera setups.

The RDF classifier described in Section 4 was trained using
6,500 images (with an additional 1,000 validation images held
aside for tuning of the RDF meta-parameters) of a user performing
typical one and two handed gestures (pinching, drawing, clapping,
grasping, etc). Training was performed on a 24 core machine for
approximately 12 hours. For each node in the tree, 10,000 weak-
learners were sampled. The error ratio of the number of incorrect

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .



PREPRIN
T

Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks • 7

5 10 15 20 25
0

20

40

60

80

100

Height of Trees

P
er
ce
n
ta
g
e
E
rr
o
r

 

 
Test Set
Training Set

0 2 4 6 8
2

4

6

8

10

Number of Trees

P
er
ce
n
ta
g
e
E
rr
o
r

 

 
Test Set
Training Set

Fig. 10: RDF Error

(a) Sensor Depth (b) Synthetic Depth (c) Per-Pixel Error

Fig. 11: Dataset Creation: Objective Function Data (with Libhand
model [Šarić 2011])

pixel labels to total number of hand pixels in the dataset for varying
tree counts and tree heights is shown in Figure 10.

We found that 4 trees with a height of 25 was a good tradeoff
of classification accuracy versus speed. The validation set classifi-
cation error for 4 trees of depth 25 was 4.1%. Of the classification
errors, 76.3% were false positives and 23.7% were false negatives.
We found that in practice small clusters of false positive pixel la-
bels can be easily removed using median filtering and blob detec-
tion. The common classification failure cases occur when the hand
is occluded by another body-part (causing false positives), or when
the elbow is much closer to the camera than the hand (causing false
positives on the elbow). We believe this inaccuracy results from the
training set not containing any frames with these poses. A more
comprehensive dataset, containing examples of these poses, should
improve performance in future.

Since we do not have a ground-truth measure for the 42 DOF
hand model fitting, quantitative evaluation of this stage is difficult.
Qualitatively, the fitting accuracy was visually consistent with the
underlying point cloud. An example of a fitted frame is shown in
Figure 11. Only a very small number of poses failed to fit correctly;
for these difficult poses, manual intervention was required.

One limitation of this system was that the frame rate of the
PrimeSenseTMcamera (30fps) was not enough to ensure sufficient
temporal coherence for correct convergence of the PSO optimizer.
To overcome this, we had each user move their hands slowly during
training data capture. Using a workstation with an Nvidia GTX 580

Fig. 12: Sample ConvNet Test Set images
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Fig. 13: ConvNet Learning Curve

GPU and 4 core Intel processor, fitting each frame required 3 to 6
seconds. The final database consisted of 76,712 training set images,
2,421 validation set images and 2,000 test set images with their
corresponding heat-maps, collected from multiple participants. A
small sample of the test set images is shown in Figure 12.

The ConvNet training took approximately 24 hours where early
stopping is performed after 350 epochs to prevent overfitting. Con-
vNet hyper parameters, such as learning rate, momentum, L2 regu-
larization, and architectural parameters (e.g., max-pooling window
size or number of stages) were chosen by coarse meta-optimization
to minimize a validation-set error. 2 stages of convolution (at each
resolution level) and 2 full-connected neural network stages were
chosen as a tradeoff between numerous performance characteris-
tics: generalization performance, evaluation time, and model com-
plexity (or ability to infer complex poses). Figure 13 shows the
mean squared error (MSE) after each epoch. The MSE was calcu-
lated by taking the mean of sum-of-squared differences between
the calculated 14 feature maps and the corresponding target feature
maps.

The mean UV error of the ConvNet heat-map output on the
test set data was 0.41px (with standard deviation of 0.35px) on
the 18x18 resolution heat-map image1. After each heat-map fea-
ture was translated to the 640x480 depth image, the mean UV error
was 5.8px (with standard deviation of 4.9px). Since the heat-map
downsampling ratio is depth dependent, the UV error improves as
the hand approaches the sensor. For applications that require greater

1To calculate this error we used the technique described in Section 6 to
calculate the heat-map UV feature location and then calculated the error
distance between the target and ConvNet output locations
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Table I. : Heat-Map UV Error by Feature Type

Feature Type Mean (px) STD (px)
Palm 0.33 0.30
Thumb Base & Knuckle 0.33 0.43
Thumb Tip 0.39 0.55
Finger Knuckle 0.38 0.27
Finger Tip 0.54 0.33

(a) (b) (c)

Fig. 14: Real-Time Tracking Results, a) Typical Hardware Setup, b) Depth
with Heat-Map Features, c) ConvNet Input and Pose Output

accuracy, the heat-map resolution can be increased for better spatial
accuracy at the cost of increased latency and reduced throughput.

Table I shows the UV accuracy for each feature type. Unsurpris-
ingly, we found that the ConvNet architecture had the most dif-
ficulty learning fingertip positions, where the mean error is 61%
higher than the accuracy of the palm features. The likely cause for
this inaccuracy is twofold. Firstly, the fingertip positions undergo
a large range of motion between various hand-poses and therefore
the ConvNet must learn a more difficult mapping between local fea-
tures and fingertip positions. Secondly, the PrimeSenseTMCarmine
1.09 depth camera cannot always recover depth of small surfaces
such as fingertips. The ConvNet is able to learn this noise behavior,
and is actually able to approximate fingertip location in the pres-
ence of missing data, however the accuracy for these poses is low.

The computation time of the entire pipeline is 24.9ms, which
is within our 30fps performance target. Within this period: deci-
sion forest evaluation takes 3.4ms, depth image preprocessing takes
4.7ms, ConvNet evaluation takes 5.6ms and pose estimation takes
11.2ms. The entire pipeline introduces approximately one frame of
latency. For an example of the entire pipeline running in real-time
as well as puppeteering of the LBS hand model, please refer to
the supplementary video (screenshots from this video are shown in
Figure 14).

Figure 15 shows three typical fail cases of our system. In 15a)
finite spatial precision of the ConvNet heat-map results in finger
tip positions that are not quite touching. In 15b) no similar pose
exists in the database used to train the ConvNet, and for this ex-
ample the network generalization performance was poor. In 15c)
the PrimeSenseTMdepth camera fails to detect the ring finger (the
surface area of the finger tip presented to the camera is too small
and the angle of incidence in the camera plane is too shallow), and
the ConvNet has difficulty inferring the finger tip position without
adequate support in the depth image, which results in an incorrect
inferred position.

Figure 16 shows that the ConvNet output is tolerant for hand
shapes and sizes that are not well represented in the ConvNet train-
ing set. The ConvNet and RDF training sets did not include any
images for user b) and user c) (only user a)). We have only eval-
uated the system’s performance on adult subjects. We found that

a) b) c)

Fig. 15: Fail Cases: RGB ground-truth (top row), inferred model [Šarić
2011] pose (bottom row)

adding a single per-user scale parameter to approximately adjust
the size of the LBS model to a user’s hand, helped the real-time IK
stage better fit to the ConvNet output.

a) b) c)

Fig. 16: Hand Shape/Size Tolerance: RGB ground-truth (top row), depth
with annotated ConvNet output positions (bottom row)

Comparison of the relative real-time performance of this work
with relevant prior art, such as that of [3Gear 2014] and [Melax
et al. 2013], is difficult for a number of reasons. Firstly, [Melax
et al. 2013] uses a different capture device, which prevents fair
comparison as it is impossible (without degrading sensor perfor-
mance by using mirrors) for multiple devices to see the hand
from the same viewpoint simultaneously. Secondly, no third-party
ground truth database of poses with depth frames exists for hu-
man hands, so comparing the quantitative accuracy of numerous
methods against a known baseline is not possible. More impor-
tantly however, is that the technique utilized by [3Gear 2014] is
optimized for an entirely different use case and so fair comparison
with their work is very difficult. [3Gear 2014] utilizes a vertically
mounted camera, can track multiple hands simultaneously, and is
computationally less expensive than the method presented in our
work.

Figure 17 examines the performance of this work with the propri-
etary system of [3Gear 2014] (using the fixed-database version of
the library), for 4 poses chosen to highlight the relative difference
between the two techniques (images used with permission from
3Gear). We captured this data by streaming the output of both sys-
tems simultaneously (using the same RGBD camera). We mounted
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the camera vertically, as this is required for [3Gear 2014], however
our training set did not include any poses from this orientation.
Therefore, we expect our system to perform sub-optimally for this
very different use case.

a) b) c) d)

Fig. 17: Comparison with state-of-the-art commercial system: RGB ground-
truth (top row), this work inferred model [Šarić 2011] pose (middle row),
[3Gear 2014] inferred model pose (bottom row) (images used with permis-
sion from 3Gear).

8. FUTURE WORK

As indicated in Figure 16, qualitatively we have found that the Con-
vNet generalization performance to varying hand shapes is accept-
able but could be improved. We are confident we can make im-
provements by adding more training data from users with different
hand sizes to the training set.

For this work, only the ConvNet forward propagation stage was
implemented on the GPU. We are currently working on implement-
ing the entire pipeline on the GPU, which should improve perfor-
mance of the other pipeline stages significantly. For example, the
GPU ConvNet implementation requires 5.6ms, while the same net-
work executed on the CPU (using optimized multi-threaded C++
code) requires 139ms.

The current implementation of our system can track two hands
only if they are not interacting. While we have determined that the
dataset generation system can fit multiple strongly interacting hand
poses with sufficient accuracy, it is future work to evaluate the neu-
ral network recognition performance on these poses. Likewise, we
hope to evaluate the recognition performance on hand poses in-
volving interactions with non-hand objects (such as pens and other
man-made devices).

While the pose recovery implementation presented in this work
is fast, we hope to augment this stage by including a model-based
fitting step that trades convergence radius for fit quality. Specifi-
cally, we suspect that replacing our final IK stage with an energy-
based local optimization method, inspired by the work of Li et
al. [Li et al. 2008] could allow our method to recover second-
order surface effects such as skin folding and skin-muscle cou-
pling from very limited data, and still with low-latency. In addi-

tion to inference, such a localized energy-minimizing stage would
enable improvements to the underlying model itself. Since these
localized methods typically require good registration, our method,
which gives correspondence from a single image could advance the
state-of-the-art in non-rigid model capture.

Finally, we hope to augment our final IK stage with some form of
temporal pose prior to reduce jitter; for instance, using an extended
Kalman filter as a post-processing step to clean up the ConvNet
feature output.

9. CONCLUSION

We have presented a novel pipeline for tracking the instantaneous
pose of articulable objects from a single depth image. As an appli-
cation of this pipeline we showed state-of-the-art results for track-
ing human hands in real-time using commodity hardware. This
pipeline leverages the accuracy of offline model-based dataset gen-
eration routines in support of a robust real-time convolutional net-
work architecture for feature extraction. We showed that it is possi-
ble to use intermediate heat-map features to extract accurate and re-
liable 3D pose information at interactive frame-rates using inverse
kinematics.
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