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Abstract
Let G = (V,E) be a simple and finite graph with vertex set V (G), and
let k ≥ 1 be an integer. A signed double Roman k-dominating function
(SDRkDF) on a graph G is a function f : V (G) → {−1, 1, 2, 3} such
that (i) every vertex v with f(v) = −1 is adjacent to at least two vertices
assigned with 2 or to at least one vertex w with f(w) = 3, (ii) every vertex
v with f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and
(iii)

∑
u∈N [v] f(u) ≥ k holds for any vertex v. The weight of an SDRkDF

f is
∑

u∈V (G) f(u), and the minimum weight of an SDRkDF is the signed

double Roman k-domination number γk
sdR(G) of G. In this paper, we

initiate the study of the signed double Roman k-domination number in
graphs and we present lower and upper bounds for γk

sdR(T ). In addition
we determine this parameter for some classes of graphs.
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1 Introduction

Throughout this paper, G denotes a simple graph, with vertex set V = V (G) and
edge set E = E(G). The order |V | of G is denoted by n = n(G). Denote by Kn

the complete graph and by Cn the cycle of order n. For every vertex v ∈ V , the
open neighborhood of v is the set N(v) = {u ∈ V (G) | uv ∈ E(G)} and the closed
neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
d(v) = |N(v)|. The minimum degree and the maximum degree of a graph G are
denoted by δ = δ(G) and Δ = Δ(G), respectively. If every vertex of G has degree
r, then G is said to be r-regular. The open neighborhood of a set S ⊆ V is the set
N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set N [S] = N(S) ∪ S.
The distance dG(u, v) between two vertices u and v in a connected graph G is the
length of a shortest u−v path in G. The diameter of a graph G, denoted by diam(G),
is the greatest distance between two vertices of G. The complement of a graph G
is denoted by G. A leaf of G is a vertex with degree one and a support vertex is
a vertex adjacent to a leaf. A tree T is a double star if it contains exactly two
vertices that are not leaves. A double star with respectively p and q leaves attached
at each support vertex is denoted by DSp,q. A bipartite graph is one whose vertex
set can be partitioned into two subsets X and Y , so that each edge has one end in
X and one end in Y ; such a partition (X, Y ) is called a bipartition of the graph. A
complete bipartite graph is a simple bipartite graph with bipartition (X, Y ) in which
each vertex of X is joined to each vertex of Y ; if |X| = m and |Y | = n, such a graph
is denoted by Km,n.

A set S ⊆ V in a graph G is a dominating set if every vertex of G is either in
S or adjacent to a vertex of S. The domination number γ(G) equals the minimum
cardinality of a dominating set in G. For a comprehensive treatment of domination
in graphs, see the monographs by Haynes, Hedetniemi, and Slater [9, 10].

For a subset S ⊆ V (G) of vertices of a graph G and a function f : V (G) → R, we
define f(S) =

∑
x∈S f(x). For a vertex v, we denoted f(N [v]) by f [v] for notional

convenience.
A double Roman dominating function(DRDF) is a function f :V (G) → {0, 1, 2, 3}

having the property that if f(v) = 0, then vertex v must have at least two neighbors
assigned 2 under f or one neighbor with f(w) = 3, and if f(v) = 1, then vertex v
must have at least one neighbor with f(w) ≥ 2. The weight of a double Roman dom-
inating function f is ω(f) =

∑
v∈V (G) f(v). The double Roman dominating number

of G is the minimum weight of a double Roman dominating function on G. The
double Roman domination was introduced by Beeler et al. [7] and has been studied
by several authors [1, 2, 4, 6, 16, 17, 21].

A signed Roman k-dominating function (SRkDF) on a graph G is a function
f : V → {−1, 1, 2} satisfying the conditions that (i)

∑
x∈N [v] f(x) ≥ k for each

vertex v ∈ V , and (ii) every vertex u for which f(u) = −1 is adjacent to at least
one vertex v for which f(v) = 2. The weight of an SRkDF is the sum of its function
values over all vertices. The signed Roman k-domination number of G, denoted
γk
sR(G), is the minimum weight of an SRkDF in G. The signed Roman k-domination

number was introduced by Henning and Volkman in [11] and has been studied in
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[12, 13, 18, 19, 20]. The special case k = 1 was introduced and investigated in [5]
and has been studied in [14, 15].

In this paper, we continue the study of the double Roman dominating functions
on graphs. Inspired by the previous research on the signed Roman k-dominating
function [11, 12], we define the signed double Roman k-dominating function as fol-
lows.

Let k ≥ 1 be an integer. A function f : V (G) → {−1, 1, 2, 3} is a signed double
Roman k-dominating function (SDRkDF) on a graph G if the following conditions
are fulfilled:

(i)
∑

x∈N [v] f(v) ≥ k for every vertex v ∈ V (G);

(ii) if f(v) = −1, then vertex v must have at least two neighbors with label 2 or
one neighbor with label 3;

(iii) if f(v) = 1, then vertex v must have at least one neighbor with f(w) ≥ 2.
The weight of an SDRkDF is the sum of its function values over all vertices. The

signed double Roman k-domination number of G, denoted γk
sdR(G), is the minimum

weight of an SDRkDF in G. A signed double Roman k-dominating function of G
of weight γk

sdR(G) is called a γk
sdR(G)-function or γk

sdR-function of G. The special
case k = 1 has been studied by Ahangar et al. [3]. If f is a signed double Roman
k-dominating function of G and v ∈ V (G), then by definition we must have k ≤∑

x∈N [v] f(v) ≤
∑

x∈N [v] 3 = 3(deg(v) + 1) yielding deg(v) ≥ k/3 − 1 and so δ(G) ≥
k/3−1. As the assumption δ(G) ≥ k/3−1 is necessary, we always assume that when
we discuss γk

sdR(G), all graphs involved satisfy δ(G) ≥ k/3− 1 and thus n(G) ≥ k/3.
An SDRkDF f can be represented by the ordered quadruple (V−1, V1, V2, V3) of

V (G) where Vi = {v ∈ V (G) | f(v) = i} for i ∈ {−1, 1, 2, 3}. In this paper we
initiate the study of signed double Roman k-domination numbers in graphs and
investigate their basic properties. In particular, we establish some sharp bounds on
signed double Roman k-domination. In addition, we determine the signed double
Roman k-domination number of some classes of graphs.

We make use of the following results in this paper.

Observation 1.1. If f = (V−1, V1, V2, V3) is an SDRkDF on a graph G of order n,
then

(a) |V−1|+ |V1|+ |V2|+ |V3| = n.
(b) ω(f) = |V1|+ 2|V2|+ 3|V3| − |V−1|.

Observation 1.2. If k ≥ 1 is an integer and G is a graph of order n with δ(G) ≥
�k−1

2
	, then γk

sdR(G) ≤ 2n.

Proof. Clearly, the function f : V (G) → {−1, 1, 2, 3} defined by f(x) = 2 for x ∈
V (G) is an SDRkDF on G of weight 2n and thus γk

sdR(G) ≤ 2n.

Let k ≥ 2 and n ≥ �k
2
	 be integers and let V be a set of size n. Define fk

n : V →
{−1, 1, 2, 3} as follows. If n+ k ≡ 0 (mod 3), then let f k

n assign 2 to n+k
3

elements of
V and −1 to the remaining elements, if n + k ≡ 1 (mod 3), then let f k

n assign 3 to
one element of V , 2 to n+k−4

3
elements of V and −1 to the remaining elements, and

if n+ k ≡ 2 (mod 3), then let fk
n assign 3 to two elements of V , 2 to n+k−8

3
elements

of V and −1 to the remaining elements.
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Observation 1.3. Let k ≥ 2 and n ≥ �k
2
	 be integers. If n + k ≥ 6, then

γk
sdR(Kn) = k.

Proof. For any vertex v ∈ V (Kn), we have γk
sdR(G) = f [v] ≥ k. Now we show that

γk
sdR(Kn) ≤ k. If k is an even number and n = k/2, then the result follows from

Observation 1.2. If k is an odd number or n ≥ �k
2
	+ 1, then it is easy to verify that

the function fk
n defined above, is an SDRkDF on Kn of weight k, and so γk

sdR(G) ≤ k.
Thus γk

sdR(G) = k.

2 Basic properties and bounds

In this section we present basic properties of the signed double Roman k-dominating
function.

Proposition 2.1. Let f = (V−1, V1, V2, V3) be an SDRkDF on a graph G of order n.
If δ ≥ k − 1, then

(i) (3Δ + 3− k)|V3|+ (2Δ + 2− k)|V2|+ (Δ + 1− k)|V1| ≥ (δ + k + 1)|V−1|.
(ii) (3Δ + δ + 4)|V3|+ (2Δ + δ + 3)|V2|+ (Δ + δ + 2)|V1| ≥ (δ + k + 1)n.
(iii) (Δ + δ + 2)ω(f) ≥ (δ −Δ+ 2k)n+ (δ −Δ)|V2|+ 2(δ −Δ)|V3|.
(iv) ω(f) ≥ (δ − 3Δ + 2k − 2)n/(3Δ + δ + 4) + |V2|+ 2|V3|.

Proof. (i) It follows from Observation 1.1(a) that

k(|V−1|+ |V1|+ |V2|+ |V3|) = kn

≤
∑

v∈V (G)

f [v]

=
∑

v∈V (G)

(d(v) + 1)f(v)

=
∑
v∈V3

3(d(v) + 1) +
∑
v∈V2

2(d(v) + 1) +
∑
v∈V1

(d(v) + 1)

−
∑
v∈V−1

(d(v) + 1)

≤ 3(Δ+1)|V3|+2(Δ+1)|V2|+(Δ+1)|V1| − (δ+1)|V−1|.

The inequality chain leads to the desired bound in (i).
(ii) By Observation 1.1(a), we have |V−1| = n−|V1|− |V2|− |V3|. By this identity

and Part (i) of Proposition 2.1, we reach (ii).
(iii) According to Observation 1.1 and Part (ii) of Proposition 2.1, we obtain Part

(iii) of Proposition 2.1 as follows.

(Δ + δ + 2)ω(f) = (Δ + δ + 2)(2|V1|+ 3|V2|+ 4|V3| − n)

≥ 2(δ + k + 1)n− 2(3Δ + δ + 4)|V3| − 2(2Δ+ δ + 3)|V2|
+(Δ + δ + 2)(3|V2|+ 4|V3| − n)

= (δ −Δ+ 2k)n+ (δ −Δ)|V2|+ 2(δ −Δ)|V3|.
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(iv) The inequality chain in the proof of Part (i) and Observation 1.1(a) show
that

kn ≤ 3(Δ + 1)|V3|+ 2(Δ + 1)|V2|+ (Δ + 1)|V1| − (δ + 1)|V−1|
≤ 3(Δ + 1)|V1 ∪ V2 ∪ V3| − (δ + 1)|V−1|
= 3(Δ + 1)|V1 ∪ V2 ∪ V3| − (δ + 1)(n− |V1 ∪ V2 ∪ V3|)
= (3Δ + δ + 4)|V1 ∪ V2 ∪ V3| − (δ + 1)n

and so

|V1 ∪ V2 ∪ V3| ≥ n(δ + k + 1)

3Δ + δ + 4
.

Using this equality and Observation 1.1, we obtain

ω(f) = 2|V1 ∪ V2 ∪ V3| − n+ |V2|+ 2|V3|
≥ n(δ − 3Δ + 2k − 2)

3Δ + δ + 4
+ |V2|+ 2|V3|.

This is the bound in Part (iv), and the proof is complete.

Proposition 2.2. Let r be a non-negative integer with r ≥ �k−3
3
�. If G is an r-

regular graph of order n, then

γk
sdR(G) ≥ kn

r + 1
.

The equality holds for the complete graph Kn when n+ k ≥ 6.

Proof. Let f = (V−1, V1, V2, V3) be a γk
sdR(G)-function. We have

(r + 1)γk
sdR(G) = (r + 1)

∑
v∈V (G)

f(v) =
∑

v∈V (G)

(r + 1)f(v) =
∑

v∈V (G)

f [v] ≥ kn

and this leads to the desired bound. By Observation 1.3, the equality holds for the
complete graph Kn if n+ k ≥ 6.

Corollary 2.1. If G is a graph of order n, minimum degree δ ≥ k−1 and maximum
degree Δ, then

γk
sdR(G) ≥ (−3Δ2 + 3Δδ + 4kΔ− 3Δ + 3δ + 4k

(Δ + 1)(3Δ+ δ + 4)

)
n.

Proof. If δ < Δ, multiplying both sides of the inequality in Proposition 2.1 (iv) by
Δ − δ and adding the resulting inequality to the inequality in Proposition 2.1 (iii),
we obtain the desired lower bound.

If δ = Δ = r, the desired inequality can be simplified to γk
sdR(G) ≥ kn

r+1
. It

obviously holds according to Proposition 2.2.
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Proposition 2.3. If G is a graph of order n with δ(G) ≥ �k−3
3
	, then

γk
sdR(G) ≥ Δ(G) + k + 1− n.

Proof. Let u ∈ V (G) be a vertex of maximum degree, and let f be a γk
sdR(G)-function.

By the definitions we have

γk
sdR(G) = f [u] +

∑
x∈V (G)−N [u]

f(x) ≥ k − (n−Δ(G)− 1) = Δ(G) + k + 1− n,

and the proof is complete.

A set S ⊆ V (G) is a 2-packing of the graph G if N [u] ∩ N [v] = ∅ for any two
distinct vertices u, v ∈ S. The 2-packing number ρ(G) of G is defined by

ρ(G) = max{|S| : S is a 2-packing of G}.
Clearly, for all graphs G, ρ(G) ≤ γ(G).

Proposition 2.4. If G is a graph of order n with δ(G) ≥ �k−3
3
	, then

γk
sdR(G) ≥ ρ(G)(δ(G) + k + 1)− n.

Proof. Let {v1, v2, . . . , vρ(G)} be a 2-packing of G, and let f be a γk
sdR(G)-function.

Suppose A =
⋃ρ(G)

i=1 N [vi]. We have |A| =
ρ(G)∑
i=1

(d(vi)+ 1) ≥ ρ(G)(δ(G)+ 1) and hence

γk
sdR(G) =

ρ(G)∑
i=1

f [vi] +
∑

x∈V (G)−A

f(x)

≥ kρ(G) +
∑

x∈V (G)−A

f(x) ≥ kρ(G)− n+ |A|

≥ kρ(G)− n+ ρ(G)(δ(G) + 1) = ρ(G)(δ(G) + k + 1)− n.

Corollary 2.2. If G is a graph of order n with δ(G) ≥ �k−1
2
	 and ρ(G) = γ(G),

then
γk
sdR(G) ≥ (δ(G) + k + 1)γ(G)− n.

If G is the graph obtained from a graph H by adding a pendant edge at each vertex
of H , then clearly γk

sdR(G) = 3n(G)/2 and hence the bound in Corollary 2.2 is sharp.

Since for any connected graph G, we have ρ(G) ≥ 1 + �diam(G)
3

	, the next result
is an immediate consequence of Proposition 2.4.

Corollary 2.3. If G is a graph of order n with δ(G) ≥ �k−1
2
	, then

γk
sdR(G) ≥ (

1 +
⌊diam(G)

3

⌋)
(δ(G) + k + 1)− n.
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Next we present a so-called Nordhous-Gaddum type inequality for the signed
double Roman k-domination number of regular graphs.

Theorem 2.1. If G is an r-regular graph of order n such that r ≥ �k−3
3
� and

n− r − 1 ≥ �k−3
3
�, then

γk
sdR(G) + γk

sdR(G) ≥ 4kn

n+ 1
.

If n is even, then γk
sdR(G) + γk

sdR(G) ≥ 4k(n+1)
n+2

.

Proof. Since G is an r-regular, the complement G is (n− r − 1)-regular. By Propo-
sition 2.2

γk
sdR(G) + γk

sdR(G) ≥ kn
( 1

r + 1
+

1

n− r

)
.

By assumptions �k−3
3
� ≤ r ≤ n − 1 − �k−3

3
� and since the function g(x) = 1/(x +

1)+ 1/(n−x) takes its minimum at x = (n− 1)/2 when �k−3
3
� ≤ x ≤ n− 1−�k−3

3
�,

we obtain

γk
sdR(G) + γk

sdR(G) ≥ kn
( 2

n + 1
+

2

n + 1

)
=

4kn

n + 1
,

and this is the desired bound. If n is even, then the function g takes its minimum
at r = x = (n− 2)/2 or r = x = n/2, since r is an integer. This implies that

γk
sdR(G) + γk

sdR(G) ≥ kn
( 1

r + 1
+

1

n− r

) ≥ kn
(2
n
+

2

n+ 2

)
=

4k(n+ 1)

n + 2
,

and the proof is complete.

Next we establish bounds on the signed double Roman k-domination number in
terms of order and domination number.

Proposition 2.5. Let G be a connected graph of order n. If G has a γk
sdR(G)-function

f = (V−1, V1, V2, V3) with V−1 = ∅, then γk
sdR(G) ≥ n+ γ(G).

Proof. Let f = (V−1, V1, V2, V3) be a γk
sdR(G)-function such that V−1 = ∅. Since each

vertex in V1 must be adjacent to a vertex in V2 ∪ V3, we deduce that V2 ∪ V3 is a
dominating set of G. It follows from Observation 1.1 that

γk
sdR(G) = ω(f) = |V1|+ 2|V2|+ 3|V3| ≥ |V1|+ 2|V2|+ 2|V3| ≥ n+ γ(G).

Proposition 2.6. Let G be a graph of order n with δ(G) ≥ 1. If k ∈ {2, 3}, then
γk
sdR(G) ≤ n+ γ(G).

Furthermore, this bound is sharp.
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Proof. Let S be a γ(G)-set and define f : V (G) → {−1, 1, 2, 3} by f(x) = 2 for
x ∈ S and f(x) = 1 for x ∈ V (G) − S. Clearly, f is an SDRkDF on G of weight
n + γ(G) for k ∈ {2, 3} and this implies that γk

sdR(G) ≤ n+ γ(G) for k ∈ {2, 3}.
To prove the sharpness, let G2 = mK1 and let G3 be the graph obtained from a

graph H by adding a pendant edge at each vertex of H . Clearly, for any γk
sdR(Gk)-

function f = (V−1, V1, V2, V3) we have V−1 = ∅. It follows from Proposition 2.5 that
γk
sdR(Gk) ≥ n(Gk) + γ(Gk) yielding γk

sdR(Gk) = n(Gk) + γ(Gk).

The proof of next result is similar to the proof of Proposition 2.6 and therefore
it is omitted.

Proposition 2.7. For any graph G of order n with δ(G) ≥ 1,

γ4
sdR(G) ≤ n + 2γ(G).

The bound is sharp for the graph obtained from a graph H by adding at least two
pendant edges at each vertex of H.

3 Signed double Roman 2-domination

In this section, we present bounds on the signed double Roman 2-domination of G.
For convenience, we introduce some notation. For an SDR2DF f = (V−1, V1, V2, V3)
of G, we let V ′

−1 = {v ∈ V−1 | N(v) ∩ V3 �= ∅} and V ′′
−1 = V−1 − V ′

−1. For a subset
S ⊆ V , we let dS(v) denote the number of vertices in S that are adjacent to v. In
particular, dV (v) = d(v). For disjoint subsets U and W of vertices, we let [U,W ]
denote the set of edges between U and W . For notational convenience, we let V12 =
V1∪V2, V13 = V1∪V3, V123 = V1∪V2∪V3 and let |V12| = n12, |V13| = n13, |V123| = n123,
and let |V1| = n1, |V2| = n2 and |V3| = n3. Then, n123 = n1 + n2 + n3. Further,
we let |V−1| = n−1, and so n−1 = n − n123. Let G123 = G[V123] be the subgraph
induced by the set V123 and let G123 have size m123. For i = 1, 2, 3, if Vi �= ∅, let
Gi = G[Vi] be the subgraph induced by the set Vi and let Gi have size mi. Hence,
m123 = m1 +m2 +m3 + |[V1, V2]|+ |[V1, V3]|+ |[V2, V3]|.

For t ≥ 1, let Lt be the graph obtained from a graph H of order t by adding
3dH(v) + 1 pendant edges to each vertex v of H . Let H = {Lt | t ≥ 1}.
Theorem 3.1. Let G be a graph of order n and size m without isolated vertex. Then

γ2
sdR(G) ≥ 5n− 6m

2
,

with equality if and only if G ∈ H.

Proof. Let f = (V−1, V1, V2, V3) be a γ2
sdR(G)-function. If V−1 = ∅, then γ2

sdR(G) >
n ≥ 5n−6m

2
since G has no isolated vertex. Hence V−1 �= ∅. We consider the following

cases.

Case 1. V3 �= ∅.
Now, we consider the following subcases.
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Subcase 1.1. V2 �= ∅.
By the definition of an SDR2DF, each vertex in V−1 is adjacent to at least one vertex
in V3 or to at least two vertices in V2, and so

|[V−1, V123]| ≥ |[V−1, V3]|+ |[V−1, V2]| ≥ |V ′
−1|+ 2|V ′′

−1| ≥ n−1.

Furthermore we have

2n−1 ≤ 2|[V−1, V3]|+ |[V−1, V2]| = 2
∑
v∈V3

dV−1(v) +
∑
v∈V2

dV−1(v).

For each vertex v ∈ V3, we have that f(v) + 3dV3(v) + 2dV2(v) + dV1(v)− dV−1(v) =
f [v] ≥ 2, and so dV−1(v) ≤ 3dV3(v) + 2dV2(v) + dV1(v) + 1. Similarly, for each vertex
v ∈ V2, we have that dV−1(v) ≤ 3dV3(v) + 2dV2(v) + dV1(v). Now, we have

2n−1 ≤ 2
∑
v∈V3

dV−1(v) +
∑
v∈V2

dV−1(v)

≤ 2
∑
v∈V3

(3dV3(v) + 2dV2(v) + dV1(v) + 1) +
∑
v∈V2

(3dV3(v) + 2dV2(v) + dV1(v))

= (12m3 + 4|[V2, V3]|+ 2|[V1, V3]|+ 2n3) + (3|[V2, V3]|+ 4m2 + |[V1, V2]|)
= 12m3 + 4m2 + 7|[V2, V3]|+ 2|[V1, V3]|+ |[V1, V2]|+ 2n3

= 12m123 − 12m1 − 8m2 − 5|[V2, V3]| − 10|[V1, V3]| − 11|[V1, V2]|+ 2n3,

which implies that

m123 ≥ 1

12
(2n−1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]| − 2n3).

Hence,

m ≥ m123 + |[V−1, V123]|+m−1

≥ m123 + |[V−1, V123]|
≥ 1

12
(2n−1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|

+ 11|[V1, V2]| − 2n3) + n−1

=
1

12
(14n−1 − 2n123 + 2n1 + 2n2

+ 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|)
=

1

12
(14n− 16n123 + 2n1 + 2n2

+ 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|)

and so

n123 ≥ 1

16
(−12m+14n+2n1+2n2+12m1+8m2+5|[V2, V3]|+10|[V1, V3]|+11|[V1, V2]|).
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Now, we have

γ2
sdR(G) = 3n3 + 2n2 + n1 − n−1

= 4n3 + 3n2 + 2n1 − n

= 4n123 − n− n2 − 2n1

≥ 1

4
(−12m+ 14n+ 2n1 + 2n2 + 12m1 + 8m2

+ 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|)− n− n2 − 2n1

=
1

4
(−12m+ 14n− 4n) +

1

4
(2n1 + 2n2 + 12m1 + 8m2

+ 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]| − 4n2 − 8n1)

=
5n− 6m

2
+

1

4
(−6n1 − 2n2 + 12m1 + 8m2

+ 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|).

Let Θ = −6n1 − 2n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|. We show
that Θ ≥ 0. If n1 = 0, then Θ = −2n2 + 8m2 + 5|[V2, V3]|. If v ∈ V2 and dV23(v) = 0,
then since G has no isolated vertex, we have that every neighbor of v belongs to V−1.
But then f [v] ≤ 1, a contradiction. Hence if v ∈ V2, then we have that dV23(v) ≥ 1.
Then

Θ = −2n2 + 8m2 + 5|[V2, V3]|
= 4

∑
v∈V2

dV2(v) + 4
∑
v∈V2

dV3(v) + (|[V2, V3]| − 2n2)

= 4
∑
v∈V2

dV23(v) + (|[V2, V3]| − 2n2)

≥ 4n2 − 2n2 + |[V2, V3]|
> 0.

If n1 ≥ 1, then Θ = −6n1−2n2+12m1+8m2+5|[V2, V3]|+10|[V1, V3]|+11|[V1, V2]|.
By the definition of an SDR2DF of G we have dV123(v) ≥ 1 for each v ∈ V1. Then

Θ = −6n1 − 2n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|
= 6

∑
v∈V1

dV1(v) + 6
∑
v∈V1

dV2(v) + 6
∑
v∈V1

dV3(v) + 4
∑
v∈V2

dV1(v) + 4
∑
v∈V2

dV2(v)

+ 4
∑
v∈V2

dV3(v) + (−6n1 − 2n2 + |[V2, V3]|+ 4|[V1, V3]|+ |[V1, V2]|)

= 6
∑
v∈V1

dV123(v) + 4
∑
v∈V2

dV123(v) + (−6n1 − 2n2 + |[V2, V3]|+ 4|[V1, V3]|+ |[V1, V2]|)

≥ 6n1 + 4n2 − 6n1 − 2n2 + |[V2, V3]|+ 4|[V1, V3]|+ |[V1, V2]|
= 2n2 + |[V2, V3]|+ 3|[V1, V3]|
> 0.
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Therefore γ2
sdR(G) > 5n−6m

2
.

Subcase 1.2. V2 = ∅.
By the definition of an SDR2DF, each vertex in V−1 is adjacent to one vertex in V3,
and so

|[V−1, V13]| ≥ |[V−1, V3]| ≥ |V−1| = n−1. (1)

Furthermore, we have

n−1 ≤ |[V−1, V3]| =
∑
v∈V3

dV−1(v).

For each vertex v ∈ V3, we have that f(v) + 3dV3(v) + dV1(v) − dV−1(v) = f [v] ≥ 2,
and so dV−1(v) ≤ 3dV3(v) + dV1(v) + 1. Now, we have

n−1 ≤
∑
v∈V3

dV−1(v) (2)

≤
∑
v∈V3

(3dV3(v) + dV1(v) + 1)

= 6m3 + |[V1, V3]|+ n3

= 6m13 − 6m1 − 5|[V1, V3]|+ n3,

which implies that

m13 ≥ 1

6
(n−1 + 6m1 + 5|[V1, V2]| − n3).

Hence,

m ≥ m13 + |[V−1, V13]|+m−1

≥ m13 + |[V−1, V13]|
≥ 1

6
(n−1 + 6m1 + 5|[V1, V2]| − n3) + n−1

=
1

6
(7n−1 − n13 + n1 + 6m1 + 5|[V1, V3]|)

=
1

6
(7n− 8n13 + n1 + 6m1 + 5|[V1, V3]|)

and so

n13 ≥ 1

8
(−6m+ 7n + n1 + 6m1 + 5|[V1, V3]|).
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Now, we have

γ2
sdR(G) = 3n3 + n1 − n−1

= 4n3 + 2n1 − n

= 4n13 − n− 2n1

≥ 1

2
(−6m+ 7n+ n1 + 6m1 + 5|[V1, V3]|)− n− 2n1 (3)

=
1

2
(−6m+ 7n− 2n) +

1

2
(n1 + 6m1 + 5|[V1, V3]| − 4n1)

=
5n− 6m

2
+

1

2
(6m1 + 5|[V1, V3]| − 3n1).

Let Θ = 6m1 + 5|[V1, V3]| − 3n1. We show that Θ ≥ 0. If n1 = 0, then Θ = 0.
Suppose that n1 ≥ 1. By the definition of an SDR2DF, for each v ∈ V1 we have
dV13(v) ≥ 1. Then

Θ = 6m1 + 5|[V1, V3]| − 3n1

= 3
∑
v∈V1

dV1(v) + 3
∑
v∈V1

dV3(v) + (2|[V1, V3]| − 3n1)

= 3
∑
v∈V1

dV13(v) + (2|[V1, V3]| − 3n1)

≥ 3n1 + 2|[V1, V3]| − 3n1

> 0.

Therefore γ2
sdR(G) ≥ 5n−6m

2
.

Case 2. V3 = ∅.
Since V−1 �= ∅, we conclude that V2 �= ∅. By the definition of an SDR2DF, each
vertex in V−1 is adjacent to at least two vertices in V2, and so

|[V−1, V12]| ≥ |[V−1, V2]| ≥ 2|V−1| = 2n−1.

Furthermore we have
2n−1 ≤ |[V−1, V2]| =

∑
v∈V2

dV−1(v).

For each vertex v ∈ V2, we have that f(v) + 2dV2(v) + dV1(v) − dV−1(v) = f [v] ≥ 2,
and so dV−1(v) ≤ 2dV2(v) + dV1(v). Now, we have

2n−1 ≤
∑
v∈V2

dV−1(v)

≤
∑
v∈V2

(2dV2(v) + dV1(v))

= 4m2 + |[V1, V2]|
= 4m12 − 4m1 − 3|[V1, V2]|,
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which implies that

m12 ≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|).

Hence,

m ≥ m12 + |[V−1, V12]|+m−1

≥ m12 + |[V−1, V12]|
≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|) + 2n−1

=
1

4
(10n−1 + 4m1 + 3|[V1, V2]|)

=
1

4
(10n− 10n12 + 4m1 + 3|[V1, V2]|)

and so

n12 ≥ 1

10
(−4m+ 10n+ 4m1 + 3|[V1, V2]|).

Now, we have

γ2
sdR(G) = 2n2 + n1 − n−1

= 3n2 + 2n1 − n

= 3n12 − n− n1

≥ 3

10
(−4m+ 10n+ 4m1 + 3|[V1, V2]|)− n− n1

=
3

10
(−4m+ 10n− 10

3
n− 1

3
n) +

3

10
(4m1 + 3|[V1, V2]| − 10

3
n1 +

1

3
n)

=
19n− 12m

10
+

3

10
(4m1 + 3|[V1, V2]| − 3n1 +

1

3
(n−1 + n2))

Let Θ = 4m1 + 3|[V1, V2]| − 3n1 +
1
3
(n−1 + n2). We show that Θ > 0. If n1 = 0, then

Θ = 1
3
(n2 + n−1) > 0. Suppose that n1 ≥ 1. By the definition of an SDR2DF of G,

we have dV2(v) ≥ 1 for each v ∈ V1. Then

Θ = 4m1 + 3|[V1, V2]| − 3n1 +
1

3
(n−1 + n2)

= 3
∑
v∈V1

dV2(v) + (
1

3
(n2 + n−1)− 3n1 + 4m1)

≥ 3n1 +
1

3
(n2 + n−1)− 3n1 + 4m1

> 0

Therefore γ2
sdR(G) > 19n−12m

10
. Since G has no isolated vertex, we have

γ2
sdR(G) >

19n− 12m

10
>

5n− 6m

2
.
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Let γ2
sdR(G) = 5n−6m

2
. Then all inequalities (1), (2) and (3) must be equalities.

In particular, n1 = 0 and n3 = n13, and so V13 = V3 and V = V3 ∪V−1. Furthermore,
m = m3 + |[V−1, V3]|, |[V−1, V3]| = n−1 and m3 =

1
6
(n−1 − n3). This implies that for

each vertex v ∈ V−1 we have dV−1(v) = 0 and dV3(v) = 1, and so each vertex of V−1

is a leaf in G. Moreover for each vertex v ∈ V3 we have dV−1(v) = 3dV3(v)+1. Hence
G ∈ H.

On the other hand, let G ∈ H. Then G = Lt for some t ≥ 1. Thus, G is obtained
from a graph H of order t by adding 3dH(v) + 1 pendant edges to each vertex v of
H . Let G have order n and size m. Then,

n =
∑

v∈V (H)

(3dH(v) + 2) = 6m(H) + 2n(H)

and
m = m(H) +

∑
v∈V (H)

(3dH(v) + 1) = 7m(H) + n(H).

Assigning to every vertex in V (H) the weight 3 and to every vertex in V (G)−V (H)
the weight −1 produces an SDR2DF f of weight ω(f) = 3n(H)− (6m(H)+n(H)) =
2n(H)− 6m(H) = 5n−6m

2
. Hence γ2

sdR(G) ≤ 5n−6m
2

. It follows that γ2
sdR(G) = 5n−6m

2

and this completes the proof.

Theorem 3.2. Let G be a graph of order n ≥ 3. Then

γ2
sdR(G) ≥ 4

√
n+ 2

3
− n.

This bound is sharp for DS4,4.

Proof. Let f = (V−1, V1, V2, V3) be a γ2
sdR(G)-function. If |V−1| = 0, then γ2

sdR(G) >

n ≥ 4
√

n+2
3

− n. Hence V−1 �= ∅. We consider the following cases.

Case 1. V3 �= ∅.
Since each vertex in V ′

−1 is adjacent to at least one vertex in V3, we conclude that

at least one vertex v of V3 is adjacent to at least
n′
−1

n3
vertices of V ′

−1. Also, since
each vertex in V ′′

−1 is adjacent to at least two vertices in V2, we conclude that at

least one vertex u of V2 is adjacent to at least
2n′′

−1

n2
vertices of V ′′

−1. Then 2 ≤ f [v] ≤
3n3 + 2n2 + n1 − n′

−1

n3
which implies that

0 ≤ 3n2
3 + 2n2n3 + n1n3 − n′

−1 − 2n3. (4)

Similarly, we have

0 ≤ 3n3n2 + 2n2
2 + n1n2 − 2n′′

−1 − 2n2. (5)

By multiplying the inequality (4) by 2 and summing it with the inequality (5),
we obtain

0 ≤ 6n2
3 + 2n2

2 + 7n2n3 + 2n1n3 + n1n2 − 2n′
−1 − 2n′′

−1 − 2n2 − 4n3.
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Since n = n3 + n2 + n1 + n−1, we have

0 ≤ 6n2
3 + 2n2

2 + 7n2n3 + 2n1n3 + n1n2 + 2n1 − 2n3 − 2n,

equivalently

0 ≤ 16n2
3 +

16

3
n2
2 +

56

3
n2n3 +

16

3
n1n3 +

16

6
n1n2 +

16

3
n1 − 16

3
(n + n3)

≤ 16n2
3 + 9n2

2 + 4n2
1 + 24n2n3 + 16n1n3 + 12n1n2 − 16

3
(n+ n3)

= (4n3 + 3n2 + 2n1)
2 − 16

3
(n+ n3)

which implies that 4
√

n+n3

3
≤ 4n3+3n2+2n1. If n3 ≥ 2, then 4

√
n+2
3

≤ 4n3+3n2+

2n1. Hence let n3 = 1. Then

0 ≤ 16 +
16

3
n2
2 +

56

3
n2 +

32

3
n1 +

16

6
n1n2 − 16

3
(n+ 1)

≤ 16 + 9n2
2 + 4n2

1 + 24n2 + 16n1 + 12n1n2 − 16

3
(n + 1)− 16

3
(n1 + n2)

= (4n3 + 3n2 + 2n1)
2 − 16

3
(n+ n1 + n2 + 1)

which implies that 4
√

n+1+n1+n2

3
≤ 4n3 + 3n2 + 2n1. Since n ≥ 3, we conclude that

n1 + n2 ≥ 1, and so

4

√
n + 2

3
≤ 4n3 + 3n2 + 2n1.

Therefore

γsdR(G) = 3n3 + 2n2 + n1 − n−1

= 4n3 + 3n2 + 2n1 − n

≥ 4

√
n+ 2

3
− n.

Case 2. V3 = ∅.
Since V−1 �= ∅, we conclude that V2 �= ∅. As in Case 1, at least one vertex u of V2

is adjacent to at least 2n−1

n2
vertices of V−1. Then 2 ≤ f [u] ≤ 2n2 + n1 − 2n−1

n2
which

implies that
0 ≤ 2n2

2 + n1n2 − 2n−1 − 2n2.

Since n = n2 + n1 + n−1, we have

0 ≤ 2n2
2 + n1n2 + 2n1 − 2n,

equivalently

0 ≤ 16

3
n2
2 +

16

6
n1n2 +

16

3
n1 − 16

3
n

≤ 9n2
2 + 4n2

1 + 12n1n2 − 16

3
n− 3n2

2

= (3n2 + 2n1)
2 − 16

3
n− 3n2

2.
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Since n2 ≥ 2, we have 4
√

n+2
3

< 3n2 + 2n1. Therefore

γ2
sdR(G) = 2n2 + n1 − n−1

= 3n2 + 2n1 − n

≥ 4

√
n+ 2

3
− n,

and this complete the proof.

Next we establish lower and upper bounds on γk
sdR(G) where G is a cubic graph

and k ≤ 5. We shall need the following result due to Favaron [8].

Theorem 3.3. If G is a connected cubic graph G of order n, then ρ(G) ≥ n
8
, unless

G is the Petersen graph in which case ρ(G) = (n−2)
8

= 1.

Theorem 3.4. Let G be a connected cubic graph of order n. For k ≤ 5,

kn

4
≤ γk

sdR ≤ 13n

8
.

Proof. The lower bound follow from Proposition 2.2. Now, we prove the upper
bound. Let S be a maximum 2-packing in G, and so |S| = ρ(G). If G is the Petersen
graph, then n = 10 and ρ(G) = 1. Consider the labeling of the Petersen graph in
Figure 1.

Then the function f : V (G) → {−1, 1, 2, 3} defined by f(xi) = 2 for 1 ≤ i ≤ 5
and f(xi) = 1 for 6 ≤ i ≤ 10, is an SDRkDF on G of weight 15. Hence γk

sdR(G) ≤
15 < 13n

8
.

Now, assume that G is not a Petersen graph. Then the function f : V (G) →
{−1, 1, 2, 3} defined by f(x) = −1 for x ∈ S and f(x) = 2 otherwise. Since for each
vertex v ∈ V (G) we have |N [v] ∩ S| ≤ 1, we conclude that f [v] ≥ 5. Hence f is an
SDRkDF on G of weight

ω(f) = 2(n− |S|)− |S| = 2n− 3|S| = 2n− 3ρ.

By Theorem 3.3, we have

γk
sdR(G) ≤ 2n− 3ρ ≤ 2n− 3

n

8
=

13n

8
.

To see that the lower bound presented in Theorem 3.4 is sharp, consider a cycle
C3t : v1v2 . . . v3tv1, where t ≥ 1, add t new vertices x1, x2, . . . , xt and join xi to the
three vertices v3i−2, v3i−1, v3i for i = 1, 2, . . . , t. Let G denote the resulting cubic
graph of order n = 4t. We have following sharp examples.
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x1

x2

x3x4

x5

x6

x7

x8x9

x10

Figure 1: A labeling of the Petersen graph

• If k = 2, then the function f : V (G) → {−1, 1, 2, 3} defined by f(xi) =
f(v3i−2) = −1 for 1 ≤ i ≤ t and f(x) = 2 otherwise, is an SDR2DF on G of
weight 2t = n

2
and so γ2

sdR(G) ≤ n
2
. Consequently, γ2

sdR(G) = n
2
.

• If k = 3, then the function f : V (G) → {−1, 1, 2, 3} defined by f(v3i) =
3, f(v3i−2) = 2 and f(v3i−1) = f(xi) = −1 for 1 ≤ i ≤ t, is an SDR3DF on G
of weight 3t = 3n

4
and so γ3

sdR(G) ≤ 3n
4
. Consequently, γ3

sdR(G) = 3n
4
.

• If k = 4, then the function f : V (G) → {−1, 1, 2, 3} defined by f(v3i−1) = 3,
f(xi) = −1 for 1 ≤ i ≤ t and f(x) = 1 otherwise, is an SDR4DF on G of
weight 4t = n and so γ4

sdR(G) ≤ n. Consequently, γ2
sdR(G) = n.

• If k = 5, then the function f : V (G) → {−1, 1, 2, 3} defined by f(v3i−1) =
3, f(v3i) = 2, f(v3i−2) = 1 and f(xi) = −1 for 1 ≤ i ≤ t, is an SDR5DF on G
of weight 5t = 5n

4
and so γ3

sdR(G) ≤ 5n
4
. Consequently, γ3

sdR(G) = 5n
4
.

We believe the upper bound of Theorem 3.4 is not best possible and pose the following
problem.

Problem 3.1. Is it true that if G is a cubic graph of order n, then γ2
sdR(G) ≤ n.

If this problem is true, then the bound is achieved, for example, by K3,3.

4 Some classes of graphs

Ahangar et al. [3] determined the signed double domination number for complete
bipartite graphs and cycles. In this section, we determine the signed double k-
Roman domination number of some classes of graphs including complete bipartite
graphs and cycles.
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4.1 Complete bipartite graphs

If k ≥ 2, n ≥ �k
2
	 are integers and V is a set of size n, then let fk

n : V → {−1, 1, 2, 3}
be the function defined in the end of section 1.

Proposition 4.1. For 2 ≤ m ≤ n,

γ2
sdR(Km,n) =

{
4 if m = 2
6 if m ≥ 3.

Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the bipartite sets of
Km,n. The result is immediate for m = n = 2. Assume that n ≥ 3.

First let m = 2. Define the function f : V (K2,n) → {−1, 1, 2, 3} by f(x1) =
f(x2) = 2, f(y1) = 2, f(y2) = −1 and f(yi) = (−1)i for 3 ≤ i ≤ n, when n is odd,
and by f(x1) = f(x2) = 2 and f(yi) = (−1)i for 1 ≤ i ≤ n when n is even. It is clear
that f is an SDR2DF of K2,n with weight 4 and hence γ2

sdR(K2,n) ≤ 4.
Now, we show that γ2

sdR(K2,n) ≥ 4. Let f = (V−1, V1, V2, V3) be a γ
2
sdR(K2,n)-function.

Assume without loss of generality that f(x2) ≥ f(x1). Since f [y1] ≥ 2, we must have
f(x2) ≥ 1. If f(x1)+ f(x2) ≤ 2, then f(yi) ≥ 1 for each i and since each vertex with
label −1 must have a neighbor with label 3 or two neighbors with label 2, we have
γ2
sdR(K2,n) ≥ n+2 > 4. Suppose f(x1)+f(x2) ≥ 3. It follows that f(x2) ≥ 2. Hence

γ2
sdR(K2,n) = f(x2) + f [x1] ≥ 2 + f [x1] ≥ 4 as desired. Therefore γ2

sdR(K2,n) = 4.
Now let m = 3. Define the function f : V (K3,n) → {−1, 1, 2, 3} by f(x1) =

f(x2) = f(x3) = 2, f(y1) = 2, f(y2) = −1 and f(yi) = (−1)i for 3 ≤ i ≤ n, when n
is odd, and by f(x1) = f(x2) = f(x3) = 2 and f(yi) = (−1)i for 1 ≤ i ≤ n when n
is even. Clearly, f is an SDR2DF of K2,n of weight 6 and hence γ2

sdR(K2,n) ≤ 6.
To prove the inverse inequality, assume f = (V−1, V1, V2, V3) is a γ2

sdR(K3,n)-function.
Suppose, without loss of generality, that f(x3) ≥ f(x2) ≥ f(x1). Since f [y1] ≥ 2, we
deduce that

∑3
i=1 f(xi) ≥ −1. If

∑3
i=1 f(xi) = −1, then f(yi) = 3 for each i and this

implies that γ2
sdR(K3,n) =

∑3
i=1 f(xi) +

∑n
i=1 f(yi) ≥ 3n− 1 > 6. If

∑3
i=1 f(xi) = 0,

then f(yi) ≥ 2 for each i and so γ2
sdR(K3,n) =

∑3
i=1 f(xi) +

∑n
i=1 f(yi) ≥ 2n ≥ 6.

If
∑3

i=1 f(xi) = 1 or 2, then f(yi) ≥ 1 for all i and f(x1) = −1. Since any vertex
with label −1 must have a neighbor with label 3 or two neighbors with label 2, we
conclude that either f(yi) = 3 for some i or f(yi), f(yj) = 2 for some i, j. Thus
γ2
sdR(K3,n) =

∑3
i=1 f(xi) +

∑n
i=1 f(yi) ≥ n + 3 ≥ 6. Let f(x1) + f(x2) + f(x3) ≥

3. If f(x1) = −1, then f [x1] ≥ 2 yields
∑n

i=1 f(yi) ≥ 3 and so γ2
sdR(K3,n) =∑3

i=1 f(xi) +
∑n

i=1 f(yi) ≥ 6. Let f(x1) ≥ 1. If f(x2) + f(x3) ≥ 4, then we have
γ2
sdR(K3,n) ≥ f(x2) + f(x3) + f [x1] ≥ 6. Suppose f(x2) + f(x3) ≤ 3. It follows that

f(x1) = f(x2) = 1 and f(x3) ≤ 2. Since any vertex with label −1 must have a
neighbor with label 3 or two neighbors with label 2, we deduce that f(yi) ≥ 1 for
each i and so γ2

sdR(K3,n) ≥ n+ 3 ≥ 6. Thus γ2
sdR(K3,n) = 6.

Finally, let m ≥ 4. To show that γ2
sdR(Km,n) ≥ 6, let f = (V−1, V1, V2, V3) be a

γ2
sdR(Km,n)-function. Assume without loss of generality that f(xm) ≥ · · · ≥ f(x1). If

V−1 = ∅, then the result is trivial. Let V−1 �= ∅. If V−1∩X = ∅ (the case V−1∩Y = ∅
is similar), then since any vertex with label −1 must have a neighbor with label 3
or two neighbors with label 2, we have f(xm) = 3 or f(xm) = f(xm−1) = 2 and
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so γsdR(Km,n) =
∑m−1

i=1 f(xi) + f [xm] ≥ m + 2 ≥ 6. Assume that x1 ∈ V−1 ∩ X
and y1 ∈ V−1 ∩ Y . It follows from f [x1] ≥ 2 and f [y1] ≥ 2 that

∑n
i=1 f(yi) ≥ 3

and
∑m

i=1 f(xi) ≥ 3. Hence γ2
sdR(Km,n) =

∑m
i=1 f(xi) +

∑n
i=1 f(yi) ≥ 6. Thus

γ2
sdR(Km,n) ≥ 6.

To prove the inverse inequality, define the functions f, g, h : V (Km,n) → {−1, 1, 2, 3}
as follows:
If m,n are odd, then let f(x1) = f(y1) = 3, f(xi) = (−1)i+1 for 2 ≤ i ≤ m and
f(yi) = (−1)i+1 for 2 ≤ i ≤ n. If m,n are even, then let g(x1) = g(y1) = 3,
g(x2) = g(y2) = 2, g(xi) = g(yi) = −1 for 3 ≤ i ≤ 4, g(xi) = (−1)i for 5 ≤ i ≤ m
and g(yi) = (−1)i for 5 ≤ i ≤ n. If m is odd and n is even (the case m is even and
n is odd), then let h(x) = f(x) if x ∈ X and h(x) = g(x) if x ∈ Y . Clearly, these
function are SDR2DF of weight 6, and so γ2

sdR(Km,n) ≤ 6. Thus γ2
sdR(Km,n) = 6 and

the proof is complete.

Proposition 4.2. Let k ≥ 3 and n ≥ m ≥ k + 1 be integers. Then γk
sdR(Km,n) =

2k + 2.

Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the bipartite sets of
Km,n. First we show that γk

sdR(Km,n) ≥ 2k + 2. Let f : V (Km,n) → {−1, 1, 2, 3}
be an SDRkDF. Assume without loss of generality that f(xm) ≥ . . . ≥ f(x1). If
f(u) ≥ 1 for each u ∈ V (Km,n), then γk

sdR(Km,n) = ω(f) ≥ 2m ≥ 2k + 2. Suppose
V−1 �= ∅. If xi ∈ V−1 ∩ X and yj ∈ V−1 ∩ Y , then it follows from f [xi] ≥ k and
f [yj] ≥ k that

∑n
i=1 f(yi) ≥ k + 1 and

∑m
i=1 f(xi) ≥ k + 1 yielding γk

sdR(Km,n) =∑m
i=1 f(xi)+

∑n
i=1 f(yi) ≥ 2k+2. Let X ∩V−1 = ∅ (the case Y ∩V−1 = ∅ is similar).

Since any vertex with label −1 must have a neighbor with label 3 or two neighbors
with label 2, we must have f(xi) = 3 for some i or f(xi) = f(xj) = 2 for some i, j
implying that

∑m
i=1 f(xi) ≥ m+2. Since f [x1] ≥ k, we have

∑n
i=1 f(yi) ≥ k−f(x1).

If f(x1) = 1, then γk
sdR(Km,n) =

∑m
i=1 f(xi) +

∑n
i=1 f(yi) ≥ m+ 2 + k − 1 ≥ 2k + 2.

If f(x1) ≥ 2, then
∑m

i=1 f(xi) ≥ 2m and so γk
sdR(Km,n) =

∑m
i=1 f(xi) +

∑n
i=1 f(yi) ≥

2m+ k − 3 ≥ 2k + 2. Thus γk
sdR(Km,n) ≥ 2k + 2.

To prove the converse inequality, define the function f : V (Km,n) → {−1, 1, 2, 3}
as follows: f(x) = fk+1

m (x) for x ∈ X and f(x) = fk+1
n (x) for x ∈ Y . Clearly

f is an SDRkDF on Km,n of weight 2k + 2 and so γk
sdR(Km,n) ≤ 2k + 2. Thus

γk
sdR(Km,n) = 2k + 2.

Proposition 4.3. Let k ≥ 4 and n ≥ k − 1 be integers. Then γk
sdR(Kk−1,n) = 2k

Proof. Let X = {x1, x2, . . . , xk−1} and Y = {y1, y2, . . . , yn} be the bipartite sets of
Kk−1,n. First we show that γk

sdR(Kk−1,n) ≤ 2k. Define the function f : V (Kk−1,n) →
{−1, 1, 2, 3} as follows: if n = k − 1, then let f assign 2 to x1, y1 and +1 to the
remaining vertices, and if n ≥ k, then let f assign 3 to x1, +1 to the remaining
vertices of X and f(y) = fk−1

n (y) for y ∈ Y . Clearly, f is an SDRkDF on Kk−1,n of
weight 2k and so γk

sdR(Kk−1,n) ≤ 2k.
Next, we show that γk

sdR(Kk−1,n) ≥ 2k. Assume f = (V−1, V1, V2, V3) is a
γk
sdR(Kk−1,n)-function. If V−1 = ∅, then f must assign 2 to at least one vertex in X

and one vertex in Y and this implies that γk
sdR(Kk−1,n) ≥ k+n+1 ≥ 2k. Let V−1 �= ∅.
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Assume without loss of generality that f(xk−1) ≥ · · · ≥ f(x1). If xi ∈ V−1 ∩X and
yj ∈ V−1∩Y , then it follows from f [xi] ≥ k and f [yj] ≥ k that

∑n
i=1 f(yi) ≥ k+1 and∑k−1

i=1 f(xi) ≥ k+1 implying that γk
sdR(Kk−1,n) =

∑k−1
i=1 f(xi)+

∑n
i=1 f(yi) ≥ 2k+2.

Let X ∩ V−1 = ∅ (the case Y ∩ V−1 = ∅ is similar). Since any vertex with label
−1 must have a neighbor with label 3 or two neighbors with label 2, we must
have f(xi) = 3 for some i or f(xi) = f(xj) = 2 for some i, j implying that∑k−1

i=1 f(xi) ≥ k + 1. Since f [x1] ≥ k, we have
∑n

i=1 f(yi) ≥ k − f(x1). If f(x1) = 1,

then γk
sdR(Kk−1,n) =

∑k−1
i=1 f(xi) +

∑n
i=1 f(yi) ≥ k + 1 + k − 1 ≥ 2k. If f(x1) =

2, then
∑k−1

i=1 f(xi) ≥ 2k − 2 and so γk
sdR(Kk−1,n) =

∑k−1
i=1 f(xi) +

∑n
i=1 f(yi) ≥

2k − 2 + k − 2 > 2k. Finally, if f(x1) = 3, then
∑k−1

i=1 f(xi) ≥ 3k − 3 and so

γk
sdR(Kk−1,n) =

∑k−1
i=1 f(xi) +

∑n
i=1 f(yi) ≥ 4k − 6 > 2k. Thus γk

sdR(Kk−1,n) ≥ 2k
implying that γk

sdR(Kk−1,n) = 2k.

The proof of next result is similar to the proof of Propositions 4.2 and 4.3 and
therefore it is omitted.

Proposition 4.4. (i) For n ≥ 2, γ3
sdR(K2,n) = 5.

(ii) For n ≥ k ≥ 3, γk
sdR(Kk,n) = 2k + 1.

4.2 Cycles

Ahangar et al. [3] determined the signed double Roman domination number of cycles.
In this section, we determine the signed double Roman k-domination number of cycles
for k = 2, 3, 4.

Theorem 4.1. For n ≥ 3, γ2
sdR(Cn) = n.

Proof. Let Cn = (v1v2 . . . vn). Define f : V (Cn) → {−1, 1, 2, 3} by f(v3i+1) =
f(v3i+3) = 2, f(v3i+2) = −1 for 0 ≤ i ≤ �n/3	 − 1 and f(x) = 1 otherwise. It is easy
to see that f is an SDR2DF on Cn of weight n yielding γ2

sdR(Cn) ≤ n.
To prove the inverse inequality, we proceed by induction on n. The result is clear

for n = 3, 4, 5. Let n ≥ 6 and suppose the statement holds for all cycles of order less
than n. Let f = (V−1, V1, V2, V3) be a γ2

sdR(Cn)-function. If V−1 = ∅, then clearly
γ2
sdR(Cn) ≥ n. Let V−1 �= ∅ and let vi ∈ V−1. By the definition, vi must have at least

two neighbors in V2 or one neighbor in V3.
Suppose first vi has a neighbor in V3. Assume without loss of generality that

f(vi+1) = 3. Since f [vi] ≥ 2 and f [vi+1] ≥ 2, we must have f(vi−1) ≥ 1 and
f(vi+2) ≥ 1. Let Cn−3 = (Cn − {vi, vi+1, vi+2}) + vi−1vi+3. Clearly, the function
g : V (Cn−3) → {−1, 1, 2, 3} defined by g(vi−1) = max{f(vi−1), f(vi+2)} and g(x) =
f(x) otherwise, is an SDR2DF of Cn−3 of weight at most γ2

sdR(Cn) − 3 and by the
induction hypothesis we have

γ2
sdR(Cn) = 3 + ω(g) ≥ 3 + (n− 3) = n.

Now let vi have two neighbors in V2. Then f(vi−1) = f(vi+1) = 2. Since f [vi−1] ≥
2 and f [vi+1] ≥ 2, we must have f(vi−2) ≥ 1 and f(vi+2) ≥ 1. If f(vi−2) ≥ 2 or
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f(vi+2) ≥ 2, then let Cn−3 = (Cn−{vi−1, vi, vi+1})+vi−2vi+2. Clearly, the function f ,
restricted to Cn−3 is an SDR2DF of Cn−3 of weight γ

2
sdR(Cn)−3 and by the induction

hypothesis we have

γ2
sdR(Cn) = 3 + ω(f |Cn−3) ≥ 3 + (n− 3) = n+ 2.

Assume that f(vi−2) = f(vi+2) = 1. If f(vi+3) = −1, then we must have f(vi+4) = 3
and the results follows as above. Let f(vi+3) ≥ 1 and let Cn−1 = (Cn − {vi+2}) +
vi+1vi+3. Clearly, the function f , restricted to Cn−1 is clearly an SDR2DF of Cn−1

of weight γ2
sdR(Cn)− 1 and by the induction hypothesis we have

γ2
sdR(Cn) = 1 + ω(f |Cn−1) ≥ 1 + (n− 1) = n

and the proof is complete.

Theorem 4.2. For n ≥ 3,

γ3
sdR(Cn) =

⎧⎨
⎩

n if n ≡ 0 (mod 3),
n+ 1 if n ≡ 1 (mod 3),
n+ 2 if n ≡ 2 (mod 3).

Proof. Let Cn = (v1v2 . . . vn). Define f : V (Cn) → {−1, 1, 2, 3} by f(v3i+1) =
f(v3i+2) = 2, f(v3i+3) = −1 for 0 ≤ i ≤ �n/3	 − 1 and f(x) = 2 otherwise. Clearly,
f is an SDR3DF on Cn of weight n+ r where n ≡ r (mod 3) and this implies that

γ3
sdR(Cn) ≤

⎧⎨
⎩

n if n ≡ 0 (mod 3),
n+ 1 if n ≡ 1 (mod 3),
n+ 2 if n ≡ 2 (mod 3)

If n ≡ 0 (mod 3), then it follows from Proposition 2.2 that γ3
sdR(Cn) = n in this

case.
Let n ≡ 1 (mod 3). To prove the inverse inequality, let f = (V−1, V1, V2, V3) be

a γ3
sdR(Cn)-function. Since f [vi] ≥ 3 for each i, we conclude that there is no i with

f(vi) = f(vi+1) = −1 or f(vi) = f(vi+2) = −1. It follows that there are three
consecutive vertices, say v1, v2, v3, with positive weight. If f(v2) ≥ 2, then clearly
f [v2] ≥ 4, and if f(v2) = 1, then v2 must have a neighbor in V2∪V3 yielding f [v2] ≥ 4.
Therefore

3γ3
sdR(Cn) =

n∑
i=1

2∑
j=0

f(vi+j) ≥ 4 +
n∑

i=2

2∑
j=0

f(vi+j) ≥ 3n + 1.

Since γ3
sdR(Cn) is an integer, we obtain γ3

sdR(Cn) ≥ �3n+1
3

� = n+1. Thus γ3
sdR(Cn) =

n + 1 in this case.
Let n = 3t+2 for some t ≥ 1. To prove γ3

sdR(Cn) ≥ n+2, we proceed by induction
on t. The result is clear for t = 1. Let t ≥ 2 and assume that the statement is true
for all cycles of order 3t′ + 2 where t′ < t. Suppose Cn = (v1v2 . . . vn) and let
f = (V−1, V1, V2, V3) be a γ3

sdR(Cn)-function. If V−1 = ∅, then clearly |V2|+ |V3| ≥ 2



J. AMJADI ET AL. /AUSTRALAS. J. COMBIN. 72 (1) (2018), 82–105 103

implying that γ3
sdR(Cn) ≥ n + 2 as desired. Let V−1 �= ∅ and let vi ∈ V−1. By the

definition, vi must have at least two neighbors in V2 or one neighbor in V3. If vi has a
neighbor in V3, then as in the proof of Theorem 4.1, we can see that γ3

sdR(Cn) ≥ n+2.
Let vi have two neighbors in V2. Then f(vi−1) = f(vi+1) = 2. Since f [vi−1] ≥ 3

and f [vi+1] ≥ 3, we must have f(vi−2) ≥ 2 and f(vi+1) ≥ 2. Let Cn−3 = (Cn −
{vi−1, vi, vi+1}) + vi−2vi+2. Clearly, the function f , restricted to Cn−3 is an SDR3DF
of weight at most γ3

sdR(Cn)− 3 and by the induction hypothesis we obtain

γ3
sdR(Cn) = 3 + ω(f |Cn−3) ≥ 3 + (n− 3 + 2) = n+ 2

and the proof is complete.

Theorem 4.3. For n ≥ 3, γ4
sdR(Cn) = �(4n)/3�.

Proof. Let Cn = (v1v2 . . . vn). Define f : V (Cn) → {−1, 1, 2, 3} by f(v3i+1) =
2, f(v3i+2) = f(v3i+3) = 1 for 0 ≤ i ≤ �n/3	 − 1 when n ≡ 0 (mod 3), by f(vn) =
2, f(v3i+1) = 2, f(v3i+2) = f(v3i+3) = 1 for 0 ≤ i ≤ �n/3	 − 1 when n ≡ 1 (mod 3),
and by f(vn) = 1, f(vn−1) = 2, f(v3i+1) = 2, f(v3i+2) = f(v3i+3) = 1 for 0 ≤ i ≤
�n/3	 − 1 when n ≡ 2 (mod 3). Clearly, f is an SDR4DF on Cn of weight �(4n)/3�
and so γ4

sdR(Cn) ≤ �(4n)/3�.
On the other hand, since γ3

sdR(Cn) is an integer, we deduce from Proposition 2.2
that γ3

sdR(Cn) = �(4n)/3�.
We conclude this paper with some open problems.

Problem 4.1. Find upper bounds on γk
sdR(G) in terms of order of G and k.

Problem 4.2. What can one say about the minimum and maximum values of |V−1|,
|V1|, |V2| and |V3| for a γk

sdR-function f = (V−1, V1, V2, V3) of a graph G ?

The cartesian product G = G1×G2 of two disjoint graphs G1 and G2 has V (G) =
V (G1) × V (G2), and two vertices (u1, u2) and (v1, v2) of G are adjacent if and only
if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). The cartesian
product of two paths is called a grid, the cartesian product a cycle and a path is
called a cylinder and the cartesian product of two cycles is called a torus.

Problem 4.3. Can one determine the signed double Roman k-domination of grids,
cylinders or tori?
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