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Abstract

We introduce DropConnect, a generalization
of Dropout (Hinton et al., 2012), for regular-
izing large fully-connected layers within neu-
ral networks. When training with Dropout,
a randomly selected subset of activations are
set to zero within each layer. DropCon-
nect instead sets a randomly selected sub-
set of weights within the network to zero.
Each unit thus receives input from a ran-
dom subset of units in the previous layer.
We derive a bound on the generalization per-
formance of both Dropout and DropCon-
nect. We then evaluate DropConnect on a
range of datasets, comparing to Dropout, and
show state-of-the-art results on several image
recognition benchmarks by aggregating mul-
tiple DropConnect-trained models.

1. Introduction

Neural network (NN) models are well suited to do-
mains where large labeled datasets are available, since
their capacity can easily be increased by adding more
layers or more units in each layer. However, big net-
works with millions or billions of parameters can easily
overfit even the largest of datasets. Correspondingly,
a wide range of techniques for regularizing NNs have
been developed. Adding an `2 penalty on the network
weights is one simple but effective approach. Other
forms of regularization include: Bayesian methods
(Mackay, 1995), weight elimination (Weigend et al.,
1991) and early stopping of training. In practice, us-
ing these techniques when training big networks gives
superior test performance to smaller networks trained
without regularization.
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Recently, Hinton et al. proposed a new form of regular-
ization called Dropout (Hinton et al., 2012). For each
training example, forward propagation involves ran-
domly deleting half the activations in each layer. The
error is then backpropagated only through the remain-
ing activations. Extensive experiments show that this
significantly reduces over-fitting and improves test per-
formance. Although a full understanding of its mech-
anism is elusive, the intuition is that it prevents the
network weights from collaborating with one another
to memorize the training examples.

In this paper, we propose DropConnect which general-
izes Dropout by randomly dropping the weights rather
than the activations. Like Dropout, the technique is
suitable for fully connected layers only. We compare
and contrast the two methods on four different image
datasets.

2. Motivation

To demonstrate our method we consider a fully con-
nected layer of a neural network with input v =
[v1, v2, . . . , vn]T and weight parameters W (of size
d × n). The output of this layer, r = [r1, r2, . . . , rd]

T

is computed as a matrix multiply between the input
vector and the weight matrix followed by a non-linear
activation function, a, (biases are included in W with
a corresponding fixed input of 1 for simplicity):

r = a(u) = a(Wv) (1)
2.1. Dropout

Dropout was proposed by (Hinton et al., 2012) as
a form of regularization for fully connected neural
network layers. Each element of a layer’s output is
kept with probability p, otherwise being set to 0 with
probability (1 − p). Extensive experiments show that
Dropout improves the network’s generalization ability,
giving improved test performance.

When Dropout is applied to the outputs of a fully con-
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Figure 1. (a): An example model layout for a single DropConnect layer. After running feature extractor g() on input x, a
random instantiation of the mask M (e.g. (b)), masks out the weight matrix W . The masked weights are multiplied with
this feature vector to produce u which is the input to an activation function a and a softmax layer s. For comparison, (c)
shows an effective weight mask for elements that Dropout uses when applied to the previous layer’s output (red columns)
and this layer’s output (green rows). Note the lack of structure in (b) compared to (c).

nected layer, we can write Eqn. 1 as:

r = m ? a(Wv) (2)

where ? denotes element wise product and m is a bi-
nary mask vector of size d with each element, j, drawn
independently from mj ∼ Bernoulli(p).

Many commonly used activation functions such as
tanh, centered sigmoid and relu (Nair and Hinton,
2010), have the property that a(0) = 0. Thus, Eqn. 2
could be re-written as, r = a(m?Wv), where Dropout
is applied at the inputs to the activation function.

2.2. DropConnect

DropConnect is the generalization of Dropout in which
each connection, rather than each output unit, can
be dropped with probability 1 − p. DropConnect is
similar to Dropout as it introduces dynamic sparsity
within the model, but differs in that the sparsity is
on the weights W , rather than the output vectors of a
layer. In other words, the fully connected layer with
DropConnect becomes a sparsely connected layer in
which the connections are chosen at random during
the training stage. Note that this is not equivalent to
setting W to be a fixed sparse matrix during training.

For a DropConnect layer, the output is given as:

r = a ((M ?W ) v) (3)

where M is a binary matrix encoding the connection
information and Mij ∼ Bernoulli(p). Each element
of the mask M is drawn independently for each exam-
ple during training, essentially instantiating a differ-
ent connectivity for each example seen. Additionally,

the biases are also masked out during training. From
Eqn. 2 and Eqn. 3, it is evident that DropConnect is
the generalization of Dropout to the full connection
structure of a layer1.

The paper structure is as follows: we outline details on
training and running inference in a model using Drop-
Connect in section 3, followed by theoretical justifica-
tion for DropConnect in section 4, GPU implementa-
tion specifics in section 5, and experimental results in
section 6.

3. Model Description

We consider a standard model architecture composed
of four basic components (see Fig. 1a):

1. Feature Extractor: v = g(x;Wg) where v are the out-
put features, x is input data to the overall model,
and Wg are parameters for the feature extractor. We
choose g() to be a multi-layered convolutional neural
network (CNN) (LeCun et al., 1998), with Wg being
the convolutional filters (and biases) of the CNN.

2. DropConnect Layer: r = a(u) = a((M ? W )v) where
v is the output of the feature extractor, W is a fully
connected weight matrix, a is a non-linear activation
function and M is the binary mask matrix.

3. Softmax Classification Layer: o = s(r;Ws) takes as
input r and uses parameters Ws to map this to a k
dimensional output (k being the number of classes).

4. Cross Entropy Loss: A(y, o) = −
∑k
i=1 yilog(oi) takes

probabilities o and the ground truth labels y as input.

1This holds when a(0) = 0, as is the case for tanh and
relu functions.
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The overall model f(x; θ,M) therefore maps input
data x to an output o through a sequence of operations
given the parameters θ = {Wg,W,Ws} and randomly-
drawn mask M . The correct value of o is obtained by
summing out over all possible masks M :

o = EM [f(x; θ,M)] =
∑
M

p(M)f(x; θ,M) (4)

This reveals the mixture model interpretation of Drop-
Connect (and Dropout), where the output is a mixture
of 2|M | different networks, each with weight p(M).
If p = 0.5, then these weights are equal and o =
1
|M |

∑
M f(x; θ,M) = 1

|M |
∑
M s(a((M ?W )v);Ws)

3.1. Training

Training the model described in Section 3 begins by
selecting an example x from the training set and ex-
tracting features for that example, v. These features
are input to the DropConnect layer where a mask ma-
trix M is first drawn from a Bernoulli(p) distribution
to mask out elements of both the weight matrix and
the biases in the DropConnect layer. A key compo-
nent to successfully training with DropConnect is the
selection of a different mask for each training exam-
ple. Selecting a single mask for a subset of training
examples, such as a mini-batch of 128 examples, does
not regularize the model enough in practice. Since the
memory requirement for the M ’s now grows with the
size of each mini-batch, the implementation needs to
be carefully designed as described in Section 5.

Once a mask is chosen, it is applied to the weights and
biases in order to compute the input to the activa-
tion function. This results in r, the input to the soft-
max layer which outputs class predictions from which
cross entropy between the ground truth labels is com-
puted. The parameters throughout the model θ then
can be updated via stochastic gradient descent (SGD)
by backpropagating gradients of the loss function with
respect to the parameters, A′θ. To update the weight
matrix W in a DropConnect layer, the mask is ap-
plied to the gradient to update only those elements
that were active in the forward pass. Additionally,
when passing gradients down to the feature extractor,
the masked weight matrix M ?W is used. A summary
of these steps is provided in Algorithm 1.

3.2. Inference

At inference time, we need to compute r =
1/|M |

∑
M a((M ? W )v), which naively requires the

evaluation of 2|M | different masks – plainly infeasible.

The Dropout work (Hinton et al., 2012) made the ap-
proximation:

∑
M a((M ? W )v) ≈ a(

∑
M (M ? W )v),

Algorithm 1 SGD Training with DropConnect

Input: example x, parameters θt−1 from step t−1,
learning rate η
Output: updated parameters θt
Forward Pass:
Extract features: v ← g(x;Wg)
Random sample M mask: Mij ∼ Bernoulli(p)
Compute activations: r = a((M ?W )v)
Compute output: o = s(r;Ws)
Backpropagate Gradients:
Differentiate loss A′θ with respect to parameters θ:
Update softmax layer: Ws = Ws − ηA′Ws

Update DropConnect layer: W = W − η(M ? A′W )
Update feature extractor: Wg = Wg − ηA′Wg

Algorithm 2 Inference with DropConnect

Input: example x, parameters θ, # of samples Z.
Output: prediction u
Extract features: v ← g(x;Wg)
Moment matching of u:
µ← EM [u] σ2 ← VM [u]

for z = 1 : Z do %% Draw Z samples
for i = 1 : d do %% Loop over units in r

Sample from 1D Gaussian ui,z ∼ N (µi, σ
2
i )

ri,z ← a(ui,z)
end for

end for
Pass result r̂ =

∑Z
z=1 rz/Z to next layer

i.e. averaging before the activation rather than after.
Although this seems to work in practice, it is not jus-
tified mathematically, particularly for the relu activa-
tion function.2

We take a different approach. Consider a single
unit ui before the activation function a(): ui =∑
j(Wijvj)Mij . This is a weighted sum of Bernoulli

variables Mij , which can be approximated by a Gaus-
sian via moment matching. The mean and variance
of the units u are: EM [u] = pWv and VM [u] =
p(1 − p)(W ? W )(v ? v). We can then draw samples
from this Gaussian and pass them through the activa-
tion function a() before averaging them and present-
ing them to the next layer. Algorithm 2 summarizes
the method. Note that the sampling can be done ef-
ficiently, since the samples for each unit and exam-
ple can be drawn in parallel. This scheme is only an
approximation in the case of multi-layer network, it
works well in practise as shown in Experiments.

2Consider u ∼ N(0, 1), with a(u) = max(u, 0).

a(EM (u)) = 0 but EM (a(u)) = 1/
√

2π ≈ 0.4.



Regularization of Neural Networks using DropConnect

Implementation Mask Weight Time(ms) Speedup
fprop bprop acts bprop weights total

CPU float 480.2 1228.6 1692.8 3401.6 1.0 ×
CPU bit 392.3 679.1 759.7 1831.1 1.9 ×
GPU float(global memory) 21.6 6.2 7.2 35.0 97.2 ×
GPU float(tex1D memory) 15.1 6.1 6.0 27.2 126.0 ×
GPU bit(tex2D aligned memory) 2.4 2.7 3.1 8.2 414.8 ×
GPU(Lower Bound) cuBlas + read mask weight 0.3 0.3 0.2 0.8

Table 1. Performance comparison between different implementations of our DropConnect layer on NVidia GTX580 GPU
relative to a 2.67Ghz Intel Xeon (compiled with -O3 flag). Input dimension and Output dimension are 1024 and mini-batch
size is 128. As reference we provide traditional matrix multiplication using the cuBlas library.

4. Model Generalization Bound
We now show a novel bound for the Rademacher com-
plexity of the model R̂`(F) on the training set (see
appendix for derivation):

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G) (5)

where max|Ws| ≤ Bs, max|W | ≤ B, k is the num-
ber of classes, R̂`(G) is the Rademacher complexity of
the feature extractor, n and d are the dimensionality
of the input and output of the DropConnect layer re-
spectively. The important result from Eqn. 5 is that
the complexity is a linear function of the probability p
of an element being kept in DropConnect or Dropout.
When p = 0, the model complexity is zero, since the
input has no influence on the output. When p = 1, it
returns to the complexity of a standard model.

5. Implementation Details

Our system involves three components implemented
on a GPU: 1) a feature extractor, 2) our DropConnect
layer, and 3) a softmax classification layer. For 1 and
3 we utilize the Cuda-convnet package (Krizhevsky,
2012), a fast GPU based convolutional network library.
We implement a custom GPU kernel for performing
the operations within the DropConnect layer. Our
code is available at http:///cs.nyu.edu/~wanli/

dropc.

A typical fully connected layer is implemented as a
matrix-matrix multiplication between the input vec-
tors for a mini-batch of training examples and the
weight matrix. The difficulty in our case is that each
training example requires it’s own random mask ma-
trix applied to the weights and biases of the DropCon-
nect layer. This leads to several complications:

1. For a weight matrix of size d × n, the corresponding
mask matrix is of size d× n× b where b is the size of
the mini-batch. For a 4096×4096 fully connected layer
with mini-batch size of 128, the matrix would be too
large to fit into GPU memory if each element is stored
as a floating point number, requiring 8G of memory.

2. Once a random instantiation of the mask is created, it
is non-trivial to access all the elements required during
the matrix multiplications so as to maximize perfor-
mance.

The first problem is not hard to address. Each ele-
ment of the mask matrix is stored as a single bit to
encode the connectivity information rather than as a
float. The memory cost is thus reduced by 32 times,
which becomes 256M for the example above. This not
only reduces the memory footprint, but also reduces
the bandwidth required as 32 elements can be accessed
with each 4-byte read. We overcome the second prob-
lem using an efficient memory access pattern using 2D
texture aligned memory. These two improvements are
crucial for an efficient GPU implementation of Drop-
Connect as shown in Table 1. Here we compare to a
naive CPU implementation with floating point masks
and get a 415× speedup with our efficient GPU design.

6. Experiments

We evaluate our DropConnect model for regularizing
deep neural networks trained for image classification.
All experiments use mini-batch SGD with momentum
on batches of 128 images with the momentum param-
eter fixed at 0.9.

We use the following protocol for all experiments un-
less otherwise stated:

• Augment the dataset by: 1) randomly selecting
cropped regions from the images, 2) flipping images
horizontally, 3) introducing 15% scaling and rotation
variations.
• Train 5 independent networks with random permuta-

tions of the training sequence.
• Manually decrease the learning rate if the network

stops improving as in (Krizhevsky, 2012) according to
a schedule determined on a validation set.
• Train the fully connected layer using Dropout, Drop-

Connect, or neither (No-Drop).
• At inference time for DropConnect we draw Z = 1000

http:///cs.nyu.edu/~wanli/dropc
http:///cs.nyu.edu/~wanli/dropc
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samples at the inputs to the activation function of the
fully connected layer and average their activations.

To anneal the initial learning rate we choose a fixed
multiplier for different stages of training. We report
three numbers of epochs, such as 600-400-200 to define
our schedule. We multiply the initial rate by 1 for the
first such number of epochs. Then we use a multiplier
of 0.5 for the second number of epochs followed by
0.1 again for this second number of epochs. The third
number of epochs is used for multipliers of 0.05, 0.01,
0.005, and 0.001 in that order, after which point we
report our results. We determine the epochs to use for
our schedule using a validation set to look for plateaus
in the loss function, at which point we move to the
next multiplier. 3

Once the 5 networks are trained we report two num-
bers: 1) the mean and standard deviation of the classi-
fication errors produced by each of the 5 independent
networks, and 2) the classification error that results
when averaging the output probabilities from the 5
networks before making a prediction. We find in prac-
tice this voting scheme, inspired by (Ciresan et al.,
2012), provides significant performance gains, achiev-
ing state-of-the-art results in many standard bench-
marks when combined with our DropConnect layer.

6.1. MNIST

The MNIST handwritten digit classification task (Le-
Cun et al., 1998) consists of 28×28 black and white im-
ages, each containing a digit 0 to 9 (10-classes). Each
digit in the 60, 000 training images and 10, 000 test
images is normalized to fit in a 20×20 pixel box while
preserving their aspect ratio. We scale the pixel values
to the [0, 1] range before inputting to our models.

For our first experiment on this dataset, we train mod-
els with two fully connected layers each with 800 out-
put units using either tanh, sigmoid or relu activation
functions to compare to Dropout in (Hinton et al.,
2012). The first layer takes the image pixels as input,
while the second layer’s output is fed into a 10-class
softmax classification layer. In Table 2 we show the
performance of various activations functions, compar-
ing No-Drop, Dropout and DropConnect in the fully
connected layers. No data augmentation is utilized in
this experiment. We use an initial learning rate of 0.1
and train for 600-400-20 epochs using our schedule.

From Table 2 we can see that both Dropout and Drop-

3In all experiments the bias learning rate is 2× the
learning rate for the weights. Additionally weights are ini-
tialized with N(0, 0.1) random values for fully connected
layers and N(0, 0.01) for convolutional layers.

neuron model error(%)
5 network

voting
error(%)

relu No-Drop 1.62±0.037 1.40
Dropout 1.28±0.040 1.20
DropConnect 1.20±0.034 1.12

sigmoid No-Drop 1.78±0.037 1.74
Dropout 1.38±0.039 1.36
DropConnect 1.55±0.046 1.48

tanh No-Drop 1.65±0.026 1.49
Dropout 1.58±0.053 1.55
DropConnect 1.36±0.054 1.35

Table 2. MNIST classification error rate for models with
two fully connected layers of 800 neurons each. No data
augmentation is used in this experiment.

Connect perform better than not using either method.
DropConnect mostly performs better than Dropout in
this task, with the gap widening when utilizing the
voting over the 5 models.

To further analyze the effects of DropConnect, we
show three explanatory experiments in Fig. 2 using a 2-
layer fully connected model on MNIST digits. Fig. 2a
shows test performance as the number of hidden units
in each layer varies. As the model size increases, No-
Drop overfits while both Dropout and DropConnect
improve performance. DropConnect consistently gives
a lower error rate than Dropout. Fig. 2b shows the ef-
fect of varying the drop rate p for Dropout and Drop-
Connect for a 400-400 unit network. Both methods
give optimal performance in the vicinity of 0.5, the
value used in all other experiments in the paper. Our
sampling approach gives a performance gain over mean
inference (as used by Hinton (Hinton et al., 2012)),
but only for the DropConnect case. In Fig. 2c we
plot the convergence properties of the three methods
throughout training on a 400-400 network. We can
see that No-Drop overfits quickly, while Dropout and
DropConnect converge slowly to ultimately give supe-
rior test performance. DropConnect is even slower to
converge than Dropout, but yields a lower test error
in the end.

In order to improve our classification result, we choose
a more powerful feature extractor network described in
(Ciresan et al., 2012) (relu is used rather than tanh).
This feature extractor consists of a 2 layer CNN with
32-64 feature maps in each layer respectively. The
last layer’s output is treated as input to the fully con-
nected layer which has 150 relu units on which No-
Drop, Dropout or DropConnect are applied. We re-
port results in Table 3 from training the network on
a) the original MNIST digits, b) cropped 24 × 24 im-
ages from random locations, and c) rotated and scaled
versions of these cropped images. We use an initial
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Figure 2. Using the MNIST dataset, in a) we analyze the ability of Dropout and DropConnect to prevent overfitting
as the size of the 2 fully connected layers increase. b) Varying the drop-rate in a 400-400 network shows near optimal
performance around the p = 0.5 proposed by (Hinton et al., 2012). c) we show the convergence properties of the train/test
sets. See text for discussion.

learning rate of 0.01 with a 700-200-100 epoch sched-
ule, no momentum and preprocess by subtracting the
image mean.

crop rotation
scaling

model error(%)
5 network

voting
error(%)

no no No-Drop 0.77±0.051 0.67
Dropout 0.59±0.039 0.52
DropConnect 0.63±0.035 0.57

yes no No-Drop 0.50±0.098 0.38
Dropout 0.39±0.039 0.35
DropConnect 0.39±0.047 0.32

yes yes No-Drop 0.30±0.035 0.21
Dropout 0.28±0.016 0.27
DropConnect 0.28±0.032 0.21

Table 3. MNIST classification error. Previous state of the
art is 0 .47% (Zeiler and Fergus, 2013) for a single model
without elastic distortions and 0.23% with elastic distor-
tions and voting (Ciresan et al., 2012).

We note that our approach surpasses the state-of-the-
art result of 0.23% (Ciresan et al., 2012), achieving a
0.21% error rate, without the use of elastic distortions
(as used by (Ciresan et al., 2012)).

6.2. CIFAR-10

CIFAR-10 is a data set of natural 32x32 RGB images
(Krizhevsky, 2009) in 10-classes with 50, 000 images
for training and 10, 000 for testing. Before inputting
these images to our network, we subtract the per-pixel
mean computed over the training set from each image.

The first experiment on CIFAR-10 (summarized in
Table 4) uses the simple convolutional network fea-
ture extractor described in (Krizhevsky, 2012)(layers-
80sec.cfg) that is designed for rapid training rather
than optimal performance. On top of the 3-layer
feature extractor we have a 64 unit fully connected
layer which uses No-Drop, Dropout, or DropConnect.
No data augmentation is utilized for this experiment.

Since this experiment is not aimed at optimal perfor-
mance we report a single model’s performance with-
out voting. We train for 150-0-0 epochs with an ini-
tial learning rate of 0.001 and their default weight de-
cay. DropConnect prevents overfitting of the fully con-
nected layer better than Dropout in this experiment.

model error(%)
No-Drop 23.5
Dropout 19.7
DropConnect 18.7

Table 4. CIFAR-10 classification error using the simple
feature extractor described in (Krizhevsky, 2012)(layers-
80sec.cfg) and with no data augmentation.

Table 5 shows classification results of the network us-
ing a larger feature extractor with 2 convolutional
layers and 2 locally connected layers as described
in (Krizhevsky, 2012)(layers-conv-local-11pct.cfg). A
128 neuron fully connected layer with relu activations
is added between the softmax layer and feature extrac-
tor. Following (Krizhevsky, 2012), images are cropped
to 24x24 with horizontal flips and no rotation or scal-
ing is performed. We use an initial learning rate of
0.001 and train for 700-300-50 epochs with their de-
fault weight decay. Model voting significantly im-
proves performance when using Dropout or DropCon-
nect, the latter reaching an error rate of 9.41%. Ad-
ditionally, we trained a model with 12 networks with
DropConnect and achieved a state-of-the-art result of
9.32%, indicating the power of our approach.

6.3. SVHN

The Street View House Numbers (SVHN) dataset in-
cludes 604, 388 images (both training set and extra set)
and 26, 032 testing images (Netzer et al., 2011). Simi-
lar to MNIST, the goal is to classify the digit centered
in each 32x32 RGB image. Due to the large variety of
colors and brightness variations in the images, we pre-
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model error(%) 5 network voting
error(%)

No-Drop 11.18± 0.13 10.22
Dropout 11.52± 0.18 9.83
DropConnect 11.10± 0.13 9.41

Table 5. CIFAR-10 classification error using a larger fea-
ture extractor. Previous state-of-the-art is 9.5% (Snoek
et al., 2012). Voting with 12 DropConnect networks pro-
duces an error rate of 9.32%, significantly beating the
state-of-the-art.

process the images using local contrast normalization
as in (Zeiler and Fergus, 2013). The feature extractor
is the same as the larger CIFAR-10 experiment, but
we instead use a larger 512 unit fully connected layer
with relu activations between the softmax layer and
the feature extractor. After contrast normalizing, the
training data is randomly cropped to 28 × 28 pixels
and is rotated and scaled. We do not do horizontal
flips. Table 6 shows the classification performance for
5 models trained with an initial learning rate of 0.001
for a 100-50-10 epoch schedule.

Due to the large training set size both Dropout and
DropConnect achieve nearly the same performance as
No-Drop. However, using our data augmentation tech-
niques and careful annealing, the per model scores eas-
ily surpass the previous 2.80% state-of-the-art result
of (Zeiler and Fergus, 2013). Furthermore, our vot-
ing scheme reduces the relative error of the previous
state-of-to-art by 30% to achieve 1.94% error.

model error(%) 5 network voting
error(%)

No-Drop 2.26± 0.072 1.94
Dropout 2.25± 0.034 1.96
DropConnect 2.23± 0.039 1.94

Table 6. SVHN classification error. The previous state-of-
the-art is 2.8% (Zeiler and Fergus, 2013).

6.4. NORB

In the final experiment we evaluate our models on
the 2-fold NORB (jittered-cluttered) dataset (LeCun
et al., 2004), a collection of stereo images of 3D mod-
els. For each image, one of 6 classes appears on a
random background. We train on 2-folds of 29, 160
images each and the test on a total of 58, 320 images.
The images are downsampled from 108×108 to 48×48
as in (Ciresan et al., 2012).

We use the same feature extractor as the larger
CIFAR-10 experiment. There is a 512 unit fully con-
nected layer with relu activations placed between the
softmax layer and feature extractor. Rotation and
scaling of the training data is applied, but we do not
crop or flip the images as we found that to hurt per-

model error(%)
5 network

voting
error(%)

No-Drop 4.48± 0.78 3.36
Dropout 3.96± 0.16 3.03
DropConnect 4.14± 0.06 3.23

Table 7. NORM classification error for the jittered-
cluttered dataset, using 2 training folds. The previous
state-of-art is 3.57% (Ciresan et al., 2012).

formance on this dataset. We trained with an initial
learning rate of 0.001 and anneal for 100-40-10 epochs.

In this experiment we beat the previous state-of-the-
art result of 3.57% using No-Drop, Dropout and Drop-
Connect with our voting scheme. While Dropout sur-
passes DropConnect slightly, both methods improve
over No-Drop in this benchmark as shown in Table 7.

7. Discussion

We have presented DropConnect, which generalizes
Hinton et al. ’s Dropout (Hinton et al., 2012) to the en-
tire connectivity structure of a fully connected neural
network layer. We provide both theoretical justifica-
tion and empirical results to show that DropConnect
helps regularize large neural network models. Results
on a range of datasets show that DropConnect often
outperforms Dropout. While our current implementa-
tion of DropConnect is slightly slower than No-Drop or
Dropout, in large models models the feature extractor
is the bottleneck, thus there is little difference in over-
all training time. DropConnect allows us to train large
models while avoiding overfitting. This yields state-
of-the-art results on a variety of standard benchmarks
using our efficient GPU implementation of DropCon-
nect.

8. Appendix

8.1. Preliminaries

Definition 1 (DropConnect Network). Given data
set S with ` entries: {x1,x2, . . . ,x`} with labels
{y1, y2, . . . , y`}, we define the DropConnect network
as a mixture model: o =

∑
M p(M)f(x; θ,M) =

EM [f(x; θ,M)]

Each network f(x; θ,M) has weights p(M) and net-
work parameters are θ = {Ws,W,Wg}. Ws are the
softmax layer parameters, W are the DropConnect
layer parameters and Wg are the feature extractor pa-
rameters. Further more, M is the DropConnect layer
mask.

Now we reformulate the cross-entropy loss on top of
the softmax into a single parameter function that com-
bines the softmax output and labels, as a logistic.
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Definition 2 (Logistic Loss). The following loss func-
tion defined on k-class classification is call the logistic
loss function:

Ay(o) = −
∑
i

yi ln
exp oi∑
j exp(oj)

= −oi + ln
∑
j

exp(oj)

where y is binary vector with ith bit set on

Lemma 1. Logistic loss function A has the following
properties: 1) Ay(0) = ln k, 2) −1 ≤ A′y(o) ≤ 1, and
3)A′′y(o) ≥ 0.

Definition 3 (Rademacher complexity). For a sample
S = {x1, . . . , x`} generated by a distribution D on set
X and a real-valued function class F in domain X, the
empirical Rademacher complexity of F is the random
variable:

R̂` (F) = Eσ

[
sup
f∈F
|2
`

∑̀
i=1

σif(xi)| | x1, . . . , x`

]

where sigma = {σ1, . . . , σ`} are independent uniform
{±1}-valued (Rademacher) random variables. The

Rademacher complexity of F is R`(F) = ES

[
R̂` (F)

]
.

8.2. Bound Derivation

Lemma 2 ((Ledoux and Talagrand, 1991)). Let F
be class of real functions and H = [Fj ]kj=1 be a k-

dimensional function class. If A: Rk → R is a Lips-
chitz function with constant L and satisfies A(0) = 0,
then R̂`(A ◦H) ≤ 2kLR̂`(F)

Lemma 3 (Classifier Generalization Bound). Gener-
alization bound of a k-class classifier with logistic loss
function is directly related Rademacher complexity of
that classifier:

E[Ay(o)] ≤ 1
`

∑`
i=1Ayi(oi) + 2kR̂`(F) + 3

√
ln(2/δ)

2`

Lemma 4. For all neuron activations: sigmoid, tanh
and relu, we have: R̂`(a ◦ F) ≤ 2R̂`(F)

Lemma 5 (Network Layer Bound). Let G be the class
of real functions Rd → R with input dimension F , i.e.
G = [Fj ]dj=1 and HB is a linear transform function

parametrized by W with ‖W‖2 ≤ B, then R̂`(H◦G) ≤√
dBR̂`(F)

Proof. R̂`(H◦G) = Eσ
[
suph∈H,g∈G

∣∣∣ 2` ∑`
i=1 σih ◦ g(xi)

∣∣∣]
= Eσ

[
supg∈G,‖W‖≤B

∣∣∣〈W, 2
`

∑`
i=1 σig(xi)

〉∣∣∣]
≤ BEσ

[
supfj∈F

∥∥∥∥[ 2` ∑`
i=1 σ

j
i f
j(xi)

]d
j=1

∥∥∥∥]
= B
√
dEσ

[
supf∈F

∣∣∣ 2` ∑`
i=1 σif(xi)

∣∣∣] =
√
dBR̂`(F)

Remark 1. Given a layer in our network, we denote
the function of all layers before as G = [Fj ]dj=1. This

layer has the linear transformation function H and ac-
tivation function a. By Lemma 4 and Lemma 5, we
know the network complexity is bounded by:

R̂`(H ◦ G) ≤ c
√
dBR̂`(F)

where c = 1 for identity neuron and c = 2 for others.

Lemma 6. Let FM be the class of real functions that

depend on M , then R̂`(EM [FM ]) ≤ EM

[
R̂`(FM )

]
Proof. R̂`(EM [FM ]) = R̂`

(∑
M p (m)FM

)
≤∑

M R̂`(p(m)FM ) ≤
∑
M |p(m)|R̂`(FM ) = EM

[
R̂`(FM )

]

Theorem 1 (DropConnect Network Complexity).
Consider the DropConnect neural network defined in
Definition 1. Let R̂`(G) be the empirical Rademacher
complexity of the feature extractor and R̂`(F) be the
empirical Rademacher complexity of the whole net-
work. In addition, we assume:

1. weight parameter of DropConnect layer |W | ≤ Bh
2. weight parameter of s, i.e. |Ws| ≤ Bs (L2-norm of
it is bounded by

√
dkBs).

Then we have: R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G)

Proof.

R̂`(F) = R̂`(EM [f(x; θ,M ]) ≤ EM
[
R̂`(f(x; θ,M)

]
(6)

≤ (
√
dkBs)

√
dEM

[
R̂`(a ◦ hM ◦ g)

]
(7)

= 2
√
kdBsEM

[
R̂`(hM ◦ g)

]
(8)

where hM = (M ? W )v. Equation (6) is based on
Lemma 6, Equation (7) is based on Lemma 5 and
Equation (8) follows from Lemma 4.

EM
[
R̂`(hM ◦ g)

]
= EM,σ

[
sup

h∈H,g∈G

∣∣∣∣∣2` ∑̀
i=1

σiW
TDMg(xi)

∣∣∣∣∣
]

(9)

= EM,σ

[
sup

h∈H,g∈G

∣∣∣∣∣
〈
DMW,

2

`

∑̀
i=1

σig(xi)

〉∣∣∣∣∣
]

≤ EM
[
max
W
‖DMW‖

]
Eσ

 sup
gj∈G

∥∥∥∥∥∥
[

2

`

∑̀
i=1

σig
j(xi)

]n
j=1

∥∥∥∥∥∥
(10)

≤ Bhp
√
nd
(√

nR̂`(G)
)

= pn
√
dBhR̂`(G)

where DM in Equation (9) is an diagonal matrix
with diagonal elements equal to m and inner prod-
uct properties lead to Equation (10). Thus, we have:

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G)



Regularization of Neural Networks using DropConnect

References

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-
column deep neural networks for image classifica-
tion. In Proceedings of the 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), CVPR ’12, pages 3642–3649, Washington,
DC, USA, 2012. IEEE Computer Society. ISBN 978-
1-4673-1226-4.

G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Improving neu-
ral networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012.

A. Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. Master’s thesis, University of
Toront, 2009.

A. Krizhevsky. cuda-convnet. http://code.google.

com/p/cuda-convnet/, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278 –2324,
nov 1998. ISSN 0018-9219. doi: 10.1109/5.726791.

Y. LeCun, F. J. Huang, and L. Bottou. Learning meth-
ods for generic object recognition with invariance to
pose and lighting. In Proceedings of the 2004 IEEE
computer society conference on Computer vision and
pattern recognition, CVPR’04, pages 97–104, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

M. Ledoux and M. Talagrand. Probability in Banach
Spaces. Springer, New York, 1991.

D. J. C. Mackay. Probable networks and plausible
predictions - a review of practical bayesian methods
for supervised neural networks. In Bayesian methods
for backpropagation networks. Springer, 1995.

V. Nair and G. E. Hinton. Rectified Linear Units Im-
prove Restricted Boltzmann Machines. In ICML,
2010.

Y. Netzer, T. Wang, Coates A., A. Bissacco, B. Wu,
and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learn-
ing 2011, 2011.

J. Snoek, H. Larochelle, and R. A. Adams. Practi-
cal bayesian optimization of machine learning algo-
rithms. In Neural Information Processing Systems,
2012.

A. S. Weigend, D. E. Rumelhart, and B. A. Huberman.
Generalization by weight-elimination with applica-
tion to forecasting. In NIPS, 1991.

M. D. Zeiler and R. Fergus. Stochastic pooling for
regualization of deep convolutional neural networks.
In ICLR, 2013.

http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/


000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Regularization of Neural Networks using DropConnect
Supplementary Material

1. Preliminaries

Definition 1 (DropConnect Network). Given data
set S with ` entries: {x1,x2, . . . ,x`} with labels
{y1, y2, . . . , y`}, we define DropConnect network as a
mixture model:

o =
∑
m

p(M)f(x; θ,M) = Em [f(x; θ,M)] (1)

Each network f(x; θ,M) has weights p(M) and net-
work parameters are θ = {Ws,W,Wg}. Ws are the
softmax layer parameters, w are the DropConnect
layer parameters and Wg are the feature extractor pa-
rameters. Further more, m is the DropConnect layer
mask.

Remark 1. when each element of Mi has equal proba-
bility of being on and off (p = 0.5), the mixture model
has equal weights for all sub-models f(x; θ,M), oth-
erwise the mixture model has larger weights in some
sub-models than others.

Reformulate cross-entropy loss on top of soft-max into
a single parameter function that combines soft-max
output and labels. Same as logistic.

Definition 2 (Logistic Loss). The following loss func-
tion defined on k-class classification is call logistic loss
function:

Ay(o) = −
∑
i

yi ln
exp oi∑
j exp(oj)

= −oi + ln
∑
j

exp(oj)

where y is binary vector with ith bit set on

Lemma 1. Logistic loss function A has the following
properties:

1. Ay(0) = ln k
2. −1 ≤ A′y(o) ≤ 1
3. A′′y(o) ≥ 0.

The first one says A(0) is depend on some constant
related with number of labels. The second one says A
is Lipschitz function with L = 1. The third one says
A is a convex function w.r.t x.

Definition 3 (Rademacher complexity). For a sample
S = {x1, . . . , x`} generated by a distribution D on set

X and a real-valued function class F in domain X, the
empirical Rademacher complexity of F is the random
variable:

R̂` (F) = Eσ

[
sup
f∈F
|2
`

∑̀
i=1

σif(xi)| | x1, . . . , x`

]

where sigma = {σ1, . . . , σ`} are independent uniform
{±1}-valued (Rademacher) random variables. The

Rademacher complexity of F is R`(F) = ES

[
R̂` (F)

]
.

Theorem 1 ((Koltchinskii and Panchenko, 2000)).
Fix δ ∈ (0, 1) and let F be a class of functions mapping
from M to [0, 1]. Let (Mi)

`
i−1 be drawn independently

according to a probability distribution D. Then with
probability at least 1−δ over random draws of samples
of size `, every f ∈ F satisfies:

E [f(M)] ≤ Ê [f(M)] +R`(F) +

√
ln (2/δ)

2`

≤ Ê [f(M)] + R̂`(F) + 3

√
ln (2/δ)

2`

2. Bound Derivation

Theorem 2 ((Ledoux and Talagrand, 1991)). Let F
be class of real functions. If A: R → R is Lipschitz
with constant L and satisfies A(0) = 0, then R̂`(A ◦
F ) ≤ 2LR̂(F)

Lemma 2. Let F be class of real functions and H =
[Fj ]kj=1 be a k-dimensional function class. If A: Rk →
R is a Lipschitz function with constant L and satisfies
A(0) = 0, then R̂`(A ◦H) ≤ 2kLR̂`(F)

Lemma 3 (Classifier Generalization Bound). Gener-
alization bound of a k-class classifier with logistic loss
function is directly related Rademacher complexity of
that classifier

E[Ay(o)] ≤ 1

`

∑̀
i=1

Ayi(oi) + 2kR̂`(F) + 3

√
ln (2/δ)

2`

Proof. From Lemma 1, Logistic loss function (A −
c)(x) ∈ A due to (A − c)′(x) ≤ 1 and (A − c)(0) = 0
with some constant c. By Lemma 2: R̂`((A−c)◦F) ≤
2kR̂`(F)
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Lemma 4. For all neuron activations: sigmoid, tanh
and relu, we have: R̂`(a ◦ F) ≤ 2R̂`(F)

Lemma 5 (Network Layer Bound). Let G be the class
of real functions Rd → R with input dimension F , i.e.
G = [Fj ]dj=1 and HB is a linear transform function

parameterized by W with ‖W‖2 ≤ B, then R̂`(H◦G) ≤√
dBR̂`(F)

Proof.

R̂`(H ◦ G)

= Eσ

[
sup

h∈H,g∈G

∣∣∣∣∣2` ∑̀
i=1

σih ◦ g(xi)

∣∣∣∣∣
]

= Eσ

[
sup

g∈G,‖W‖≤B

∣∣∣∣∣
〈
W,

2

`

∑̀
i=1

σig(xi)

〉∣∣∣∣∣
]

≤ BEσ

 sup
fj∈F

∥∥∥∥∥∥
[

2

`

∑̀
i=1

σji f
j(xi)

]d
j=1

∥∥∥∥∥∥


= B
√
dEσ

[
sup
f∈F

∣∣∣∣∣2` ∑̀
i=1

σif(xi)

∣∣∣∣∣
]

=
√
dBR̂`(F)

Remark 2. Given a layer in our network, we denote
the function of all layers before as G = [Fj ]dj=1. This
layer has the linear transformation function H and ac-
tivation function a. By Lemma 4 and Lemma 5, we
know the network complexity is bounded by:

R̂`(H ◦ G) ≤ c
√
dBR̂`(F)

where c = 1 for identity neuron and c = 2 for others.

Lemma 6. Let FM be the class of real functions that

depend on m, then R̂`(EM [FM ]) ≤ EM

[
R̂`(FM )

]
Proof.

R̂`(EM [FM ]) = R̂`

(∑
M

p (M)FM

)
≤
∑
M

R̂`(p(M)FM )

≤
∑
M

|p(M)|R̂`(FM ) = EM

[
R̂`(FM )

]
because of common fact: 1) R̂`(cF) = |c|R̂`(F) and 2)
R̂`(
∑
i Fi) ≤

∑
i R̂`(Fi)

Theorem 3 (DropConnect Network Complexity).
Consider the DropConnect neural network defined in
Definition 1. Let R̂`(G) be the empirical Rademacher
complexity of the feature extractor and R̂`(F) be the
empirical Rademacher complexity of the whole net-
work. In addition, we assume:

1. weight parameter of DropConnect layer |W | ≤ Bh
2. weight parameter of s, i.e. |Ws| ≤ Bs (L2-norm of
it is bounded by

√
dkBs).

Then we have:

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G)

Proof.

R̂`(F) = R̂`(EM [f(x; θ,M ])

≤ EM
[
R̂`(f(x; θ,M)

]
(2)

= EM
[
R̂`(s ◦ a ◦ hm ◦ g)

]
≤ (

√
dkBs)

√
dEM

[
R̂`(a ◦ hm ◦ g)

]
(3)

= 2
√
kdBsEM

[
R̂`(hm ◦ g)

]
(4)

where hm = (M ◦ W )v. Equation (2) is based on
Lemma 6, Equation (3) is based on Lemma 5 and
Equation (4) follows from Lemma 4.

EM
[
R̂`(hm ◦ g)

]
= Em,σ

[
sup

h∈H,g∈G

∣∣∣∣∣2` ∑̀
i=1

σiw
TDMg(xi)

∣∣∣∣∣
]

(5)

= Em,σ

[
sup

h∈H,g∈G

∣∣∣∣∣
〈
DMw,

2

`

∑̀
i=1

σig(xi)

〉∣∣∣∣∣
]

≤ EM
[
max
w
‖DMw‖

]
Eσ

 sup
gj∈G

∥∥∥∥∥∥
[
2

`

∑̀
i=1

σig
j(xi)

]n
j=1

∥∥∥∥∥∥
(6)

≤ Bhp
√
nd
(√

nR̂`(G)
)
= pn

√
dBhR̂`(G)

where DM in Equation (5) is an diagonal matrix with
diagonal elements equal to m and inner product prop-
erties lead to Equation (6). Thus, we have

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G)

Remark 3. Theorem 3 implies that p is an additional
regularizer we have added to network when we convert
a normal neural network to a network with DropCon-
nect layers. Consider the following extreme cases:

1. p = 0: the network generalization bound equals to
0, which is true because classifier does not depends on
input any more

2. p = 1: reduce to normal network
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Symbol Description Related Formula
y Data Label, can either be integer label for bit vec-

tor(depends on context)
x Network input data
g(.) Feature extractor function with parameter Wg

v Feature extractor network output v = g(x,Wg)
M DropConnect connection information parameter

(weight mask)
h(.) DropConnect transformation function with parame-

ter W,M
u DropConnect output u = h(v;W,M)
a(.) DropConnect activation function
r DropConnect after activation r = a(u)
s(.) Dimension reduction layer function with parameter

Ws

o Dimension reduction layer output (network output) o = s(r;Ws)
θ All parameter of network expect weight mask θ = {Ws,W,Wg}
f(.) Overall classifier(network) output o = f(x; θ,M)
λ Weight penalty
A(.) Data Loss Function A(o− y)
L(.) Over all objective function L(x, y) =

∑
iA(oi − yi) + 1/2λ‖W‖22

n Dimension of feature extractor output
d Dimension of DropConnect layer output
k number of class dim(y) = k

Table 1. Symbol Table
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