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1. Introduction

Recently, there has been increasing interest in the modeling of patterns of volatility for high-frequency

financial data. An example is provided by intra-day trading patterns in exchange and equity markets

which have been analyzed by Andersen and Bollerslev (1997) and Speight, McMillan and Gwilym (2000).

In this and similar applications, one is dealing with repeated (daily) observations of patterns of returns

that are assumed to be generated by an underlying but unknown stochastic process. The observed daily

returns are then associated with realizations of this process. A central problem for the nonparametric

analysis of patterns of volatility for financial returns arises from the fact that volatility is not directly

observable. Theoretically, volatility could be determined from the quadratic variation of the log price

process, if this process were to be observed continuously. However, in practice the log price process is

observed only at discrete times when a trade takes place, and volatility must therefore be inferred from

discretely observed data on returns. As an example, the observed patterns of returns for six days for the

S&P 500 index are displayed in Figure 1.

Volatility is a measure of the extent of variation around a “mean” trajectory. One way of estimating

instantaneous volatility is based on the assumption that the volatility process is a function of the ob-

servable state variable itself and nonparametric techniques can be applied (Florens-Zmirou, 1993; Bandi

and Phillips, 2003; Renò, 2008). Fully nonparametric methods, where volatility is not constrained to be

a function of the state variable, include the idea of rolling sample volatility estimators, as in Foster and

Nelson (1996); the kernel method in Fan and Wang (2008) and Kristensen (2010); Fourier analysis in

Malliavin and Mancino (2009) and Mancino and Sanfelici (2008); and wavelet analysis in Genon-Catalot

et al. (1992). Bandi and Renò (2008) estimate spot volatility by differentiation of integrated volatility,

while Ogawa and Sanfelici (2008) propose a two-step regularization scheme designed to filter microstruc-

ture noise. All of these methods are developed within the traditional framework of volatility modeling for

one observed series, corresponding to one realization of the volatility process, and do not target repeated

realizations of this process. In contrast, the approach proposed here aims at modeling data and extract
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information about volatility for situations where repeated realizations of the volatility process are avail-

able, estimating recurring patterns of a suitably defined functional volatility process. A key feature is

that the tools of functional data analysis methodology are harnessed for the analysis of financial returns.

We develop a concept of smooth nonparametric volatility trajectories and theory within the framework

of a diffusion model for the returns, aiming to extract trajectories of volatility from sequences of returns,

such as those shown in Figure 1. We target smooth volatility functions (cf. Fan and Yao, 1998; Kogura,

1996; Stanton, 1997), which differentiates our approach from alternative volatility models with non-

smooth paths, such as diffusion models for volatility, e.g., Ornstein-Uhlenbeck processes or the Heston

model (cf. Barndorff-Nielsen and Shephard, 2002). Other assumptions include integrability and the

existence of second moments. Neither distributional nor parametric model assumptions are required, in

contrast to commonly used time series models for volatility. Our approach is nonparametric in spirit;

we refer to Fan and Yao (2003) and Fan (2005) for excellent overviews of nonparametric approaches to

volatility modeling. We demonstrate the usefulness of the functional volatility process in the setting of

intra-day trading application examples, in terms of both modeling and predicting volatility. In financial

data analysis, the issue of modeling intra-day high-frequency data, especially for the case where the

spacing of the observations tends to 0 in the limit, has been much discussed in recent years (Aı̈t-Sahalia,

1996; Aı̈t-Sahalia and Mykland, 2003; Aı̈t-Sahalia, Mykland and Zhang, 2005; Aı̈t-Sahalia, Mykland and

Zhang, 2009; Fan, Jiang, Zhang and Zhou, 2003; Fan, 2005; Zhang, Mykland and Aı̈t-Sahalia, 2005).

The proposed characterization of the functional volatility process is adapted to situations in which

series of returns are repeatedly observed, as illustrated in Figure 1, and where the observed trajectories

may be viewed as repeated realizations of an underlying unknown functional volatility process. For

modeling functional volatility processes, we develop an extension of the concept of a functional variance

error model developed in Müller, Stadtmüller and Yao (2006). The extension of this earlier simpler

approach to a volatility model requires additional substantial theoretical developments that are provided

in this paper. A precursor of these models are variance and noise estimation approaches that have been
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developed within the framework of nonparametric regression models over the past decades (e.g., Eubank

and Thomas, 1993; Yao and Tong, 2000; Wang et al., 2008). The present approach is novel in the sense

that the problem of analyzing volatility from repeated realizations of the functional volatility process has

not yet been explicitly studied, and therefore models that specifically address the problem of extracting

information from a sample of volatility processes have not yet been considered. It intuitively makes

sense to extract information about patterns of volatility from samples of repeatedly observed volatility

paths. As we demonstrate in this paper, this idea can be formalized by developing a connection to the

methodology of functional data analysis (FDA).

An important tool for the analysis of trajectories of volatility within the framework of FDA is func-

tional principal component analysis (Castro, Lawton and Sylvestre, 1986; Rice and Silverman, 1991).

The proposed functional volatility processes can be characterized by their mean function and the eigen-

functions of the autocovariance operator. This is a consequence of the Karhunen-Loève representation of

the functional volatility process. For data analysis based on returns, we develop suitable estimates for

the components of this representation. Individual trajectories of volatility may be represented by their

functional principal component scores, which can serve as input for subsequent statistical analysis. An

application that we explore in more detail below is functional regression (Ramsay and Dalzell, 1991) for

the prediction of future volatility. The fact that a sizable fraction of future volatility can be predicted

with the proposed method supports this approach. Background on FDA can be found in Ramsay and

Silverman (2005). For other applications of FDA to economic time series, we refer to Malfait and Ramsay

(2003) and Ramsay and Ramsey (2001).

The paper is organized as follows: Background on diffusion processes for financial returns and the

relationship to volatility and repeated realizations of the volatility process is discussed in Section 2.

Auxiliary asymptotic approximations in the Appendix, derived in the framework of a diffusion process

for the returns, guarantee that the leading terms of suitably standardized differences of log closing prices

in high frequency settings can be decomposed into a product of a volatility term and a noise term. This
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justifies the definition of the functional volatility process which is obtained by transforming these terms

and thus decoupling the noise from the volatility signal. The availability of repeated realizations of the

functional volatility process makes it possible to obtain consistent estimation procedures for the main

components of this process (mean and eigenfunctions). Functional principal components to represent

individual realizations of the functional volatility process and functional regression for volatility are

introduced in Section 3, where also asymptotic results on the convergence of these estimates are derived,

including a result on consistency of functional regression for volatility processes. In Section 4 we describe

simulation results for various volatility models. The implementation of the methodology to recover

functional volatility processes from financial data and an application to high-frequency intra-day trading

data of the S&P 500 index is described in Section 5, while Section 6 contains a discussion of some salient

features of the proposed method and concluding remarks.

2. The Functional Volatility Process

2.1 Background on diffusion models for volatility

For equity prices X(t), as well as related market prices, the by now classical continuous time model for

returns is the diffusion equation (Black and Scholes, 1973)

dX(t)

X(t)
= µdt+ σ dW (t) , t ≥ 0 , (1)

where W (·) denotes a standard Wiener process, σ > 0 is the volatility and µ a drift term. Both volatility

and drift term are time-independent in this model. This model is a simplification, which does not reflect

the patterns observed in real data. Furthermore, these processes are not observed in the continuum,

but rather on a discrete grid of time points at which trades take place or are recorded, which may be

randomly or regularly spaced. In accordance with daily trading data, which motivate our approaches, we

assume that data are observed on a regular grid of times

tj = j∆, j = 1, . . . , [T/∆], (2)
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where the overall time interval on which processes are observed is [0, T ], and [r] stands for the largest

integer smaller or equal to r ≥ 0. The motivating daily trading data are recorded on a regular grid with

∆ = 5min. Generally, data with small ∆ are referred to as high-frequency financial data.

A class of diffusion models that has been developed specifically for high-frequency trading data such

as intra-day trading are the stochastic volatility models of Barndorff-Nielsen and Shephard (2002). These

models consist of two equations, one governing the log returns according to

d logX(t, ω) = µdt + βσ2(t, ω) dt + σ(t, ω) dW (t, ω), (3)

where we include the arguments ω in the probability space Ω to emphasize the stochastic parts, and a

second diffusion equation for the volatility σ. The model also includes a non-random drift term µ and the

so-called risk premium β . Typically, σ is assumed to be a stationary predictable process, the so-called

spot volatility, which for example has been modeled as an Ornstein-Uhlenbeck process.

Previous studies for the volatility of high frequency trading data focused either on a diffusion model

for volatility with its associated non-smooth volatility processes, a GARCH type or other time series

model, or alternatively, the nonparametric estimation of smooth but essentially non-random trajectories

of volatility. In addition, wavelets allowing for jump discontinuities have also been considered (e.g.,

Fan and Wang, 2007). Our approach retains both the random nature of volatility trajectories and the

nonparametric flavor by modeling volatility as a smooth random process that otherwise is not governed by

a known or assumed equation of any kind. The assumptions for this process ((M1)-(M5) in the Appendix)

include smoothness, but otherwise are minimal. That we still can study the volatility process under weak

assumptions is due to the functional paradigm and the availability of a sample of i.i.d. realizations of the

process, which is a crucial ingredient for the proposed method.

2.2 An asymptotic volatility model for repeated realizations

We consider a variant of model (3), where within the framework of a general diffusion model with random

drift function, observations are available for a sample of n realizations of the underlying processes,

d logXi(t, ω) = µ̃i(t, ω) dt+ σ̃i(t, ω) dWi(t, ω), 0 ≤ t ≤ T, i = 1, . . . , n. (4)
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Here µ̃i(t, ω) , σ̃i(t, ω) are i.i.d. copies of the stochastic processes µ̃ and σ̃, which are assumed to be

smooth but not stationary, and Wi, i = 1, . . . , n, are n independent standard Wiener processes. The

availability of multiple copies is crucial for the application of functional data analysis methodology and

sets our approach apart from other volatility models. In the following, we will not indicate dependency

on ω ∈ Ω and also omit indices i, focusing on a generic realization of the underlying processes, while

keeping in mind that one observes n copies of these processes.

As our focus is on the high-frequency case, the relatively dense time grid that underlies such high-

frequency data motivates the asymptotic assumption ∆ → 0, reflecting increasingly frequent trading.

Importantly, one does not actually observe continuous data and it is therefore necessary to consider

discretized versions, defining scaled log-returns and associated diffusion terms

Z∆(t) =
1√
∆

log

(
X(t+ ∆)

X(t)

)
,

W∆(t) =
1√
∆

(W (t+ ∆)−W (t)).

We rewrite model (4) for the actual high-frequency observations Z∆(t) as follows,

Z∆(t) =
1√
∆

∫ t+∆

t

µ̃(v) dv +
1√
∆

∫ t+∆

t

σ̃(v) dW (v) (5)

= µ̃(t)
√

∆ + σ̃(t)W∆(t) + R1(t,∆) +R2(t,∆).

The remainder terms R1, R2 reflect the discretization step,

R1(t,∆) =
1√
∆

∫ t+∆

t

µ̃(v) dv − µ̃(t)
√

∆ (6)

R2(t,∆) =
1√
∆

∫ t+∆

t

σ̃(v) dW (v)− σ̃(t)W∆(t).

According to Lemma 1 in the Appendix, under suitable regularity assumptions, these remainder

terms are uniformly small and therefore may be neglected asymptotically. For small ∆ one arrives at the

approximate model

Z∆(t) ≈ µ̃(t)
√

∆ + σ̃(t)W∆(t). (7)
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Noting that supt∈[0,T ] |µ̃(t)| = OP (1), providing uniform boundedness in t, we find that the first term is

uniformly OP (
√

∆), and therefore is also negligible. This leads to the approximation

Z∆(t) ≈ σ̃(t)W∆(t). (8)

For related results and background we refer to Jacod and Shiryaev (2003) and Barndorff-Nielsen et al.

(2006).

2.3 Trajectories of volatility

The empirical observations Z∆(tj) target the processes σ̃(tj)W∆(tj), where trades are assumed to be

recorded on a dense discrete time grid tj = j∆, j = 1, 2, ..., [T/∆], as in (2). Our target for inference is

the smooth process V defined by

V (t) = log({σ̃(t)}2). (9)

We refer to V as functional volatility process. It is related to the observations Z∆(tj) by

log({Z∆(tj)}2)− q0 ≈ Y∆(tj) = V (tj) + U∆(tj), (10)

where q0 is a numerical constant and Y∆(t), U∆(t) are stochastic processes, defined as follows,

q0 = E(logW 2
∆(t)) =

4√
2π

∫ ∞
0

log(x)e−x
2/2 dx ≈ −1.27,

Y∆(t) = log({σ̃(t)W∆(t)}2)− q0, (11)

U∆(t) = log({W∆(t)}2)− q0.

We note that the adjustment by the constant q0 has the consequence that EU∆(t) = 0 for all t, while

cov(U∆(s), U∆(t)) = 0 for |t − s| > ∆ (independent increments property). We also remark that the

functional volatility process V does not depend on ∆.

Since our focus is on spot volatility, we do not encounter problems with accumulation of noise. Such

problems are known to be critical when estimating integrated volatility with measures such as realized

variance. In that case, one would be summing numerous contaminated squared return data. As ∆→ 0,

7



the number of summands grows to infinity, and as each summand is contaminated by an error with

constant variance, the sum would diverge.

We represent the smooth functional volatility process V in terms of its decomposition into functional

principal components, a common approach in FDA. For a domain T , setting

GV (s, t) = cov(V (s), V (t)), E(V (t)) = µV (t), s, t ∈ T , (12)

the functional principal components are the eigenfunctions of the auto-covariance operator of V , a linear

operator on the space L2 that is given by

GV (f)(s) =

∫
T
GV (s, t)f(t) dt.

We assume the orthonormal eigenfunctions of this operator are φk, with associated eigenvalues λk, k =

1, 2, . . . , such that λ1 ≥ λ2 ≥ · · · and
∑
k λk < ∞. The Karhunen-Loève theorem then provides a

representation of individual random trajectories of the functional volatility process V , given by

V (t) = µV (t) +

∞∑
k=1

ξkφk(t), (13)

where the ξk are uncorrelated random variables that satisfy

ξk =

∫
(V (t)− µV (t))φk(t) dt, Eξk = 0, var(ξk) = λk. (14)

It is a consequence of Lemma 2 in the Appendix that under suitable regularity conditions regarding

the dependence between σ̃ and W , one has

E(Y∆(t)) = µV (t), cov(Y∆(s), Y∆(t)) = O(
√

∆) +GV (s, t). (15)

Equation (10) suggests that the smooth mean function µV and the smooth covariance surface GV can

be consistently estimated from available data, and we demonstrate in the following section that this is

indeed correct. Once estimates for functions µV and GV have been obtained, well-known procedures

exist to infer eigenfunctions and eigenvalues (Rice and Silverman, 1991; Müller et al., 2006). Processes V

are then approximated by substituting estimates and using a judiciously chosen finite number of terms

in the sum for representation (13).
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3. Inferring the Functional Volatility Process

3.1 Estimation procedures

A central goal is to identify the stochastic structure of the underlying functional volatility process V (t) =

log({σ̃(t)}2). Key components include the mean volatility trajectory µV , which reflects overall trends

of volatility, and the eigenfunctions φk, k ≥ 1, of the process V , representing modes of volatility and

indicating the patterns of variation among individual volatility trajectories (cf. Castro et al., 1986). A

second goal is to estimate the functional principal component (FPC) scores for the individual trajectories,

which then allows to represent such trajectories in the eigenfunction expansion (13) and therefore to obtain

estimates of predicted individual trajectories. Furthermore, and perhaps more importantly, the estimated

FPC scores can be used for subsequent statistical analysis.

For simplicity, we assume that the grid of observation times tj , see (2), for trades Xi(tj) is the same

for all price trajectories X1, . . . , Xn; it is possible to relax this assumption. The price trajectories, from

which the observations Xi(tj) are derived, are assumed to be an i.i.d. sample from the price process X.

The high frequency observations on differences of log-transformed closing prices that form the basis of

volatility analysis are then

Zij∆ =
1√
∆

log

(
Xi(tj + ∆)

Xi(tj)

)
, i = 1, . . . , n, j = 1, . . . , [

T

∆
].

From these, we form transformed and adjusted data,

Yij∆ = log(Z2
ij∆)− q0, (16)

with q0 as defined in (11).

At the core of the estimation procedure is the principal analysis of random trajectories (PART),

applied to the data Yij∆, which is an algorithm to obtain mean and eigenfunctions, as well as FPC scores,

from densely sampled functional data, as described in Müller et al. (2006). The smoothing steps in this

algorithm are implemented with weighted local linear smoothing (Fan and Gijbels, 1996), which works

well in practice; alternative smoothing methods can also be used. In order to estimate the overall mean
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function µV , we pool all available data into one big scatterplot {(tj , Yij∆), i = 1, . . . , n, j = 1, . . . , [T/∆]},

and then obtain the nonparametric regression of Y versus t by local linear smoothing. Formally, one finds

the minimizers β̂0, β̂1 of

n∑
i=1

[T/∆]∑
j=1

κ1(
tj − t
bV

){Yij∆ − β0 − β1(t− tj)}2, (17)

where bV is the smoothing bandwidth, chosen in practice by (generalized) cross-validation, and κ1 is a

kernel function, which is required to be a square integrable and compactly supported symmetric density

function, with absolutely integrable Fourier transform. Then one sets µ̂V (t) = β̂0(t).

Estimation of the covariance surface GV is based on the collection of all available pairwise “empirical

covariances” Gi(tj1 , tj2) = (Yij1∆ − µ̂V (tj1))(Yij2∆ − µ̂V (tj2)), assembling these into a two-dimensional

scatterplot {[(tj1 , tj2), Gi(tj1 , tj2)], i = 1, . . . , n, j1, j2 = 1, . . . , [T/∆]}, and fitting a two-dimensional

smoother to obtain the nonparametric regression of Gi(tj1 , tj2) versus (tj1 , tj2). Formally, one minimizes

n∑
i=1

∑
1≤j1 6=j2≤[T/∆]

κ2(
tj1 − s
hV

,
tj2 − t
hV

){Gi(tj1 , tj2)− [β0 + β1(s− tj1) + β2(t− tj2)]}2 (18)

w.r. to β̂0, β̂1, β̂2 and defines ĜV (s, t) = β̂0(s, t). In (18), the kernel κ2 is a compactly supported and

square integrable bivariate kernel function, which is a density with mean zero and finite variance that

possesses an absolutely integrable Fourier transform. The smoothing bandwidths hV can again be chosen

by (generalized) cross-validation.

We note that the diagonal terms (j1, j2), j1 = j2, are missing in the summation over j1, j2 in (18).

This omission is motivated by the dependence structure of the targets Y∆(t) of the transformed volatility

observations Yij∆, as given in (16). We note that due to the fact that |tj1 − tj2 | ≥ ∆ whenever j1 6= j2,

excluding the diagonal terms suffices to keep the “empirical covariances” on target. Due to the assumed

smoothness of the covariance surface G, the diagonal on the other hand is not essential in the surface

estimation step, and can be omitted from the data that are used to construct the surface, without
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incurring any asymptotic penalty. We note that along the diagonal,

var(Yij∆) = GV (tj , tj) + var(log(W∆(t))2) + cov(log σ̃2(t), logW 2
∆(t))

= GV (tj , tj) +

{
8√
2π

∫ ∞
0

(log(x))2 exp{−x
2

2
} dx − q2

0

}
, (19)

where the second equality holds under the assumptions of Lemma 2.

Once mean and covariance functions of functional volatility processes V have been determined, a next

step is the estimation of the (eigenvalue/eigenfunction) pairs, which are defined as the solutions of the

eigen-equations
∫
GV (s, t)φk(s)ds = λkφk(t), substituting the estimated covariance surface ĜV for GV .

Solutions (λ̂k, φ̂k) are obtained by numerical eigen-analysis, based on an initial discretization step, under

orthonormality constraints for the eigenfunctions. Positive definiteness of the corresponding covariance

surface can be guaranteed by a projection of the initial estimate Ĝ on a positive definite version G̃, as

described in Yao et al. (2003). In a last step, the PART algorithm yields estimates of the individual FPC

scores. Motivated by (14), these are implemented as

ξ̂ik = ∆

[T/∆]∑
j=2

(Yij∆ − µ̂V (tj))φ̂k(tj), i = 1, . . . , n, k = 1, 2, . . . . (20)

Individual trajectories of volatility can then be represented by an empirical version of the Karhunen-

Loève expansion (13),

V̂i(t) = µ̂V (t) +

K∑
k=1

ξ̂ikφ̂k(t). (21)

One choice that has to be made is the selection of the number K of included components. Options

include one-curve-leave-out cross-validation (Rice and Silverman 1991), pseudo-AIC criteria (Yao et al.

2005a) or a scree plot, a tool from multivariate analysis, where one uses estimated eigenvalues to obtain

a pre-specified fraction of variance explained as a function of K or looks for a change-point.

3.2 Functional regression for trajectories of volatility

It is of practical interest to predict future volatility patterns from observed trajectories. In intra-day

trading, one may have observed the first half day of trading and then, based on these data, may wish to
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predict the trajectory of volatility for the remainder of the day. This prediction naturally will take into

account the general relationship of volatility trajectories between first and second half day, and especially

the observed patterns in the morning of the given day, for which one wishes to predict the afternoon

volatility. We explore this example further in the next section. Functional regression models, where both

predictors and responses are random functions, have been introduced by Ramsay and Dalzell (1991).

While there exists a large body of literature on functional regression, considerably less work has been

done for functional responses (e.g., Faraway 1997), the case we contemplate here.

In a function to function regression setting, one observes a sample of i.i.d. pairs of random trajectories

(Qi, Ri), i = 1, . . . , n, sampled from square integrable stochastic processes (Q,R), with mean functions

µQ, µR and eigenvalue, eigenfunction pairs {(λk, φk), k = 1, 2, . . .} for random predictor functions Q and

{(τm, ψm), m = 1, 2, . . .}, say, for random response functions R. The functional linear regression model

E(R(t)|Q) = µR(t) +

∫
TQ

(Q(s)− µQ(s))β(s, t) ds, t ∈ TR, (22)

features the regression parameter surface β, a nonparametric smooth function. We note that the domains

TQ of Q and TR of R can be arbitrary, but predictor and response function are always drawn from the

same joint realization of processes Qi and Ri, which have a joint distribution. For example, in the

intra-day volatility example that we study in Section 4, both predictor and response processes are jointly

observed on the same day.

The estimation of β is an inverse problem and requires regularization. We use the projection of

the trajectories on FPC scores, regularizing by controlling the number of included components. With

Karhunen-Loève expansions for Q and R,

Q(t) = µQ(t) +

∞∑
k=1

ξkφk(t), t ∈ TQ , R(t) = µR(t) +

∞∑
m=1

ζmψm(t), t ∈ TR , (23)

where ξk are FPC scores for Q and ζm for R, it is well known that the functional regression relation (22)

can be alternatively written as

R∗(t|Q) = E(R(t)|Q) = µR(t) +

∞∑
k,m=1

ξk
γkm
λk

ψm(t) , t ∈ TR . (24)
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Here γkm = E(ξkζm), which can be estimated in various ways (Müller, Chiou and Leng 2008). The

functional regression can be decomposed into a series of simple linear regressions through the origin of

response scores ζm versus predictor scores ξk.

The estimated prediction of a new trajectory R∗, given any trajectory Q∗ with FPC scores ξ∗k, is

R̂∗(t|Q) = µ̂R(t) +

∞∑
k,m=1

ξ∗k
γ̂km

λ̂k
ψ̂m(t), t ∈ TR . (25)

To obtain estimates γ̂km of γkm, we adopt a functional regression method described in Yao et al. (2005),

which is based on the fact that

γkm =

∫
TQ

∫
TR

φk(s)ψm(t)GQR(s, t) ds dt, (26)

where GQR(s, t) = cov(Q(s), R(t)). The cross-covariance surface can be estimated by similar procedures

as used for the auto-covariance function G in (18), where we designate the bandwidth used in the two-

dimensional smoothing step of the raw cross-covariances by h̃. Estimates γ̂km are then obtained by

plugging the resulting estimates ĜQR(s, t) and the previously determined estimates φ̂k and ψ̂m of the

eigenfunctions of processes Q and R into (26).

The regression parameter surface β(s, t) appearing in (22) is customarily represented as

β(s, t) =

∞∑
k,m=1

γkm
λk

φk(s)ψm(t) , s ∈ TQ, t ∈ TR, (27)

and an estimate β̂(s, t) is obtained simply by plugging in estimates for the unknown quantities. When

one is interested to quantify the strength of a functional relationship, the functional coefficient of deter-

mination is useful. With eigenvalues τm for processes R, it is defined as

R2
det =

∫
var(E[R(t)|Q])dt∫

var(R(t))dt
=

∑∞
k,m=1 γ

2
km/λk∑∞

m=1 τm
, (28)

and estimation is straightforward by replacing the unknown quantities by their respective estimates. We

illustrate these estimates in Section 4.
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3.3 Asymptotics

Consistency results for eigenfunctions, eigenvalues, FPC scores and fitted trajectories for estimation of

volatility processes and for regressing volatility trajectories on each other are the topic of this section. The

starting point for the asymptotic analysis is model (4) for the returns. As this model differs in various ways

from usual functional models, the situation does not conform with the usual functional approaches and

additional asymptotic considerations are required. A first step is a bound that demonstrates the uniform

approximation of the observations Zij∆ in (5) and (6). Proofs and details regarding the assumptions can

be found in the Appendix. In the following, T ⊂ (0, T ] is an arbitrary compact interval.

Theorem 1. Assuming (M1)-(M4),

E[sup
t∈T
|Z∆ − σ̃(t)W∆(t)|] = O(

√
∆). (29)

Due to the 1/
√

∆ normalization used for Z∆, the mean price trajectory has the same order of convergence

as the remainder term and therefore does not contribute to the leading term. Recollecting that we estimate

the overall mean trajectory µV of volatility processes V in (17) with bandwidths bV , and the covariance

surface GV (12) in (18) with bandwidths hV , we obtain for the estimation of these key constituents the

following result. All convergence results in the following are for n→∞ and ∆→ 0.

Theorem 2. Assuming (M1)-(M8),

sup
t∈T
|µ̂V (t)− µV (t)| = OP (

√
∆ + (n1/2bV )−1), (30)

sup
s,t∈T

|ĜV (s, t)−GV (s, t)| = OP (
√

∆ + (n1/2h2
V )−1). (31)

This result provides justification for the mean and covariance function estimates. As a consequence of

Theorem 2, we also obtain consistency for the estimation of eigenvalues λk and eigenfunctions φk of

volatility processes, justifying the use of these estimates in volatility analysis.

Theorem 3. Assume (M1)-(M9) for a sequence K = K(n) → ∞. Then for all 1 ≤ k ≤ K and
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eigenvalues λk of multiplicity one, eigenfunctions φ̂k can be chosen such that, uniformly over 1 ≤ k ≤ K,

sup
t∈T
|φ̂k(t)− φk(t)| P−→ 0, λ̂k

P−→ λk. (32)

We are also interested in the consistency of estimates V̂i(t) = µ̂V (t) +
∑K
k=1 ξ̂ikφ̂k(t) (21) of individual

volatility trajectories Vi(t) = µV (t) +
∑∞
k=1 ξkφk(t), as estimating volatility from available trading data

is a major objective.

Theorem 4. Assuming (M1)-(M11), as K = K(n) −→∞,

sup
t∈T
|V̂i(t)− Vi(t)|

P−→ 0. (33)

An immediate consequence of this result is that also the function σ̃2(t) that appears in (9) can be consis-

tently estimated by σ̃2
i (t) = exp (V̂i(t)). Finally, we analyze the prediction of new volatility trajectories

from available trajectories via functional regression for volatility processes. Assuming that K components

are included for predictor processes and M for response processes, the estimated prediction via functional

regression Ê(R(t)|Q∗) (25) is consistent for its target E(R(t)|Q∗) (24), as the following result shows.

Theorem 5. Assume (M1)-(M11) for predictor processes Q with K = K(n) → ∞, and also for

response processes R with M substituting for K, M = M(n)→∞; furthermore that (M12) holds for

eigenfunctions φk of Q and for eigenfunctions ψk of R. In addition, the bandwidths h̃ that are used for

the auxiliary cross-covariance surface estimate ĜQR (as introduced in Section 3.2 at (26)) are assumed

to satisfy (M13). Then the estimate β̂ of the regression parameter surface β (27) satisfies

sup
(s,t)∈TQ×TR

|β̂(s, t)− β(s, t)| P−→ 0, (34)

and the estimate R̂∗(t|Q) (25) of the predicted response trajectoryR∗(t|Q) = E(R(t)|Q) (24), evaluated

at predictor trajectory Q = Q∗, satisfies

sup
t∈TR

|R̂∗(t|Q∗)−R∗(t|Q∗)| P−→ 0. (35)

This result provides asymptotic justification for predicting volatility trajectories for high-frequency data

from observations of related trajectories.
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4. Simulations

4.1 Heston and smooth volatility models

We compared the behavior of the proposed functional approach with standard methods for spot volatility

estimation for simulated price curves. This comparison was carried out for both the traditional Heston

model with non-smooth volatility function and a smooth volatility model that is in accordance with

assumption (M5) in the Appendix.

Heston Model. Here the diffusion for the price process is given by

d logX(t) = µX(t)dt+
√
V (t)X(t)dW1(t) (36)

for a Wiener process W1. The stochastic volatility function V follows the Cox-Ingersoll-Ross square root

diffusion model

dV (t) = a(b− V (t))dt+ c
√
V (t)dW2(t), (37)

with constants a, b, c, where W2 is a second Wiener process and W1 and W2 have correlation ρ. The

non-differentiability of the resulting volatility process means that assumption (M5) is not satisfied for the

Heston model. For the simulation study, we generated data from a Heston model with X0 = 20, V0 =

1, µ = 0.1, a = 0.5, b = 1, c = 1, and two levels for the correlation, ρ = 0.2 and ρ = 0.8. The parameters

were chosen so that both the price process and volatility process are positive with a high probability.

Smooth Volatility Process Model. For the simulation study, we adopted the following specific example

for smooth volatility processes V (t) = log({σ̃(t)}2) that satisfy assumption (M5) in the Appendix: For

α ≥ 0, δ > 0, let

V (t) = log

[∫ t

t−δ
κ(t− v) dW (v) + b

]2

+ α log [S(t)]
2
, t ∈ [0, 1], (38)

where we chose the kernel κ(x) = x3(1−x)3 and S(t) = ξ1φ1(t)+ξ2φ2(t)+b. Here, ξ1, ξ2 are independent

Gaussian random variables with mean zero and variance 1 and 0.5 respectively, which are also independent

of W , with orthonormal functions φ1(t) = 1√
2

sin(kπt), φ2(t) = 1√
2

cos(kπt). It is easy to see that these
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processes satisfy (M5). By changing α, or increasing the number of components included in the smooth

processes S, this construction reflects various degrees of correlatedness between V and W , similarly to

the situation in the Heston model.

As in the Heston model, we chose X0 = 20, V0 = 1, µ = 0.1, b = 1 in model (38), as well as δ = 1/78,

corresponding to the fraction of 5 minutes relative to the trading day. This parameter controls the degree

of smoothing of the Wiener process that is reflected in (38), while α controls the relative contributions

of the two terms on the right hand side of (38), or more geneally of W̃ (t) and H(t) in (M5), to the total

volatility, while k determines the period of the smooth component. We carried out simulations for two

cases, Scenario 1 with α = 0.05 and k = 1, and Scenario 2 with α = 0.02 and k = 2.

We adopted the sample size and the number of trades generated in the simulation to the number

of days (n = 92) and to the 78 daily trades, corresponding to 5 minute intervals, that were actually

observed in the application to financial data, which is described in more detail in Section 5. Accordingly,

we generated for all simulations 92 independent functional realizations from both Heston and smooth

volatility models, and for each random trajectory 78 trades were generated, for a total of 100 Monte

Carlo runs. Wiener processes were approximated with 300 increments for each observation, so that the

step size corresponds to 1 second.

4.2 Simulation results

For comparing the behavior of estimates for the functional volatility process, in addition to the proposed

functional methods, we implemented the kernel approach of Fan and Wang (2008). In this approach the

spot volatility is estimated using a kernel-smoothed version of squared log returns of the high frequency

data. We used a two-sided exponential kernel and chose optimal bandwidths by minimizing the L2

distance between estimates and the actual volatility curves. The simulation results are reported in terms

of E[
∫

(V̂ (t)−V (t))2]1/2, the mean root integrated squared error (MRISE) of curve estimates V̂ (t), which

we approximated by taking the average of 1
92

∑92
i=1[ 1

78

∑78
j=1(V̂i(tj)−Vi(tj))2]1/2 over 100 simulation runs.

When simulating data from the Heston model, for the case with correlation ρ = 0.2, MRISE was
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found to be 0.35 (standard deviation 0.02) for the proposed functional method and 0.31 (0.02) for the

kernel method. For a Heston model in the case where ρ = 0.8, MRISE was 0.36 (0.02) for the functional

and 0.31 (0.02) for the kernel method, respectively. For data generated from the smooth volatility process

model, in Scenario 1, MRISE was 0.16 (0.02) for the proposed functional and 0.23 (0.01) for the kernel

method. In Scenario 2, the corresponding values were 0.14 (0.02) and 0.23 (0.01), respectively. The

functional approach is found to perform substantially better than an established kernel method under

smooth volatility models, while its performance is slightly worse under the Heston model.

Typical behaviors of predicted volatility trajectories, using functional predictors as in (25), are illus-

trated in Figure 2. Here the prediction is for the volatility trajectory V of the second half day, based

on the data observed first half day for the daily volatilities generated as described above. More details

about predicting second half day volatility from observed data for the first half day can be found in the

following section. This forecast is shown for two randomly selected curves and the two Heston models

as well as the two smooth volatility models described above. A simple forecast based on the value of

Z∆ at the end of the first-half day is also shown as horizontal line, as are the actual observed volatilities

Z∆ for the second day, which are not used for constructing the predictions. We find that the predicted

volatility process approximately tracks the observed patterns of volatility, with improved tracking for

smooth volatility processes, while the simple extrapolation forecast produces very poor predictions.

5. Functional Data Analysis Of Intra-Day Trading Patterns

5.1 Description of data and initial processing

The data consist of returns in high-frequency trading of the Standard and Poor 500 index, based on

closing prices that are recorded every 5 minutes for the period December 2003 to March 2006, comprising

548 trading days. Here ∆ = 5 minutes, which is the unit of time in the graphs. The length of the daily

trading period is 390 minutes. Our use of five-minute sampling frequency parallels many other studies

in the literature, and use of the closing prices is in accordance with the tick-method as discussed in
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Dacorogna et al. (2001). Figure 1 displays daily trajectories of log returns for these data, observed on

randomly selected six days.

While volatility patterns for consecutive days may not be independently distributed, it is expected that

this dependence vanishes as days are spaced sufficiently apart from each other. To enhance independence

between the trading days entering our analysis, we randomly selected a subsample of days, consisting of

pairs of days satisfying the following constraints: (a) the time distance in between days that belong to

different pairs is at least a month; (b) the interval between the days in each pair is six days. Constraint

(b) resulted from a computation of the functional coefficient of determination R2
det (28), when regressing

the volatility pattern of the second day in each pair on the first day, varying the interval between the

two days in the pair. The results for R2
det and also associated p-values obtained from 1000 bootstrap

samples generated under the null hypothesis of no functional relationship (Müller, Chiou and Leng 2008)

are shown in Table 1, suggesting that pairs of days that are six days apart (where the first day of each

pair is randomly chosen) can be treated as independent for practical purposes. The sample then consists

of data for n = 92 trading days that satisfy constraints (a) and (b).

We applied the following variant of the PART algorithm (see Section 3.1). As inference about

the functional volatility process is based on approximating Z∆(t) by σ̃(t)W∆(t), (7) suggests that the

approximation might be improved in practice if in a first step one estimates individual drifts µ̃i(t),

by smoothing scatterplots {(tj , Zij∆), j = 1, . . . , [T/∆]}, for each fixed 1 ≤ i ≤ n. Denoting the

smoothed trajectories obtained from this smoothing step by ẑi(t), which are substituted for µ̃i(t)
√

∆,

one then forms Z ′ij∆ = Zij∆ − ẑi(tj) and substitutes the transformed observations, the raw volatilities

Y ′ij∆ = log({Z ′ij∆}2)−q0, for Yij∆ in the PART algorithm. We adopted this variant, which led to slightly

improved results in our application. Overall, the differences as compared to the analysis obtained from

the unmodified PART algorithm were minor. For the initial smoothing step to obtain the initial estimates

ẑi(t) we used a cross-validation bandwidth choice.
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5.2 Estimation of components of the functional volatility process

When applying the PART algorithm to the transformed residuals or raw volatilities Y ′ij∆, one needs to

choose the included number of components K, see (21). Using an AIC criterion with pseudo-likelihood

(marginal likelihood) led to the choice K = 3. Also from the scree plot, K = 3 seems to be a good choice,

explaining 97.66% of total variance. The first three estimated eigenvalues are 23.42, 2.36 and 1.95. In

Figure 3 we present the estimated mean function µ̂V and covariance surface ĜV (s, t) of the functional

volatility process V , which reflect the smoothing steps (17) and (18), respectively. The estimated covari-

ance surface is obtained by plugging the fitted eigenfunctions and eigenvalues into
∑K
k=1 λkφk(s)φk(t).

The mean function of the volatility process shows a dip during midday. A noon dip in volatility has been

reported before (e.g., Andersen and Bollerslev, 1998) and may be attributed to a drop in trading activity

during lunch break.

Estimated eigenfunctions φ̂k are illustrated in Figure 4. The first eigenfunction, corresponding to

the primary mode of variation of daily volatility, parallels the mean function (note that the sign of the

eigenfunctions is arbitrary) and primarily reflects the overall level of volatility on a given day. The second

eigenfunction differentiates between morning and afternoon trading volatility, and also separates out the

volatility of the very last trades on a given day. The third eigenfunction reflects shape changes between

more moderate or more pronounced volatility dips around noon. Raw volatilities Y ′ij∆ and the estimated

trajectories V̂i(t) of the functional volatility process, as defined in (21), are shown for six randomly chosen

days in Figure 5. The individual time courses of volatility reflect the trends of the raw volatilities in a

smooth fashion and exhibit substantial variability from day to day.

5.3 Regressing volatility trajectories of second half day on first half day of trading

One aim of volatility analysis and a yardstick for the usefulness of the proposed methodology is the

prediction of future volatility from past observations. For this purpose, we adopt functional regression

analysis as described in Section 3.2 to predict afternoon volatility trajectories from those observed in the

morning. Predictor processes are thus chosen as Q(t) = V (t), with t restricted to the first half of the

20



trading day, which then is the domain TQ of Q, and response processes are R(t) = V (t), with t restricted

to the second half of the trading day, which is the domain TR of R. This method applies the accumulated

knowledge about the relationship of volatility patterns as learned in a training set to the prediction task.

Specifically, we are aiming at predicting the volatility process for the second half day (response) from

that of the first half day (predictor).

Of special interest is the quantitative gain in predicting the afternoon volatility trajectories when

applying the prediction based on functional regression over a baseline estimate. As baseline we use the

estimated mean afternoon volatility function µ̂
(−i)
R , which is not influenced by morning trading and is

obtained as in (17), while also omitting the data from day i. In order to quantify the performance of these

two predictors, we first obtain target afternoon volatility trajectories by polynomial smoothing of the raw

volatilities Yij∆, obtaining for each afternoon a target volatility trajectory Ri. The predicted afternoon

volatility trajectory for the i-th day is R̂(−i)∗(t|Qi) (25), obtained by substituting ξ∗k by ξ̂ki (20) for the

predictor process Qi, while omitting the data from day i. Thus the situation for day i corresponds to

prediction of the response at a new level of the predictor. Data from the afternoon for which volatility is

to be predicted are not used in any way.

The ratios

ri =

∫
T ′(Ri(t)− R̂(−i)∗(t|Qi))2 dt∫
T ′(Ri(t)− µ̂(−i)

R (t))2 dt
, (39)

where T ′ ⊂ TR is chosen to eliminate the influence of boundary effects that are inherent in Ri, provide

a measure of the relative performance of these predictors, in terms of L2 distance of the predicted to

the observed target trajectory. We compute the median of this ratio over the 92 days in the sample and

minimize this median over a grid of (K,M), chosen from 1 ≤ K,M ≤ 5. The resulting optimal value is

K = M = 1.

To visualize the functional regression of afternoon volatility on morning volatility, we display the

eigenfunctions and a scatterplot of the FPC scores of afternoon volatility trajectories Ri vs. morning

volatility trajectories Qi in Figure 6, choosing K = M = 1 for the representations (23) of predictor and
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response processes Q and R. We find that the functional regression of these volatility processes on each

other both explains a sizable fraction of the variance of the afternoon processes and also is significant.

This can be seen from the size of the functional coefficient of determination R2
det = 0.45 and the bootstrap

p-value p < .001.

The median of the ratio ri in 39 over the 92 days in the sample is 0.703, implying that the squared

prediction error of the predictor based on functional regression for volatility processes is approximately

30% smaller than the simple prediction using the overall mean trajectory. We present average squared

errors between the target function Ri(t) and the two predictors, substituting for E(Ri(t) − µ̂(−i)
R (t))2

and E(Ri(t) − R̂(−i)∗(t|Qi))2, as functions of t, in Figure 7. This demonstrates the superiority of the

functional prediction, as its error is uniformly lower than that of the mean, especially for early afternoon

trading; both errors increase somewhat towards the end of the trading day. Our analysis provides evidence

that substantial gains can be achieved in volatility prediction by combining the volatility process with

functional regression.

6. Discussion and Concluding Remarks

A central feature of the proposed approach that distinguishes it from established methods for spot volatil-

ity modeling and estimation is that it is geared towards the analysis of observations drawn from repeated

realizations of the volatility process, rather than observations from a single realization. Existing nonpara-

metric approaches for volatility modeling implement smoothing of the volatility function separately for

each realization of the volatility process and do not aim to determine recurrent patterns of this process.

If one has repeated realizations of the process available, as in day-to-day volatility modeling, it is clearly

of interest to deploy methods that combine information and extract patterns across these realizations.

The methodology proposed in this paper can be viewed as a first step in this direction.

To facilitate the analysis of a repeatedly observed volatility process, we develop a version of functional

principal component analysis (FPCA) that is suitable for volatility modeling. The substantial dimension

reduction afforded by FPCA enables financial data analysts to effectively model and study samples of
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repeatedly observed volatility trajectories. For effective dimension reduction through FPCA one needs

to choose the number of components to be included, which corresponds to the reduced dimension of the

originally infinite-dimensional trajectories of the functional volatility process. Depending on the context,

this can be done by targeting specific outcomes such as fraction of total variance explained or one-leave-

out prediction error, if one aims at predicting a response. A comprehensive theory for the choice of this

dimension parameter remains an open problem.

An important assumption that we need to make is smoothness of the underlying process σ̃ in (5)

and of the functional volatility process defined as V (t) = log({σ̃(t)}2) in (9), reflected in assumptions

(M1)-(M5) in the Appendix. We note that the observed data that are generated by these processes are

not assumed to be smooth, as they result from stochastic integrals of these smooth random processes

with respect to the Wiener process. While there is no evidence for non-smoothness in the daily volatility

data, there certainly are situations for which the smoothness assumptions on the volatility process are

too restrictive. Further discussion of the smooth volatility assumption (M5) can be found in Appendix

A.1, and explicit examples of smooth volatility processes are given in Section 3.4.

While the proposed methods may still give some insights in cases of mild violations of the assumed

smoothness of volatility, the theoretical results will not apply for non-smooth processes. Another neces-

sary assumption for the theoretical results to hold is that a sample of i.i.d. realizations of the processes

is available. The general consistency results are expected to be robust in the presence of weak depen-

dence and also with respect to mild violations of the required smoothness of the volatility process. When

fitting the model, one can use subsamples consisting of practically independent trajectories, as we have

illustrated in the study of intra-day trading. Nevertheless, this assumption is strong and restricts the

applicability of the proposed methods. To develop theory for the analysis of repeated realizations for

more general types of volatility processes under weaker assumptions will be a task for future work.

In many situations, the first few principal components and the associated dominant characteristics of

the volatility function lend themselves to interpretation and general descriptions of recurrent patterns in
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financial transactions. The principal components and associated eigenfunctions can be used to summarize

the salient features of the volatility process. Further statistical analyses are then feasible without running

into the curse of dimensionality, which otherwise would require to invoke strong parametric assumptions.

For example, one can carry out a functional regression analysis by using the functional principal compo-

nents of the functional volatility process as predictors, coupled with scalar or functional responses. An

example is the prediction of afternoon volatility paths from morning volatility trajectories that we study

in section 4. Other applications of interest include cluster analyses based on the estimated FPCA scores.

Such procedures are either impossible or inefficient without a prior dimension reduction step. For these

and other applications, the development of asymptotic distribution theory will be desirable; in practical

applications, inference via bootstrap procedures is an option.

We have established that under certain assumptions the functional paradigm can be applied to advan-

tage within the framework of a diffusion model for financial returns such as (3). The proposed functional

volatility process approach can be used for applications in modeling, regression and prediction. It pro-

vides tools for studying the dependency of volatility trajectories on other predictors and modeling the

relationship of volatility with other financial processes, such as the trade volume process. We envision

benefits for portfolio allocation and risk management from using functional methods for financial data. As

we have seen in Section 4.3, the difficult problem of predicting volatility can be successfully approached

with the functional volatility process. We conclude that this methodology is a promising tool for the

analysis of financial data.

Appendix

A.1 Assumptions

We begin by listing some assumptions for processes µ̃, σ̃, as needed for some basic bounds. Throughout

we consider ∆→ 0. “Smooth” in the following refers to twice differentiable, the domainT is taken to be

the interval [0, T ] and c, c0, c1, . . . denote generic positive constants.

(M1) Processes (µ̃(t))t∈[0,T ] and (σ̃(t))t∈[0,T ] (4) have sample paths that are uniformly Lipschitz contin-
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uous of order 1, i.e., there exists a constant L > 0 so that a.s.

|µ̃(t)− µ̃(s)| < L|t− s|, |σ̃(t)− σ̃(s)| < L|t− s|.

(M2) Processes µ̃ satisfy E[supt∈[0,T ] |µ̃(t)|] <∞

(M3) Processes σ̃ satisfy supt∈[0,T ]E[σ̃(t)2] <∞

(M4) Sample paths of processes σ̃ are smooth and derivatives d
dt σ̃(t) satisfy

E[ sup
t∈[0,T ]

| d
dt
σ̃(t)|2] = O(1).

(M5) The log-variance process can be represented as

log(σ̃2(t)) = W̃ (t) +H(t), with W̃ (t) = f(

∫ t

t−δ
κ(t− v)dW (v)) for a δ > 0,

where E(|W̃ (t)W (t)p|) <∞ for p = 1, 2. Here H is a continuously differentiable process, which is in-

dependent of W , f is a continuously differentiable function and κ a twice continuously differentiable

kernel function with support supp ⊆ [0, δ], which satisfies

κ(0) = κ′(0) = κ′′(0) = 0, κ(δ) = κ′(δ) = κ′′(δ) = 0,

∫ δ̃

0

κ2(u)du > 0 for all δ̃ > 0.

Assumption (M5) merits some discussion. This assumption implies continuously differentiable volatility

functions log(σ̃2(t)). This differentiates our approach from the Heston model in (36), (37), for which

both price and volatility processes are non-smooth, while in our approach, according to (M5), the price

process is non-smooth but the volatility process is differentiable. Applying the properties of the kernel

in (M5) and integration by parts, and defining W̃1(t) = f ′(
∫ t
t−δ κ(t− v)dW (v)), we find

d

dt
W̃ (t) = W̃1(t)

d

dt

∫ t

t−δ
κ′(t− v)W (v)dv = W̃1(t)

∫ t

t−δ
κ′′(t− v)W (v)dv. (40)

We also note that the correlations between process W and the log variance process log(σ̃2) vary in

dependence on the function f and processes H. Specific examples of smooth volatility processes that

satisfy (M5) are given in Section 3.4.
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Additional assumptions are as follows. To apply the logarithmic transformation, we assume that

the data are truncated near zero, i.e., |σ̃(t)W∆(t)| ≥ ε for a small ε > 0, and when conducting the

transformation we replace the original Zij∆ by Z̃ij∆ = max(Zij∆, ε). Then (29) immediately implies that

(M6) E[ sup1≤j≤T/∆ | log({Z∆(tj)}2)− q0 − Y∆(tj)| ] = O(
√

∆).

This assumption will be utilized for some of the results. We note that implementing such a lower threshold

might also be occasionally necessary in practice to execute the transformation smoothly; this was not an

issue in our data illustrations in Section 4.

For the moments of Yij∆ (16) and the smoothing bandwidths bV and hV as used in (17) and (18),

some of the results require the following assumptions.

(M7) supj E[Yij∆]4 <∞

(M8) As n→∞,

bV → 0, nb4V →∞, limsupn nb
6
V <∞,

hV → 0, nh6
V →∞, limsupn nh

8
V <∞,

limsupn n
1/2bV ∆ <∞, limsupn n

1/2h2
V ∆ <∞.

For the proofs of Theorems 4 and 5 we require further assumptions on the nature of the volatility

process V . Further details on these assumptions and notation can be found in Müller et al. (2006).

For each j ≥ 0, define δVj = 1
2 min{|ρl − ρj | : l 6= j}, and ΛδVj

= {z ∈ C : |z − ρj | = δVj }, where

C are the complex numbers. Furthermore, define AδVj = sup{‖RV (z)‖F : z ∈ ΛδVj
}, where RV (z) =

(GV − zI)−1 is the resolvent of operator GV and ‖ · ‖F is an operator norm, defined on the separable

Hilbert space F generated by the Hilbert-Schmidt operators on H, endowed with the inner product

〈T1, T2〉F =
∑
j〈T1uj , T2uj〉H and the norm ‖T‖2F = 〈T, T 〉F , where T1, T2, T ∈ F , and {uj : j ≥ 1} is

any complete orthonormal system in H. Then we assume

(M9)
∑K
j=1(δVj AδVj supt∈[0,T ] |φj(t)|)/(

√
nh2

V −AδVj )→ 0, as K = K(n)→∞.
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Further assumptions are needed for Theorem 5. For the sequence K = K(n)→∞,

(M10)
∑K
j=1 supt∈[0,T ] |φj(t)| = o(min{

√
nbV ,

√
∆−1}), and∑K

j=1 supt∈[0,T ] |φj(t)| supt∈[0,T ] |φ′j(t)| = o(∆−1)

(M11) E{[supt∈[0,T ] |V (t)− V (K)(t)|]2} = o(1), where V (K)(t) = µV (t) +
∑K
k=1 ξkφk(t)

(M12)
∑K
j=1 supt∈[0,T ] |φj(t)|2 = op(∆

−1/2) and∑K
j=1(δVj AδVj supt∈[0,T ] |φj(t)|/(∆−1/2 −AδVj )→ 0, as n→∞

(M13) h̃→ 0, nh̃6 →∞, limsupn nh̃
8 <∞, limsupn n

1/2h̃2∆ <∞.

Here, h̃ is the bandwidth used for smoothing the cross-covariance of predictor and response processes,

as described after eq. (26).

A.2 Auxiliary results and proofs

Next we state two auxiliary lemmas with proofs.

Lemma 1. Under (M1)-(M4), it holds that

E[ sup
t∈[0,T ]

|R1(t,∆)|] = O(∆3/2), E[ sup
t∈[0,T ]

|R2(t,∆)|] = O(∆1/2).

Proof: The result for R1(t,∆) follows from∣∣∣∣∣ 1√
∆

∫ t+∆

t

µ̃(v) dv − µ̃(t)
√

∆

∣∣∣∣∣ ≤ 1√
∆

∫ t+∆

t

|µ̃(v)− µ̃(t)| dv

= O(
1√
∆

)

∫ t+∆

t

|v − t| dv = O(∆3/2),

where the O-terms are a.s. and uniform in t . For R2(t,∆), by partial integration,

R2(t,∆) =
1√
∆

∫ t+∆

t

(σ̃(v)− σ̃(t)) dW (v)

=
1√
∆

(
W (t+ ∆)(σ̃(t+ ∆)− σ̃(t))−

∫ t+∆

t

W (v)d(σ̃(v)− σ̃(t))

)
.
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Observing E supt∈[0,T ] |W (t)|2 < ∞ for the Wiener process (e.g., Adler, 1990, Thm. 3.2) and d[σ̃(v) −

σ̃(t)] = σ̃′(v) dv, as well as (M4), it follows that

E[ sup
t∈[0,T ]

|R2(t,∆)|] ≤ 1√
∆
{E[ sup

t∈[0,T ]

|W (t+ ∆)|2 ]E[ sup
t∈[0,T ]

|σ̃(t+ ∆)− σ̃(t)|2 ]}1/2

+
1√
∆

∫ t+∆

t

{E[ sup
t∈[0,T ]

|W (v)|2 ]E[ sup
t∈[0,T ]

|σ̃′(v)|2 ]}1/2 dv

= O(∆1/2).

The analysis of Y∆(t) = V (t) + U∆(t) with V (t) = log(σ̃2(t)) and U∆(t) = log(W 2
∆(t)) − q0 will be

facilitated by the following result.

Lemma 2. Assume that the variance process satisfies (M5). Then for any δ > 0 there exists a constant

c > 0 such that uniformly for all s, t with 0 < δ ≤ s, t ≤ T , for sufficiently small ∆,

∣∣ cov(log(σ̃2(t)), log(W 2
∆(s)))

∣∣ ≤ c√∆ . (41)

Proof: We may assume w.l.o.g. that ∆ ≤ 1 − δ < 1. With Ψ(t) =
∫ t
t−1

κ(t − v)dW (v), writing

W∆(s) = 1√
∆

∫ s+∆

s
dW (v), one finds

var(Ψ(t)) =

∫ t

t−1

κ2(t− v) dv =

∫ 1∧t

0

κ2(v) dv, cov(W∆(s),Ψ(t)) =
1√
∆

∫ s+∆

s

κ(t− v) dv,

which is zero for t ≤ s or t > s+ ∆ + 1, so that it remains to establish (41) for the case s < t ≤ s+ ∆ + 1.

Then the conditional distribution of W∆(s) | Ψ(t) is normal N(m(s, t,∆), ς2(s, t,∆)) with

m(s, t,∆) =

1√
∆

∫ s+∆

s
κ(t− v) dv∫ t

t−1
κ2(t− v) dv

Ψ(t) =
√

∆ θ1(s, t)Ψ(t),

ς2(s, t,∆) = 1−
∆[ 1

∆

∫ s+∆

s
κ(t− v) dv]2∫ 1∧t

0
κ2(v) dv

= 1−∆θ2(s, t),

with suitable functions θ1, θ2. Given δ > 0 as in the assumption of Lemma 2, according to (M5) the

functions θ1, θ2 are uniformly bounded,

sup
δ<s,t≤T

|θ1(s, t)| <∞, sup
δ<s,t≤T

|θ2(s, t)| ≤
∫ s+∆

s
κ2(t− v) dv∫ t

t−1
κ2(t− v) dv

≤ 1 ,
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where we used the Cauchy-Schwarz-inequality for θ2 . Next we will prove

|D∆| <
√

∆
(
c0 + c1|Ψ(t)|+ c2Ψ2(t)

)
for D∆ = E

(
log(W 2

∆(s))− E(log(W 2
∆(s))) | Ψ(t)

)
. (42)

Observe that

D∆ =

∫ ∞
−∞

log y2 exp

(
−1

2

(y −
√

∆ θ1(s, t)Ψ(t))2

1−∆ θ2(s, t)

)
dy

{2π(1−∆ θ2(s, t))}1/2
(

1− {1−∆ θ2(s, t)}1/2
)

+

∫ ∞
−∞

log y2

(
exp

(
−1

2

(y −
√

∆ θ1(s, t)Ψ(t))2

1−∆ θ2(s, t)

)
− exp

(
−y

2

2

))
dy√
2π

= A∆ +B∆, say.

For the first term,

|A∆| ≤ c3 ∆

∫
|y|≤1

log y2 dy√
2π

+c4∆

∫
|y|≥1

(y2 − 1) exp

(
−1

2

(y −
√

∆ θ1(s, t)Ψ(t))2

1−∆ θ2(s, t)

)
dy

{2π(1−∆ θ2(s, t))}1/2
≤ ∆(c5 + c6∆Ψ(t)2).

For the second term, observing |ex − ey| ≤ |x− y|ex,

|B∆| ≤ c7
√

∆

∫ ∞
−∞

log y2
∣∣∣2yθ1(s, t)Ψ(t) +

√
∆{θ1(s, t)Ψ(t)}2 + y2

√
∆θ2(s, t)

∣∣∣ exp

(
−y

2

2

)
dy√
2π

≤ c8
√

∆
(
|Ψ(t)|+

√
∆Ψ2(t) + c9

√
∆
)
,

which implies (42), from which we may infer with (M5) that

∣∣ cov(log(σ̃2(t)), logW 2
∆(s))

∣∣ =
∣∣E (log(σ̃2(t))− E(log(σ̃2(t)))

) (
logW 2

∆(s)− q0

)∣∣
=

∣∣∣E ((W̃ (t) +H(t)− E(σ̃2(t))
) (

logW 2
∆(s)− q0

)
| Ψ(t)

)∣∣∣
=

∣∣∣E ((W̃ (t)− E(log σ̃2(t))
)
E
(
logW 2

∆(s)− q0 | Ψ(t)
))∣∣∣

≤ c
√

∆,

whence the result follows.

Corollary. For any given δ > 0, it holds for all s, t with δ < s, t ∈ T that

cov(V (t) + U∆(t), V (s) + U∆(s)) = GV (t, s) +O(
√

∆) , (43)
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where the O-term is uniform in s and t.

We are now in a position to give proofs for the main results.

Proof of Theorem 1. The result follows directly from (5) and Lemma 1, noting that

E supt∈[0,T ] |µ̃(t)| <∞.

Proof of Theorem 2. The proof borrows arguments from the proofs of Lemma C1 and Theorem 2

of Müller et al. (2006), with some variations due to the fact that in the present context of volatility

estimation there is neither an issue of estimating the smooth price trajectories µ̃ nor of estimating

the variance of the errors W∆(tj). Assumptions (M1)-(M8) and those made about the kernels in the

estimation section 3.1 ensure that proper versions of Lemma C1 and the above-mentioned Theorem 2

apply here. A first step is to replace in the basic mean function and covariance function estimates (17) and

(18) the transformed data Yij∆ by their (unknown) target values Y∆(tj). For the resulting mean function

estimates µ̃V and covariance surface estimates G̃V , Lemma C1 implies that supt∈T |µ̃V (t) − µV (t)| =

OP ((n1/2bV )−1), and sups,t∈T |G̃V (s, t)−GV (s, t)| = OP ((n1/2h2
V )−1). In a second step, combining with

(M6) and (43), results (30), (31) follow.

Proof of Theorem 3. The proof is analogous to that of (C3) in Lemma C1 in Müller et al. (2006).

Proof of Theorem 4. The proof is a slightly modified version of the proof of Theorem 3 in Müller et

al. (2006).

Proof of Theorem 5. We first observe that

sup
s,t∈TQR

|ĜQR(s, t)−GQR(s, t)| = OP (
√

∆ + (n1/2h̃2)−1), (44)

which is proved similarly to (31). Next, the assumptions imply, analogously to arguments used in the

proof of Theorem 3 in Müller et al. (2006), that

max
1≤k≤K

sup
t∈TQ

|φ̂k(t)− φk(t)| P−→ 0, max
1≤m≤M

sup
t∈TR

|ψ̂m(t)− ψm(t)| P−→ 0, (45)

and

max
1≤k≤K

|λ̂k − λk|
P−→ 0. (46)
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Combining (44), (45), (46), we find with (26) that

max
1≤k≤K,1≤m≤M

|γ̂km − γkm|
P−→ 0. (47)

The result (34) is an immediate consequence of (45), (46) and (47). Result (35) follows by observing in

addition that the ξ∗k are given and that (30) holds for response processes R = V .
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Lag 1 2 3 4 5 6

R2
det 0.176 0.147 0.240 0.202 0.092 0.073

p-value 0.460 0.384 0.244 0.366 0.894 0.965

Table 1: Functional R2
det, as defined in (28), and bootstrap p-values for regressing second day on first day

for randomly selected pairs of trading days, in dependency on the lag (in days) between the two days.
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Figure 1: Log returns for six randomly chosen days of S&P500 trading data. The unit of the time axis

is ∆ = 5min for all figures.
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Figure 2: Predicted volatility trajectories (solid) and observed volatilities (dots) for second half days,

predicted from first half day with functional linear regression (25), for two randomly selected days (in

left and right column). The prediction is obtained for four simulation models: Heston model with

correlation ρ = 0.2 (first row), Heston model with correlation ρ = 0.8 (second row), smooth volatility

model from simulation scenario 1 (third row), smooth volatility model from simulation scenario 2 (fourth

row). The functional volatility prediction is compared with a simple forecast, which is indicated by the

gray horizontal line, and is based on the last observed volatility of the first half day.



0 10 20 30 40 50 60 70 80

−3.5

−3

−2.5

0 20 40 60 80

0
20

40
60

80
0.2

0.3

Figure 3: Estimated mean function µ̂V (top) and estimated covariance surface ĜV (bottom) for the

functional volatility process V for S&P500 data.
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Figure 4: First three estimated eigenfunctions φ̂1 (solid line), φ̂2 (dashed line), and φ̂3 (dotted line) of

the functional volatility process V , explaining 82.48%, 8.31% and 6.87% of total variance, respectively,

for S&P500 data.
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Figure 5: Raw volatilities Yij∆ (dots) and estimated volatility trajectories V̂i, for six days of S&P500

trading data.
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Figure 6: Scatterplot of estimated FPC scores of the afternoon volatility process (on y-axis) versus

those of the morning volatility process (on x-axis), for the S&P500 data (top) and first eigenfunctions of

morning (solid) and afternoon (dashed) processes.
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Figure 7: Average squared errors in dependency on time t for predictors based on functional regression

(solid) and the overall mean (dashed).


