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Abstract. In the Simply Typed λ-calculus [Hin97, BDS13] Statman investigates the
reducibility relation ≤βη between types: for A,B ∈ T0, types freely generated using →

and a single ground type 0, define A ≤βη B if there exists a λ-definable injection from the
closed terms of type A into those of type B. Unexpectedly, the induced partial order is
the (linear) well-ordering (of order type) ω + 4, see [Sta80a, Sta80b, Sta81, BDS13].

In the proof a finer relation ≤h is used, where the above injection is required to be
a Böhm transformation ([Bar84]), and an (a posteriori) coarser relation ≤h+ , requiring a
finite family of Böhm transformations that is jointly injective.

We present this result in a self-contained, syntactic, constructive and simplified manner.
En route similar results for ≤h (order type ω + 5) and ≤h+ (order type 8) are obtained.
Five of the equivalence classes of ≤h+ correspond to canonical term models of Statman,
one to the trivial term model collapsing all elements of the same type, and one does not
even form a model by the lack of closed terms of many types, [BDS13].
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2 A.A. WESTERBAAN ET AL.

1. Hierarchy of types

We work in simply typed lambda calculus over a single base type 0. The set of open terms of
(simple) type A is written Λ(A), while the set of closed terms of type A is denoted by Λε(A)
(for reasons which become clear in Section 2).

For types A,B one defines A ≤βη B if there is a closed term Φ: A → B that is an
injection on closed terms modulo βη-equality.

To get some feeling for the relation ≤βη we begin by observing

B →(A → C)≤βη A →(B → C) via λmab. mba (see Corollary 4.17);

A → C ≤βη A → B → C via λmab. ma (see Lemma 4.16);

A ≤βη (A → 0) → 0 via λmf. fm (see Lemma 4.22);

[0, 0] , 0 → 0 → 0 �βη 0 → 0 by counting closed inhabitants.

Less intuitively clear is that for all simple types A over 0 one has

A ≤βη [0, 0] → 0 → 0 (see Lemma 5.18).

Also, one might ponder (writing 1, 0 → 0) whether

1 → 1 → 0 → 0 ≤βη 1 → 0 → 0 (no);

1 → 1 → 1 → 0 → 0 ≤βη 1 → 1 → 0 → 0 (yes!);

[0, 0] → 0 → 0 ≤βη 1 → 1 → 0 → 0 (no).

The general problem whether A ≤βη B (for given types A and B) is solved by the
Hierarchy Theorem (printed on page 4, due to Richard Statman [Sta80a, Sta80b]), which
describes (among other things) the equivalence classes of ≤βη in terms of (relatively) simple
syntactic properties.

We give a new proof, which is self-contained, syntactic and constructive. We assume
only basic knowledge of the simply typed lambda calculus (long normal form, rank, . . . ),
and recall the most important notions before using them. Roughly speaking, the proof is
one long syntactic analysis of inhabitants of simple types and reductions between them; we
make no use of term models and the like. The proof is constructive in the sense that we
do not use the law of the excluded middle, and so one may easily ignore this feature of
the proof (except perhaps when reading Theorem 1.8). For applications of the Hierarchy
Theorem (and another proof), see Section 3.4 of [BDS13].
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1.1. Hierarchy Theorem. To formulate the theorem we first recall some notions and
notation from the simply typed lambda calculus, see Section 1.1 and Section 3.4 of [BDS13].

Definition 1.1.

(i) Let A be a type. The components of A are the unique types A1, . . . , An such that

A = A1 → · · · → An → 0.

(ii) Each type A has a rank denoted by rkA; it is defined recursively by

rk 0 , 0; rk(A → B) , max{ rkA+ 1, rkB }.

(iii) A type A ≡ A1 → · · · → An → 0 is fat when n ≥ 2.
(iv) A type A ≡ A1 → · · · → An → 0 is large if either A has a fat component Ai, or one

of A’s components Ai ≡ Ai1 → · · · → Aim → 0 has a large component Aij .
(v) A type which is not large, is called small.
(vi) Let A, B be types and k, n natural numbers. The following notation is used.

n+ 1 , n → 0;

[

A0 → B , B

Ak+1 → B , A → Ak → B.

Definition 1.2 (Reducibility relations).
Let A ≡ A1 → · · · → An → 0 and B ≡ B1 → · · · → Bm → 0 be types.

(i) A βη-reduces to B, notation A ≤βη B, if for some R ∈ Λε(A → B)

RM1 =βη RM2 =⇒ M1 =βη M2 (M1,M2 ∈ Λε(A) ).

This R is then called a reducing term from A to B.
(ii) A head reduces to B, notation A ≤h B, if A ≤βη B with a reducing term of

the form R ≡ λmAbB1

1 · · · bBm
m . m̺a1 · · · ̺an where ̺ai :Ai are open terms with free

variables from bB1

1 , . . . , bBm
m . We call a term of this form a Böhm term.

(iii) A reduces multi-head to B, notation A ≤h+ B, provided there exist Böhm terms

R(1), . . . , R(ℓ) which are jointly injective, that is, for M1,M2 ∈ Λε(A),

∀i [ R(i)M1 =βη R(i)M2 ] =⇒ M1 =βη M2.
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Theorem 1.3 (Statman Hierarchy). The relations ≤h+ , ≤βη and ≤h are increasingly fine.1

Their equivalence classes are listed below vertically in ascending order. The types Hα in the
last column (called canonical types) are representatives for the equivalence classes of ≤h.

Hω+4

Hω+3

Hω+2

Hω+1

Hω

...
Hk

...
H2

H1

H0

≤h

Bω+3

Bω+2

Bω+1

Bω

...
Bk

...
B2

B1

B0

≤βη

T5

T4

T3

T2

T1

T0

T−1

≤h+

Hω+4 , (0 → 0 → 0) → 0 → 0

Hω+3 , 3 → 0 → 0

Hω+2 , 1 → 1 → 0 → 0

Hω+1 , 2 → 0

Hω , 1 → 0 → 0

Hk , 0k → 0

H2 , 02 → 0

H1 , 0 → 0

H0 , 0































Moreover, the equivalence classes Hα of ≤h have the following syntactic description, and
the relations ≤h+, ≤βη and ≤h are (hence) decidable.

Hω+4 = {A : A is inhabited and large };

Hω+3 = {A : A is inhabited, small and rk(A) > 3 };

Hω+2 = {A; A is inhabited, small, rk(A) ∈ {2, 3}

and A has at least two components of rank ≥ 1 };

Hω+1 = {A : A is inhabited, small, rk(A) = 3

and A has exactly one component of rank ≥ 1 };

Hω = {A : A is inhabited, small, rk(A) = 2

and A has exactly one component of rank 1 };

Hk = {A : A is inhabited, small, rk(A) = 1

and A has exactly k components of rank 0 };

H0 = {A : A is not inhabited }.

1Viz. A ≤h+ B =⇒ A ≤βη B and A ≤βη B =⇒ A ≤h B for all types A and B.
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We give an overview of the proof of Theorem 1.3 in Subsection 1.4. To be able to do this,
we first expose the precise relation between the syntactic structure of a type and the shape
of its (long normal form) inhabitants in Subsection 1.2, and we examine the inhabitants of
the canonical types H0, H1, . . . in Subsection 1.3.

While technical details are unavoidable in a paper like this, we make them more palat-
able by introducing some syntactic sugar in Section 2. With it we can already prove the
inequalities between the canonical types (such as [0, 0] �h [0]) in Section 3. We proceed by
developing a general theory about reductions in Section 4 to establish the order type of ≤h

in Section 5, and the order types of ≤βη and ≤h+ in Section 6.
Since we are in the fortunate position to have strong normalization, every term has a

long normal form (lnf), which is the βη−1-normal form. As default we will only consider
terms in lnf. The few exceptions will not pose a problem to the reader.

1.2. Syntactic structure and inhabitants. Recall that for any type A, there are unique
types A1, . . . , An such that A = A1 → . . . → An → 0. Hence it is natural to write

Definition 1.4. [A1, . . . , An] , A1 → · · · → An → 0.

Observation 1.5. Any (lnf-)inhabitant M of a type A is of the form

λa1 · · · an. b
B N1 · · ·Nm.

Writing A = [A1, . . . , An] and B = [B1, . . . , Bm] we have that

(i) the types of the variables a1, . . . , an are respectively A1, . . . , An and
(ii) the types of the terms N1, . . . , Nm are respectively B1, . . . , Bm.

Observation 1.6. We can write every type A using only the operation [ ] in a unique way.
For example, 0 = [ ] and n + 1 = [n]. In this way we can consider types to be finite trees.
For instance, the canonical types are represented by the following trees.

0

1

2

3

4

0 [0]

0

[0, 0]

00 · · ·

· · · [1, 0]

01

0

[2]

2

1

0

[1, 1, 0]

01

0

1

0

[3, 0]

03

2

1

0

[[0, 0], 0]

0[0, 0]

00

From this we see that given a type A, the nodes on odd height of the tree A are the types
of the variables which might occur in closed terms of type A, while the possible types of
the subterms are those on even height. (E.g., in a closed term of type [3, 0] — such as
λΦ3c0. Φλf1

1 . f1Φλf
1
2 . f1f2 c — the introduced variables are of type 3 and 1, while the

subterms are of type 2 and 0.)

Observation 1.7. The syntactic properties mentioned in Theorem 1.3 are more easily
defined and understood when considering a type to be a tree.

(i) The rank of a type A is its height as a tree. If the rank of A is restricted from above
to, say 2, the variables occurring in a closed term M of type A are of rank 0 or 1 so
that all the variables in M are introduced at the head, contrary to types like [3, 0].
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(ii) A type A is fat if it has more than one component. Fat types are important, because
a variable of fat type can be used to construct a pairing (see Lemma 4.42).

Moreover, A is large if A as tree has a fat type on odd height. One can show that if
A is inhabited, then A is large if and only if there is closed inhabitant M of A which
contains a (bound) variable of fat type.

In particular, if a type is small (= not large), then its inhabitants are “strings” of
a variable followed by the mandatory abstractions

λaA1

1 . . . aAn
n . GλbB1

1 . . . bBm
m . H λcC1

1 . . . cCk

k . · · · .

1.3. Inhabitants of the canonical types Hα. By the preceding observations we can
determine the (lnf-)inhabitants of a given type. As an example (and also since we will need
them), we list by an iconic shorthand (explained by  ) the inhabitants of the canonical
types below. The verification is left to the reader.

To make terms more readable, we leave out parentheses. There is only one way to place
parentheses to get a term obeying the typing rules. E.g., we read

λf1g1c0. fggfc as λf1g1c0. f(g(g(fc)));

λb[0,0]c0. bcbcc as λb[0,0]c0. (bc)((bc)c).

We abbreviate [A,A,A,C,C] to [A3, C2], etcetera.

1.3.1. Hk = [0k]. The inhabitants (of [0k]) are the projections on k elements:

Uk
i  λx01 · · · x

0
k. xi for 0 < i ≤ k

1.3.2. Hω = [1, 0]. The inhabitants are the Church-numerals,

cn  λf1c0. f (n)c,

where f (0)c = c and f (n+1)c = f(f (n)c). As a warm-up for what is coming, note that the
inhabitants of [1, 0] are produced by the following two-level grammar.

λf1c0. N where N ::= (fN) | c

1.3.3. Hω+1 = [2]. An inhabitant can be identified by a pair of natural numbers

〈i, j〉  λF 2. Fλx01. · · ·F λx0i . xj where j ≤ i.

These terms are produced by the following grammar.

λF 2. P0 where Pn ::= (Fλx0n+1. Pn+1) | x1 | · · · | xn

1.3.4. Hω+2 = [1, 1, 0]. The inhabitants are essentially ‘words over a two element alphabet’,

λf1g1c0. W where W ::= (fW) | (gW) | c.

Hence we use words over {f, g} as shorthands. For instance,

ffggf  λf1g1c0. ffggfc.
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1.3.5. Hω+3 = [3, 0]. The inhabitants are produced by the following grammar.

λΦ3c0. M1 where Mn ::= (Φλf1
n. Wn) | c

Wn ::= (f1Wn) | · · · | (fnWn) | Mn+1

By replacing “Φ(λf1
i . · · · )” with “/”, hiding “λΦ3c0. ” and hiding the “c” at the end, we

obtain a shorthand for the inhabitants of [3, 0]. For instance,

/1//23  λΦ3c0. Φλf1
1 . f1Φλf

1
2 . Φλf3. f2f3c.

So we identify an inhabitant of [3, 0] with a list of words w1, . . . , wn with wi ∈ {1, . . . , i}∗.

1.3.6. Hω+4 = [[0, 0], 0]. The inhabitants are (like) binary trees:

λb[0,0]c0. T where T ::= (bTT) | c.

We will denote them as such. For instance,

 λb[0,0]c0. bbccc and  λb[0,0]c0. bcbcc.

1.4. Structure of the proof. In this Subsection, we present the proof of the Hierarchy
Theorem. We delegate most of the work to the remainder of this article by using statements
proved later on. What is left is the compact skeleton of the proof.

Proof of Theorem 1.3. We need to prove the following.

(I) The relations ≤h, ≤βη and ≤h+ are as displayed on page 4.
(II) The relations ≤h, ≤βη and ≤h+ are decidable.

Concerning (I). We first consider the relation ≤h. Let the sets Hα be defined as on page 4.
One easily verifies that the Hα form a partition of T0, and that Hα ∈ Hα for all α.

To show that ≤h is of the form as on page 4 it suffices to show that for all A,B ∈ T0

and α, β ∈ ω + 5 with A ∈ Hα and B ∈ Hβ, we have that

A ≤h B ⇐⇒ Hα ≤h Hβ ⇐⇒ α ≤ β (1.1)

For this we use the following four facts proved later on.

(i) A ∈ Hα =⇒ Hα ≤h A (see Subsection 5.1).
(ii) A ∈ Hα =⇒ A ≤h Hα (see Subsection 5.2).
(iii) α ≤ β =⇒ Hα ≤h Hβ (see Subsection 5.3).
(iv) α � β =⇒ Hα �h Hβ (see Section 3).

Before we prove Statement (1.1) let us spend some words on fact (iv). In Section 3 we do not
directly prove that α � β =⇒ Hα �h Hβ. Instead we show the inequalities listed below
in Statement (1.2) (writing A �h,βη B for A �βη B & A �h B, etcetera). Together with
fact (iii), this is sufficient to establish fact (iv). Indeed suppose that α � β and Hα ≤h Hβ

for some α and β in order to obtain a contradiction. Then β < α, so β + 1 ≤ α. Thus

Hβ+1 ≤h Hα ≤h Hβ

by fact (iii). This contradicts the inequality Hβ+1 �h Hβ from Statement (1.2).
It is interesting to note that we will prove the inequalities from Statement (1.2) of the

form Hβ �h,βη,h+Hα (except one) by showing that there are distinct terms N1, N2 ∈ Λε(Hβ)
such that RN1 =βη RN2 for all R ∈ Λε(A → B) (see Lemma 3.2). These terms N1, N2 are
listed on the right in Statement (1.2) using the notation from Subsection 1.3.
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[[0, 0], 0] �h,βη,h+ [3, 0] N1 = N2 =

[3, 0] �h,βη,h+ [1, 1, 0] N1 = /1/21 N2 = /1/22

[1, 1, 0] �h,βη,h+ [2] N1 = fgfg N2 = fggf

[2] �h [1, 0]

[1, 0] �h,βη,h+ [0k+2] N1 = c1 N2 = c2

[0k+2] �h,βη [0k+1]

[0k+1] �h,βη,h+ 0

(1.2)

Let us prove Statement (1.1). The first equivalence follows from facts (i) and (ii), the
second equivalence follows directly from facts (iii) and (iv).

We now turn to the order type of the reducibility relation ≤βη. To show that ≤βη is of
the form as depicted on page 4, we need to prove that

A ≤βη B ⇐⇒ α ≤ β or α, β ∈ {ω, ω + 1} (1.3)

for all α, β ∈ ω + 5 and all A ∈ Hα and B ∈ Hβ. Note that

A ≤h B =⇒ A ≤βη B for all types A and B. (1.4)

Hence A ∼βη Hα for all A ∈ Hα, since A ∼h Hα for A ∈ Hα by facts (i) & (ii). So to prove
Statement (1.3), it suffices to show that

Hα ≤βη Hβ ⇐⇒ α ≤ β or α, β ∈ {ω, ω + 1}. (1.5)

The implication “⇐=” follows from Statements (1.1), Statement (1.4) and

Hω+1 ≤βη Hω (see Subsection 6.2).

Concerning “=⇒”. Let α, β ∈ ω + 5 be given. Suppose that Hα ≤βη Hβ. Then since ≤
and = on ω+5 are decidable, it suffices to show that the negation of the right-hand side of
Statement (1.5) leads to a contradiction. Suppose that β < α and not α, β ∈ {ω, ω + 1}.
Then β ≤ γ < γ + 1 ≤ α for some γ ∈ ω + 5 with γ 6= ω. (Pick γ = β if β 6= ω, or
pick γ = ω + 1 otherwise.) Then Hγ+1 �βη Hγ by Statement (1.2), but we also have that
Hγ+1 ≤βη Hα ≤βη Hβ ≤βη Hγ , a contradiction. We have proven Statement (1.3).

We continue with the order type of ≤h+. We need to prove that

A ≤h+ B ⇐⇒ α ≤ β or α, β ∈ {ω, ω + 1}

or α, β ∈ {2, . . . , ω}
(1.6)

for all α, β ∈ ω + 5 and all A ∈ Hα and B ∈ Hβ. Again, we have

A ≤h B =⇒ A ≤h+ B for all types A and B, (1.7)

and A ∼h+ Hα for all A ∈ Hα. So it suffices to show that

Hα ≤h+ Hβ ⇐⇒ α ≤ β or α, β ∈ {ω, ω + 1}

or α, β ∈ {2, . . . , ω}.
(1.8)

The implication “⇐=” follows from Statement (1.1), and Statement (1.7) and

Hω+1 ≤h+ Hω and Hk+1 ≤h+ Hk (k ≥ 2) (see Subsection 6.1).

The implication “=⇒” can be proven using the inequalities of Stat. (1.2) in a similar fashion
as the implication “=⇒” of Stat. (1.5) was proven above. We leave this to the reader.
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Concerning (II). To show that the reducibility relations ≤h, ≤βη and ≤h+ are decidable, we
prove that for every type A an α ∈ ω+5 can be computed with A ∈ Hα. (This is sufficient
because if A ∈ Hα and B ∈ Hβ then A ≤h B can be decided using Statement (1.1); A ≤βη B
using Statement (1.3); A ≤h+ B using Statement (1.6).) Of course, algorithms to determine
the rank of a type, the number of components and whether the type is large or small are
defined easily enough; the difficulty here is how to decide whether a given type is inhabited.

By Proposition 2.4.4 of [BDS13] (which is proven using the law of the excluded middle)
a type A ≡ [A1, . . . , An] is inhabited iff Ai is uninhabited for some i. From this fact a
recursive algorithm to determine whether a type A is inhabited is easily concocted. Since
we want constructive proof of the Hierarchy Theorem, we have formulated and proven a
constructive variant of Proposition 2.4.4 of [BDS13], see Theorem 1.8 below. Note that the
algorithm to determine inhabitation in the constructive case is the same as in the classical
case; only the proof that the algorithm is correct is different.

This concludes the proof of the Hierarchy Theorem.

Theorem 1.8. Let A = [A1, . . . , An] be a type. Then either A is inhabited or not, and

A is uninhabited ⇐⇒ all Ai are inhabited. (1.9)

Proof. Concerning “⇐=”. Suppose towards a contradiction that all Ai are inhabited, and A
is inhabited too. Pick M ∈ Λε(A) and Ni ∈ Λε(Ai) for each i. Then N M1 · · ·Mn is a closed
inhabitant of 0, which is impossible.

We prove “=⇒” and “either A is inhabited or not” by induction on the buildup of types
as ‘tuples’ using the operation [ ]. Let A = [A1, . . . , An] with Ai = [Ai1, . . . , Aimi

] be given.
For all i ∈ {1, . . . , n}, suppose the following.

(i) Either Ai is inhabited or Ai is uninhabited.
(ii) If Ai is uninhabited then Aij is inhabited for all j.

We need to prove that all Ai are inhabited provided that A is uninhabited, and that either A
is inhabited or A is uninhabited.

Assume that A is uninhabited in order to show that all Ai are inhabited. By (i), either
all Ai are inhabited or some Ai is uninhabited. In the former case we are done; so let us
prove the latter case leads to a contradiction. Assume Ai is uninhabited for some i. By (ii)

Aij is inhabited for all j. Pick Nj ∈ Λε(Aij) for all j. Then λaA1

1 · · · aAn
n . aiN1 · · ·Nmi

is a
closed inhabitant of A, contradicting that A is uninhabited. Therefore, all Ai are inhabited.

Consequently, A is inhabited iff not all Ai are inhabited. Since (by (i)) either all Ai are
inhabited or not, it follows A is either inhabited or not.

2. Reductions and contexts

In this section we introduce some syntactic sugar that will save ink later on.

Definition 2.1.

(i) A context is a sequence of distinct typed variables, cC1

1 , . . . , cCk

k .
The letters Γ, ∆, Θ, and Ξ denote contexts. The empty context is denoted by ε;

concatenation of contexts is written as Γ,∆.
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(ii) For a context Γ = cC1

1 , · · · , cCk

k write

λΓ. N , λcC1

1 . . . cCk

k . N

{Γ}, {cC1

1 , . . . , cCk

k }

ΛΓ(A) , {M ∈ Λ(A) | FV(M) ⊆ {Γ} }

[Γ] , [C1, . . . , Ck].

(iii) Let Γ = cC1

1 , . . . , cCk

k be a context. We say ~P fits in Γ if ~P = P1, . . . , Pk is a tuple of
(open) terms, and Pi : Ci for every i. In that case we write

M [Γ:=~P ] , M [c1:=P1] . . . [ck:=Pk].

Remark 2.2. Recall that we have assumed that all terms are in long normal form.
In particular, if M ∈ ΛΓ([∆]), then M is of the form M ≡ λ∆.N where FV(N) ⊆ {Γ,∆}.

Using contexts one can formulate statements such as N ∈ ΛΓ(0) =⇒ λΓ. N ∈ Λε([Γ]),
and (λΓ. N)~P =β N [Γ:= ~P ] for any term N and ~P which fits in Γ. Also contexts lighten
the study of reductions as will be shown in the following.

We study the relation A1 ≤h A2 for types A1, A2 (see Definition 1.2(ii)). Note that
A1 ≤h A2 if and only if there is a Böhm transformation Φ: Λε(A1) → Λε(A2), which is
injective (on lnf-terms). That is, Φ should be of the form Φ(M) =βη RM where R is some
Böhm term (see Definition 1.2(ii)). More explicitly, writing A1 ≡ [∆1] and A2 ≡ [∆2], the

map Φ should be of the form Φ(M) = λ∆2. M ~P where ~P fits in ∆1 and FV(~P ) ⊆ {∆2}.
Let Φ be such a Böhm transformation, then it transforms

λ∆1. N to λ∆2. N [∆1:= ~P ].

To see if Φ is injective, we only need to focus on the transformation mapping

N to N [∆1:=~P ].

A map Λ∆1(0) → Λ∆2(0) of this form is also called a Böhm transformation.
In order to construct these Böhm transformations it pays off to consider the more

general Böhm transformations from ΛΓ1([∆1]) → ΛΓ2([∆2]) which map

λ∆1. N to λ∆2. N [∆1:= ~P ] [Γ1:= ~Q],

where ~P , ~Q fit in ∆1, Γ1, respectively, having free variables from Γ2,∆2. Note that the core
of these transformations is the substitution of ~P , ~Q for ∆1,Γ1.

These considerations lead to the next set of definitions.

Definition 2.3.

(i) A pair ΓA is called a context–type and has as intended meaning the set ΛΓ(A) of
terms M : A with FV(M) ⊆ {Γ} (see Definition 2.1(ii)).

(ii) Define for such ΓA the type

Γ → A , C1 → . . . → Ck → A = [Γ,∆],

if Γ ≡ cC1

1 , . . . , cCk

k and A ≡ [∆].

(iii) We say Γ1A1 reduces to Γ2A2 and write Γ1A1 ≤
Γ2A2 provided that

Γ1 → A1 ≤h Γ2 → A2.

(iv) We write Γ1A1 ∼
Γ2A2 provided that Γ1A1 ≤

Γ2A2 and Γ1A1 ≥
Γ2A2.
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(v) Let Γ, ∆ be contexts. A substitution from Γ to ∆ is a map ̺ from {Γ} to terms
such that ̺c, ̺(c) ∈ Λ∆(C) for all cC ∈ {Γ}.

(vi) Let Γ1[∆1] and
Γ2[∆2] be given. A substitution ̺ from Γ1[∆1] to

Γ2[∆2] is a substitution
from Γ1,∆1 to Γ2,∆2.

(vii) Let ̺ be as in (v). For every context Θ ≡ dD1

1 , . . . , dDℓ

k with {Θ} ⊆ {Γ}, define
~̺Θ, ̺d1 , . . . , ̺dℓ . (Then ~̺Θ fits in Θ, see Definition 2.1(iii).)

(viii) Let ̺ be as in (vi). Writing A1 = [∆1] & A2 = [∆2], define ˆ̺: ΛΓ1(A1) → ΛΓ2(A2) by

ˆ̺(λ∆1. N ) , λ∆2. N [Γ1:=~̺Γ1
] [∆1:=~̺∆1

]

=β λ∆2. (λ∆1. N)[Γ1:=~̺Γ1
] ~̺∆1

.

Such a map ˆ̺ is called a (Böhm-)transformation from Γ1A1 to Γ2A2.

Proposition 2.4. Let Γ1A1 and Γ2A2 be context–types. Then

Γ1A1 ≤
Γ2A2 ⇐⇒

[

There is a substitution ̺ from Γ1A1 to Γ2A2 such that
the transformation ˆ̺: ΛΓ1(A1) → ΛΓ2(A2) is injective.

Proof. Just unfold the definitions.

Hence, if Γ1A1 reduces to Γ2A2, then there is an injective Böhm transformation Φ = ˆ̺ from
ΛΓ1(A1) to ΛΓ2(A2). We will focus on ̺ instead of R as the following convention shows.
(The benefit of this becomes clear later, see Remark 4.4.)

Convention 2.5. A reduction from Γ1A1 to Γ2A2 is a substitution ̺ from Γ1A1 to Γ2A2

such that the Böhm transformation ˆ̺ is injective.

Since A ≤h B ⇐⇒ εA ≤ εB for all types A and B, it is natural to regard the types part
of the context–types by identifying A with εA. As such, any notion defined for context–types
can be applied to types as well.

For notational brevity, we also identify Γ and Γ0 for any context Γ. In this way we also
regard the contexts as part of the context–types. As such, any notion defined for context–
types is applicable to contexts. In particular, we obtain a notion of reduction between
contexts; Γ ≤ ∆ ⇐⇒ Γ0 ≤ ∆0.

Note that with these identifications we have Γ,∆ ∼ Γ[∆] ∼ [Γ,∆] for all Γ, ∆.

3. Inequalities between canonical types

In this section we will prove the inequalities listed in Statement (1.2) on page 8. This is
one of the bits left out of the proof of the Hierarchy Theorem in Subsection 1.4.

We start with two of the simpler inequalities.

3.1. Ad Hk+1 �βη Hk. AsHk has exactly k inhabitants, there is no injection from Λε(Hk+1)
to Λε(Hk), and hence no βη-reduction from Hk+1 to Hk (see Definition 1.2(i)).
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3.2. Ad Hω+1 �h Hω. We need to prove that [2] �h [1, 0]. Or in other words, we must
prove that [2] � f1, c0 (see Definition 2.3(iii)). Let ̺ be a substitution from [2] to f1, c0;
we will prove that the Böhm transformation ˆ̺ is not injective. (Hence [2] � f1, c0 by
Proposition 2.4.) To this end we simply calculate ˆ̺(M) for M ∈ Λε([2]).

Recall that an inhabitant of [2] is of the following form (see 1.3.3).

〈i, j〉 , λF 2. Fλx01. · · ·Fλx0i . xj

So we have
ˆ̺( 〈i, j〉 ) ≡ 〈i, j〉 ̺F =β ̺Fλx

0
1. · · · ̺Fλx

0
i . xj. (3.1)

Further, note that since ̺F is an element of Λf1,c0(2) it must be of the following form.

̺F ≡ λg1. f (k0)gf (k1) · · · gf (kn)c.

We first exclude a pathological case. If n = 0, then ˆ̺( 〈i, j〉 ) =β f (k0)c. So ˆ̺ is constant
and hence not injective. So let us assume that n > 0.

To reduce Equation (3.1), note the following.

(i) Let G, λy0. f (m)x; we calculate ̺F G. To start, GM =β f (m)x for all terms M . So if

M , f (k1)Gf (k2) · · ·Gf (kn)c, then

̺FG ≡ ̺F λy0. f (m)x =β f (k0)GM =β f (k0)f (m)x

(ii) Let G,λy0. f (m)y. We have

̺Fλy
0. f (m)y =β f (k0)Gf (k1) · · ·Gf (kn)c

=β f (k0+m+k1+···+m+kn)c =β f (m·n+
∑

i ki)c.

So if we apply (i) and (ii) to Equation (3.1), in this order, (i), (ii), (i), we obtain

̺F ( 〈i, j〉 ) =β ̺Fλx
0
1. · · · ̺Fλx

0
j . f ((i−j)k0) xj

=β ̺Fλx
0
1. · · · ̺Fλx

0
i−1. f (n(i−j)k0+

∑
i ki) c

=β f ((i−1)k0+n(i−j)k0+
∑

i ki) c.

Consequently, 〈3, 1〉 and 〈n+ 3, n + 2〉 are both sent to f (2(n+1)k0+
∑

i ki)c by ˆ̺.

3.3. Indiscernibility. The remaining inequalities are of the form Hα �h,βη,h+ Hβ. In this
subsection we develop some general theory to prove them. In fact, we prove a stronger
statement: there are terms M1 6= M2 in Hα (listed in Statement (1.2) on page 8) such that

RM1 =βη RM2 for all R : Hα → Hβ. (3.2)

That is, M1 and M2 are indiscernible for any term R : Hα → Hβ. (This is called observa-
tional equivalence in the literature[BDS13].) As Proposition 3.6 shows, instead of proving
that M1 and M2 are indiscernible for every R : Hα → Hβ, it suffices to prove that for certain
variants H ′

β of Hβ, the terms M1 and M2 are indiscernible for any Böhm transformation

from Hα to H ′

β. (This is called existential equivalence.) This general method of proving

that Hα �h,βη,h+ Hβ has been extracted from the proof in [Dek88] of [3, 0] �h [1, 1, 0].
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Definition 3.1. Let ΓA and ∆ be given. For M1,M2 ∈ ΛΓ(A) define

M1 ≈
Ob
∆ M2 ⇐⇒ ∀R [ R(λΓ. M1) =βη R(λΓ. M2) ],

M1 ≈
Ex
∆ M2 ⇐⇒ ∀̺ [ ˆ̺M1 = ˆ̺M2 ],

where R ranges over the closed terms R : (Γ → A) → [∆] and ̺ ranges over the substitutions
from ΓA to ∆. (So ˆ̺ is a Böhm transformation.)

Lemma 3.2. Let A and B ≡ [∆] be types and M1,M2 ∈ Λε(A) with M1 6= M2.

(i) M1 ≈
Ob
∆ M2 implies A �βη B.

(ii) M1 ≈
Ex
∆ M2 implies A �h B and A �h+ B.

Proof. (i). Suppose M1 ≈Ob
∆ M2 and A ≤βη B towards a contradiction. Since A ≤βη B,

there a reducing term R ∈ Λε(A → B) (see Definition 1.2(i)). Since M1 ≈Ob
∆ M2, we get

RM1 =βη RM2 (see Definition 3.1). But this implies that M1 = M2 (as R is a reducing
term), contradicting M1 6= M2. Hence A �βη B.

(ii). Assume that M1 ≈Ex
∆ M2. We will that prove A �h+ B, and hence a fortiori

A �h B (see Definition 1.2). Suppose that A ≤h+ B towards a contradiction. Pick a family
of substitutions ̺1, . . . , ̺n from A to [∆] such that

∀i [ ˆ̺i(M) = ˆ̺i(N) ] =⇒ M = N (M,N ∈ Λε(A)). (3.3)

Let i and M ∈ Λε(A) be given. Then we know that ˆ̺i(M) = λ∆. M~̺ i
Γ and M~̺ i

Γ ∈ Λ∆(0)
where A = [Γ]. Hence M 7→ M~̺ i

Γ is a Böhm transformation from A to ∆. Thus we
get M1~̺

i
Γ = M2~̺

i
Γ by M1 ≈Ex

∆ M2 (see Definition 3.1). Then ˆ̺i(M1) = ˆ̺i(M2). So
Statement (3.3) implies that M1 = M2, contradicting M1 6= M2. Hence A �h+ B.

To formulate Proposition 3.6, we need one more notion.

Observation 3.3. An inhabitant M of a context Γ, i.e. M ∈ ΛΓ(0), is of the form

M ≡ aA (λΓ1. M1) · · · (λΓk. Mk),

where aA ∈ {Γ}, A = [[Γ1], . . . , [Γk]] and Mi is an inhabitant of Γ,Γi.

Definition 3.4. Let Γ be a context and aA ∈ {Γ} with A ≡ [[Γ1], . . . , [Γk]]. Then for all i
the context Γ,Γi is said to be a direct derivative of Γ. A context Γ′ is a derivative of Γ if
there is a chain of direct derivatives from Γ to ∆.2

Examples 3.5. (1) The only derivative of x0, f1 is x0, f1 itself. In fact, a context Γ
has only one derivative (c.q. itself) iff rk[Γ] ≤ 2.

(2) Any derivative of F 2 is of the form F 2, x01, . . . , x
0
n for some n, and any derivative of

Ω3 is of the form Ω3, f1
1 , . . . , f

1
n for some n.

(3) The context Φ4, F 2, x0, G2 is a derivative of Φ4. Any derivative of Φ4 is of the form
Φ4,∆′, where ∆′ is a context with {∆′} = {F 2

1 , . . . , F
2
m, x01, . . . , x

0
n} for some n,m

with n 6= 0 =⇒ m 6= 0.

Proposition 3.6. Given a type A, terms M1,M2 ∈ Λε(A) and a context ∆,

∀∆′ [ M1 ≈
Ex
∆′ M2 ] =⇒ M1 ≈

Ob
∆ M2.

Here ∆′ ranges over contexts such that mA,∆′ is a derivative of mA,∆.

2Equivalently, the relation on contexts of being a derivative is the transitive–reflexive closure of the
relation on contexts of being a direct derivative.
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Proof. Assume M1 ≈
Ex
∆′ M2 for every ∆′. We will prove that

N [m:=M1] = N [m:=M2] for each ∆′ and N ∈ ΛmA,∆′

(0). (3.4)

This is sufficient. Indeed, suppose that R : A → [∆] with R ≡ λmA. N . Then we have that
RM1 =β N [m:=M1] = N [m:=M2] =β RM2. Hence M1 ≈

Ob
∆ M2, as required.

To prove Statement (3.4), we use induction (over the long normal form of N). Let

N ∈ ΛmA,∆′
(0) be given for some ∆′ such that mA,∆′ is a derivative of mA,∆. We have

N ≡ c (λΓ1. N1) · · · (λΓk. Nk),

where c ∈ {mA,∆′} and Nj ∈ ΛmA,∆′,Γj(0) for all j (see Observation 3.3). To use induction
over N , we need to prove that every Nj falls in the scope of Statement (3.4), i.e. that
Nj ∈ ΛmA,∆′′

(0) for some ∆′′ such that mA,∆′′ is a derivative of mA,∆. That is, we need
to have that mA,∆′,Γj is a derivative of mA,∆. This is indeed the case because mA,∆′,Γj

is a direct derivative ofmA,∆′, andmA,∆′ itself is a derivative ofmA,∆ (see Definition 3.4).
We need to prove that N [m:=M1] = N [m:=M2], and by induction we may assume that

Ni[m:=M1] = Ni[m:=M2] for all i. Note that either c ∈ {∆′} or c = mA.
In the former case, m 6= c, so

N [m:=Mj ] = c (λΓ1. N1[m:=Mj]) · · · (λΓk. Nk[m:=Mj ]),

hence N [m:=M1] = N [m:=M2], as required.
In the latter case, we have c = mA (and thus A = [[Γ1], . . . , [Γk]]), so

N [m:=Mj ] = Mj(λΓ1. N1[m:=Mj ]) · · · (λΓk. Nk[m:=Mj ]) = ˆ̺Mj,

where ̺ is the substitution from A = [a
[Γ1]
1 , . . . , a

[Γk ]
k ] to ∆′ given by

̺ai , λΓi. Ni[m:=Mj ],

but since M1 ≈
Ex
∆′ M2, we have ˆ̺M1 = ˆ̺M2 and N [m:=M1] = N [m:=M2].

Corollary 3.7. Let A and B = [∆] be types. Let M1,M2 ∈ Λε(A) with

M1 6= M2 and ∀∆′ [ M1 ≈
Ex
∆′ M2 ],

where ∆′ ranges over contexts such that mA,∆′ is a derivative of mA,∆. Then

A �βη B; A �h B; A �h+ B.

Proof. Combine Proposition 3.6 and Lemma 3.2.

3.4. Ad Hω �h+ Hk+1 and Hω �βη Hk+1. We need to prove that [1, 0] �h+ [0k+1] and

[1, 0] �βη [0k+1]. We use Corollary 3.7 with Mi, ci (see 1.3.2) and ∆,x01, . . . , x
0
k+1.

Let m[0,1],∆′ be a derivative of m[0,1],∆. We need to prove that c1 ≈Ex
∆′ c2. Note that

∆′ ≡ x01, . . . , x
0
m for some m ≥ k + 1. Let ̺ be a substitution from [f1, c0] to ∆′. In order

to show that M1 ≈
Ex
∆′ M2, we need to prove that ˆ̺c1 = ˆ̺c2.

The term ̺f ∈ Λ∆′
(1) is either λy0. y or λy0. xi for some i.

(i) In the former case, ˆ̺ci = ̺
(i)
f ̺c = ̺c, so ˆ̺c1 = ˆ̺c2.

(ii) In the latter, ̺fM =β xi for each M , so in particular ˆ̺c1 = xi = ˆ̺c2.
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3.5. Ad Hω+2 �h+ Hω+1 and Hω+2 �βη Hω+1. Again we use Corollary 3.7, but now with
M1 = fgfg and M2 = fggf (see 1.3.4).

Let ̺ be a substitution from [f1, g1, c0] to a context ∆′, such that m[1,1,0],∆′ is a

derivative of m[1,1,0], F 2; we need to show that ˆ̺M1 = ˆ̺M2. Note that ∆′ = F 2, d01, . . . , d
0
ℓ

for some ℓ. Let us first study ̺f ∈ Λ∆′
(1); it is of the form

̺f ≡ λz0. Fλx01. · · ·Fλx0i . e,

for some i, where either e = z, e = dk or e = xk for some k. So for any term M ,

̺fM =β

{

Fλx01. · · ·Fλx0i . M if e = z

Fλx01. · · ·Fλx0i . e otherwise.

In the latter case, ˆ̺M1 ≡ ˆ̺(fgfg) =βη ̺f ˆ̺(gfg) =β Fλx01. · · ·Fλx0i . e and similarly
ˆ̺M2 =βη Fλx01. · · ·Fλx0i . e, so ˆ̺M1 = ˆ̺M2. So let us instead assume that

ρf = λz0. Fλx01. · · ·Fλx0i . z.

By similar reasoning for g, we are left with the case that, for some j,

̺g = λz0. Fλx01. · · ·Fλx0j . z.

Abusing notation, one could set h, “Fλz0. ” and write ̺f = hiz. Then

ˆ̺M1 ≡ ˆ̺(fgfg) =β hihjhihj̺c = h2(i+j)̺c =β ˆ̺(fggf) ≡ ˆ̺M2.

3.6. Ad Hω+3 �h+ Hω+2 and Hω+3 �βη Hω+2. We use Corollary 3.7 with (see 1.3.5)

Mi, /1/2i.

Let m[3,0],∆′ be a derivative of m[3,0], f1, g1, d0, and ̺ a substitution from [Φ3, c0] to ∆′.
One easily verifies that {∆′} = {f, g, d,G2

1, . . . , G
2
ν , d

0
1, . . . , d

0
µ} for some ν, µ.

We need to prove the following equality.

ˆ̺M1 = ˆ̺M2 (3.5)

To this end, we first calculate ̺ΦM for M ∈ ΛΞ(2) where Ξ,h11, . . . , h
1
m,∆′. The result is

recorded in Lemma 3.8. We start with two remarks.
First, note that ̺Φ ∈ Λ∆′

(3) is of the form

̺Φ ≡ λF 2. w0Fλz01 . w1 · · ·Fλz0n. wne, (3.6)

where wi are words on the alphabet

A = {f, g,G1λy
0. , . . . , Gνλy

0. }

and e is a variable of type 0, so either e = d, e = zi for some i ∈ {1, . . . , n}, e = di for some
i ∈ {1, . . . ,m}, or e = y for some y introduced by a Gj in one of the wk.

Secondly, we know that any M ∈ ΛΞ(2) is of the form

M ≡ λh1. H1hH2h · · ·HℓhR

where Hi ∈ ΛΞ(1) and R ∈ ΛΞ(0).

Lemma 3.8. Let M ≡ λh1. H1hH2h · · ·HℓhR from ΛΞ(2) be given.

(i) If h does not occur in M (i.e. M ≡ λh1. R), then ̺ΦM =β w0R.
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(ii) If h occurs in M then

̺ΦM =β

{

WH(TPH
i ) if e = zi,

WHe otherwise,
(3.7)

where H ,H1 and T ,λh1. H2h · · ·HℓhR and

WH , w0Hw1 · · ·Hwn and PH
i , λz0i . wiHwi+1 · · ·Hwnzi.

Proof. (i). Assume h does not occur in M . Then MK =β R for every K : 1. We apply this
to Equation (3.6). Writing K ,λz01 . w1 · · ·Mλz0n. wne, we have

̺ΦM =β w0M(λz01 . w1 · · ·Mλz0n. wne ) ≡ w0MK =β w0R.

(ii). Assume h occurs in M . Note that by definition of H and T ,

M =β λh1. Hh(Th). (3.8)

In particular, for any term K : 1 in which zj does not occur, we have

M(λz0j . K) =β HK. (3.9)

Either e = zi for some i or not. If e 6= zi, then

̺ΦM =β w0Mλz01 . w1 · · ·Mλz0n. wne by Eq. (3.6)

=β w0Hw1 · · ·Hwne by Eq. (3.9)

= WHe by def. of WH .

If e = zi, then

̺ΦM =β w0Mλz01 . w1 · · ·Mλz0n. wnzi by Eq. (3.6)

=β w0Hw1 · · ·Mλz0i . wi · · ·Hwnzi by Eq. (3.9)

= w0Hw1 · · ·MPH
i by def. of PH

i

=β w0Hw1 · · ·HPH
i (TPH

i ) by Eq. (3.8)

=β w0Hw1 · · ·Hwi · · ·Hwn(TP
H
i ) by def. of PH

i

= WH(TPH
i ) by def. of WH .

We have proven Statement (3.7) and so we are done.

We will use the special case of Lemma 3.8 where H = λx0. x.

Corollary 3.9. Define W ,w0w1 · · ·wn and Pi,λz0i . wiwi+1 · · ·wnzi. Then for any term
M ∈ ΛΞ(2) of the form M =β λh1. h(Th) with T ∈ ΛΞ(2) we have

̺ΦM =β

{

W (TPi) if e = zi,

We otherwise.

Proof. Follows immediately from Lemma 3.8.
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We are now ready to prove Equation (3.5).

Corollary 3.10. ˆ̺M1 = ˆ̺M2.

Proof. For brevity, let Kj ,λx1x2. xj. We have

Mj = λΦ3c0. Φλf1
1 . f1Φλf

1
2 . f2(Kjf1f2)c. (3.10)

We distinguish two cases: either e = zi or not.
Assume e = zi for some i. We apply Corollary 3.9 twice, first toM I,λf1

2 . f2(Kjf1f2)̺c
and then to M II,λf1

1 . f1W (Kjf1Pi)̺c. Indeed,

ˆ̺Mj =β ̺Φλf
1
1 . f1̺Φλf

1
2 . f2 (Kjf1f2)̺c by Equation (3.10)

= ̺Φλf
1
1 . f1̺ΦM

I by def. of M I

=β ̺Φλf
1
1 . f1W (Kjf1Pi)̺c by Corollary 3.9

=β ̺ΦM
II by def. of M II

=β WW (KjPiPi)̺c by Corollary 3.9

=β WWPi̺c by def. of Kj .

Assume e 6= zi. By Corollary 3.9 applied to M ,λf1
1 . f1̺Φλf

1
2 . f2fi̺c,

ˆ̺Mj =β ̺Φ(λf
1
1 . f1̺Φλf

1
2 . f2fi̺c ) ≡ ̺ΦM =β We.

So in both cases the value of ˆ̺Mj does not depend on j.

3.7. Ad Hω+4 �h+ Hω+3 and Hω+4 �βη Hω+3. We use Corollary 3.7 with (see 1.3.6)

M1 = M2 = .

That is, M1,λb[0,0]c0. bbcbccbcc and M2,λb[0,0]c0. bbccbbccc. Let m[[0,0],0],∆′ be a deriva-
tive of m[[0,0],0],Φ3, c0, and let ̺ be a substitution from [b[0,0], c0] to ∆′. Note that

{∆′} = {Φ3, c0, f1
1 , . . . , f

1
ℓ , d

0
1, . . . , d

0
ν}.

We need to prove that
ˆ̺M1 = ˆ̺M2.

Consider ̺b ∈ Λ∆′
([0, 0]). It is of the form

̺b ≡ λx0y0. w0 Φλg
1
1 . w1 · · ·Φλg

1
µ. wµe,

where e ∈ {x, y, c, d1, . . . , dν} and wi is a word over {f1, . . . , fℓ, g1, . . . , gi}.
We see that either e ∈ {x, c, d1, . . . , dν} or e = y.
In the former case, we have e 6= y. Then y is not used in ̺b, so we have ̺bMN =β ̺bMN ′

for all terms M,N,N ′ : 0. In particular,

ˆ̺M1 ≡ ̺b(̺b̺c(̺b̺c̺c))(̺b̺c̺c)

=β ̺b(̺b̺cN)N ′ for any N , N ′

=β ̺b(̺b̺c̺c)(̺b(̺b̺c̺c)̺c)

≡ ˆ̺M2.
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Similarly, if e = y, then e 6= x, so ̺bMN =β ̺bM
′N for all M,M ′, N , and

ˆ̺M1 =β ̺bM(̺bM
′̺c) =β ˆ̺M2 for all M , M ′.

4. Calculus of reductions

Before we proceed, we establish some general calculation rules for reducibility. Although one
can find some trivial rules for ≤h such as [A1, A2] ≤h [A2, A1], the notion of head reduction
is otherwise uncooperative. Therefore, we work with strong reductions (Subsection 4.1) and
atomic reductions (Subsection 4.2) instead, yielding the more tractable relations ≤s and ≤a,
respectively. We prove later on that for types A and B we have

A ≤a B =⇒ A ≤s B =⇒ A ≤h B.

So to show that A ≤h B it suffices to prove that either A ≤s B or A ≤a B.
One of the calculation rules provided in this section concerns types A with [1, 1] ≤a A.

It states that for such A and any contexts Γ1, Γ2, we have

[Γ1] ≤
s A and [Γ2] ≤

s A =⇒ [Γ1,Γ2] ≤
s A.

We will call these types atomic types and study them in Subsection 4.3.

4.1. Strong reductions. For the sake of familiarity we begin with strong reductions be-
tween types. Let A1 and A2 be types. Recall that a reducing term from A1 to A2 is a closed
term R of type A1 → A2 which is injective on closed terms (see Definition 1.2), that is, the
map Φ: Λε(A1) → Λε(A2) given by Φ(M) =β RM is injective.

If R is also injective on open terms, then R is called strong :

Definition 4.1. (i) Let A1 and A2 be types. A strong reducing term from A1 to A2 is
a closed term R : A1 → A2 that is injective on open terms, that is, for every context Ξ
the term R is injective on open terms with free variables from {Ξ}, that is, the term R
is injective considered as a map ΛΞ(A1) → ΛΞ(A2).

(ii) If there is a strong reducing term R : A1 → A2 that is a Böhm term (see Defini-
tion 1.2(ii)), we say that A1 strongly head reduces to A2, notation A1 ≤

s
h A2.

(iii) For context–types (see Definition 2.3) Γ1A1 strongly reduces to Γ2A2 if

Γ1 → A1 ≤s
h Γ2 → A2,

and we write Γ1A1 ≤
s Γ2A2. If in addition Γ2A2 ≤

s Γ1A1, we write Γ2A2 ∼
s Γ1A1.

(iv) Let ̺ be a substitution from Γ1A1 to Γ2A2, and let Ξ be a fresh context.
With ̺Ξ we denote the natural extension of ̺ to a substitution from Ξ,Γ1A to Ξ,Γ2B
given by ̺Ξc = c for all cC ∈ {Ξ}. Then ˆ̺Ξ : ΛΞ,Γ1(A1) → ΛΞ,Γ2(A2).

Proposition 4.2. Let Γ1A1 and Γ2A2 be context–types. Then

Γ1A1 ≤
s Γ2A2 ⇐⇒





There is a substitution ̺ from Γ1A1 to Γ2A2

such that ˆ̺Ξ : ΛΞ,Γ1(A1) → ΛΞ,Γ2(A2) is in-
jective for every context Ξ.

Proof. Just unfold the definitions.
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Definition 4.3. Let Γ1A1,
Γ2A2 be context–types. A strong reduction from Γ1A1 to Γ2A2

is a substitution ̺ from Γ1A1 to
Γ2A2 such that all ˆ̺Ξ are injective. We write ̺ : Γ1A1 ≤

s Γ2A2.

Remark 4.4. It would not make sense to define a strong reduction to be the Böhm trans-
formation Φ ≡ ˆ̺ because one can not always reconstruct ̺—and hence the ˆ̺Ξs—from ˆ̺,
which acts only on closed terms.

The merit of strong reductions (over regular ones) is that it is easy to built complex
strong reductions from simpler ones. Moreover, almost all reductions encountered in this
text are strong.

Remarks 4.5. (i) Not every reduction is also a strong reduction: the substitution ̺
from the context f1 to the empty context ε given by ̺f = λx0. x is a reduction,
because Λf1

(0) is empty, and thus ˆ̺: Λf1

(0) → Λε(0) is injective (see Convention 2.5);
but ̺ is not a strong reduction since ˆ̺Ξ with Ξ, d0 maps both fd and ffd to λx0. x
and is hence not injective (see Definition 4.3).

(ii) Note that Γ ≤s ∆ implies Ξ,Γ ≤ Ξ,∆ for all contexts Ξ. It is not evident whether the
reverse implication holds as well. If Γ ≤s ∆ then there is one substitution ̺ which
yields a family of similar reductions ̺Ξ : Ξ,Γ ≤ Ξ,∆; on the other hand, if Ξ,Γ ≤ Ξ,∆
for all Ξ, we only know there is a family of (potentially quite dissimilar reductions)
̺Ξ : Ξ,Γ ≤ Ξ,∆. As it turns out, the reverse implication does hold; we will not prove
this in this article.

(iii) As Γ ≤s ∆ =⇒ [Γ] ≤s [∆] (by Definition 4.1(iii)) one could conjecture that we also
have that A ≤s B =⇒ [A] ≤s [B]. These however are quite different statements.
By the Hierarchy Theorem, the conjecture is false. Indeed: later on we will see that
[1, 0] ≤s [2]. If one had [[1, 0]] ≤s [[2]], then also [0, [1, 0]] ≤h [0, [2]], quod non as
[0, [1, 0]] ∈ Hω+4, while [0, [2]] ∈ Hω+3.

(iv) Nevertheless we do have A ≤s B =⇒ [[A]] ≤s [[B]] (see Lemma 4.21).
(v) Similarly, we have Γ ∼s [Γ] for every context Γ (by Definition 4.1(iii)), but never

A ∼s [A] for a type A. Indeed, if A ∼s [A], then [A] is inhabited iff A is inhabited,
while by Theorem 1.8, [A] is inhabited iff A is uninhabited.

Lemma 4.6. (̺Ξ1)Ξ2 = ̺Ξ2,Ξ1 for every substitution ̺ and contexts Ξ1, Ξ2.

Proof. By Definition 2.3(vi) we may assume that ̺ is a substitution between contexts, say
from Γ to ∆. Recall that ̺Ξ1 is a substitution from Ξ1,Γ to Ξ1,∆ with ̺Ξ1

c = ̺c for

all c ∈ {Γ} and ̺Ξ1

d = d for all d ∈ {Ξ1} (see Definition 4.1(iv)). So both (̺Ξ1)Ξ2 and ̺Ξ2,Ξ1

are a substitution σ from Ξ2,Ξ1,Γ to Ξ2,Ξ1,∆ such that σc = ̺c for all c ∈ {Γ} and σd = d
for all d ∈ {Ξ1,Ξ2}. Hence (̺Ξ1)Ξ2 and ̺Ξ2,Ξ1 are the same.

Lemma 4.7. Given contexts Θ, Γ and ∆, we have

Γ ≤s ∆ =⇒ Θ,Γ ≤s Θ,∆.

Proof. Assume that Γ ≤s ∆, that is, that there is some strong reduction ̺ from Γ to ∆
(see Proposition 4.2 and Definition 4.3). To show that Θ,Γ ≤s Θ,∆, we prove that ̺Θ is
a strong reduction from Θ,Γ to Θ,∆. Writing ̺ΘΞ, (̺Θ)Ξ = ̺Ξ,Θ (see Lemma 4.6), we
need to prove that the map ˆ̺ΘΞ : ΛΞ,Θ,Γ(0) → ΛΞ,Θ,∆(0) is injective for every context Ξ

(see Proposition 4.2). Since ̺ is a strong reduction, we know that ˆ̺Ξ
′
: ΛΞ′,Γ(0) → ΛΞ′,∆(0)

is injective for every Ξ′. Now, pick Ξ′ = Ξ,Θ.
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Before we get to the more serious reductions, we study the workings of a Böhm transfor-
mation ˆ̺ (see Definition 2.3(viii)) more closely in Proposition 4.10.

Definition 4.8. Let ̺ be a substitution from Γ1[∆1] to
Γ2[∆2] (see Definition 2.3(vi)).

For every type A ≡ [Ξ], let ̺A denote the natural extension of ̺ to a substitution from
Γ1[Ξ,∆1] to

Γ2[Ξ,∆2] given by ˆ̺A(c) = c for all c ∈ {Ξ}.

Remarks 4.9. Let Ξ be a context and let ̺ a substitution from Γ1[∆1] to
Γ2[∆2].

(i) ̺[Ξ] (Definition 4.8) and ̺Ξ (Definition 4.1(iv)) are essentially the same substitution

since we have ̺
[Ξ]
c = ̺Ξc for all c ∈ {Ξ,Γ1,∆1} (see Definition 2.3(vi)).

(ii) Using Definition 2.3(viii) we see that for all contexts Ξ, Θ and M ∈ ΛΞ,Γ1([Θ,∆1]),

̺Ξ [Θ]M =βη M [Γ1,∆1:=~̺Γ1,∆1
].

(iii) We have ̺0 = ̺ = ̺ε.

Proposition 4.10. A substitution ̺ from Γ to ∆ satisfies the ‘recursion’:












Given contexts Ξ, Θ and aA ∈ {Ξ,Γ} with A ≡ [A1, . . . , An], we have

ˆ̺Ξ( aM1 . . .Mn ) =βη ̺Ξa ( ˆ̺ΞA1M1 ) · · · ( ˆ̺
ΞAnMn ),

ˆ̺Ξ [Θ](λΘ. M ) = λΘ. ( ˆ̺Θ,ΞM ),

for all Mi ∈ ΛΞ,Γ(Ai) and M ∈ ΛΘ,Ξ,Γ(0).

Proof. It is only a matter of expanding definitions. Indeed,

ˆ̺Ξ( aM1 · · ·Mn )

=βη ( aM1 · · ·Mn )[ Γ:=~̺Γ ] by Rem. 4.9(ii),(iii)

=βη ̺Ξa M1[ Γ:=~̺Γ ] · · · Mn[ Γ:=~̺Γ ]

=βη ̺Ξa ( ˆ̺ΞA1M1 ) · · · ( ˆ̺
ΞAnMn ) by Rem. 4.9(ii),

where aA ∈ {Ξ,Γ} with A ≡ [A1, . . . , An] and Mi ∈ ΛΞ,Γ(Ai). Similarly,

ˆ̺Ξ [Θ](λΘ. M ) =βη (λΘ. M)[Γ:=~̺Γ] by Rem. 4.9(ii)

= λΘ. (M [Γ:=~̺Γ] )

=βη λΘ. ( ˆ̺Θ,ΞM ) by Rem. 4.9(ii),(iii)

for every term M ∈ ΛΘ,Ξ,Γ(0).

We now give an important condition for a substitution to be a strong reduction.

Theorem 4.11. Let Γ and ∆ be contexts. Let ̺ be a substitution from Γ to ∆.
If ̺ has the following property, then ̺ is a strong reduction.






Given aA, bB ∈ {Ξ,Γ} with A ≡ [A1, . . . , An] and B ≡ [B1, . . . , Bm]. Then

̺Ξa M1 · · ·Mn =βη ̺Ξb N1 · · ·Nm =⇒ a = b and Mi = Ni (4.1)

for all Mi ∈ ΛΞ,∆(Ai) and Ni ∈ ΛΞ,∆(Bi) and every context Ξ.

Proof. To prove that ̺ is a strong reduction, we need to show that for each context Ξ, the
Böhm transformation ˆ̺Ξ : ΛΞ,Γ(0) → ΛΞ,∆(0) is injective (see Definition 4.3). So, consider
for each context–type ΞC (see Definition 2.3) and M ∈ ΛΞ,Γ(C) the property P (M):

ˆ̺ΞC(M) = ˆ̺ΞC(N) =⇒ M = N for all N ∈ ΛΞ,Γ(C).
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It suffices to prove that P (M) for all M , because then (taking C = 0),

ˆ̺Ξ(M) = ˆ̺Ξ(N) =⇒ M = N for all M,N ∈ ΛΞ,Γ(0)

for each context Ξ, so each Böhm transformation ˆ̺Ξ is injective.
To prove that P (M) for all M , we use induction on M . There are two cases.

(I) M ≡ aAM1 · · ·Mn; (II) M ≡ λΘ. M ′.

(I) We have M ≡ aAM1 · · ·Mn where aA ∈ {Ξ,Γ} and where writing A ≡ [A1, . . . , An]
we have Mi ∈ ΛΞ,Γ(Ai) . Assume P (Mi) in order to show that P (M).

Let N ∈ ΛΞ,Γ(0) with ˆ̺ΞM = ˆ̺ΞN be given. We need to prove that M = N .
We have N ≡ bB N1 · · ·Nm for some bB ∈ {Ξ,Γ} with B ≡ [B1, . . . , Bm] and Ni ∈
ΛΞ,Γ(Bi). Then by Proposition 4.10, ˆ̺ΞM = ˆ̺ΞN implies

̺Ξa ( ˆ̺ΞA1M1 ) · · · ( ˆ̺
ΞAnMn ) =βη ̺Ξb ( ˆ̺ΞB1N1 ) · · · ( ˆ̺

ΞBmNm ).

Now, ˆ̺ΞAiMi ∈ ΛΞ,∆(Ai) and ˆ̺ΞBiNi ∈ ΛΞ,∆(Bi), so by Statement (4.1), a = b and
ˆ̺ΞAiMi = ˆ̺ΞBiNi. Then Mi = Ni by P (Mi), so M = N . Hence P (M).

(II) We have M ≡ λΘ. M ′ where Θ is some context and M ′ ∈ ΛΘ,Ξ,Γ(0). Assume
that P (M ′) in order to show that P (M).

LetN ∈ ΛΞ,Γ([Θ]) with ˆ̺Ξ [Θ]M = ˆ̺Ξ [Θ]N be given. We need to prove thatM = N .
Write N ≡ λΘ. N ′ where N ′ ∈ ΛΘ,Ξ,Γ(0). Then by Proposition 4.10 we have

λΘ. ( ˆ̺Θ,ΞM ′ ) = λΘ. ( ˆ̺Θ,ΞN ′ ).

Then ˆ̺Θ,ΞM ′ = ˆ̺Θ,ΞN ′, and thus M ′ = N ′ by P (M ′). Hence M = N and so P (M).

So we see that P (M) for all M . Hence ̺ is a strong reduction.

4.2. Atomic reductions.

Definition 4.12. (i) Let Γ and ∆ be contexts. A substitution from Γ to ∆ is called an
atomic reduction if it satisfies condition (4.1) of Theorem 4.11.

(ii) A substitution ̺ from Γ1[∆1] to
Γ2[∆2] is called an atomic reduction if ̺, considered

as substitution from Γ1,∆1 to Γ2,∆2 (see Definition 2.3(vi)), is an atomic reduction.
In that case we write ̺ : Γ1[∆1] ≤

a Γ2[∆2].
(iii) We say that Γ1[∆1] atomically reduces to Γ2[∆2] if there is an atomic reduction

from Γ1[∆1] to
Γ2[∆2]. In that case we write Γ1[∆1] ≤

a Γ2[∆2].

Remark 4.13. Given variables a and b, we have (cf. Statement (4.1))

aM1 · · ·Mn =βη bN1 · · ·Nm =⇒ a = b and Mi = Ni

for all terms Mi and Ni. In this respect the terms ̺Ξa s of an atomic reduction ̺ behave
similar to atomic terms (=variables). Hence the name.

Remark 4.14. Given context–types Γ1∆1 and Γ2∆2 we have
Γ1[∆1] ≤

a Γ2[∆2] ⇐⇒ Γ1,∆1 ≤
a Γ2,∆2

by Definition 4.12(ii). Cf. Definition 4.1(iii).

Proposition 4.15. For context–types Γ1[∆1] and
Γ2[∆2] we have

Γ1[∆1] ≤
a Γ2[∆2] =⇒ Γ1[∆1] ≤

s Γ2[∆2].
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Proof. Assume that Γ1[∆1] ≤
a Γ2[∆2]. That is, there is some atomic reduction ̺ from Γ1[∆1]

to Γ2[∆2]. By Theorem 4.11, ̺ is also a strong reduction. Hence Γ1[∆1] ≤s Γ2[∆2] by
Proposition 4.2 and Definition 4.3.

Below we have collected the calculation rules for ≤a which we use later on. The reader
can chose to skip them at first and proceed to Remark 4.31.

Lemma 4.16. Let Γ, ∆ and Θ be contexts.

(i) If {Γ} ⊆ {∆} then Γ ≤a ∆.
(ii) If Γ ≤a ∆ then Θ,Γ ≤a Θ,∆.

Proof. (i). Assume that {Γ} ⊆ {∆}. To prove Γ ≤a ∆, we need to find an atomic reduction
from Γ to ∆ (see Definition 4.12(iii)). Let ̺ be the substitution from Γ to ∆ given by ̺c = c
for all cC ∈ {Γ} (see Def. 2.3(v)). To prove that ̺ is an atomic reduction, we need to show
that given a context Ξ and aA, bB ∈ {Ξ,Γ} with A ≡ [A1, . . . , An] and B ≡ [B1, . . . , Bm],

̺Ξa M1 · · ·Mn =βη ̺Ξb N1 · · ·Nm =⇒ a = b and Mi = Ni

for all Mi ∈ ΛΞ,∆(Ai) and Ni ∈ ΛΞ,∆(Bi). Since all ̺Ξa are distinct variables, this follows
immediately from Remark 4.13.
(ii). Assume that Γ ≤a ∆, that is, that there is some atomic reduction ̺ from Γ to ∆ (see
Definition 4.12(iii)). To prove that Θ,Γ ≤a Θ,∆, we show that ̺Θ is an atomic reduction
from Θ,Γ to Θ,∆. For this we must prove that

(̺Θ)Ξ
′

a M1 · · ·Mn =βη (̺Θ)Ξ
′

b N1 · · ·Nm =⇒ a = b and Mi = Ni (4.2)

for every context Ξ′ and appropriate a, b, Mi and Ni (see Definition 4.12(ii)). Since we

have that (̺Θ)Ξ
′
= ̺Ξ

′,Θ (see Lemma 4.6), Statement (4.2) follows immediately from the
fact that ̺ is an atomic reduction. (Indeed, pick Ξ = Ξ′,Θ).

Corollary 4.17. Given types C1, . . . , Ck and a permutation ϕ of {1, . . . , k}, we have

[C1, . . . , Ck] ≤a [Cϕ(1), . . . , Cϕ(k)].

Proof. Write [C1, . . . , Ck] = [Γ] and [Cϕ(1), . . . , Cϕ(k)] = [ϕ·Γ]. We must prove that Γ ≤a ϕ·Γ
(see Remark 4.14). This follows immediately from Lemma 4.16(i) since {Γ} = {ϕ · Γ}.

Lemma 4.18. A substitution ̺ from Γ to ∆ is an atomic reduction provided that

(i) If aA, bB ∈ {Γ} with A ≡ [A1, . . . , An] and B ≡ [B1, . . . , Bm], then

̺aM1 · · ·Mn =βη ̺bN1 · · ·Nm =⇒ a = b and Mi = Ni

for all Mi ∈ ΛΞ,∆(Ai) and Ni ∈ ΛΞ,∆(Bi) and every context Ξ.
(ii) If aA ∈ {Γ}, dD ∈ {Ξ} with A ≡ [A1, . . . , An], D ≡ [D1, . . . ,Dℓ], then

̺aM1 · · ·Mn 6=βη dN1 · · ·Nℓ

for all Mi ∈ ΛΞ,∆(Ai) and Ni ∈ ΛΞ,∆(Di).

Proof. Let a, b ∈ {Γ,Ξ} with A ≡ [A1, . . . , An] and B ≡ [B1, . . . , Bm] and

̺Ξa M1 · · ·Mn =βη ̺Ξb N1 · · ·Nm

for some Mi ∈ ΛΞ,∆(Ai) and Ni ∈ ΛΞ,∆(Bi) and some context Ξ. We need to prove a = b
and Mi = Ni (see Definition 4.12(i)). We distinguish four cases.

(i) If a, b ∈ {Γ} then ̺Ξa = ̺a, so a = b and Mi = Ni by Assumption (i).
(ii) If a, b ∈ {Ξ} then ̺Ξa = a, so a = b and Mi = Ni by Remark 4.13.
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(iii) The situation that a ∈ {Γ} and b ∈ {Ξ} does not occur, since by Assumption (ii) we
have ̺Ξa M1 · · ·Mn 6=βη bN1 · · ·Nm ≡ ̺Ξb N1 · · ·Nm.

(iv) Similarly, the situation that a ∈ {Ξ} and b ∈ {Γ} does not happen.

Lemma 4.19. Given types C1, . . . , Ck and a permutation ϕ of {1, . . . , k}, we have

[[C1, . . . , Ck]] ≤
a [[Cϕ(1), . . . , Cϕ(k)]].

Proof. Writing [C1, . . . , Ck] = [Γ] and [Cϕ(1), . . . , Cϕ(k)], we must prove that [[Γ]] ≤a [[ϕ ·Γ]].

By Remark 4.14 we need to find an atomic reduction from F [Γ] to G[ϕ·Γ]. We show that the
substitution ̺ from F to G given by

̺F , λΓ. G(ϕ · Γ) (4.3)

is an atomic reduction. For this we use Lemma 4.18. Let Ξ be a context.

(i) Suppose that ̺FM1 · · ·Mk =βη ̺FN1 · · ·Nk for some Mi, Ni ∈ ΛΞ,G(Ci). We need to
prove that Mi = Ni. Indeed, ̺FM1 · · ·Mk =βη ̺FN1 · · ·Nk yields

GMϕ(1) · · ·Mϕ(k) = GNϕ(1) · · ·Nϕ(k).

Hence Mϕ(i) = Nϕ(i) and thus Mi = Ni.

(ii) Let dD ∈ {Ξ} with D ≡ [D1, . . . ,Dℓ] and ̺FM1 · · ·Mk =βη ̺ΞdN1 · · ·Nℓ for some

Mi ∈ ΛΞ,G(Ci) and Ni ∈ ΛΞ,G(Di). We need to reach a contradiction. Indeed, we get
GMϕ(1) · · ·Mϕ(k) = bN1 · · ·Nk, so G = b, quod non.

Remark 4.20. Given a type C ≡ [C1, . . . , Ck], the order C1, . . . , Ck of the components is
largely immaterial. Witnesses of this principle include Corollary 4.17, Lemma 4.19 and Defi-
nition 2.3(v). We will often use this principle implicitly. For instance, we will use Lemma 4.7
to argue that Γ ≤s ∆ =⇒ Γ,Θ ≤s ∆,Θ. (Of course, this is licit by Corollary 4.17.)

Lemma 4.21. Let A, B and C1, . . . , Ck be types. Then

A ≤s B =⇒ [[A,C1, . . . , Ck]] ≤
a [[B,C1, . . . , Ck]].

Proof. Assume that A ≤s B to find an atomic reduction from F [A,C1,...,Ck] and G[B,C1,...,Ck]

(see Remark 4.14). Pick a strong reduction σ : A ≤s B with reducing term S : A → B.
Define a substitution ̺ from F to G by

̺F ,λaAΓ. G(Sa)Γ,

where Γ, cC1

1 , . . . , cCk

k . We prove that ̺ is an atomic reduction by Lemma 4.18.

(i) Let Ξ be a context and suppose that

̺F M M1 · · ·Mk =βη ̺F N N1 · · ·Nk (4.4)

for some M,N ∈ ΛΞ,G(A) and Mi, Ni ∈ ΛΞ,G(Ci) in order to prove Mi = Ni and
M = N . Equation (4.4) yields G(SM)M1 · · ·Mk =βη G(SN)N1 · · ·Nk, so Mi = Ni

and SM =βη SN . Hence M = N too, since σ is a strong reduction.

(ii) Let Ξ be a context and dD ∈ {Ξ} with D = [D1, . . . ,Dℓ]. Suppose that

̺F M M1 · · ·Mk =βη dN1 · · ·Nℓ

for some M ∈ ΛΞ,G(A), Mi ∈ ΛΞ,G(Ci) and Ni ∈ ΛΞ,G(Di) to reach a contradiction.
We get G(SM)M1 · · ·Mk =βη dN1 · · ·Nℓ. But then G = d, which is absurd.
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Lemma 4.22. A ≤a [[A]] for every type A.

Proof. Write A = [Γ] for some context Γ. It suffices to find an atomic reduction ̺ from Γ

to F [[Γ]] (see Remark 4.14). Let ̺ be the substitution from Γ to F [[Γ]] given by

̺d,λ∆. F λΓ. d∆ for each d[∆] from {Γ}.

We prove that ̺ is atomic using Lemma 4.18. Let Ξ be some context.

(i) Let dD, eE ∈ {Γ} with D ≡ [D1, . . . ,Dk] and E ≡ [E1, . . . , Eℓ]. Assume that

̺d M1 · · ·Mk =βη ̺eN1 · · ·Nℓ (4.5)

for some Mi ∈ ΛΞ,F (Di) and Ni ∈ ΛΞ,F (Ei), to prove d = e and Mi = Ni. It is easy
to see that Equation (4.5) implies that

FλΓ. dM1 · · ·Mk = FλΓ. eN1 · · ·Nℓ.

Hence dM1 · · ·Mk = eM1 · · ·Mℓ and thus d = e and Mi = Ni.
(ii) Given dD ∈ {Γ}, bB ∈ {Ξ} with D ≡ [D1, . . . ,Dk], B ≡ [B1, . . . , Bn], assume that

there are Mi ∈ ΛΞ,F (Di) and Ni ∈ ΛΞ,F (Bi) such that

̺dM1 · · ·Mk =βη bN1 · · ·Nm (4.6)

in order to obtain a contradiction. This is easy; Equation (4.6) implies

FλΓ. dM1 · · ·Mk = bN1 · · ·Nm,

and thus F = b, qoud non.

Lemma 4.23. Given types A1, . . . , An we have

[ [A1, . . . , An] ] ≤a [ [A1], . . . , [An], [0
n] ].

Proof. By Remark 4.14 it suffices to show that the substitution from the context F [A1,...,An]

to the context Θ,F
[A1]
1 , . . . , F

[An]
n , p[0

n] given by

̺F , λmA1

1 · · ·mAn
n . p (F1m1) · · · (Fnmn)

is an atomic reduction. To prove this, we use Lemma 4.18.

(i) Let Ξ be a context and suppose that

̺F M1 · · ·Mn =βη ̺F N1 · · ·Nn

for some Mi, Ni ∈ ΛΞ,Θ([A1, . . . , An]) in order to show Mi = Ni. We have

p (F1M1) · · · (FnMn) =βη p (F1N1) · · · (FnNn).

So we get FiMi =βη FiNi. Thus Mi = Ni.
(ii) As easy as before.
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Lemma 4.24. Given a set of types A ≡ {A1, . . . , An} we have

[ [[C1, . . . , Ck]] ] ≤a [ [[A1]], . . . , [[An]] ]

for all C1, . . . , Ck ∈ A.

Proof. Writing Γ, cC1

1 , . . . , cCk

k it suffices to prove that the substitution ̺ from the con-
text F [[Γ]] to Θ,F

[[A1]]
A1

, . . . , F
[[An]]
An

given by the assignment

̺F , λm[Γ]. FC1
λcC1

1 . · · · FCk
λcCk

k . mΓ

is an atomic reduction (see Remark 4.14). For this we use Lemma 4.18.

(i) Let Ξ be a context and suppose that

̺FM =βη ̺FN

for some M,N ∈ ΛΞ,Θ([Γ]) in order to prove M = N . We get

FC1
λcC1

1 . · · · FCk
λcCk

k . M Γ =βη FC1
λcC1

1 . · · · FCk
λcCk

k . N Γ.

Hence MΓ =βη NΓ, so M = N .
(ii) Again trivial.

Corollary 4.25. For every type A and k ≥ 1, we have [[[Ak]]] ≤a [[[A]]].

Proof. Apply Lemma 4.24 with A, {A} and C1, . . . , Ck ,A, . . . , A.

Lemma 4.26. Let A be a type. Then [[[A]]] ≤a [3, A].

Proof. Let ̺ be the substitution from F [[A]] to Θ,Φ3, aA given by

̺F , λm[A]. Φλf1. m(fa).

We prove that ̺ is an atomic reduction (and thus [[[A]]] ≤a [A, 3]) using Lemma 4.18.

(i) Let Ξ be a context and suppose that

̺FM =βη ̺FN

for some M,N ∈ ΛΞ,Θ([A]) in order to prove M = N . We have

Φλf1. M(fa) =βη Φλf1. N(fa)

and thus M(fa) =βη N(fa). Since f does not occur in M and N we have

M(Ra) =βη N(Ra)

for every term R of type 1. If we pick R,λx0. a1 for fresh a01, we get

Ma1 =βη Na1.

So we see that M = N .
(ii) Easy.
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For the proof of Lemma 4.28 we need the following fact concerning terms.

Lemma 4.27. Let E be a type and let cE , dE be variables. Then we have

M [x:=c] = N [x:=c]

M [x:=d] = N [x:=d]

]

=⇒ M = N (4.7)

for all terms M,N (which might contain c and d).

Proof. Write Θ,xE , cE , dE . Given a context–type ΞC and M ∈ ΛΞ,Θ(C) let P (M) be the
property that Statement (4.7) holds for M and any N ∈ ΛΞ,Θ(C). With induction we prove
that P (M) holds for every M . This is sufficient.

(i) Suppose that M ≡ aM1 · · ·Mn for some aA ∈ {Ξ,Θ} with A ≡ [A1, . . . , An] and
Mi ∈ ΛΞ,Θ(Ai) with P (Mi) and let N ∈ ΛΞ,Θ(0) be such that

M [x:=c] = N [x:=c] and M [x:=d] = N [x:=d]. (4.8)

Write N ≡ bN1 · · ·Nm where bB ∈ {Ξ,Θ} with B ≡ [B1, . . . , Bm]. We need to prove
that M = N . Note that Statement (4.8) implies that

a[x:=c] = b[x:=c] and a[x:=d] = b[x:=d]. (4.9)

By examining the different cases for a (viz., a = c, a = d, a = x and a ∈ {Ξ}) and
similarly for b, one easily sees that Statement (4.9) implies a = b.

Statement (4.8) also implies Mi[x:=c] = Ni[x:=c] and Mi[x:=d] = Ni[x:=d].
Consequently, Mi = Ni as P (Mi) by assumption. Hence M = N .

(ii) Suppose that M ≡ λ∆. M ′ for some M ′ ∈ Λ∆,Ξ,Θ(0) with P (M ′). Assume that

M [x:=c] = N [x:=c] and M [x:=d] = N [x:=d] (4.10)

for some N ∈ ΛΞ,Θ([∆]) in order to show that M = N . Writing N ≡ λ∆. N ′ with
N ′ ∈ Λ∆,Ξ,Θ(0), we see that Statement (4.10) implies that

λ∆. M ′[x:=c] = λ∆. N ′[x:=c].

Hence M ′[x:=c] = N ′[x:=c]. Similarly, we get M ′[x:=d] = N ′[x:=d].
Then P (M ′) implies M ′ = N ′, so that M = N .

Lemma 4.28. For any type A we have [[[A]]] ≤a [[0, 0], A,A].

Proof. We need to find an atomic reduction from F [[A]] to Θ, b[0,0], cA, dA (see Remark 4.14).
Let ̺ be the substitution from F to Θ given by

̺F , λm[A]. b (mc)(md).

We prove that ̺ is an atomic reduction using Lemma 4.18.

(i) Let Ξ be a context and suppose that

̺FM =βη ̺FN

for some M,N ∈ ΛΞ,Θ([A]) in order to prove M = N . By reduction we get

b (Mc)(Md) =βη b (Nc)(Nd).

Hence Mc =βη Nc, Md =βη Nd. Writing M ≡ λxA. M ′, N ≡ λxA. N ′, we get

N ′[x:=c] = M ′[x:=c] and N ′[x:=d] = M ′[x:=d].

Hence M ′ = N ′ by Lemma 4.27, and thus M = N .
(ii) Simple.
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Lemma 4.29. Let Γ be a context and FA ∈ {Γ} with A ≡ [[Γ1], . . . , [Γn]]. Then

Θ ≤a Γ,Γk =⇒ Θ ≤a Γ

for every context Θ and k ∈ {1, . . . , n} such that

[Γi,∆,Γ] is inhabited for all t[∆] ∈ {Θ}, i 6= k. (4.11)

Proof. Assume that Θ ≤a Γ,Γk for some Θ and k. By Definition 4.12, there is an atomic
reduction ̺ from Θ to Γ,Γk. In order to prove that Θ ≤a Γ, we need to find an atomic
reduction from Θ to Γ. Pick terms Ht

i ∈ ΛΓi,∆,Γ(0) for every i 6= k and t[∆] ∈ {Θ}; this is
possible by Statement (4.11). Now, let σ be the substitution from Θ to Γ given by

σt , λ∆. F M t
1 · · ·M

t
n; M t

i ,

{

λΓk. ̺t∆ if i = k

λΓi. H
t
i otherwise

for every t[∆] ∈ {Θ}. We use Lemma 4.18 to prove that σ is an atomic reduction.

(i) Let sS, tT ∈ {Θ} with S ≡ [S1, . . . , Sk] and T ≡ [T1, . . . , Tℓ]. Suppose

σs U1 · · ·Uk =βη σt V1 · · ·Vℓ

for certain Ui ∈ ΛΞ,Γ(Si), Vi ∈ ΛΞ,Γ(Ti) and some Ξ, to prove Ui = Vi. Then

F M s
1 [∆:=~U ] · · ·M s

n[∆:=~U ] =βη F M t
1[∆:=~V ] · · ·M t

n[∆:=~V ].

Hence M s
i [∆:=~U ] =βη M t

i [∆:=~V ]. For i = k, we get

λΓk. ̺s U1 · · ·Uk =βη λΓk. ̺t V1 · · ·Vℓ.

Thus ̺s U1 · · ·Uk =βη ̺t V1 · · ·Vℓ. Hence s = t and Ui = Vi.
(ii) Trivial.

Lemma 4.30. Let Γ be a context and ∆ a derivative of Γ (see Definition 3.4). Then

Θ ≤a ∆ =⇒ Θ ≤a Γ

for every context Θ such that

[Γ,Ξ] is inhabited for all t[Ξ] ∈ {Θ}. (4.12)

Proof. Let Γ and Θ with Θ ≤a Γ be given and suppose Statement (4.12) holds. We prove
that Θ ≤a ∆ for every derivative ∆ of Γ with induction on ∆.

Let ∆ be a derivative of the context Γ and let ∆′ be a direct derivative of ∆. Assume
that Θ ≤a ∆. We need to prove that Θ ≤a ∆′.

By Definition 3.4, ∆′ ≡ ∆,∆k for some FA ∈ {∆} with A ≡ [[∆1], . . . , [∆n]]. So
we apply Lemma 4.29 to prove Θ ≤a ∆′. We must show that [∆i,Ξ,∆] is inhabited for

every t[Ξ] ∈ {Θ} and i 6= k.
Since ∆ is a derivative of Γ, we have {Γ} ⊆ {∆}. Hence {Γ,Ξ} ⊆ {∆i,Ξ,∆}. So to prove

that [∆i,Ξ,∆] is inhabited, it suffices to show [Γ,Ξ] is inhabited. This is Statement (4.12).



28 A.A. WESTERBAAN ET AL.

Remark 4.31. Surprisingly, it is not clear whether the relation ≤a is transitive.

4.3. Atomic types. We are interested in types A with the property

[Γ1] ≤
s A and [Γ2] ≤

s A =⇒ [Γ1,Γ2] ≤
s A, (4.13)

as this property makes it easier to find reductions to A. For instance, to prove [3, 0, 0] ≤s A,
it suffices to show that both [3] ≤s A and [0] ≤s A. In this subsection we give a criterion
(namely [1, 1] ≤a A) for a type to satisfy Statement (4.13).

Definition 4.32. A context–type ΓA is atomic if [1, 1] ≤a ΓA.

Remark 4.33. A context–type Γ[∆] is atomic iff Γ,∆ is atomic by Remark 4.14.
In particular, a type [∆] is atomic iff the context ∆ is atomic.

Lemma 4.34. A context Θ is atomic iff there are terms X1,X2 ∈ ΛΘ(1) with:

(i) For every context Ξ and for all M,N ∈ ΛΞ,Θ(0),

XiM =βη XjN =⇒ i = j and M = N .

(ii) For every context Ξ and all dD ∈ {Ξ} with D ≡ [D1, . . . ,Dℓ],

XiM 6=βη dN1 · · ·Nℓ,

where M ∈ ΛΞ,Θ(0) and Ni ∈ ΛΞ,Θ(Di).

Proof. Simply expand Definition 2.3(v) in Lemma 4.18.

Definition 4.35. Let Θ be a context. A pair of terms X1,X2 ∈ ΛΘ(1) which satisfies
conditions (i) and (ii) of Lemma 4.34 will be called an atomic pair.

Before we give some examples of atomic types, we prove (as promised) that an atomic type
satisfies Statement (4.13). The result is recorded in Corollary 4.38.

Lemma 4.36. Let Θ = tT1

1 , . . . , tTn
n be an atomic context. Then Θ1,Θ2 ≤

a Θ, where Θi are

clones of Θ, defined by Θi, tT1

i1 , . . . t
Tn

in .

Proof. Since Θ is atomic, [1, 1] ≤a Θ (see Definition 4.32). So there is an atomic reduction ̺
from the context f1

1 , f
1
2 to Θ (see Remark 4.14). We need to find an atomic reduction σ

from Θ1,Θ2 ≡ t11, . . . , t1n, t21, . . . , t2n to Θ ≡ t1, . . . , tn. We do this by replacing tij by
̺fitj . More formally, write Ti ≡ [Γi] and define the substitution σ from Θ1,Θ2 to Θ by

σtij , λΓj . ̺fitj Γj for all j ∈ {1, . . . , n}, i ∈ {1, 2}.

We use Lemma 4.18 to prove that σ is an atomic reduction. Let Ξ be a context.

(i) Let tij, tkℓ ∈ {Θ1,Θ2} be given. Suppose that

σtij
~M =βη σtkℓ

~N

for some tuples ~M and ~N with free variables from Ξ,Θ which fit in Γj and Γℓ, respec-
tively (see Definition 2.1(iii)). We need to prove that ~M = ~N , i = k and j = ℓ. If we
expand the definition of σ, we get

̺fi tj
~M =βη ̺fk tℓ

~N .

Since ̺ is an atomic reduction, this implies fi = fk (so i = k) and tj ~M = tℓ ~N . The
latter implies tj = tℓ (so j = ℓ) and ~M = ~N .



STATMAN’S HIERARCHY THEOREM 29

(ii) Let tij ∈ {Θ1,Θ2} and bB ∈ {Θ} with B ≡ [B1, . . . , Bm]. Assume

σtij
~M =βη b ~N (4.14)

for some tuples ~M and ~N with free variables from Ξ,Θ which fit on Γj and ∆, re-
spectively. Equation (4.14) implies b ~N =βη ̺fitj

~M . On the other hand we have
b ~N 6=βη ̺fi(tj

~M) as ̺ is an atomic reduction. A contradiction.

Proposition 4.37. Let Γ, ∆ and Θ be contexts and suppose Θ is atomic. Then

Γ ≤s Θ and ∆ ≤s Θ =⇒ Γ,∆ ≤s Θ. (4.15)

Proof. Assume that Γ ≤s Θ and ∆ ≤s Θ; we must prove that Γ,∆ ≤s Θ. Let Θ1 and Θ2

be clones of Θ. By Lemma 4.36 and Proposition 4.15 we see that we have Θ1,Θ2 ≤s Θ.
Further, Γ ≤s Θ & ∆ ≤s Θ implies Γ ≤s Θ1 & ∆ ≤s Θ2. So we see that

Γ,∆ ≤s Θ1,∆ ≤s Θ1,Θ2 ≤s Θ

by Lemma 4.7 and transitivity of ≤s.

Corollary 4.38. An atomic type A satisfies Statement (4.13).

Proof. Let A ≡ [Θ] be an atomic type. Then Θ is an atomic context (see Remark 4.33).
Hence Θ satisfies Statement (4.15) by Proposition 4.37. But then the type A = [Θ] satisfies
Statement (4.13) because of Definition 4.1(iii).

Atomic types are quite common; in fact, we will spend the remainder of this section showing
that a type A is atomic if it is from Hω+2 (see Corollary 4.41), Hω+3 (Corollary 4.48) or
Hω+4 (Corollary 4.45).

Lemma 4.39. Let Γ, ∆ be contexts with {Γ} ⊆ {∆}. We have

(i) Γ is atomic =⇒ ∆ is atomic,
(ii) Θ ≤a Γ =⇒ Θ ≤a ∆ for every context Θ.

Proof. By expanding Definition 4.32 and using Remark 4.14, one easily sees that part (i) is
a special case of (ii). Let us prove part (ii).

Let Θ be a context with Θ ≤a Γ. We need to prove Θ ≤a Γ. That is, we need to find an
atomic reduction ̺ from Θ to ∆. We know there is a substitution ̺ from Θ to Γ which is
an atomic reduction. Since {Γ} ⊆ {∆}, the map ̺ can be considered a substitution from Θ
to ∆ (see Definition 2.3(v)). We prove that ̺ is an atomic reduction from Θ to ∆.

Let aA, bB ∈ {Ξ,Θ} with A ≡ [A1, . . . , An] and B ≡ [B1, . . . , Bm] be given where Ξ is
some context. We need to show that

̺aM1 · · ·Mn =βη ̺bN1 · · ·Nm =⇒ a = b and Mi = Ni (4.16)

for all Mi ∈ ΛΞ,∆(Ai) and Ni ∈ ΛΞ,∆(Bi).
Let us shorten “Statement (4.16) holds for Mi ∈ ΛΞ0(Ai) and Ni ∈ ΛΞ0(Bi)” to “(4.16)

holds for Ξ0”. We need to prove that (4.16) holds for Ξ,∆.
Recall that {Γ} ⊆ {∆}. Pick a context Γc such that {Γc,Γ} = {∆}. Then {Ξ,∆} =

{Ξ,Γc,Γ}. Thus ΛΞ,∆(C) = ΛΞ,Γc,Γ(C) for all types C. Hence to prove (4.16) holds for Ξ,∆,
it suffices to show that (4.16) holds for Ξ,Γc,Γ.

Thus, writing Ξ′,Ξ,Γc, we need to prove that (4.16) holds for Ξ′,Γ. Since we have
a, b ∈ {Ξ,Θ} ⊆ {Ξ′,Θ}, this follows immediately from the fact that ̺ is an atomic reduction
from Θ to Γ.
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Lemma 4.40. Let A1 and A2 be types. Then [[A1], [A2]] is atomic.

Proof. By Remark 4.33 we must to show that Θ,F
[A1]
1 , F

[A2]
2 is atomic. To this end, we

apply Lemma 4.34. Writing Ai = [Γi], define

Xi,λz0. FiλΓi. z.

We prove that X1,X2 is an atomic pair (see Definition 4.35), i.e., that the terms X1,X2

satisfy conditions (i) and (ii) of Lemma 4.34. Let Ξ be a context.

(i) Assume XiM =βη XjN for some M,N ∈ ΛΞ,Θ(0) in order to show that M = N and
i = j. By reduction, we get an equality between lnfs,

FiλΓi. M = FjλΓj . N .

Hence M = N and Fi = Fj . The latter implies i = j as F1 6= F2.
(ii) Trivial. Indeed, if XiM =βη d ~N for appropriate M , d and ~N , then

FiλΓi. M = d ~N,

so Fi = d, which is absurd.

Corollary 4.41. If A ∈ Hω+2 then A is atomic.

Proof. Writing A = [∆], we need to prove that ∆ is atomic (see Remark 4.33). We claim
there is a context Γ ≡ f

[B1]
1 , f

[B2]
2 such that {Γ} ⊆ {∆}. Then since [[B1], [B2]] (and thus Γ)

is atomic by Lemma 4.40, we know that ∆ (and thus A) is atomic by Lemma 4.39(i).
To ground the claim, it suffices to find two components of A of the form [B]. Since

A ∈ Hω+2, we know that A is small and has at least two components C1, C2 with rkCi ≥ 1
(see Theorem 1.3). Since rkCi ≥ 1, the type Ci must have at least one component. Also Ci

has at most one component since Ci is not fat as A is small (see Definition 1.1(v)). So we
see that Ci ≡ [Bi] for some type Bi.

To prove that all types A ∈ Hω+4 are atomic, we need two lemmas.

Lemma 4.42. If A is a large type (see Definition 1.1(iv)), then [[0, 0]] ≤a A.

Proof. Write A ≡ [Γ]. It suffices to prove that b[0,0] ≤a Γ (see Remark 4.14).
One can verify that since A is large there is derivative ∆ of Γ and pP ∈ {∆} such that

P is fat (see Definition 3.4). Further, note that [Γ, 0, 0] is inhabited. Hence to prove b ≤a Γ,
it suffices to show that b ≤a ∆ by Lemma 4.30.

Since P is fat P ≡ [[Γ1], · · · , [Γk]] with k ≥ 1 (see Definition 1.1(iii)). Define

̺b , λx0y0. p (λΓ1. x) (λΓ2. y) · · · (λΓk. y).

Then ̺b ∈ Λ∆([0, 0]) yields a substitution ̺ from b to ∆. We prove that ̺ is an atomic
reduction (and thus b ≤a ∆) using Lemma 4.18.

(i) Given a context Ξ and Mi ∈ ΛΞ,∆(0) and Ni ∈ ΛΞ,∆(0) with

̺b M1M2 =βη ̺b N1N2

we need to prove that Mi = Ni. By reduction we get

p (λΓ1. M1) (λΓ2. M2) · · · (λΓk. M2) = p (λΓ1. N1) (λΓ2. N2) · · · (λΓk. N2).

Hence M1 = N1 and M2 = N2.
(ii) Simple as before.
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Lemma 4.43. Let A be a type such that [[0, 0]] ≤a A. Then A is atomic.

Proof. Write A ≡ [Θ]. We need to prove that Θ is atomic (see Remark 4.33). We will define
a pair X1,X2 ∈ ΛΘ(1) and show it is atomic (see Definition 4.35).

Since [[0, 0]] ≤ A, there is an atomic reduction ̺ from b[0,0] to Θ. Define

s , λx0. ̺b xx.

Let Ξ be a context. Given M,N ∈ ΛΞ,Θ(0), we have

sM =βη sN =⇒ M = N. (4.17)

Moreover, we claim that sM 6=βη M for all M ∈ ΛΞ,Θ(0).

To prove the claim, write s ≡ λx0. S for some S ∈ Λx,Θ(0). Note that either x occurs
in S or not, and if x does not occur in S then sM =βη sN for all N,M , which contradicts
Statement (4.17). Hence x occurs in S.

Now, let M ∈ ΛΞ,Θ(0) be given; we prove sM 6=βη M . Recall that we consider all terms
to be in long normal form. In particular, S is in lnf. Note that if we replace x in S with M ,
the resulting term is immediately in long normal form—no reduction is needed. Hence if
S 6= x, we see that M is a strict subterm of S[x:=M ] = M , which is absurd. So S ≡ x and
thus s = λx0. x.

This is also absurd. Indeed, we get ̺b dd =β s d =βη d for any fresh variable d0, which
contradicts that ̺ is an atomic reduction.

Now that we know sM 6=βη M for all M ∈ ΛΞ,Θ(0), cunningly define

X1,λx0. bxx; X2,λx0. bx(sx).

Then Xi ∈ ΛΘ(1). We prove X1,X2 satisfies (i) and (ii) of Lemma 4.34.

(i) Given M,N ∈ ΛΞ,Θ(0), assume XiM =βη XjN to show i = j & M = N . We
distinguish three cases.
(i) X1M =βη X1N . Then bMM =βη bNN , so M = N .
(ii) X2M =βη X2N . Then bM(sM) =βη bN(sN), so M = N .
(iii) X1M =βη X2N . Then bMM =βη bN(sN). So we have both M = N and

M =βη sN . Consequently, N =βη sN , which is absurd.
(ii) As simple as before.

Corollary 4.44. Each large type A is atomic.

Proof. Combine Lemma 4.43 and Lemma 4.42.

Corollary 4.45. If A ∈ Hω+4 then A is atomic.

Proof. Since A is large by definition of Hω+4, A is atomic by Corollary 4.44.

Lemma 4.46. A context Γ is atomic if one of its derivatives ∆ is atomic.

Proof. Follows from Lemma 4.30 as the type [Γ, 0] is inhabited.

Lemma 4.47. Let A be a small type with rkA ≥ 4. Then A is atomic.

Proof. There is a component B of A such that rkB ≥ 3 (see Definition 1.1(ii)). In other
words, writing A = [Γ], there is an bB ∈ {Γ} such that rkB ≥ 3. Similarly, if we write
B ≡ [[Θ]] for some Θ (recall that A is small), then there must be a cC ∈ {Θ} with rkC ≥ 1.
So C ≡ [D] for some D.
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Note that Γ,Θ is a direct derivative of Γ, so to prove A is atomic, it suffices to show
that Γ,Θ is atomic (by Lemma 4.46). To this end, consider the context Ξ, bB, cC . We
have {Ξ} ⊆ {Γ,Θ} and [Ξ] = [[[Θ]], [D]], so Ξ is atomic by Lemma 4.40 and hence Γ,Θ is
atomic by Lemma 4.39(i).

Corollary 4.48. If A ∈ Hω+3 then A is atomic.

Proof. Since A is small and rkA ≥ 4 by definition, A is atomic by Lemma 4.47.

5. Order type of ≤h

The order type of the reducibility relation ≤h (see Definition 1.2(ii)) is ω + 5. At least,
this is what is shown in Subsection 1.4 using statements promised to be proven later on. In
this section, we deliver on these promises; they are Hα ≤h Hα (Subsection 5.1), Hα ≤h Hα

(Subsection 5.2), and α ≤ β =⇒ Hα ≤h Hβ (Subsection 5.3).
We refer the reader to Theorem 1.3 for the definition of Hα and Hα.

5.1. Hα ≤h Hα. Let us begin with a harvest. We use the theory of strong reductions and
atomic types to easily prove that Hα ≤s A for all A ∈ Hα and α ∈ ω + 5. Loosely stated,
we do this by recognizing the tree of Hα as part of the tree of A (see Subsection 1.2).

Recall that an atomic reduction is also a strong reduction, so for example Hα ≤a A
implies Hα ≤s A (see Proposition 4.15). We use this fact without further mention.

Lemma 5.1. H0 ≤
s A for all A ∈ H0.

Proof. We need to prove that 0 ≤s A whenever A is uninhabited. We will prove 0 ≤s A for
all types A. Writing A ≡ [Γ], we need to prove [ε] ≤s [Γ]. So it suffices to show that ε ≤s Γ
(see Definition 4.1(iii)). This follows immediately from Lemma 4.16(i).

Lemma 5.2. Hn ≤s A for all A ∈ Hn where n ≥ 1.

Proof. Trivial, since Hn = {Hn} for each n ∈ N.

Lemma 5.3. Hω ≤s A for each A ∈ Hω.

Proof. We need to prove that [1, 0] ≤s A. Recall that since A ∈ Hω, we have A is small,
rkA = 2 and A has exactly one component of rank 1. So precisely one of the components
of A is 1; the remaining components are 0. By a permutation of the components we get
A ∼s [1, 0k] for some k (see Corollary 4.17). Hence it suffices to prove that [1, 0] ≤s [1, 0k].
This follows from Lemma 4.16(i).

Lemma 5.4. Hω+1 ≤
s A for every A ∈ Hω+1.

Proof. We need to prove that [2] ≤s A. Note that A is small, rkA = 3 and A has exactly
one component of rank ≥ 1. So one of the components of A is of the form [[0ℓ]] where ℓ ≥ 1
and the remaining components are 0. Hence A ∼s [[[0ℓ+1]], 0k] by Corollary 4.17. So it
suffices to prove that [2] ≤s [[[0ℓ]], 0k].

Since [0] ≤s [0ℓ] by Lemma 4.16(i), we have

[2] ≡ [[[0]]] ≤s [[[0ℓ]]] ≤s [[[0ℓ]], 0k]

by Lemma 4.21 and Lemma 4.16(i), respectively.
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Lemma 5.5. Hω+2 ≤
s A for every A ∈ Hω+2.

Proof. Note that A is small and has at least two components of rank ≥ 1, so after a
permutation of As components we get A ∼s B, [[[∆1]], [[∆2]],Γ] for some contexts ∆1, ∆2

and Γ. We need to show that [1, 1, 0] ≤s B. Since B is atomic by Corollary 4.41, it suffices
to prove [0] ≤s B and [1] ≤s B (see Proposition 4.37).

We have [0] ≤s A ∼s B since A is inhabited. Concerning [1] ≤s B, note that 0 ≤s [∆1]
by Lemma 4.16(i) and so [1] ≡ [[0]] ≤s [[[∆1]]] ≤

s B by Lemma 4.21 and Lemma 4.16(i).

Lemma 5.6. Hω+3 ≤
s A for every A ∈ Hω+3.

Proof. We need to prove that [3, 0] ≤s A. By Proposition 4.37 it suffices to show that
[3] ≤s A and [0] ≤s A since A is atomic by Corollary 4.48.

As A is inhabited, [0] ≤s A is trivial.
Concerning [3] ≤s A. Since A is small and rkA ≥ 4, there is a component [A1] of A

with rkA1 ≥ 2. Then [[A1]] ≤
s A by Lemma 4.16(i), so it suffices to show [[[1]]] ≡ [3] ≤s

[[A1]]. By Lemma 4.21 it is enough to prove that [1] ≤s A1.
By similar reasoning for A1, we are left with the problem to prove 0 ≤s A2 where [A2]

is some component of A1. Lemma 4.16(i) gives the solution.

Lemma 5.7. Hω+4 ≤
s A for every A ∈ Hω+4.

Proof. We need to prove that [[0, 0], 0] ≤s A. Since A is atomic by Corollary 4.45 it suffices
to show by Proposition 4.37 that [0] ≤s A and [[0, 0]] ≤s A. The former inequality is trivial
since A is inhabited. The latter is Lemma 4.42.

5.2. Hα ≤h Hα. In this subsection we prove that A ≤h Hα for all α ∈ ω + 5 and A ∈ Hα.
(In fact, we show that A ≤s Hα for all α 6= 0.) This is more difficult than proving Hα ≤s A
(which involved only ‘chopping’), as it requires the ‘encoding’ of the inhabitants of A using
the simpler inhabitants of Hα.

5.2.1. Ad 0, . . . , ω and ω + 1.

Lemma 5.8. A ≤h H0 for all A ∈ H0.

Proof. We need to prove that A ≤h 0. Since A is uninhabited (by definition of H0), all the
components of A are inhabited by Theorem 1.8. Write A = [Γ] and pick for each bB ∈ {Γ}
an inhabitant Nb of B. Then ̺b,Nb yields a substitution ̺ from A to 0. For a rather dull
reason the map ˆ̺: Λε(A) → Λε(0) is injective: Λε(A) is empty. Hence A ≤h 0.

Lemma 5.9. A ≤s Hk for all A ∈ Hk where k > 0.

Proof. Trivial, since Hk = {Hk}.
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Lemma 5.10. A ≤s Hω for all A ∈ Hω.

Proof. Again we have A ∼s [1, 0k] for some k > 0 (see the proof of Lemma 5.3). So we need
to prove that [1, 0k ] ≤s [1, 0]. By Definition 4.1(iii), it suffices to show that

f1, d01, . . . , d
0
k ≤s f1, c0.

The terms

̺f , f (k), ̺di+1
, f (i)c.

constitute a substitution from f1, d01, . . . , d
0
k to f1, c0. It suffices to prove that ̺ is an atomic

reduction (see Proposition 4.15). Let Ξ be a context. Note that for all M,N ∈ ΛΞ,f,c(0),

̺di =βη ̺dj =⇒ i = j,

̺fM =βη ̺fN =⇒ M = N,

̺fM 6=βη ̺di .

Hence condition (i) of Lemma 4.18 is met. Since the other condition can be easily verified,
Lemma 4.18 implies that ̺ is an atomic reduction.

Before we proceed to “ad ω + 1”, we need a lemma.

Lemma 5.11. [[[0k]]] ≤s [[[0]]] ≡ [2] for all k > 0.

Proof. Apply Corollary 4.25 with A, 0.

Lemma 5.12. Given A ∈ Hω+1, we have A ≤s Hω+1.

Proof. Let A ∈ Hω+1 be given. We need to prove that A ≤s [2]. One can easily verify that
A ∼s [[[0k]], 0l] for some k ≥ 1 and l ≥ 0. By Lemma 5.11, we have [[[0k]], 0l] ≤s [2, 0k ]. So
it suffices to show that [2, 0k ] ≤s [2]. To this end note that the terms

̺F ,λf1. Fλz0. Fλx01. · · ·Fλx0l . fz;

̺ci ,Fλx01. · · ·Fλx0i . x1.

give a strong reduction from [F 2, c01, . . . , c
0
k] to [2] (cf. Lemma 5.10).

5.2.2. Ad ω + 2. We need to prove that A ≤s [1, 1, 0] for all A ∈ Hω+2. With atomicity, we
easily reduce the problem to showing that [2] ≤s [1, 1, 0] (see Lemma 5.13). Interestingly,
we have [2] �a [1, 1, 0] (see Lemma 5.14). Consequently, the proof of [2] ≤s [1, 1, 0] has quite
a unique flavor (see Proposition 5.15).

Lemma 5.13. Suppose that [2] ≤s [1, 1, 0]. Then A ≤s [1, 1, 0] for all A ∈ Hω+2.

Proof. Let A ∈ Hω+2 be given. Then A is small and rkA ≤ 3, so

A ∼s [[[0k1 ]], . . . , [[0kn ]], 1l, 0m]

for some ki, n,m, ℓ by Corollary 4.17. We need to prove that A ≤s [1, 1, 0]. By Lemma 5.11,
we have [[[0ki ]]] ≤s [2], and so A ≤s [2n, 1ℓ, 0m] by Lemma 4.7. Hence it suffices to show
that [2n, 1ℓ, 0m] ≤s [1, 1, 0] by transitivity. Since [1, 1, 0] is atomic by Lemma 4.40, we apply
Proposition 4.37. It remains to be shown that

[2] ≤s [1, 1, 0]; [1] ≤s [1, 1, 0]; [0] ≤s [1, 1, 0].

The first statement is valid by assumption, the latter two by Lemma 4.16(i).
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Lemma 5.14. We have [2] �a [1, 1, 0].

Proof. Let ̺ be a substitution from F 2 to Θ, f1, g1, c0. In order to show that [2] �a [1, 1, 0],

we prove that ̺ is not atomic by finding terms M,N ∈ ΛΘ(1) with ̺FM =βη ̺FN while
M 6= N (see Definition 4.12). Write

̺F ≡ λh1. w0 hw1 · · · hwnc

where wi ∈ ΛΘ(1) and define M ,λx0. x and N ,λx0. w1 · · ·wnc. Then

̺FM =β w0 Mw1 · · ·Mwnc

=β w0 w1 · · ·wnc

=β w0 NK for all K ∈ ΛΘ(0)

=β w0 N(w1 · · ·Nwnc) =β ̺FN,

while N 6= M .

Proposition 5.15. We have [2] ≤s [1, 1, 0].

Proof. It suffices to prove that F 2 ≤s f1, g1, c0 (see Definition 4.1(iii)). For this we need to
find a substitution ̺ from F 2 to Θ, f1, g1, c0 such that the map

̺Ξ : ΛΞ,F 2

(0) → ΛΞ,Θ(0)

is injective for every context Ξ (see Proposition 4.2). The assignment

̺F , λh1. fhghc

gives a substitution ̺ from F 2 to Θ. We prove that ̺Ξ is injective for given context Ξ.
Let us examine ˆ̺Ξ, informally. Occurrences of Fλx0. M are recursively replaced

by fM [x:=gM [x:=c] ]. E.g., consider the inhabitant M = Fλx0. Fλy0. pxy of p[0,0], F 2:

Fλx0.

Fλy0.

p

x y

 

Fλx0.

f

p

x g

p

x c

 

f

f

p

g

f

p

c g

p

c c

g

p

g

f

p

c g

p

c c

c .
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We are interested in the following “subterms” of the image:

N =

f

f

p

z1 z2

N1 =
f

p

c

N2 =
p

c

.

Replacing the maximal subterms of the form gK with distinct zi yields N . This is almost
the original term: the f are to be replaced by Fλ and the zi need to be appropriately bound
to them.

If we repeat the process on the aforementioned maximal subterms gK (which we re-
placed with zi to get N), but instead simply remove the maximal subterms of K of the
form gK ′, we get the terms Ni.

An Ni is almost a subterm of N : lay Ni on top of N with c and zi aligned. There will
always be a f under the top of Ni. This is the f that has to be bound to zi.

Thus the orignal term can be read back from the image. A rigorous proof of the correct-
ness of this method, requires nothing but tedious bookkeeping and is therefore omitted.

5.2.3. Ad ω + 3. We need to show that A ≤s [3, 0] for all A ∈ Hω+3. To this end, we prove
that A ≤s [3, 0] for every small type A (since every A ∈ Hω+3 is small).

Lemma 5.16. Let B1, . . . , Bm be types. We have

[ [[B1, . . . , Bm]] ] ≤s [B1, . . . , Bm, 3m].

Proof. Combine Lemma 4.26, Lemma 4.24 and Corollary 4.17.

Lemma 5.17. Let A be a small type. Then A ≤s [3, 0].

Proof. One can easily verify that every component C of A is either 0 or of the form C ≡ [B]
where B is small. So, if we repeatedly apply Lemma 5.16 (with the help of Lemma 4.7 and
Corollary 4.17) we eventually see that, for some k, ℓ and m,

A ≤s [3k, 1ℓ, 0m].

We illustrate this with an example.

[0, [[0, 1, 2]]] ≤s [0, 0, 1, 2, 33 ] ≡ [0, 0, 1, [[0]], 33 ]

≤s [0, 0, 1, 0, 3, 33 ] ∼s [34, 1, 02].

So it remains to be shown that [3k, 1ℓ, 0m] ≤s [3, 0]. Since [3, 0] is atomic by Lemma 4.47,
it suffices (see Proposition 4.37) to prove that

[0] ≤s [3, 0]; [3] ≤s [3, 0]; [1] ≤s [3, 0].

The first two statements follow immediately from Lemma 4.16(i). Concerning the last one,
we have [1] ≤s [[[1]]] ≡ [3] ≤s [3, 0] by Lemma 4.22.
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5.2.4. Ad ω + 4. We need to show that A ≤ [[0, 0], 0] for all A ∈ Hω+4. We prove more.

Lemma 5.18. Let A be a type. Then A ≤s [[0, 0], 0].

Proof. Note that [[0, 0], 0] is atomic by Lemma 4.43, since we have

[[0, 0]] ≤a [[0, 0], 0]. (5.1)

Hence to prove that A ≤s [[0, 0], 0], it suffices to show that [C] ≤s [[0, 0], 0] for every
component C of A (see Proposition 4.37).

Let C ≡ [C1, . . . , Ck] be a component of A. We prove that [C] ≤s [[0, 0], 0]. Using
induction, we may assume that we already have Ci ≤

s [[0, 0], 0] for all i.
Since [[C1, . . . , Ck]] ≤

s [[C1], . . . , [Ck], [0
k]] by Lemma 4.23, it suffices to show that

[[C1], . . . , [Ck], [0
k]] ≤s [[0, 0], 0].

Since [[0, 0], 0] is atomic, this reduces to [[Ci]] ≤
s [[0, 0], 0] and [[0k]] ≤s [[0, 0], 0]. For the

latter inequality, note that the substitution from p[0
k] to b[0,0] given by

̺p , λx1 · · · xn. bx1 bx2 · · · bxnxn

is an atomic reduction and hence [[0k]] ≤s [[0, 0]] ≤s [[0, 0], 0]. Concerning the first inequal-
ity, write Ci ≡ [D1, . . . ,Dℓ] and note that we have

[[Ci]] ≡ [[[D1, . . . ,Dℓ]]]

≤s [[[D1, ]], [[D2]], . . . , [[Dℓ]]] by Lemma 4.24

≤s [D1,D1, [0, 0], [[D2]], . . . , [[Dℓ]]] by Lemma 4.28

...

≤s [D1, . . . ,Dℓ, D1, . . . ,Dℓ, [0, 0]ℓ ] by Corollary 4.17.

As we have Ci ≡ [D1, . . . ,Dℓ] ≤
s [[0, 0], 0] and [[0, 0]] ≤s [[0, 0], 0], we get

[D1, . . . ,Dℓ, D1, . . . ,Dℓ, [0, 0]ℓ ] ≤s [[0, 0], 0]

by Proposition 4.37. Hence [[Ci]] ≤
s [[0, 0], 0]. So we are done.

5.3. α ≤ β =⇒ Hα ≤h Hβ. We prove that α ≤ β implies Hα ≤s
h Hβ by showing that

[0k] ≤s
h

(i)

[0k+1] ≤s
h

(ii)

[1, 0] ≤s
h

(iii)

[2] ≤s
h

(iv)

[1, 1, 0] ≤s
h

(v)

[3, 0] ≤s
h

(vi)

[[0, 0], 0].

(i) Follows directly from Lemma 4.16(i).
(ii) Similar to Lemma 5.10, but easier.
(iii) On the one hand, [1, 0] ≤s

h [2, 0] as f1 ≤s F 2 via ̺f ,λx0. Fλy0. x. On the other
hand, [2, 0] ≤s

h [2] by Lemma 5.12.
(iv) This is Proposition 5.15.
(v) Follows from Lemma 5.17 since [1, 1, 0] is small.
(vi) A consequence of Lemma 5.18.
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6. Order type of ≤βη and ≤h+

We are in the home stretch now. We have proven that the order type of the reduction
relation ≤h is as depicted in the diagram on page 4. The structure of this proof was given
in Subsection 1.4, and we have spent the previous sections filling in all the difficult details.
In this section we provide the final and easy bits of the proof that the order types of the
reduction relations ≤βη and ≤h+ (see Definition 1.2) are depicted correctly as well.

6.1. [2] ≤h+ [1, 0] and [0k+1] ≤h+ [0k]. Let us begin with [0k+1] ≤h+ [0k] for given k ≥ 2.
It suffices to prove that

[0k+1] ≤h+ [02],

because one can easily verify that [02] ≤h+ [0k].

Lemma 6.1. For every k ≥ 2 we have [0k] ≤h+ [02].

Proof. We need to find a finite family of Böhm terms from [0k] to [02] which is jointly
injective (see Definition 1.2). Recall that (see 1.3.1)

Λε([0k]) = {Uk
1 , . . . , U

k
k }.

Given i, j ∈ {1, . . . , k} with i 6= j, there is a Böhm term Mij ∈ Λε([0k] → [0]) which

separates the terms Uk
i and Uk

j in the sense that

MijU
k
i =β U2

1 and MijU
k
j =β U2

2 .

Indeed, the Böhm term Mij ,λm[0k]x1x2. mP1 · · ·Pk does the job, where

Pℓ ,

{

x1 if ℓ = i

x2 otherwise.

Hence the family of terms {Mij : i 6= j} is jointly injective.

Proposition 6.2. [2] ≤h+ [1, 0].

Proof. We have shown there is no injective transformation from the type [2] to [1, 0] (see
Subsection 3.2). However, we will prove that the following Böhm transformations ̺ and σ
from [2] to type [1, 0] are jointly injective (and thus [2] ≤h+ [1, 0]).

̺F ,λh1. fhc σF ,λh1. fhfhc

It suffices to show that i and j can be recovered from σ̂( 〈i, j〉 ) and ˆ̺( 〈i, j〉 ). This is indeed
the case as one we have the following equalities for 〈i, j〉 ∈ Λε([2]).

ˆ̺( 〈i, j〉 ) = ci σ̂( 〈i, j〉 ) = c2i−j+1.

We verify the latter equality and leave the other to the reader.

σ̂( 〈i, j〉 ) =βη σFλx
0
1. · · · σFλx

0
i . xj

=β σFλx
0
1. · · · σFλx

0
j . f

(i−j)xj

=β σFλx
0
1. · · · σFλx

0
j−1. ff

(i−j)ff (i−j)c

= σFλx
0
1. · · · σFλx

0
j−1. f

(2+2(i−j))c

=β f (j−1)f (2+2(i−j))c = c2i−j+1.

We have proven that [2] ≤h+ [1, 0].
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6.2. [2] ≤βη [1, 0]. For the proof of [2] ≤βη [1, 0] we need some preparations.

Lemma 6.3. Addition and multiplication on the Church numerals is definable in the fol-
lowing sense. There are closed terms M+,M× : [1, 0] → [1, 0] → [1, 0] with

M+cmcn =βη cm+n and M×cmcn =βη cm·n (n,m ∈ N).

Proof. It is not hard to see that the terms

M+ = λa[0,1]b[0,1]f1c0. af(bfc)

M× = λa[0,1]b[0,1]f1c0. a(bf)c.

do the job.

Corollary 6.4. The Church numerals contain a pairing in the following sense. There is a
term Mp : [1, 0] → [1, 0] → [1, 0] such that

Mpcncm =βη Mpcn′cm′ =⇒ n = n′ and m = m′.

Proof. The map P : (n,m) 7→ 1
2(n + m)(n + m + 1) + m, is a well known bijection be-

tween N2 and N, called the Cantor pairing. Using Lemma 6.3, we obtain a term Mp such
that Mp(cn, cm) =βη cP (n,m) for all n,m.

Proposition 6.5. [2] ≤βη [1, 0].

Proof. We need to find an R ∈ Λε([2] → [1, 0]) such that

RM =βη RN =⇒ M = N (M,N ∈ Λε([2]).

Let ̺ and σ be the substitutions from Proposition 6.2 which form a multi-head reduction
from [2] to [1, 0] and define R,λm[2]. Mp (m̺F )(mσF ).

Let M,N ∈ Λε([2]) with RM =βη RN be given, to prove M = N . Then

Mp (M̺F )(MσF ) =βη Mp (N̺F )(NσF ).

So M̺F =βη N̺F & MσF =βη NσF by Corollary 6.4. But then M = N as ˆ̺ and σ̂ are
jointly injective (see Proposition 6.2).

7. Conclusion

We have proven Statman’s Hierarchy Theorem (see page 4). With it we can mechanically
determine for all types A and B in T0 whether A ≤βη B, whether A ≤h B, and whether
A ≤h+ B only by inspecting the syntactic form of A and B. Let us make some final remarks.

7.1. Contributions. The calculus of reductions (see Section 4) used to prove the existence
of reductions is new (including the notions of strong reduction and atomic type). The
method to prove the absense of reductions from Subsection 3.3 is a generalisation of the
work of Dekkers in [Dek88].

The Hierarchy Theorem as presented here is slightly stronger than the one proven by
Statman in that the original version only completely determined the relations ≤βη and ≤h+ ,
but not ≤h (see Theorem 3.4.18 and Corollary 3.4.27 of [BDS13]), while our version deter-
mines the relation ≤h as well. For this we had to add one canonical type, namely [2], and
prove (among other things), that [2] �h [1, 0] (see Subsection 3.2).
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7.2. Outlook. The notions and notation introduced in this paper are easily adapted to a
setting with multiple base types α1, α2, . . . . However, if one tries to determine the equiv-
alence classes of ≤h in this setting one realises much more work has to be done. (Indeed,
try, for instance, to prove a variant of Theorem 1.8 for multiple base types.) Perhaps the
development of a software tool based on the calculation rules for strong reductions will be
of use in such a project.

7.3. Acknowledgements. We are grateful that a reviewer spotted an error in Subsec-
tion 3.6 of a previous version of this manuscript.
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