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An Original Approach for the Localization of Objects in Images

Abstract

In this article, we present an original approach for the localization of objects in an image.
Our approach is neuronal and it includes two steps. In the first step, a rough localization is
performed by presenting each pixel with its neighbourhood to a neural net which is able to
indicate if this pixel and its neighbourhood are the image of the search object. This first filter is
not very discriminant for the position. From its result, we can select areas which might contain
an image of the object. In the second step, these areas are presented to another neural net
which can determine the exact position of the object in each area. We apply this algorithm to

the problem of localizing faces in images.

1 Introduction

The detection and localization of faces in an image has many applications in various domains:

surveillance, TV audience polling. ... We propose a new method for this task which
e does not require any hypothesis on the position of the face in the image, or on its scale,
e does not require any hypothesis on the background.

e can be implemented to operate at a fraction of video rate (5 to 10 images per second) with

current technology.

The main idea of our method is to train a neural network to detect the presence or absence of
a face in its input window, and to scan this network over at all possible locations in the image.
Because of the nature of the neural network architecture we used, this process can be done very
efficiently without requiring to actually recompute the entire network state at each location. The
scanning is performed on several versions of the image at various scales, resulting in an efficient,
scale independent detector and locator.

Several approaches to this problem have been proposed in the literature. There are two main

classes of methods:

e The first kind of approaches relies on the use of a synthetic model of a face. In [2], the authors
represent a face as a combination of two parallel lines, which are the sides of the faces and
two arcs of a circle for the chin and the top of the face. Yuille and al [10] suggest to represent
each part of the face as a deformable element which is searched in the image by minimising an

energy. Vincent and al [9] locates these different parts using neural nets. Craw and al [1] have



a similar approach. This kind of techniques have the following difficulties: the computation
time for adjusting the model could be long and the choice of the initial position of the model

is quite difficult.

e The second kind of approaches relies on building a classifier which processes constant size
images, and indicates if it corresponds to a face or not. Turk [7, 8] uses a principal component

analysis. Neural nets are used in [5].

2 The Data Base

In order to detect some specific elements in an image, it is necessary to describe the primitives
that must be detected in a way which is compatible with the used algorithm. One of the main
advantages of some advanced neural net architectures is their ability to process raw (or almost raw)
images. The problem of finding (and computing) the appropriate representation for the classifier
is greatly facilitated. Our database is composed of many examples of small-size images of “faces”

and “non-faces”.

2.1 Formation of the data base: image acquisition

Twenty eight volunteers of both sexes, and various ages, were asked to walk towards a camera,
starting from a distance of 5 meters from the camera, to a distance of about 3 meters from the
camera. The subjects were asked to talk, and change facial expression, and head attitude, while
walking. To make the problem simpler, we ask the subjects who wore glasses to take them off.
Indeed the glasses reflect light and can introduce highlight in the images. Because of the varying
distance of the subjects from the camera, the size of the observed faces had widely varying sizes
(the ratio of the size between the different images of the sequence is 3). To take into account
the variations in lighting conditions, we acquired two sequences of images: in the first one, there
is only one light behind the camera, in the second one, there were also more diffuse lighting. A
supplementary sequence, without faces, was acquired.

The images were smoothed with a zero-mean Laplacian filter. They were also normalized for
the mean and the standard deviation. The mean of the pixels of each image is set to 0 and the

standard deviation to 1.



2.2 Formation of the data base: extraction of patches

As we briefly mentioned in the introduction, the neural net is given a small window taken from
the input image, and is asked to activate its output if a face is present in the window. The size of
the window was chosen to be 20 X 20 pixels. We chose this size because it is close to the minimum
resolution which allows unambiguous distinction between faces and non-faces. In [6], it is mentioned
that a size 16 x 16 is the lower limit such the human can detect a face.

To handle the scale variation, three approaches are possible. The first one is to train the neural
net to detect faces independent of their size in the window, the second one is two train a separate
neural net for each range of size, and combine their outputs. The third approach, which is the one
we used, is to use a single neural network, and scan it over several versions of the input image at
various resolutions. The outputs from the network at various scales are then combined.

To create examples of 20 x 20 pixel images of faces and non-faces, we manually segmented the
whole database by entering for each image, the point m; = (z,y;) between the eyes, and the point
ma = (22, ys) at the center of the mouth. The second point gives information about the orientation
and scale of the face. The area of the face in the original image was reduced to a patch of size
20 x 20 using appropriate scaling factors chosen among a discrete set of scaling factors. As we will
see later the same scaling factors were used when the algorithm was applied to the whole images.
We uses 7 different scaling factors. Consequently, the faces did not always fill completely the patch
of size 20 x 20. This patch was included in a bigger patch of size 48 x 32 (figure 1).

32

Figure 1: Geometry of the patches that have been extracted of the data base

The data base contains 1792 patches with a face. We have formed an equal number of images

without faces, that we will call background patches, using the sequence of 32 images.



3 The training

3.1 General principle

Several neural net architectures were tried. The simplest one has no hidden layer, while the others
have multiple convolutional hidden layers [4]. These networks were trained with the backpropaga-
tion algorithm taking into account the shared weights. The networks had the following points in

common:

e an input layer of size 20 X 20. Each of the neurons of this layer is fed with the corresponding

pixel of the patch.

e an output layer which contains only one neuron. This neuron indicates if the presented patch

corresponds to a face or not.

3.1.1 A neural net without hidden layer

The neural net does not include any hidden layer. We use it for analyzing the complexity of our

problem. It contains 401 weights.

3.1.2 A shared-weight neural net

This neural net comprises 3 hidden layers. Each of the hidden layer is divided into 4 small images (or
feature maps). This net uses shared weights following the ideas described in [3, 4]. Figure 2 shows
the architecture of the neural net. Each neuron of each map of the first hidden layer is connected
to 5 x 5 neurons of the input layer. The weights are shared in the map. Each neuron of each map of
the second hidden layer is connected to 2 X 2 neurons of the corresponding map of the first hidden
layer. The weight are shared. The neuron of each map of the third hidden layer is connected to
each neurons of the corresponding map of the second hidden layer. The neuron of the output layer
is conected to the four neurons of the third hidden layer. This net has 1157 free parameters (but
much more connections because of the weight sharing). There are many well-known advantages to
using shared weight neural net architecture (fewer free parameters, better generalization, distortion
invariance). In our context, shared-weight architectures have another decisive advantage. For our
application, the network must be replicated (or scanned) over a large image (say 256 by 256 pixels).
Now, since each layer of the network essentially performs a convolution (with a small-size kernel),
a large part of the computation is in common between to networks applied at two neighboring

locations. This redundancy can be eliminated by performing the convolution corresponding to each



layer on the entire image at once. The overall computation amounts to a succession of convolutions

and non-linear transformations over the entire image.
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Figure 2: Architecture of the neural net

3.2 What must the neural net learn ?

Once, the architecture of the net is chosen, the question is: what must the neural net learn 7 We

propose 3 answers:

e Training with the goal of performing a complete localization: the elements of the database
are presented to the neural net. If the presented patch corresponds to a perfectly centered
face, the desired output is «, else the desired output is —«. This is the natural choice which

makes a direct use of the two classes of our problem.

e Training with the goal of performing a rough localization: The elements of the database are
presented to the neural net as a perfectly centered patch or a shifted patch. This means that
we feed the input layer of the neural net with an image extracted from the patch 48 x 32
whose size is 20 x 20 and whose center is placed at (z,y) pixels of the center of the patch
of the database. If the image is perfectly centered, the desired output is a. It the image
is shifted, the desired output is a(Qe_’\\/W —1). The desired output is an exponentially
decreasing function of the shift. If the presented image is a background, the desired output

is —a. Our goal is to train the net to give a medium answer when it encounters a shifted



face and to give a maximal answer when it encounters a perfectly centered face. So when
the neural net will be applied to a complete image, the obtained answer will be smooth all
around the face. The areas of the image which correspond to face will be easy to detect. The

drawback is that the position of the center of the face will not be very precise.

e Training with the goal of performing a precise localization: The elements of the data base are
presented perfectly centered with a desired output « or shifted with a desired output of —a.
The background images are not presented. This neural net must be able to localize precisely

the center of the face if the input layer is fed with faces more or less centered.

We can also notice that the two last training techniques multiply the number of patterns in the
data base. Indeed, 336 = (48 —20) x (32 — 20) different images are formed from each original image
of the data base. Fven if these images are not completly independent patterns, we can assume that

the generalization rate is correctly estimated and we do not have overfitting.

3.3 Results of the training

In a first step, we have tested the two neural nets which are described in the section 3.1 and the use
the two first learning methods which are presented in the section 3.2. The learning set is formed
with half of the database and the test set is formed with other part of the database. With a classical

workstation (Sun4 SPARC), several hours are needed for some of the training sessions.

3.3.1 Training for a complete localization

Figure 4 shows the evolution of the quadratic error and the rate of well classified example. The
quadratic error is defined as: ﬁ ZnNzl(d" —0™)%. 0" is the obtained output when the example n is
presented and d” is the desired output. An example is assumed to be well classified if 0o” and d"
have the same sign. These values are measured after a presentation of the whole training base to
the neural net.

First, we can note that the two neural nets have results which are quite equivalent. On the
test set, the quadratic error decreases quickly and the rate of correct recognition increases towards
96%.

These results could appear very satisfactory. In fact, they are not. Indeed, we plan to segment
an image in areas that correspond to a face and in areas that do not correspond to a face. We
apply the neural net with shared weight to a standard image whose size is 256 x 256. The output
will be an image of size 126 x 126 = 15876. The size of the output image is different of the input as
there is one hidden layer which subsamples its input, thereby dividing the size of the input by 2. If



The image.

)
b) The neural net with shared weight trained for a complete localization.
) The neural net with shared weight trained for a rough localization.

d) The neural net with shared weight trained for a precise localization.

Figure 3: Neural nets applied to an image

the rate of image which are well classified is 96%), the image will include 635 positive answers which
will probably correspond to false alarms. This result cannot be exploited: there are too many false
alarms.

As example, the figure 3(b) shows the obtained result when the shared weight nets is applied
to the image of the figure 3(a). The grey-level of the pixels is proportional to the answer of the
neural net. This image is scaled so that its resolution is 86 x 86. There are 95 pixels with a positive

answer (5.6% of the points of the output image).



3.3.2 Training for a rough localization

Figure 5 shows the quadratic error and the rate of well classified examples in the case of a rough

localization. We can note the following points:

e The first net does not succeed to learn. The quadratic error and the rate of well classified

examples stops changing significantly after a few iterations.

o In the case of the second net, the error and the recognition rate decreases more slowly than

in the case of complete localization.

e There is no overfitting. The generalisation rate does not decrease at the end of the training.
In the case of the training for the complete localization, they decrease at the end of the

training.

These various remarks indicate that this problem is more difficult than the previous one.

The generalisation rate obtained at the end of the training phase is lower than the rate we
obtained in the case of the complete localization. Consequently, when we will apply our net to a
complete image, it will produce a greater number of false alarms. On the other hand, the false
alarms can be easily separated from the correct alarms. Indeed, when a face is present in the image,
there is a complete area where the neural net gives a positive answer.

Figure 3(c) shows the obtained result when this net is applied to the image 3(a). There are 181
pixels with a positive answer. It is equivalent to the estimated generalization rate of 90%. It is
important to note the distribution of positive answer. They are grouped in about 10 areas. Each
of these areas could be considered as an hypothesis for the detection of a face and could be subject

to further processing as explained later.

3.4 Training for a precise localization

Figure 3(d) shows the obtained results when the shared weight net is applied to the whole image.
There are 79 pixels with a positive answer. They are scattered on the whole image. This is normal

as the net has not been trained to give identical answer for a pixel and its neighbours.

4 Application to images

We wish to have an algorithm for the localization of faces in images which does not make any
hypothesis on the scale of the face in the image. The system we described in the previous sections

requires that the face is observed to a fixed size. We apply these results to an image where the size



of observed faces is unknown by processing this image at several resolutions with the same network.

The complete algorithm is:

e Several versions of the the original image are created at different scales (the set of scaling
factorsis determined in advance). The shared-weight neural nets trained for rough localization

is scanned over each of the images. Figure 6 shows the output of the net for each scale.

e We look for “blobs” of positive values in the output maps produced by the network. Each
of the blobs is considered as a good candidate (an hypothesis) for fine detection of faces (see

figure 7).

e We apply the neural net trained for a precise localization to each hypothesis and we search
for the one that gives the maximal answer. If it is larger than some threshold!, the hypothesis

is assumed to be valid and the point with maximal answer is taken at the center of the face.

o The different valid hypothesis which corresponds to a single face are grouped. Indeed, a single
face can be detected at two different scales. It is quite frequent, as the used resolutions are
not very different, and the faces in the database are not very precisely normalised to the same
scale. To group the different valid hypothesis, we consider the area that they describe in
the original image. If two hypothesis are conflicting, i.e. their corresponding areas intersect,
we retain only the one corresponding to the highest answer. Figure 8 shows the set of the
retained hypothesis. A rectangle is drawn, in the initial image, around the area associated
to each hypothesis. The size of the rectangle is computed from the resolution at which the

hypothesis was formed.

5 Conclusion

We have presented an algorithm for the detection of faces in images using shared-weight replicated
neural networks. In a first step, a first neural net forms rough hypotheses about the position of
faces. These hypotheses are then verified in the second step using a second neural network. We
have also shown that the algorithm applies to images where the size of the faces is unknown a
priori.

The computational time which is necessary for the complete processing of an image is reasonable.
With a classical workstation (Sun4 SPARC) an image of size 256 X 256 is treated in 6 second

(smoothing and normalization of the image included). It is interesting to note that this algorithm

! At the stage, some of the hypothesis may be removed

10



could be easily installed on a more specialized machine as the major part of the operations is
based on convolutions with kernels of size 5 x 5 or 8 x 8. Of course the example of time given
below have been obtained with an implementation using this property of the neural net. Using a
net of 6 different machines, we are able to process one image each second and to present a “live”
demonstration.

In this paper, we assume that the face are well oriented in the image. It is possible to eliminate
this assumption by following an approach similar to the one used for the scale problem. A net is
trained to be insensitive to the precise orientation of the face. The network is scanned over several
versions the image rotated by various angles (say every 20 degrees).

This kind of segmentation algorithm can be applied to other problems where the objects to be
detected cannot be characterized easily by its outline or by classical primitives in image processing:
car detection, .... Very little problem-specific hand-crafting is necessary: constructing a database

of positive and negative examples suffices.
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Figure 4: Training for a complete localization
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Figure 5: Training for a rough localization
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Scale 4 Scale 5

Scale 6 Scale 7 Scale 8 Scale 9

Figure 6: These images are the result of the shared weight neural net trained for a rough localization.
The input image is treated with several resolutions. Hypothesis are formed in the area with a

positive answer which are sufficiently large.

Hypothesis 0 Hypothesis 1 Hypothesis 2

Scale 3 Scale 5 Scale 5
Answer 1.12 Answer 0.99 Answer 0.98
Hypothesis 3 Hypothesis 4 Hypothesis 5
Scale 5 Scale 5 Scale 5
Answer 0.87 Answer 0.89 Answer 0.94

Hypothesis 6 Hypothesis 7 Hypothesis 8

Scale 5 Scale 6 Scale 6

Answer 0.88 Answer 0.81 Answer 0.95

Hypothesis 9 Hypothesis 10

Scale 6 Scale 7

Answer 0.94 Answer 0.71

Figure 7: The hypotheses
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Figure 8: Localization : the hypotheses that have been retained at the end of the processing.
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