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ABSTRACT. In the Simply Typed A-calculus [Hin97, [BDS13] Statman investigates the
reducibility relation <g, between types: for A, B € T types freely generated using —
and a single ground type 0, define A <g, B if there exists a A-definable injection from the
closed terms of type A into those of type B. Unexpectedly, the induced partial order is
the (linear) well-ordering (of order type) w + 4, see [Sta80al [Sta80b [Sta81l [BDS13].

In the proof a finer relation <; is used, where the above injection is required to be
a Bohm transformation (|[Bar84]), and an (a posteriori) coarser relation <+, requiring a
finite family of Béhm transformations that is jointly injective.

We present this result in a self-contained, syntactic, constructive and simplified manner.
En route similar results for <; (order type w + 5) and <;+ (order type 8) are obtained.
Five of the equivalence classes of <,; correspond to canonical term models of Statman,
one to the trivial term model collapsing all elements of the same type, and one does not
even form a model by the lack of closed terms of many types, [BDS13].
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1. HIERARCHY OF TYPES

We work in simply typed lambda calculus over a single base type 0. The set of open terms of
(simple) type A is written A(A), while the set of closed terms of type A is denoted by A®(A)
(for reasons which become clear in Section [2)).

For types A, B one defines A <g, B if there is a closed term ®: A — B that is an
injection on closed terms modulo Bn-equality.

To get some feeling for the relation <g, we begin by observing

B —(A—C)<g; A=B—C via Amab. mba (see Corollary E.IT);
A=C <y A= B—=C via Amab. ma (see Lemma [A.T6l);
A <g, (A—=0)—=0 via Amf. fm (see Lemma [£.22]);
(0,00 £20—0—0 % g 0—=0 by counting closed inhabitants.

Less intuitively clear is that for all simple types A over 0 one has
A <g,[0,00 =0—0 (see Lemma [5.18)).
Also, one might ponder (writing 120 — 0) whether
1-1-0—-0<,1-0—=0 (no);
1-1-1-0—-0<,1-1-0-=0 (yes!);
[0,0)] =0 —=0<g, 1 =-1—=-0—=0 (no).

The general problem whether A <g, B (for given types A and B) is solved by the
Hierarchy Theorem (printed on page M due to Richard Statman [Sta80al [Sta80b]), which
describes (among other things) the equivalence classes of <g, in terms of (relatively) simple
syntactic properties.

We give a new proof, which is self-contained, syntactic and constructive. We assume
only basic knowledge of the simply typed lambda calculus (long normal form, rank, ...),
and recall the most important notions before using them. Roughly speaking, the proof is
one long syntactic analysis of inhabitants of simple types and reductions between them; we
make no use of term models and the like. The proof is constructive in the sense that we
do not use the law of the excluded middle, and so one may easily ignore this feature of
the proof (except perhaps when reading Theorem [I.8)). For applications of the Hierarchy
Theorem (and another proof), see Section 3.4 of [BDS13].
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1.1. Hierarchy Theorem. To formulate the theorem we first recall some notions and
notation from the simply typed lambda calculus, see Section 1.1 and Section 3.4 of [BDS13].

Definition 1.1.

(i) Let A be a type. The components of A are the unique types Aq,..., A, such that

A=4—---—=A,—0.
(ii) Each type A has a rank denoted by rk A; it is defined recursively by
k0 = 0; rk(A — B) & max{rk A+ 1, rk B }.
(iii) A type A=A, —--- — A, — 0is fat when n > 2.
(iv) A type A= A; — --- — A, — 0 is large if either A has a fat component A;, or one
of A’s components A; = A;; — --+ — Ay, — 0 has a large component A;;.

(v) A type which is not large, is called small.

(vi) Let A, B be types and k, n natural numbers. The following notation is used.
- . A’ B£B

n+1l=n-—=70

A s B2 A AF 5 B,

Definition 1.2 (Reducibility relations).
Let A=A — -+ — A, —0and B= By — --- = B, — 0 be types.

(i) A fBn-reduces to B, notation A <g, B, if for some R € A°(A — B)
RM; =8n RMy — M, =8n M (Ml,MQ c AE(A))

This R is then called a reducing term from A to B.
(ii) A head reduces to B, notation A <), B, if A <g, B with a reducing term of

the form R = )\mAbf LooobBm mog, - 04, Where g4,:A; are open terms with free
variables from b{g 1...,bBm. We call a term of this form a Béhm term.

(iii) A reduces multi-head to B, notation A <,+ B, provided there exist Bochm terms
RW .. RY which are jointly injective, that is, for My, My € As(A),

VZ[ R(Z)Ml =pn R(Z)MQ ] — M1 =pn Mg.
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Theorem 1.3 (Statman Hierarchy). The relations <+, <g, and <, are increasingly ﬁneﬂ
Their equivalence classes are listed below vertically in ascending order. The types H,, in the
last column (called canonical types) are representatives for the equivalence classes of <p.

']|1‘5 I?%w+3 Iﬁﬂw+4 Hw+4 = (O —0— O) —-0—0

’]lr4 Elgw—l—2 Iﬁﬂw—i{i Hw+3 = 3—-0—-0

']‘T?, E"Bw—l—l Iﬁﬂw+2 Hyp 02151500
H H,.12 250

Tg Bw | w—+1 w1 A
H,, H, =1—-0—0

T, @k @k H, 2050

IElaag 15112 Hy, 20250

']lTo 1?31 Iﬁﬂl Hi 200

T, By Hy Hy 20

Sit Spr Zh

Moreover, the equivalence classes H,, of <p have the following syntactic description, and
the relations <+, <g, and <}, are (hence) decidable.

Hyts = {A: A is inhabited and large };
Hyys = {A: A is inhabited, small and rk(A) > 3 };
Hyto = {A; A is inhabited, small, rk(A) € {2, 3}
and A has at least two components of rank > 1},
Hyt1 = {A: A is inhabited, small, tk(A) =3
and A has exactly one component of rank > 1};
H, = { A: A is inhabited, small, tk(A) = 2
and A has exactly one component of rank 1};
Hy = {A: A is inhabited, small, tk(A) =1
and A has exactly k components of rank 0 };
Hy = { A: A is not inhabited }.

Liz. A <+ B = A<, Band A<g;, B = A<, B for all types A and B.
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We give an overview of the proof of Theorem [[.3in Subsection[I.4l To be able to do this,
we first expose the precise relation between the syntactic structure of a type and the shape
of its (long normal form) inhabitants in Subsection [[.2 and we examine the inhabitants of
the canonical types Hy, H1, ...in Subsection [[.3

While technical details are unavoidable in a paper like this, we make them more palat-
able by introducing some syntactic sugar in Section [l With it we can already prove the
inequalities between the canonical types (such as [0, 0] %5, [0]) in Section Bl We proceed by
developing a general theory about reductions in Section [4] to establish the order type of <,
in Section [5] and the order types of <g, and <,+ in Section [6l

Since we are in the fortunate position to have strong normalization, every term has a
long normal form (Inf), which is the fn~!'-normal form. As default we will only consider
terms in Inf. The few exceptions will not pose a problem to the reader.

1.2. Syntactic structure and inhabitants. Recall that for any type A, there are unique
types Aiq,...,A, such that A = A1 — ... — A,, — 0. Hence it is natural to write

Definition 1.4. [Ay,...,A,] & A; — - = A, = 0.

Observation 1.5. Any (Inf-)inhabitant M of a type A is of the form
Aay - ap. b Ny Ny,

Writing A = [Ay,...,A,] and B = [By, ..., By;,] we have that

(i) the types of the variables aq,...,a, are respectively Ay,..., A, and
(ii) the types of the terms Ny,..., N, are respectively By, ..., By,.

Observation 1.6. We can write every type A using only the operation [ | in a unique way.

For example, 0 = [] and n + 1 = [n]. In this way we can consider types to be finite trees.
For instance, the canonical types are represented by the following trees.
0 4
!
0 1 3
! !
0 1—0-0 2 00 2
! ! Lo ! v
0-0-0---1-0 2 1 1 0 3 0 [000 1
| A AN | N o/ N/ N
o [0l [0,0] -~ [1,0] [21  [L,1,0]  [3,0]  [[0,0},0] o

From this we see that given a type A, the nodes on odd height of the tree A are the types
of the variables which might occur in closed terms of type A, while the possible types of
the subterms are those on even height. (E.g., in a closed term of type [3,0] — such as
AP30. DAfL. fi®Afs. fif2c — the introduced variables are of type 3 and 1, while the
subterms are of type 2 and 0.)

Observation 1.7. The syntactic properties mentioned in Theorem [[.3] are more easily
defined and understood when considering a type to be a tree.
(i) The rank of a type A is its height as a tree. If the rank of A is restricted from above
to, say 2, the variables occurring in a closed term M of type A are of rank 0 or 1 so
that all the variables in M are introduced at the head, contrary to types like [3,0].
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(ii) A type A is fat if it has more than one component. Fat types are important, because
a variable of fat type can be used to construct a pairing (see Lemma [£.42]).
Moreover, A is large if A as tree has a fat type on odd height. One can show that if
A is inhabited, then A is large if and only if there is closed inhabitant M of A which
contains a (bound) variable of fat type.
In particular, if a type is small (= not large), then its inhabitants are “strings” of
a variable followed by the mandatory abstractions

Ay A, B1 B Cq Cr
Aaptooan™t G L byt H Aet ek

1.3. Inhabitants of the canonical types H,. By the preceding observations we can
determine the (Inf-)inhabitants of a given type. As an example (and also since we will need
them), we list by an iconic shorthand (explained by ~») the inhabitants of the canonical
types below. The verification is left to the reader.

To make terms more readable, we leave out parentheses. There is only one way to place
parentheses to get a term obeying the typing rules. E.g., we read

Mg fagfe as Aflg'd flalg(fe));
A0 bebee as OO0 (be) ((be)e).
We abbreviate [A, A, A, C, C] to [A3, C?], etcetera.

1.3.1. Hj, = [0¥]. The inhabitants (of [0¥]) are the projections on k elements:
UF o~ A2l o for0 <i<k
1.3.2. H, = [1,0]. The inhabitants are the Church-numerals,
en ~ AL e,

where fO¢ = ¢ and f V¢ = f (f (”)c). As a warm-up for what is coming, note that the
inhabitants of [1,0] are produced by the following two-level grammar.

ML N where N:= (fN) | c

1.3.3. H,41 = [2]. An inhabitant can be identified by a pair of natural numbers
(i,7) ~ AF?. FAat. - Fx?. x; where j <.
These terms are produced by the following grammar.
AF?. Py where P, u= (FAxb 1. Poy1) | 21| - | 2

1.34. H, 42 =[1,1,0]. The inhabitants are essentially ‘words over a two element alphabet’,
Mgt W where W = (fW) | (gW) | c.
Hence we use words over {f, g} as shorthands. For instance,

fragf ~ Aftg'c®. ffagfe.
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1.3.5. H,43 = [3,0]. The inhabitants are produced by the following grammar.
A3 My where M, == (PAfL.W,,) |c
Wy = (fiWn) | =+ | (faWn) | Mnp
By replacing “®(Af!. ---)” with “/”, hiding “A®3c’. ” and hiding the “c” at the end, we
obtain a shorthand for the inhabitants of [3,0]. For instance,
/123 ~s MBI, DAfL. [LONfL. DNf3. fafsce.

So we identify an inhabitant of [3,0] with a list of words wy, ..., w, with w; € {1,...,i}*.

1.3.6. Hy,14 = [[0,0],0]. The inhabitants are (like) binary trees:
ML T where Tu= (bTT) | e

We will denote them as such. For instance,

/<\ s ADOOIEO pece and 6\ s ADOOEO pebee.

1.4. Structure of the proof. In this Subsection, we present the proof of the Hierarchy
Theorem. We delegate most of the work to the remainder of this article by using statements
proved later on. What is left is the compact skeleton of the proof.

Proof of Theorem [1.3. We need to prove the following.
(I) The relations <p,, <g, and <,+ are as displayed on page [l
(IT) The relations <j,, <g, and <+ are decidable.
Concerning (). We first consider the relation <j. Let the sets H, be defined as on page Hl.
One easily verifies that the H,, form a partition of TV, and that H, € H,, for all a.
To show that <j, is of the form as on page @ it suffices to show that for all A, B € T"
and o, 8 € w+ 5 with A € H, and B € Hg, we have that

AﬁhB = Ha <p Hg <~ CMS,B (1.1)

For this we use the following four facts proved later on.

(i) Ae Hy, = H, <j A (see Subsection [5.7)).

(i) Ae Hy, = A <; H, (see Subsection [5.2)).

(iii) o« < B = Hy <j, Hp (see Subsection [5.3)).

(iv) a« £ 8 = H, %5 Hp (see Section [3]).
Before we prove Statement (L)) let us spend some words on fact ([v]). In Section[3we do not
directly prove that « £ 3 = H, %), Ha. Instead we show the inequalities listed below
in Statement (L2) (writing A £p 3, B for A £, B & A £}, B, etcetera). Together with

fact (), this is sufficient to establish fact (ivl). Indeed suppose that o « 8 and H, <), Hg
for some « and § in order to obtain a contradiction. Then 5 < a, so f+ 1 < . Thus

Hgy1 <p H, <, Hg
by fact (). This contradicts the inequality Hgyy €5, Hp from Statement (L2)).
It is interesting to note that we will prove the inequalities from Statement (L.2)) of the
form Hg £}, g, pn+ Ha (except one) by showing that there are distinct terms N1, No € A°(Hp)

such that R Ny =g, R N, for all R € A°(A — B) (see Lemma [3.2]). These terms Ny, Ny are
listed on the right in Statement (L.2]) using the notation from Subsection [L.3]
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[[0,0],0] £n.gpn+ [3,0] Ny = /Q\ N, :/Q\

3,0] £npgn [1,1,0]  Nip=/1/21 Na = /1/22
[1= 0] Lhognpt 2] Ny =fgfg Ny = fggf
2] £n [1,0] (1.2)
[1,0] £p gyt (077 N =¢ No = ¢
0k+2] i{hﬁn [OkH]
0k+ j{hﬁm;ﬁ 0

Let us prove Statement (II]). The first equivalence follows from facts (i) and (i), the
second equivalence follows directly from facts (i) and (ivl).

We now turn to the order type of the reducibility relation <g,. To show that <g, is of
the form as depicted on page 4l we need to prove that

A<g, B = a<f o of€c{w w+1} (1.3)
for all a, 8 € w+5 and all A € H, and B € Hg. Note that
A<, B = A<, B for all types A and B. (1.4)

Hence A ~g, H, for all A € H,, since A ~}, H, for A € H, by facts (i) & (). So to prove
Statement (L3]), it suffices to show that

H, <g, Hg — a<p o af€{w w+1}. (1.5)
The implication “<=" follows from Statements (I.1]), Statement (I.4) and
Hyi1 <py Hy, (see Subsection [6.2]).

Concerning “==". Let o, € w + 5 be given. Suppose that H, <g, Hg. Then since <
and = on w + 5 are decidable, it suffices to show that the negation of the right-hand side of
Statement (5] leads to a contradiction. Suppose that 8 < « and not «, 5 € {w, w + 1}.
Then 8 < v < v+ 1 < « for some v € w+ 5 with v # w. (Pick v = g if 8 # w, or
pick ¥ = w + 1 otherwise.) Then H.,41 %£g, Hy by Statement (L.2)), but we also have that
H 1 <gy Ho <g; Hg <p, H,, a contradiction. We have proven Statement (L3]).

We continue with the order type of <,+. We need to prove that

A<+ B = a<fB o «f€{w w+1}

or «a,f€{2,...,w} (16)
for all a, 3 € w+5 and all A € H, and B € Hg. Again, we have
A<pB = A<+ B for all types A and B, (1.7)
and A ~,+ H, for all A € H,. So it suffices to show that
H, <;+ Hpg — a<f o of€{w w+1} (18)

or «a,fe{2,...,w}
The implication “<=” follows from Statement (I.I]), and Statement (I.7]) and
Hy1 <p+ H, and  Hpy <+ Hp (k>2) (see Subsection [6.1)).

The implication “=" can be proven using the inequalities of Stat. (.2]) in a similar fashion
as the implication “==" of Stat. (LI]) was proven above. We leave this to the reader.
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Concerning ([l). To show that the reducibility relations <j, <g, and <,+ are decidable, we
prove that for every type A an a € w+ 5 can be computed with A € H,. (This is sufficient
because if A € H, and B € Hpg then A <;, B can be decided using Statement (LI)); A <, B
using Statement (L3]); A <,+ B using Statement (L6]).) Of course, algorithms to determine
the rank of a type, the number of components and whether the type is large or small are
defined easily enough; the difficulty here is how to decide whether a given type is inhabited.

By Proposition 2.4.4 of [BDS13] (which is proven using the law of the excluded middle)
a type A = [A1,...,A,] is inhabited iff A; is uninhabited for some i. From this fact a
recursive algorithm to determine whether a type A is inhabited is easily concocted. Since
we want constructive proof of the Hierarchy Theorem, we have formulated and proven a
constructive variant of Proposition 2.4.4 of [BDS13], see Theorem [[.8 below. Note that the
algorithm to determine inhabitation in the constructive case is the same as in the classical
case; only the proof that the algorithm is correct is different.

This concludes the proof of the Hierarchy Theorem. L]

Theorem 1.8. Let A =[Ay,...,A,] be a type. Then either A is inhabited or not, and
A is uninhabited <= all A; are inhabited. (1.9)

Proof. Concerning “<—=". Suppose towards a contradiction that all A; are inhabited, and A
is inhabited too. Pick M € A®(A) and N; € A®(4;) for each i. Then N M; --- M, is a closed
inhabitant of 0, which is impossible.

We prove “=—" and “either A is inhabited or not” by induction on the buildup of types
as ‘tuples’ using the operation [ |. Let A = [Ay,..., A,] with A; = [A;1, ..., Aim,| be given.
For all i € {1,...,n}, suppose the following.

(i) Either A; is inhabited or A; is uninhabited.

(ii) If A; is uninhabited then A;; is inhabited for all j.
We need to prove that all A; are inhabited provided that A is uninhabited, and that either A
is inhabited or A is uninhabited.

Assume that A is uninhabited in order to show that all A; are inhabited. By (f), either
all A; are inhabited or some A; is uninhabited. In the former case we are done; so let us
prove the latter case leads to a contradiction. Assume A; is uninhabited for some i. By (i)
A;j is inhabited for all j. Pick N; € A®(A;;) for all j. Then )\a‘f‘l e aﬁ”. ;N1 -+ Ny, is a
closed inhabitant of A, contradicting that A is uninhabited. Therefore, all A; are inhabited.

Consequently, A is inhabited iff not all A; are inhabited. Since (by (i) either all A; are
inhabited or not, it follows A is either inhabited or not. ]

2. REDUCTIONS AND CONTEXTS

In this section we introduce some syntactic sugar that will save ink later on.

Definition 2.1.
Cr

(i) A context is a sequence of distinct typed variables, clcl, ce e
The letters I', A, O, and = denote contexts. The empty context is denoted by e;
concatenation of contexts is written as I'; A.
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(i) For a context T' = ¢{*, - ,ckc’c

ADLN 2 AT &k N
(T2 (£ )

AT(A) £ {M e A(A) | FV(M) C{I'}}
[T 2 [Cy,...,Chl

(iii) Let I’ = clcl, e ,cgk be a context. We say P fits in I if P = Py,..., P, is a tuple of
open) terms, and P; : C; for every i. In that case we write
t dP;:C;f .. In that it

M[:=P] & M[e;:=P1]...[cx:=PF].

write

(> I>

Remark 2.2. Recall that we have assumed that all terms are in long normal form.
In particular, if M € AT([A]), then M is of the form M = AA.N where FV(N) C {I", A}.

Using contexts one can formulate statements such as N € A'(0) = M. N € A*([T]),
and (AT. N)P =3 N[[:=P] for any term N and P which fits in T. Also contexts lighten
the study of reductions as will be shown in the following.

We study the relation A; <, As for types Aj, Ay (see Definition [[L2|[])). Note that
A1 <p, Ag if and only if there is a Bohm transformation ®: A*(A;) — A®(Asz), which is
injective (on Inf-terms). That is, ® should be of the form ®(M) =g, RM where R is some
Bohm term (see Definition [L2[)). More explicitly, writing A; = [A;] and Ay = [As], the
map ® should be of the form ®(M) = AAy. M P where P fits in A; and FV(P) C {A,}.

Let @ be such a Bohm transformation, then it transforms

-,

AM1. N to AAs. N[Alizp].

To see if ® is injective, we only need to focus on the transformation mapping

—.

N to N[A;:=P].

A map A21(0) — A22(0) of this form is also called a Béhm transformation.
In order to construct these Bohm transformations it pays off to consider the more
general Béhm transformations from At ([A4]) — A'2([A3]) which map

—, —,

AA1. N to AAg. N[A;:=P][I':=Q],

where ]3, Cj fit in Ay, I'1, respectively, having free variables from I's, Ay. Note that the core
of these transformations is the substitution of P,(Q for A1,T'.
These considerations lead to the next set of definitions.

Definition 2.3.

(i) A pair 'A is called a context—type and has as intended meaning the set A"(A) of
terms M : A with FV(M) C {T'} (see Definition R.TI)).
(i) Define for such A the type

A £ C—...»C,—A = [I[A]
if D =c5 . cF and A = (A
(iii) We say I''A; reduces to 1245 and write 114; < 24, provided that
I — A < Ty — Ao,
(iv) We write 114 ~ 24, provided that 114; < 245 and 114, > 24,.
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(v) Let I, A be contexts. A substitution from I' to A is a map ¢ from {I'} to terms
such that g. 2 o(c) € A2(C) for all ¢ € {T'}.
(vi) Let T'1[A;] and T'ZA,] be given. A substitution o from T[A;] to I'2A,] is a substitution
from Fl, Al to Fg, AQ.
(vii) LetAQ be as in (@). For every context © = d?l,...,de‘ with {©} C {I'}, define
0o =0dy,---,0d,- (Then gg fits in ©, see Definition 2. )
(viii) Let o be as in (). Writing A; = [A1] & Ag = [Ag], define g: A1 (A;) — A2(Ay) by
0(AAL. N) £ XAy N [[1:=0p,| [A1:=0n,]
=g AMg. (AA1. N)[I'1:=0p, | O, -
Such a map ¢ is called a (BShm-)transformation from 114; to [24,.

Proposition 2.4. Let "'A; and 1245 be context-types. Then

There is a substitution o from T1A; to 24y such that

the transformation o: A (Ay) — AY2(Ay) is injective.
Proof. Just unfold the definitions. O

Hence, if 1141 reduces to 1245, then there is an injective Bohm transformation ® = ¢ from
APt (Ay) to AT2(A). We will focus on g instead of R as the following convention shows.
(The benefit of this becomes clear later, see Remark [£.4])

FlAl < F2A2 <

Convention 2.5. A reduction from "A4; to 1245 is a substitution o from 1A4; to 124,
such that the Bohm transformation g is injective.

Since A <, B <= ¢A < °B for all types A and B, it is natural to regard the types part
of the context—types by identifying A with A. As such, any notion defined for context—types
can be applied to types as well.

For notational brevity, we also identify I" and T0 for any context I'. In this way we also
regard the contexts as part of the context—types. As such, any notion defined for context—
types is applicable to contexts. In particular, we obtain a notion of reduction between
contexts; ' < A «— 0 < 2.

Note that with these identifications we have T') A ~ [A] ~ [T, A] for all T, A.

3. INEQUALITIES BETWEEN CANONICAL TYPES

In this section we will prove the inequalities listed in Statement (L2]) on page B This is
one of the bits left out of the proof of the Hierarchy Theorem in Subsection [[4l
We start with two of the simpler inequalities.

3.1. Ad Hyy1 £, Hy. As Hy, has exactly k inhabitants, there is no injection from A®(Hjy1)
to A°(Hy), and hence no fSn-reduction from Hy,1 to Hy (see Definition [2I([)).
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3.2. Ad Hy,41 €5 H,. We need to prove that [2] €5, [1,0]. Or in other words, we must
prove that [2] £ f1, ¥ (see Definition 23I[)). Let o be a substitution from [2] to f1,c’;
we will prove that the Béhm transformation ¢ is not injective. (Hence [2] £ f',c° by
Proposition 24]) To this end we simply calculate g(M) for M € A°([2]).
Recall that an inhabitant of [2] is of the following form (see [L3.3]).

(i,5) & XF% Faxf. - Faxd. 2

So we have
o((i.j)) = (i.j) or =p orAal. - opAal. z;. (3.1)

Further, note that since gp is an element of A/’ (2) it must be of the following form.

QF = )\gl‘ f(ko)gf(kl) .o .gf(k")c‘
We first exclude a pathological case. If n = 0, then 4( (4,7)) =3 fko)e. So p is constant

and hence not injective. So let us assume that n > 0.
To reduce Equation (3.1]), note the following.

(i) Let G2 X\y°. f0™z; we calculate or G. To start, GM =5 f™x for all terms M. So if
M L f(kl)Gf(k?Z) e Gf(k")c, then
orG = oF )\yo. f(m)x =g f(kO)GM =3 f(ko)f(m)x
(ii) Let G2 0. f(™y. We have
orX0. fMy =g pOGrt) .Gl
=5 f(ko+m+k1+~~~+m+kn)c =3 f(mn—l—zl ki)c.
So if we apply (i) and (ii) to Equation (3.1]), in this order, (i), (ii), (i), we obtain
or((i,7)) =g orAaf. - opAaf. fUTIHR) o
=5 fUi=Dkotn(i=iko+32; ki) ¢

Consequently, (3,1) and (n + 3,n 4 2) are both sent to fG+Dko+3iki)c by 5,

3.3. Indiscernibility. The remaining inequalities are of the form H,, ﬁh,gwﬁ Hpg. In this
subsection we develop some general theory to prove them. In fact, we prove a stronger
statement: there are terms M; # M in H,, (listed in Statement (L2)) on page 8] such that

RM; =g, RM> for all R: H, — Hg. (3.2)

That is, M; and M; are indiscernible for any term R: H, — Hpg. (This is called observa-
tional equivalence in the literature[BDS13].) As Proposition shows, instead of proving
that M; and M are indiscernible for every R: H, — Hpg, it suffices to prove that for certain
variants H é of Hg, the terms M; and M> are indiscernible for any Boéhm transformation
from H, to H 1/3 (This is called existential equivalence.) This general method of proving
that H, fhﬁn’h«r Hg has been extracted from the proof in [Dek8§| of [3,0] £, [1,1,0].
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Definition 3.1. Let 'A and A be given. For M, My € A'(A) define
My ~R° My <= VYR[R(\T. M;) =5, ROT. M) ],
My =R My < Vo[ oMy = oM, |,

where R ranges over the closed terms R: (I' = A) — [A] and p ranges over the substitutions
from T'A to A. (So ¢ is a Bohm transformation.)

Lemma 3.2. Let A and B = [A] be types and My, My € A*(A) with My # M.
(i) My ~8> My implies A £, B.
(ii) My ~%% My implies A £, B and A %+ B.

Proof. (). Suppose M; mgb M and A <g, B towards a contradiction. Since A <g, B,
there a reducing term R € A°(A — B) (see Definition [C2()). Since M; ~Q% My, we get
RMy =g, RM> (see Definition 3.I). But this implies that M; = M; (as R is a reducing
term), contradicting M, # Ms. Hence A £, B.

(@). Assume that M; ~K* M,. We will that prove A £+ B, and hence a fortiori
A £}, B (see Definition [[.2]). Suppose that A <+ B towards a contradiction. Pick a family
of substitutions o!,..., 0" from A to [A] such that

Vi[ /(M) =¢'(N)] = M=N  (M,N € A%(A)). (3.3)

Let i and M € A°(A) be given. Then we know that ¢'(M) = AA. Mgi and Mgt € A2(0)
where A = [[']. Hence M ~ Mgt is a Bohm transformation from A to A. Thus we
get Migh = Msgi by My ~%* My (see Definition B.I). Then §'(M;) = ¢'(Ms). So
Statement (3.3]) implies that M; = My, contradicting My # M. Hence A %+ B. O]

To formulate Proposition B.6l we need one more notion.

Observation 3.3. An inhabitant M of a context I, i.e. M € AY(0), is of the form
M = a® (A1 My)--- (ATy. My),

where a4 € {T'}, A =[[T4],...,[[+]] and M; is an inhabitant of T, T;.

Definition 3.4. Let T be a context and a® € {I'} with A = [[T'1],...,[T'%]]. Then for all i
the context I',T'; is said to be a direct derivative of I'. A context I' is a derivative of I if
there is a chain of direct derivatives from I' to A

Examples 3.5. (1) The only derivative of 2%, f! is 20, f! itself. In fact, a context I
has only one derivative (c.q. itself) iff rk[['] < 2.

(2) Any derivative of F? is of the form F? z9,... 20 for some n, and any derivative of
03 is of the form Q3, fll, ..., [} for some n.

(3) The context ®*, F2, 2% G? is a derivative of ®*. Any derivative of ®* is of the form
®* A/, where A’ is a context with {A’} = {F2,...,F2,29,...,20} for some n,m
withn #0 = m # 0.
Proposition 3.6. Given a type A, terms My, My € A°(A) and a context A,
VA/ [ Ml %]2)/( M2 ] —— Ml ng Mg.

Here A’ ranges over contexts such that m?, A’ is a derivative of m*, A.

2Equiva,lently7 the relation on contexts of being a derivative is the transitive—reflerive closure of the
relation on contexts of being a direct derivative.
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Proof. Assume M; ~K¥ M, for every A’. We will prove that
N[m:=M] = N[m:=Mo] for each A" and N € AmA’AI(O). (3.4)
This is sufficient. Indeed, suppose that R: A — [A] with R = Am*?. N. Then we have that
RM; =g N[m:=M;] = N[m:=M,] =5 RM>. Hence M; ~Q" My, as required.
To prove Statement (B.4]), we use induction (over the long normal form of N). Let
N e AmA’A/(O) be given for some A’ such that m4, A’ is a derivative of m“, A. We have

N = c¢(A\Ty. Ny)--- (\['y.. Ny),

where ¢ € {m#, A’} and N, € A™ATG(0) for all § (see Observation 3:3). To use induction
over N, we need to prove that every N; falls in the scope of Statement (8.4]), i.e. that
N; e AmA" (0) for some A” such that m4, A” is a derivative of m“, A. That is, we need
to have that m*?, A/, I'; is a derivative of mA, A. This is indeed the case because m“, A’, Iy
is a direct derivative of m4, A/, and m4, A’ itself is a derivative of m*?, A (see Definition B.4]).
We need to prove that N[m:=M;]| = N[m:=DMy], and by induction we may assume that
N;[m:=M;] = N;[m:=Ms] for all i. Note that either ¢ € {A’} or ¢ = m4.
In the former case, m # ¢, so
N[m:=M;] = c(AI'1. Ni[m:=Mj]) - - (A[y. Ny[m:=M;)),

hence N[m:=M;] = N[m:=M], as required.
In the latter case, we have ¢ = m4 (and thus A = [[T1],...,[T4]]), so
N[m:MJ] = Mj()\l“l Nl[m:M]]) s ()\Pk Nk[m:MJ]) = @Mj,

Tk

[
N

a[lrl] ] to A’ given by

where p is the substitution from A = |
Oa; £ 2T, Ni[m:=M;j],
but since My ~&5 My, we have 6M; = oMy and N[m:=M;] = N[m:=M,)]. O
Corollary 3.7. Let A and B = [A] be types. Let My, My € A®(A) with
My # My and VA [ My =55 M, |,

where A’ ranges over contexts such that m*, A’ is a derivative of m*,A. Then

A £y B; A £y, B; A £y B.
Proof. Combine Proposition and Lemma U]

34. Ad H, %+ Hy+1 and H, £p, Hyy1. We need to prove that [1,0] %,+ [0¥F1] and
[1,0] £g, [0FF]. We use Corollary B2l with M; =¢; (see L32) and A£af,.. . a0 .
Let ml%Y A’ be a derivative of ml%, A. We need to prove that ¢; ~R¥ cy. Note that
A =af,...,20 for some m >k + 1. Let g be a substitution from [f!,c°] to A’. In order
to show that M; ~%¥ My, we need to prove that pc; = fco.
The term oy € A2 (1) is either Ay®. y or A\y°. z; for some i.
(i) In the former case, gc; = g?)gc = 0c, SO 0C1 = QCo.
(ii) In the latter, oM =g x; for each M, so in particular oc; = x; = oca.
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3.5. Ad Hyo £p+ Hyyr and Hy,yo £, Hep1. Again we use Corollary B.7), but now with
My = fgfg and My = fggf (see [[3.4).

Let o be a substitution from [f!, g%, c’] to a context A’, such that mLLO A s a
derivative of m10, F2: we need to show that pM; = pMs. Note that A/ = F2. &0, ... ,dg
for some £. Let us first study oy € A2'(1); it is of the form

of = A0 Faxl. - Fal e,
for some 4, where either e = z, e = d, or e = x, for some k. So for any term M,
FA2Y). - FA2). M ife=2
ofM =p 0 0 .
FAxj. ---FAx;.e  otherwise.

In the latter case, oMy = o(fgfg) =p, 0ro(9fg) =5 FA2?. ---FAz). e and similarly
oMo =g, F)\x(l). ---F)\x?. e, so oMy = 0M>. So let us instead assume that

pr = A0 Faxl. - Fal. 2.
By similar reasoning for g, we are left with the case that, for some j,
0y = 220 FAay. "'F)\x?. z.
Abusing notation, one could set h £ “FAz0. ” and write o = hiz. Then

oMy = 0(fgfg) =5 hW'W RN o, = WD, =5 6(fggf) = 0Ms.

3.6. Ad H,y3 £y Hypo and Hyig %, Hyyo. We use Corollary B.7] with (see [L3.H)
M; 2 /12,
Let m30 A’ be a derivative of mi39, f1 g1 d° and p a substitution from [®3, %] to A,

One easily verifies that {A'} = {f,9,d,G%,...,G2,d%,... ,dg} for some v, .
We need to prove the following equality.

oMy = oM, (3.5)

To this end, we first calculate g M for M € A=(2) where 22 hi, ..., kL A’. The result is
recorded in Lemma [3.8 We start with two remarks.
First, note that o € A% (3) is of the form

00 = A2 woFAY. wy - FAZ2. whe, (3.6)
where w; are words on the alphabet
A= {f797 Gl)‘yo' g et 7GI/)\yO' }

and e is a variable of type 0, so either e = d, e = z; for some i € {1,...,n}, e = d; for some
ie{l,...,m}, or e =y for some y introduced by a G in one of the wy.
Secondly, we know that any M € A=(2) is of the form

M = Mh'. HihHsh - -- HihR
where H; € A5(1) and R € AZ(0).
Lemma 3.8. Let M = A\h'. HihHsh--- H/hR from AE(2) be given.
(i) If h does not occur in M (i.e. M = Ah'. R), then oo M =5 woR.
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(ii) If h occurs in M then
WH(TPH) ife= 2,
chM:ﬁ{ H( v !
WHe otherwise,
where H= H; and T2 Mh'. Hoh--- HohR and
wh 2 woHwq --- Hw, and PiH =S )\z?. w;Hwiyq1 -+ Hwy,z;.

Proof. (). Assume h does not occur in M. Then MK =g R for every K : 1. We apply this
to Equation ([B.8). Writing K 2 A\2¥. wy --- MAzY. wye, we have
oo M =5 woM( )\z?. wy - M)\zg. wpe) = woMK =g woR.
(). Assume h occurs in M. Note that by definition of H and T,

M =g \h'. Hh(Th). (3.8)
In particular, for any term K : 1 in which z; does not occur, we have
M(A2). K) =3 HK. (3.9)

Either e = z; for some i or not. If e # z;, then
oo M =3 woMA2Y. wy -+ M2, wye by Eq. (3.6

=g woHw; --- Hwpe by Eq. (39)
= Wwhe by def. of W,
If e = z;, then
oo M =3 woM)\z?. wy - M)\zg. Wy, 2 by Eq. (3.9)
=3 onwl---M)\z?. w; - Hwpz; by Eq. (3.9)
= woHw,---MPH by def. of PH
=5 woHw, --- HPH(TPH) by Eq. 33)
=5 woHwy - -~ Hw; - - - Hw, (T P{) by def. of PH
= wH(TPH) by def. of W1,
We have proven Statement (3.7]) and so we are done. []

We will use the special case of Lemma 3.8 where H = \z°. .

Corollary 3.9. Define W £ wow; - - - w,, and P;2 )\z?. WiWit1 - - - Wpzi. Then for any term
M € A2(2) of the form M =g Ah'. h(Th) with T € A=(2) we have

W(TPF;) ife=z,
M —
oo A {We otherwise.

Proof. Follows immediately from Lemma [3.8] L]
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We are now ready to prove Equation (3.5]).
Corollary 3.10. oM; = oM,.
Proof. For brevity, let K; 2 \z12o. x;. We have
M; = A3 DAfL. fLONfy. fo K f1f2)e (3.10)

We distinguish two cases: either e = z; or not.
Assume e = z; for some i. We apply Corollary B0 twice, first to M £ \f1. fo(Kjf1f2)o0c
and then to M1 £ AL [IW (K f1P;)oc. Indeed,

0M; =5 0o \fl. fioo)fs. fo (Kjfif2)o. by Equation (BI0)

= oao\fi. fioeM' by def. of M'
=5 0o\ 1. AW (K f1P) o, by Corollary 3.9]
=5 0o M" by def. of M"
=3 WW(K;P;P;)oc. by Corollary 3.9
=g WW Pio. by def. of Kj.

Assume e # z;. By Corollary applied to M £\ f{. fioaAfi. fafioe,

oM =5 0a(Afi- froefs. fafioe) = 0aM =5 We.
So in both cases the value of pM; does not depend on j. ]

3.7. Ad Hyy4 £y Huys and Hypy %y Hyy3. We use Corollary B.7] with (see [L3.6)

M= SN M=

That is, My 2 X000, bbebechee and Moy 2 A0, bbechbece. Let ml%001 A’ be a deriva-
tive of ml%0101 ®3 0 and let o be a substitution from [bl%%, °] to A’. Note that
(A = (&%, O . f,dl, A0
We need to prove that
oMy = oMs.
Consider g, € A2'([0,0]). It is of the form
op = Mz%y°. wy <I>)\g%. wy - @Agi. wye,

where e € {z,y,¢,dy,...,d,} and w; is a word over {f1,..., fr,91,---,Gi}-

We see that either e € {z,¢,dy,...,d,} or e =y.

In the former case, we have e # y. Then y is not used in g;, so we have oo M N =3 0, M N’
for all terms M, N, N’ : 0. In particular,

oMy = Qb(Qch(QchQC))(QchQc)
=3 ob(0p0.N)N' for any N, N’

=5 0b(0b0c0c)(0b(0b0c0c)0c)
= @Mg.
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Similarly, if e = y, then e # x, so o9pM N =3 0, M'N for all M, M', N, and
oM =3 ooM (0yM'0.) =g oMy for all M, M.

4. CALCULUS OF REDUCTIONS

Before we proceed, we establish some general calculation rules for reducibility. Although one
can find some trivial rules for <j such as [A1, A3] <j, [A2, A1], the notion of head reduction
is otherwise uncooperative. Therefore, we work with strong reductions (Subsection [4.1]) and
atomic reductions (Subsection [4.2) instead, yielding the more tractable relations <* and <%,
respectively. We prove later on that for types A and B we have

A<*B = A<*B = A<,B.

So to show that A <j, B it suffices to prove that either A <°* B or A <% B.
One of the calculation rules provided in this section concerns types A with [1,1] <% A.
It states that for such A and any contexts 'y, I's, we have

[Fl] §8 A and [Fg] SS A — [Fl,rg] §8 A.
We will call these types atomic types and study them in Subsection (4.3l

4.1. Strong reductions. For the sake of familiarity we begin with strong reductions be-
tween types. Let A1 and As be types. Recall that a reducing term from A; to As is a closed
term R of type A; — Ay which is injective on closed terms (see Definition [[L2]), that is, the
map ®: A°(A;) — A°(Az) given by ®(M) =g RM is injective.

If R is also injective on open terms, then R is called strong:

Definition 4.1. (i) Let A; and As be types. A strong reducing term from A; to Ay is
a closed term R: A; — As that is injective on open terms, that is, for every context =
the term R is injective on open terms with free variables from {Z}, that is, the term R
is injective considered as a map AZ(A;) — A=(Ay).
(ii) If there is a strong reducing term R: A; — Ap that is a Bohm term (see Defini-
tion [L2Uf)), we say that A; strongly head reduces to Aj, notation A; <j As.
(iii) For context-types (see Definition 23) I'14; strongly reduces to 24, if
Fl — A1 SZ Fg — Ag,
and we write '14; <% 124, If in addition 1245 <® 114, we write 1245 ~% T14;.
(iv) Let o be a substitution from I''A; to 245, and let = be a fresh context.

With 0% we denote the natural extension of p to a substitution from =114 to =I2B
given by o = c for all ¢¥ € {E}. Then §=: A1 (A;) — AST2(Ay).

Proposition 4.2. Let ''A; and 1245 be context-types. Then

There is a substitution o from T1A; to 24,
Na, <24y = such that 0%: AST1(A)) — AZ12(Ay) s in-
jective for every context Z.

Proof. Just unfold the definitions. L]
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Definition 4.3. Let 114, T24, be context-types. A strong reduction from I''4; to 24,
is a substitution o from "4, to [245 such that all 6= are injective. We write o: 1147 <* 24,.

Remark 4.4. It would not make sense to define a strong reduction to be the B6hm trans-
formation & = ¢ because one can not always reconstruct o—and hence the §=s—from g,
which acts only on closed terms.

The merit of strong reductions (over regular ones) is that it is easy to built complex
strong reductions from simpler ones. Moreover, almost all reductions encountered in this
text are strong.

Remarks 4.5. (i) Not every reduction is also a strong reduction: the substitution g
from the context f' to the empty context ¢ given by o = AzY. z is a reduction,
because A7 (0) is empty, and thus 6: A" (0) — A®(0) is injective (see Convention 25));
but o is not a strong reduction since 6= with =2 d maps both fd and ffd to \z°.
and is hence not injective (see Definition [4.3]).

(ii) Note that I < A implies Z,T" < Z, A for all contexts =. It is not evident whether the
reverse implication holds as well. If I' <% A then there is one substitution ¢ which
yields a family of similar reductions ¢=: Z,I' < E, A; on the other hand, if Z,T < =, A
for all =, we only know there is a family of (potentially quite dissimilar reductions)
o=: 2, <E A. As it turns out, the reverse implication does hold; we will not prove
this in this article.

(i) AsT <¢* A = [I'] <° [A] (by Definition FII({)) one could conjecture that we also
have that A <* B = [A] <® [B]. These however are quite different statements.
By the Hierarchy Theorem, the conjecture is false. Indeed: later on we will see that
[1,0] <® [2]. If one had [[1,0]] <® [[2]], then also [0,[1,0]] <p [0,[2]], quod non as
[0,[1,0]] € Hy,+4, while [0, [2]] € H,,3.

(iv) Nevertheless we do have A <* B = [[A]] <* [[B]] (see Lemma A.2T]).

(v) Similarly, we have T" ~* [['] for every context I' (by Definition EEII[)), but never
A ~*% [A] for a type A. Indeed, if A ~* [A], then [A] is inhabited iff A is inhabited,
while by Theorem [IL8] [A] is inhabited iff A is uninhabited.

Lemma 4.6. (0°1)%2 = 0=2%1 for every substitution o and contexts =y, Zs.

Proof. By Definition [Z3|[vl) we may assume that p is a substitution between contexts, say
from T to A. Recall that ¢! is a substitution from Z;,T to Z;,A with 5! = g, for
all c € {T'} and gd51 =d for all d € {1} (see Definition EII[v)). So both (051)=2 and o=2=1
are a substitution o from =9, =1, T to 23, =1, A such that o, = g, for all ¢ € {T'} and 04 = d
for all d € {Z1,Z5}. Hence (0=')=2 and ¢=2=! are the same. Il

Lemma 4.7. Given contexts ©, I' and A, we have
r<#*A = 06, <’ 06A.

Proof. Assume that I' <® A, that is, that there is some strong reduction o from I' to A
(see Proposition and Definition E3). To show that ©,T <* ©, A, we prove that o is
a strong reduction from ©,T to ©,A. Writing 0®= £ (9®)F = 0™ (see Lemma EL6)), we
need to prove that the map 6°=: ASOT(0) — A=®4(0) is injective for every context =
(see Proposition E2). Since g is a strong reduction, we know that 6% : AZ°T'(0) — AZ"2(0)
is injective for every Z'. Now, pick &' = Z, 0. ]



20 A.A. WESTERBAAN ET AL.

Before we get to the more serious reductions, we study the workings of a Bohm transfor-
mation ¢ (see Definition 23|(viil)) more closely in Proposition A0l

Definition 4.8. Let ¢ be a substitution from '[A] to '[Ay] (see Definition 23 d)).
For every type A = [Z], let o denote the natural extension of ¢ to a substitution from
M=, Aq] to T2, Ay] given by 64 (c) = ¢ for all ¢ € {Z}.

Remarks 4.9. Let = be a context and let o a substitution from "[A;] to M2[As].

(i) o= (Definition E8) and o (Definition ETI{Y))) are essentially the same substitution

since we have g = oF for all ¢ € {Z,T1,A;} (see Definition Z3|([i)).
(ii) Using Definition EZ-3|[viil) we see that for all contexts =, © and M € A= ([0, A4]),

FOM =g, MPy, Av=gp, o,
(iii) We have ¢° = o = ¢°.
Proposition 4.10. A substitution o from I to A satisfies the ‘recursion’:
Given contexts 2, © and a?* € {Z,T} with A= [Ay, ..., Ay], we have
0%(aMy... My) =py 05 (=" My) -+ (8% My),
~lO(Ne. M) = re. (¢%FM),
for all M; € AST(A;) and M € A®=T(0).
Proof. It is only a matter of expanding definitions. Indeed,
oc(aMy---M,)

=Bn (aMl---Mn)[FZZEF] by Rem. (Eﬂ),(ﬁﬁ])
=gy 0y My[T:=gp] -+ My[I:=gr]
:BTI QE (@EAlMl)"'(@EA7LMn) by Rem.(ﬂ)7

where a? € {E,T} with A = [Ay,...,A4,] and M; € AST(4;). Similarly,
=0l (Ne. M) =g, (\O. M)[[":=g] by Rem. EE9()
— 20, (M[li=g))
=gy AO. (§9=M) by Rem. ELOI(), ()
for every term M € A®=T(0). L]
We now give an important condition for a substitution to be a strong reduction.

Theorem 4.11. Let I' and A be contexts. Let o be a substitution from I' to A.
If 0 has the following property, then o is a strong reduction.

Given a,bP € {2,T} with A=[A,...,A,) and B=[By,...,B,]. Then
oG MM, =g, 05 Ni--- Ny, = a=b and M;=N; (4.1)
for all M; € A5 (A;) and N; € A5 (B;) and every context Z.

Proof. To prove that o is a strong reduction, we need to show that for each context =, the
Béhm transformation 9%: AZT(0) — AZ4(0) is injective (see Definition E3). So, consider
for each context-type SC (see Definition 23) and M € A= (C) the property P(M):

éE

(
7Y (M)=0"“(N) = M=N for all N € AZT(C).
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It suffices to prove that P(M) for all M, because then (taking C' = 0),
0=(M) = g=(N) — M=N for all M, N € A=T(0)
for each context Z, so each Bohm transformation ¢~ is injective.
To prove that P(M) for all M, we use induction on M. There are two cases.
@ M =a* M- M,; @@ M =x0.M'.
(I) We have M = a® M --- M,, where a®* € {2, T’} and where writing A = [Ay,..., A4,]
we have M; € AS!(4;) . Assume P(M;) in order to show that P(M).
Let N € AE’F(O) with =M = =N be given. We need to prove that M = N.
We have N = b® Ny --- N, for some b® € {E,T} with B = [By,...,B,] and N; €
A=T(B;). Then by Proposition 10, 9=M = =N implies
0z (851 My) -+ (05" My) =gy 0F (0%PN1)--- (65PN,
Now, 6=4iM; € AZA(A;) and 6=PiN; € ASA(B;), so by Statement ([@I)), a = b and
=4 M; = 6=BiN;. Then M; = N; by P(M;), so M = N. Hence P(M).
(IT) We have M = \O. M’ where © is some context and M’ € A®=T(0). Assume
that P(M’) in order to show that P(M).
Let N € ASI'([0]) with 6% [®IM = 65[®IN be given. We need to prove that M = N.
Write N = AO. N’ where N’ € A®=1(0). Then by Proposition EI0 we have
AO. (09FM') = XO. (§P=N).
Then §9=M’ = §9=N’, and thus M’ = N’ by P(M’). Hence M = N and so P(M).
So we see that P(M) for all M. Hence g is a strong reduction. L]

4.2. Atomic reductions.

Definition 4.12. (i) Let " and A be contexts. A substitution from I" to A is called an

atomic reduction if it satisfies condition (&) of Theorem EIT]
(i) A substitution ¢ from "[A;] to '9A,] is called an atomic reduction if o, considered

as substitution from I'1, Ay to T'a, Ay (see Definition 223|(v1)), is an atomic reduction.
In that case we write o: T1[A] <@ I7Ay].

(iii) We say that '[A;] atomically reduces to '2[A,] if there is an atomic reduction
from T[A1] to TZ[Ay]. In that case we write T1[A] < TZA,].

Remark 4.13. Given variables a and b, we have (cf. Statement (4.1]))

aMi--- M, =pn bNi--- Ny, — a=0b and M; = N;

for all terms M; and N;. In this respect the terms o-s of an atomic reduction ¢ behave

similar to atomic terms (=variables). Hence the name.

Remark 4.14. Given context-types ''A; and 'A, we have

AL <Ay = T1,A1 <T9, Ay
by Definition AI2I[{). Cf. Definition FII({).

Proposition 4.15. For context-types '1[A1] and T7As] we have
HA] <t A = DAY <° A,
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Proof. Assume that '[A;] <% TJA,]. That is, there is some atomic reduction o from T[A]
to T7Ay]. By Theorem EIIl o is also a strong reduction. Hence I[A;] <® T7[A,] by
Proposition and Definition [£.3] O

Below we have collected the calculation rules for < which we use later on. The reader
can chose to skip them at first and proceed to Remark 311
Lemma 4.16. Let I', A and © be contexts.
(i) If {T} C {A} then T <* A.
(i) If ' <* A then ©,T <* O, A.
Proof. ({l). Assume that {I'} C {A}. To prove I' <® A, we need to find an atomic reduction
from I" to A (see Definition L I2I()). Let o be the substitution from I' to A given by o, = ¢
for all ¢ € {T'} (see Def. Z3|)). To prove that g is an atomic reduction, we need to show
that given a context = and a?,b? € {2, T} with A= [Ay,...,A,] and B = [By,..., B,
oG MM, =, 05 N1---Nyy = a=b and M; =N,
for all M; € AS2(4;) and N; € AZA(B;). Since all ¢F are distinct variables, this follows
immediately from Remark LT3l
(). Assume that I' <* A, that is, that there is some atomic reduction p from I' to A (see
Definition EEI2|{i)). To prove that ©,T' <* ©, A, we show that ¢ is an atomic reduction
from ©,T to ©,A. For this we must prove that
(09)F My M, =g, (6°)5 Ni---N,, = a=band M;=N;  (42)

for every context Z' and appropriate a, b, M; and N; (see Definition [LI2({])). Since we
have that ()% = ¢%© (see Lemma E6), Statement (2 follows immediately from the
fact that  is an atomic reduction. (Indeed, pick = ==', 0). L]

Corollary 4.17. Given types Cy,...,Cy and a permutation ¢ of {1,...,k}, we have
[Cl, ey Ck] <e [Cgo(l)7 R ’C@(k)]

Proof. Write [C1,...,Cy] = [['Tand [Cyy, - - -, Cy)] = [p-T']. We must prove that I' <% ¢-T'
(see Remark F14)). This follows immediately from Lemma ELT6|f) since {T'} = {¢-T'}. [

Lemma 4.18. A substitution ¢ from I' to A is an atomic reduction provided that
(i) If a®, b8 € {T'} with A=[A,...,A,) and B=[By,...,By), then
O0aMy--- M, =g, 0bN1--*Npy, = a=b and M;=N;

for all M; € A5 (A;) and N; € AS2(B;) and every context Z.
(i) If a? € {T}, dP € {B} with A=[Ay,...,A,), D=[D;,...,Dy], then

0a My -+~ My, #g, dNy--- N
for all M; € A5 (4;) and N; € AZ2(Dy).
Proof. Let a,b € {I',Z} with A =[A4,...,A,] and B = [By,...,B)] and
05 My~ My =g, 05 Ni--- Ny,

for some M; € A2 (4;) and N; € A5?(B;) and some context Z. We need to prove a = b
and M; = N; (see Definition [LT2({)). We distinguish four cases.

(i) If a,b € {T'} then oT = g4, so a = b and M; = N; by Assumption ().

(ii) If a,b € {} then o5 = a, so a = b and M; = N; by Remark ET3l
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(iii) The situation that a € {I'} and b € {E} does not occur, since by Assumption (i) we
have o7 My --- M, #pg, bN1---Np, = 05 N1+ Npp,.
(iv) Similarly, the situation that a € {Z} and b € {I'} does not happen. O

Lemma 4.19. Given types Cy,...,Cy and a permutation ¢ of {1,...,k}, we have
[Cr, oo, Ckll < [[Cypys - -5 Comyll-

Proof. Writing [C1,...,Cy] = [['] and [Cyy, - - -, Cyry], we must prove that [[I']] <% [[¢-T7].
By Remark @14l we need to find an atomic reduction from FI'l to GI#T]. We show that the
substitution ¢ from F' to G given by
or = A[.G(p-T) (4.3)
is an atomic reduction. For this we use Lemma 418 Let = be a context.
@) Suppose that opMj --- M, =g, opNi--- Ny, for some M;, N; € AE’G(C’Z-). We need to
prove that M; = N;. Indeed, op My -+ - My, =g, 0r N1 -+ - N}, yields
GMop) Moy = GNoqy - Nory-
Hence M ;) = N;) and thus M; = N;.
@) Let d” € {E} with D = [Dy,...,D,] and opM; --- Mj =3y ngNl---Ng for some
M; € A=Y(C;) and N; € A5Y(D;). We need to reach a contradiction. Indeed, we get
GMyy -~ Mygy = bNy -+ Ni, so G = b, quod non. L]

Remark 4.20. Given a type C' = [C4,...,Cg], the order C1,...,Cy of the components is
largely immaterial. Witnesses of this principle include Corollary [4.17] Lemma[4.19 and Defi-
nition 2.3I[@). We will often use this principle implicitly. For instance, we will use Lemmal[4.7]
to argue that I' <* A — T",0 <® A, ©. (Of course, this is licit by Corollary [.17])

Lemma 4.21. Let A, B and C1,...,C} be types. Then
A<*B = [[ACy,....C] <Y [[B,C4,...,Ckll.
Proof. Assume that A <® B to find an atomic reduction from F[4:C1--Ckl and GIB:C1»-Cil

(see Remark A.14)). Pick a strong reduction o: A <* B with reducing term S: A — B.
Define a substitution g from F' to G by

or £ Xa’'T. G(Sa)T,
where I' & clcl, . ,cg’“. We prove that g is an atomic reduction by Lemma [Z.18]
@) Let E be a context and suppose that
oF M My --- My, =g, op N Ny--- Ny (4.4)

for some M,N € AEvG(A) and M;, N; € AEvG(C’i) in order to prove M; = N; and
M = N. Equation (@4) yields G(SM)M; --- M}, =g, G(SN)Ny--- Ny, so M; = N;
and SM =g, SN. Hence M = N too, since o is a strong reduction.

@) Let = be a context and d” € {Z} with D = [Dy, ..., D,]. Suppose that

op MMy -+ My, =g, dN;y--- Ny

for some M € ASY(A), M; € A5Y(C;) and N; € A% (D;) to reach a contradiction.
We get G(SM)My --- My, =g, dNy --- Ny. But then G = d, which is absurd. O
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Lemma 4.22. A <® [A] for every type A.

Proof. Write A = [I'] for some context I'. It suffices to find an atomic reduction o from I
to FI'l (see Remark EEI4). Let ¢ be the substitution from I' to FI'l given by

0dEAA. FAT.dA  for each d® from {I'}.
We prove that g is atomic using Lemma [£.18 Let = be some context.
@ Let dP,ef € {T'} with D = [Dy,...,D;] and E = [Ey, ..., E;]. Assume that
0aMy--- My, =g, 0e N1--- Ny (4.5)

for some M; € ASF(D;) and N; € ASF(E;), to prove d = e and M; = N;. Tt is easy
to see that Equation (LX) implies that

F)\P.dMl"'Mk = F)\F.eNl"'Ng.

Hence dMy--- M, = eMj --- My and thus d = e and M; = N;.
@) Given d” € {I'}, b® € {E} with D = [Dy,...,Dy|, B = [By,...,By], assume that
there are M; € A= (D;) and N; € AT (B;) such that

0aMy--- My =g, bNy--- Np, (4.6)
in order to obtain a contradiction. This is easy; Equation (6] implies
FAL.dMy--- Mg = bNy--- Ny,

and thus F' = b, qoud non. ]
Lemma 4.23. Given types A1,..., A, we have
[[A1,..., An]] < [[A4],...,[Ax], [0™]].
Proof. By Remark @14 it suffices to show that the substitution from the context FA1:--An]
to the context © £ Fl[Aﬂ, e ,F,[LA”},p[On] given by

oF = )\m{h i mﬁn p(Fimy) -+ (Famp)
is an atomic reduction. To prove this, we use Lemma [A.I8l
@) Let = be a context and suppose that
op My--- My, =p; or N1--- Ny
for some M;, N; € AZ®([Ay,..., A,]) in order to show M; = N;. We have
p (FlMl) te (FnMn) =pn P (FlNl) tee (FnNn)

So we get F;M; =g, F;N;. Thus M; = Nj.
() As easy as before. ]
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Lemma 4.24. Given a set of types A= {A;,..., A,} we have

[[Cy, ..., Ck]l] <% [TA1], ---, [An]]
for all Cq,...,Cy € A.

Proof. Writing Fécfl, . ,c,?[[k it suffices to prove that the substitution ¢ from the con-
text FI'T to @2 Fg?l yeen ,FA‘:”H given by the assignment
or & AmltT, Fcl)\cfl. Fck)\ckc’“. mI

is an atomic reduction (see Remark d.14)). For this we use Lemma I8
@) Let Z be a context and suppose that
orM =g, orN
for some M, N € A=®([I']) in order to prove M = N. We get

Fo,A§r. - Fo Ak, MT =g, Fo A& - Fo Ak, NT.
Hence MT =g, NI', so M = N.
@) Again trivial. []
Corollary 4.25. For every type A and k > 1, we have [[A*]] <@ [[A]].
Proof. Apply Lemma £24] with A2 {A} and Cy,...,CL 2 A,... A, ]

Lemma 4.26. Let A be a type. Then [[A]] < [3, A].

Proof. Let o be the substitution from FI4l to © £ ®3 44 given by
or 2 xmlA dXfL m(fa).
We prove that g is an atomic reduction (and thus [[A]] <% [A, 3]) using Lemma [£.I8]
@) Let = be a context and suppose that
orM =g, orN
for some M, N € A=®([A]) in order to prove M = N. We have
DNfL. M (fa) =g, PAf'. N(fa)
and thus M(fa) =g, N(fa). Since f does not occur in M and N we have
M(Ra) =a, N(Ra)
for every term R of type 1. If we pick R= \2°. a; for fresh af, we get
May =g, Nay.

So we see that M = N.
) Easy. L]
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For the proof of Lemma [4.28] we need the following fact concerning terms.

Lemma 4.27. Let E be a type and let ¢, d¥ be variables. Then we have
Mlz:=c] = N[z:=c]
Mz:=d] = N[z:=d]

for all terms M, N (which might contain ¢ and d).

= M=N

(4.7)

Proof. Write © =2 cF d¥. Given a context-type 5C and M € A=9(C) let P(M) be the
property that Statement (&) holds for M and any N € AZ®(C). With induction we prove

that P(M) holds for every M. This is sufficient.

(i) Suppose that M = a M --- M, for some ¢ € {Z,0} with A = [A4,..

M; € A5 (A;) with P(M;) and let N € AZ®(0) be such that
Mz:=c|] = N|z:=c] and Mz:=d] = N|z:=d].

., A, and

(4.8)

Write N = b Ny --- Ny, where b € {Z,0} with B = [By, ..., By,]. We need to prove

that M = N. Note that Statement (4.8]) implies that
alr:=c|] = blz:=c] and alr:=d] = blz:=d|.

(4.9)

By examining the different cases for a (viz., a = ¢, a = d, a = ¢ and a € {Z}) and

similarly for b, one easily sees that Statement (4.9) implies a = b.

Statement (4.8]) also implies M;[z:=c] = N;[x:=c| and M;[z:=d] =

Consequently, M; = N; as P(M;) by assumption. Hence M = N.

N;[z:=d].

(ii) Suppose that M = AA. M’ for some M’ € A®=9(0) with P(M'). Assume that

Mlz:=c] = N[z:=¢] and Mz:=d) = N[z:=d]

(4.10)

for some N € AZ®(]A]) in order to show that M = N. Writing N = AA. N’ with

N’ € A2%9(0), we see that Statement (ZI0) implies that
AA. M'[z:=c] = MA. N'[x:=c].
Hence M'[z:=c] = N'[z:=c|. Similarly, we get M'[z:=d] = N'[z:=d].
Then P(M') implies M’ = N', so that M = N.
Lemma 4.28. For any type A we have [[A]] <® [[0,0], A, A].

[

Proof. We need to find an atomic reduction from FI4l to © £ pl%0) ¢4 g4 (see Remark ET4).

Let o be the substitution from F' to © given by
or 2 Xm™ b (mc)(md).
We prove that o is an atomic reduction using Lemma [.T8]
@) Let = be a context and suppose that

orM =g, or N

for some M, N € A=®([A]) in order to prove M = N. By reduction we get

b(Mc)(Md) =g, b(Nc)(Nd).

Hence Mc =g, Nc, Md =g, Nd. Writing M = Azt M, N = z?. N, we get

N'[z:=c] = M'[z:=] and N'[x:=d] = M'[z:=d].
Hence M’ = N’ by Lemma .27, and thus M = N.
() Simple.
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Lemma 4.29. Let T be a context and FA € {T'} with A= [[T4],...,[[,]]. Then
0 <*T,T, — e<*T
for every context © and k € {1,...,n} such that
[Ty, AT is inhabited for all t12) € {O©}, i # k. (4.11)
Proof. Assume that © < I',T;, for some © and k. By Definition 12|, there is an atomic
reduction ¢ from © to I',I';. In order to prove that © <% I', we need to find an atomic
reduction from © to I'. Pick terms H! € A'»2T(0) for every i # k and /A € {©}; this is
possible by Statement (4IT]). Now, let o be the substitution from © to I' given by
N ¢ ¢ ta
SAAF M- My M2
ot ! " ‘ { AL;. H! otherwise

for every t/2] € {©}. We use Lemma I8 to prove that ¢ is an atomic reduction.
@ Let s°,tT € {©} with S =[S1,...,S;] and T = [T1,...,Ty]. Suppose
osUp-Uy =g, ot ViV,
for certain U; € AST(S;), V; € AST(T}) and some Z, to prove U; = V;. Then
F M{[A:=U]--- MS[A:=U] =5, FM{[A:=V]-- ML[A:=V].
Hence M#[A:=U] =4 M!A:=V]. For i = k, we get
ATy 05Uy~ Up =gy ATk 0t Vi Vi
Thus o Uy -+ Uy =g, 0t V1 -+ Vs. Hence s =t and U; = V;.
@) Trivial. O]
Lemma 4.30. Let I' be a context and A a derivative of T’ (see Definition[3.4). Then
O<*A = 0O<*T
for every context © such that
[, ] is inhabited for all =l € {O©}. (4.12)

Proof. Let I' and © with © <®T" be given and suppose Statement (£I2]) holds. We prove
that © <® A for every derivative A of I" with induction on A.

Let A be a derivative of the context I" and let A’ be a direct derivative of A. Assume
that © <% A. We need to prove that © <® A’

By Definition B4, A’ = A, Ay, for some F4 € {A} with A = [[A4],...,[An]]. So
we apply Lemma to prove © <% A’. We must show that [A;,Z, A] is inhabited for
every tI¥l € {©} and i # k.

Since A is a derivative of I', we have {I'} C {A}. Hence {I',Z} C {A;,E, A}. So to prove
that [A;, 2, A] is inhabited, it suffices to show [I', Z] is inhabited. This is Statement (ZI12]).

L]
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Remark 4.31. Surprisingly, it is not clear whether the relation <% is transitive.

4.3. Atomic types. We are interested in types A with the property
[Fl] §8 A and [Fg] SS A — [Fl,rg] §8 A, (413)

as this property makes it easier to find reductions to A. For instance, to prove [3,0,0] <® A,
it suffices to show that both [3] <* A and [0] <® A. In this subsection we give a criterion
(namely [1,1] <* A) for a type to satisfy Statement (4.13)).

Definition 4.32. A context-type 'A is atomic if [1,1] < 'A.
Remark 4.33. A context-type [A] is atomic iff I, A is atomic by Remark E.14l

In particular, a type [A] is atomic iff the context A is atomic.
Lemma 4.34. A context © is atomic iff there are terms X1, Xo € A®(1) with:

(i) For every context Z and for all M, N € A=®(0),

XiM =g, X;N = i=j and M = N.
(ii) For every contert = and all dP € {Z} with D = [Dy,. .., Dy,
XiM #gy dNy--- Ny,
where M € AZ®(0) and N; € AZ®(D;).

Proof. Simply expand Definition 2.3|[®) in Lemma [A.T8] []

Definition 4.35. Let © be a context. A pair of terms X1, Xs € A®(1) which satisfies
conditions () and (i) of Lemma [£.34] will be called an atomic pair.

Before we give some examples of atomic types, we prove (as promised) that an atomic type
satisfies Statement (4.I3]). The result is recorded in Corollary [£.38

Lemma 4.36. Let © = tT1 .. t:,f" be an atomic context. Then ©1,09 <% O, where ©; are
clones of ©, defined by ©; = tll - I

Tt an
Proof. Since © is atomic, [1,1] <® © (see Definition £.32]). So there is an atomic reduction g
from the context f{,fi to © (see Remark [I4). We need to find an atomic reduction o
from ©1,02 = ti1,...,t1n,t21,...,t2p to © = tq,...,1,. We do this by replacing ¢;; by
o0f,t;. More formally, write T; = [I';] and define the substitution o from 01,0, to © by
o, = Al opt; T for all j € {1,...,n}, i € {1,2}.
We use Lemma [£.18] to prove that o is an atomic reduction. Let = be a context.
@) Let t;;,trs € {O1, 02} be given. Suppose that
M =g, o4, N
for some tuples M and N with free variables from = E,© which fit in T'; and Ty, respec-

tively (see Definition ZZI))). We need to prove that M = N, i = k and j=4 If we
expand the definition of o, we get

of; t'M =pn Of, tg]\_f.

O't”

Since p is an atomic reduction, this implies fi = fr (soi=k) and tjM = tg]\7 . The
latter implies t; = t; (so j = £) and M =N.
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@) Let t;; € {©1,02} and bP € {©} with B = [By, ..., By,]. Assume
o1, M =g, bN (4.14)
for some tuples M and N with free variables from =,© which fit on I'; and A, re-

spectively. Equation (£I4]) implies bN =8y Oflj M. On the other hand we have
bN #6n Of; (tJM ) as o is an atomic reduction. A contradiction. ]

Proposition 4.37. Let ', A and © be contexts and suppose © is atomic. Then
r<*e and A<, = T,A<L°0O. (4.15)

Proof. Assume that I' <* © and A <* ©; we must prove that I', A <° ©. Let ©1 and O,
be clones of ©. By Lemma [£.36] and Proposition 4.15] we see that we have 01,0, <® O.
Further, I' <* © & A <° © implies I' <* 01 & A < ©5. So we see that

[NA < 01,A <P 01,0, <° O
by Lemma [£.7] and transitivity of <*. Il
Corollary 4.38. An atomic type A satisfies Statement (AI13]).

Proof. Let A = [O] be an atomic type. Then © is an atomic context (see Remark [£.33]).
Hence © satisfies Statement (£15]) by Proposition 437l But then the type A = [O] satisfies
Statement (£.I3]) because of Definition [Z.TI(LI). ]

Atomic types are quite common; in fact, we will spend the remainder of this section showing
that a type A is atomic if it is from H, 1o (see Corollary A1), H, 3 (Corollary [£48]) or

H,+4 (Corollary A.45]).
Lemma 4.39. Let T', A be contexts with {I'} C {A}. We have

(i) T is atomic = A is atomic,
(i) © <*T = © <* A for every context O.

Proof. By expanding Definition and using Remark [£.14] one easily sees that part (i) is
a special case of (). Let us prove part ().

Let © be a context with ©® <% I". We need to prove © <% I'. That is, we need to find an
atomic reduction o from © to A. We know there is a substitution ¢ from © to I' which is
an atomic reduction. Since {I'} C {A}, the map ¢ can be considered a substitution from ©
to A (see Definition 2.3|[®)). We prove that g is an atomic reduction from © to A.

Let a?,bP € {E,0} with A = [Ay,...,A,] and B = [By,..., B,,] be given where Z is
some context. We need to show that

QaMl"'Mn =pn Qle---Nm - a=5b and MZ' :Ni (4.16)

for all M; € AS2(A;) and N; € AS2(B;).

Let us shorten “Statement (ZI6]) holds for M; € AZ0(A;) and N; € AZ0(B;)” to “(@I8)
holds for Zy”. We need to prove that (dI6]) holds for =, A.

Recall that {T'} € {A}. Pick a context I'° such that {I'°,T'} = {A}. Then {E,A} =
{E,T¢,T}. Thus AS2(C) = AZT5T(C) for all types C. Hence to prove (ZI6) holds for =, A,
it suffices to show that (4I6]) holds for =, T, T".

Thus, writing ' = Z,T¢, we need to prove that (ZI6) holds for Z’,T'. Since we have
a,b € {=,0} C {Z',0}, this follows immediately from the fact that g is an atomic reduction
from © to T []
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Lemma 4.40. Let Ay and Az be types. Then [[A1],[A2]] is atomic.

Proof. By Remark [£.33] we must to show that © £ [Aﬂ [Az]
apply Lemma L34l Writing A; = [I;], define

Xi = )\ZO. Fz)\rz zZ.
We prove that X1, X5 is an atomic pair (see Definition [.35]), i.e., that the terms X, Xy
satisfy conditions (il) and (i) of Lemma .34l Let = be a context.
@ Assume X;M =g, X;N for some M, N € A=®(0) in order to show that M = N and
1 = j. By reduction, we get an equality between Infs,
F;AI';. M = FjAT';. N.
Hence M = N and F; = Fj. The latter implies i = j as F} # F5.
(@ Trivial. Indeed, if X;M =g, dN for appropriate M, d and N then
F,\I;. M = dN,
so F; = d, which is absurd. ]
Corollary 4.41. If A € H,42 then A is atomic.

Proof. Writing A = [A] we need to prove that A is atomic (see Remark £33). We claim
there is a context I' = flr f2 such that {T'} C {A}. Then since [[B1], [B2]] (and thus I)
is atomic by Lemma 40, we know that A (and thus A) is atomic by Lemma [Z30I().

To ground the claim, it suffices to find two components of A of the form [B]. Since
A € Hy, 42, we know that A is small and has at least two components Cy,Cy with rkC; > 1
(see Theorem [[3]). Since rk C; > 1, the type C; must have at least one component. Also C;
has at most one component since C; is not fat as A is small (see Definition [LIKw)). So we
see that C; = [B;] for some type B;. []

is atomic. To this end, we

To prove that all types A € H,, 44 are atomic, we need two lemmas.
Lemma 4.42. If A is a large type (see Definition [I1({d)), then [[0,0]] <* A.

Proof. Write A = [I']. It suffices to prove that bl%% < T (see Remark F.14)).

One can verify that since A is large there is derivative A of I' and p” € {A} such that
P is fat (see Definition [3:4]). Further, note that [I",0, 0] is inhabited. Hence to prove b <* T,
it suffices to show that b <* A by Lemma [£.30l

Since P is fat P = [[ REE [Fk]] with k& > 1 (see Definition [[LTIl)). Define

p 2 Azly0 p (A1 ) (Aa. ) --- (A% ).
Then g, € A2([0,0]) ylelds a substitution p from b to A. We prove that p is an atomic
reduction (and thus b <* A) using Lemma [£.18]
@ Given a context = and M; € AZ(0) and N; € A52(0) with
op M1 My =g, 0p N1N2
we need to prove that M; = N;. By reduction we get
p()\rl. Ml) ()\Fg. Mg) s ()\Pk. Mg) = p()\rl. Nl) ()\Fg. Ng) cee ()\Pk. Ng).

Hence M; = N7 and My = Ns.
(@) Simple as before. O
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Lemma 4.43. Let A be a type such that [[0,0]] <* A. Then A is atomic.

Proof. Write A = [©]. We need to prove that © is atomic (see Remark [4.33]). We will define
a pair X1, Xo € A®(1) and show it is atomic (see Definition E37)).
Since [[0,0]] < A, there is an atomic reduction o from bl%% to ©. Define

s 2 220 gp 2.
Let = be a context. Given M, N € A%®(0), we have
sM =g, sN = M =N. (4.17)

Moreover, we claim that sM #g, M for all M € A=9(0).

To prove the claim, write s = A\z%. S for some S € A®(0). Note that either z occurs
in S or not, and if  does not occur in S then sM =g, sN for all N, M, which contradicts
Statement (4.17). Hence = occurs in S.

Now, let M € AZ®(0) be given; we prove sM #pn M. Recall that we consider all terms
to be in long normal form. In particular, S is in Inf. Note that if we replace x in S with M,
the resulting term is immediately in long normal form—mno reduction is needed. Hence if
S # x, we see that M is a strict subterm of S[z:=M] = M, which is absurd. So S = = and
thus s = \z0. .

This is also absurd. Indeed, we get ¢, dd =g sd =g, d for any fresh variable d°, which
contradicts that ¢ is an atomic reduction.

Now that we know sM #g, M for all M € A=©(0), cunningly define

X1 2220 b X5 2 22% ba(sz).
Then X; € A®(1). We prove X1, X, satisfies ({l) and (f) of Lemma E341
@ Given M,N € A=®(0), assume X;M =g, X;N to show i = j & M = N. We
distinguish three cases.
(i) XiM =g, X;N. Then b MM =g, bNN,so M = N.
(ii) XsM =g, XoN. Then b M(sM) =3, bN(sN), so M = N.
(ili) XyM =g, XoN. Then bMM =g, bN(sN). So we have both M = N and

M =g, sN. Consequently, N =g, sN, which is absurd.
@) As simple as before. O

Corollary 4.44. Fach large type A is atomic. L]
Proof. Combine Lemma [£.43] and Lemma

Corollary 4.45. If A € H,,44 then A is atomic.

Proof. Since A is large by definition of H,,14, A is atomic by Corollary [£.441 []
Lemma 4.46. A context I' is atomic if one of its derivatives A is atomic.

Proof. Follows from Lemma as the type [T, 0] is inhabited. ]
Lemma 4.47. Let A be a small type with tk A > 4. Then A is atomic.

Proof. There is a component B of A such that rk B > 3 (see Definition [LI|([)). In other
words, writing A = [['], there is an b® € {I'} such that rk B > 3. Similarly, if we write
B = [©] for some © (recall that A is small), then there must be a ¢ € {0} with rk C' > 1.
So C' = [D] for some D.
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Note that I',© is a direct derivative of I', so to prove A is atomic, it suffices to show
that T',© is atomic (by Lemma E46). To this end, consider the context =2 b5 . We
have {Z} C {T",©} and [E] = [[©], [D]], so E is atomic by Lemma [£.40] and hence I', © is

atomic by Lemma [L.39(f). (]
Corollary 4.48. If A € H, 43 then A is atomic.
Proof. Since A is small and rk A > 4 by definition, A is atomic by Lemma [£47] L]

5. ORDER TYPE OF <y,

The order type of the reducibility relation <j (see Definition [L2()) is w + 5. At least,
this is what is shown in Subsection [[.4] using statements promised to be proven later on. In
this section, we deliver on these promises; they are H, <; H, (Subsection 5.1l), H, <; H,
(Subsection 5.2)), and o < f = H, <;, Hg (Subsection [5.3).

We refer the reader to Theorem [L3] for the definition of H, and H,,.

5.1. H, <j H,. Let us begin with a harvest. We use the theory of strong reductions and
atomic types to easily prove that H, <® A for all A € H, and o € w + 5. Loosely stated,
we do this by recognizing the tree of H, as part of the tree of A (see Subsection [[.2]).

Recall that an atomic reduction is also a strong reduction, so for example H, <* A
implies H, <® A (see Proposition [£1I5]). We use this fact without further mention.

Lemma 5.1. Hy <* A for all A € Hj.

Proof. We need to prove that 0 <® A whenever A is uninhabited. We will prove 0 <® A for
all types A. Writing A = [I'], we need to prove [¢] <* [[']. So it suffices to show that ¢ <* T’

(see Definition LI|([)). This follows immediately from Lemma ETGI(). Il
Lemma 5.2. H, <° A for all A € H,, where n > 1.
Proof. Trivial, since H,, = {H,,} for each n € N. Il

Lemma 5.3. H, <® A for each A € H,,.

Proof. We need to prove that [1,0] <® A. Recall that since A € H,,, we have A is small,
rk A = 2 and A has exactly one component of rank 1. So precisely one of the components
of A is 1; the remaining components are 0. By a permutation of the components we get
A ~# [1,0F] for some k (see Corollary BIT). Hence it suffices to prove that [1,0] <* [1,0%].
This follows from Lemma ELT6I(). (]

Lemma 5.4. H 1 <° A for every A € Hy4.

Proof. We need to prove that [2] <* A. Note that A is small, rk A = 3 and A has exactly
one component of rank > 1. So one of the components of A is of the form [0¢] where £ > 1
and the remaining components are 0. Hence A ~* [[0°F1],0%] by Corollary EEIT So it
suffices to prove that [2] <* [[0¢],0¥].

Since [0] <* [0°] by Lemma ETI6I{), we have

2] = [[ol] < [[0°T) <° [[0°],0"]
by Lemma [£.2T] and Lemma [ZT6{), respectively. ]
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Lemma 5.5. H, 9 <* A for every A € Hy42.

Proof. Note that A is small and has at least two components of rank > 1, so after a
permutation of As components we get A ~* B2 [[A1], [A2],T] for some contexts Ay, Ag
and I'. We need to show that [1,1,0] <® B. Since B is atomic by Corollary [4.41] it suffices
to prove [0] <®* B and [1] <® B (see Proposition [£.37)).

We have [0] <®* A ~* B since A is inhabited. Concerning [1] <® B, note that 0 <® [A]
by Lemma [Z.I6|[) and so [1] = [[0]] <° [[A1]] <® B by Lemma [£.2T] and Lemma [Z.T6([H). [J

Lemma 5.6. H, 3 <° A for every A € Hy,43.

Proof. We need to prove that [3,0] <®* A. By Proposition [£.37] it suffices to show that
[3] <® A and [0] <® A since A is atomic by Corollary [£.48]

As A is inhabited, [0] <® A is trivial.

Concerning [3] <® A. Since A is small and rk A > 4, there is a component [A;] of A
with tk Ay > 2. Then [[A1]] <°* A by Lemma [LT6|([H), so it suffices to show [[[1]]] = [3] <*
[[A1]]. By Lemma [£.21]it is enough to prove that [1] < A;.

By similar reasoning for Ay, we are left with the problem to prove 0 <* Ay where [A5]
is some component of A;. Lemma [LT6I{) gives the solution. L]

Lemma 5.7. H,14 <° A for every A € Hy, 4.

Proof. We need to prove that [[0,0],0] <® A. Since A is atomic by Corollary it suffices
to show by Proposition 437 that [0] <® A and [[0,0]] <® A. The former inequality is trivial
since A is inhabited. The latter is Lemma (]

5.2. H, <j H,. In this subsection we prove that A <;, H, for all « € w + 5 and A € H,,.
(In fact, we show that A <% H,, for all o # 0.) This is more difficult than proving H, <® A
(which involved only ‘chopping’), as it requires the ‘encoding’ of the inhabitants of A using
the simpler inhabitants of H,,.

52.1. AdO,...,w and w+ 1.
Lemma 5.8. A <; Hy for all A € Hy.

Proof. We need to prove that A <, 0. Since A is uninhabited (by definition of Hy), all the
components of A are inhabited by Theorem [[.8 Write A = [I'] and pick for each b” € {T'}
an inhabitant N, of B. Then g, = Ny, yields a substitution o from A to 0. For a rather dull
reason the map g: A°(A) — A®(0) is injective: A®(A) is empty. Hence A <;, 0. Il

Lemma 5.9. A <® Hy for all A € Hy where k > 0.
Proof. Trivial, since Hy, = {Hy}. L]
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Lemma 5.10. A <% H, for all A € H,,,.

Proof. Again we have A ~* [1,0%] for some k > 0 (see the proof of Lemma[5.3). So we need
to prove that [1,0%] <* [1,0]. By Definition T, it suffices to show that

1 40 0 1 0
LD < f O

The terms
op 2 f), 0d,y, 2 fWe.
constitute a substitution from f!,dY,... ,dg to f1, Y. It suffices to prove that p is an atomic
reduction (see Proposition EI5). Let = be a context. Note that for all M, N € AZ/<(0),
0d; =pn 0d, — i =7,
oM =g, oyN = M =N,
oM #gy 0d;-
Hence condition (fl) of Lemma [£T8] is met. Since the other condition can be easily verified,
Lemma [LI8 implies that o is an atomic reduction. ]

Before we proceed to “ad w4+ 1”7, we need a lemma.

Lemma 5.11. [[0¥]] <* [[0]] = [2] for all k > 0.

Proof. Apply Corollary with A£0. ]
Lemma 5.12. Given A € Hy,11, we have A <® H, 1.

Proof. Let A € H,,11 be given. We need to prove that A <° [2]. One can easily verify that
A ~* [[0*],0] for some k > 1 and I > 0. By Lemma [E.IT] we have [[0*],0'] <® [2,0*]. So
it suffices to show that [2,0%] <* [2]. To this end note that the terms

or 2L AL Faad. - P, fz;
0c, 2F2Y. - Fal. ay.
give a strong reduction from [F?,cY,...,cY] to [2] (cf. Lemma E.I0). (]

5.2.2. Adw+2. We need to prove that A < [1,1,0] for all A € H,;2. With atomicity, we
easily reduce the problem to showing that [2] <° [1,1,0] (see Lemma [5.13]). Interestingly,
we have [2] £ [1,1,0] (see Lemmal5.14). Consequently, the proof of [2] <® [1, 1, 0] has quite
a unique flavor (see Proposition [5.15]).

Lemma 5.13. Suppose that [2] <® [1,1,0]. Then A <°[1,1,0] for all A € H,, 2.
Proof. Let A € H,, 12 be given. Then A is small and rk A < 3, so
A~ [0%],.... [0"],1% 0™)

for some k;, n, m, ¢ by Corollary [£.17. We need to prove that A <®[1,1,0]. By Lemma [5.1T],
we have [[0F]] <* [2], and so A <* [2",1¢,0™] by Lemma E7l Hence it suffices to show
that [27,1¢,0™] <° [1,1,0] by transitivity. Since [1,1,0] is atomic by Lemma 40, we apply
Proposition 37l It remains to be shown that

2< L0 [ < [LL0 0] < [1L1,0]
The first statement is valid by assumption, the latter two by Lemma ETG|(). L]
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Lemma 5.14. We have [2] £%[1,1,0].

Proof. Let g be a substitution from F2 to © £ f1, ¢!, °. In order to show that [2] £¢ [1,1,0],
we prove that o is not atomic by finding terms M, N € A®(1) with opM =g, orN while
M # N (see Definition [£12]). Write

or = Mt wg hwy - - hwye
where w; € A®(1) and define M £ \2°. 2 and N £ \z0. wy - - - wpe. Then
orM =g wo Mwy --- Mwyc

=g Wo Wi - - WyC

=5 wo NK for all K € A®(0)

=g wo N(wy --- Nwnc) =g orN,
while N # M. L]
Proposition 5.15. We have [2] <° [1,1,0].
Proof. Tt suffices to prove that F2 <* f! ¢! ¥ (see Definition EI|()). For this we need to
find a substitution o from F? to © £ f1, ¢', ¥ such that the map

0= AST(0) — AZ9(0)
is injective for every context = (see Proposition [£.2]). The assignment
or 2 \hY. fhghe

gives a substitution o from F? to ©. We prove that o= is injective for given context Z.
Let us examine ¢=, informally. Occurrences of FAz". M are recursively replaced
by fM[z:=gM|[z:=c]]. E.g., consider the inhabitant M = FAzC. F\y°. pzy of pl00, F2:

f
f
|
p
F)\xo g / \
FxY f ! |
' | p
Fy. D | / N\
I ~ / N\ ~ g C
p T g / N\ !
/ N\ \ C g
x y D \
/ N\
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We are interested in the following “subterms” of the image:

!/ |

N: | Nl:}; N2:
/
/ N\ J N\

Replacing the maximal subterms of the form gK with distinct z; yields N. This is almost
the original term: the f are to be replaced by F'A and the z; need to be appropriately bound
to them.

If we repeat the process on the aforementioned maximal subterms gK (which we re-
placed with z; to get N), but instead simply remove the maximal subterms of K of the
form gK’, we get the terms N;.

An N; is almost a subterm of N: lay N; on top of N with ¢ and z; aligned. There will
always be a f under the top of N;. This is the f that has to be bound to z;.

Thus the orignal term can be read back from the image. A rigorous proof of the correct-
ness of this method, requires nothing but tedious bookkeeping and is therefore omitted. []

5.2.3. Ad w+ 3. We need to show that A <® [3,0] for all A € H,3. To this end, we prove
that A <® [3,0] for every small type A (since every A € H,, 3 is small).

Lemma 5.16. Let Bq,..., B, be types. We have

[[B1,...,Bn]] <° [Bi,...,Bm, 3"
Proof. Combine Lemma [£.26] Lemma and Corollary E.17] L]
Lemma 5.17. Let A be a small type. Then A <*[3,0].

Proof. One can easily verify that every component C of A is either 0 or of the form C = [B]
where B is small. So, if we repeatedly apply Lemma (with the help of Lemma [L.7] and
Corollary [4.17]) we eventually see that, for some k, ¢ and m,

A <5 3k 1 0m.
We illustrate this with an example.
0,0,1,2]] <®10,0,1,2,3%] = [0,0,1,[0],3%]
<%10,0,1,0,3,3%] ~° [3% 1,07

So it remains to be shown that [3%,1¢,0™] <* [3,0]. Since [3,0] is atomic by Lemma 47|
it suffices (see Proposition [4.37]) to prove that
0] <*[3,0;  [3] <*[3,0];  [1] <*[3,0].

The first two statements follow immediately from Lemma T6|[). Concerning the last one,
we have [1] <® [[1]] = [3] <*® [3,0] by Lemma [4.22] ]
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5.2.4. Ad w+ 4. We need to show that A < [[0,0],0] for all A € H,4+4. We prove more.
Lemma 5.18. Let A be a type. Then A <*°1[0,0],0].

Proof. Note that [[0, 0], 0] is atomic by Lemma [£.43] since we have
[[0,0]] <* [0,0],0]. (5.1)
Hence to prove that A <*® [[0,0],0], it suffices to show that [C] <*® [[0,0],0] for every
component C of A (see Proposition .37]).
Let C = [C4,...,C)] be a component of A. We prove that [C] <® [[0,0],0]. Using
induction, we may assume that we already have C; <* [[0, 0], 0] for all i.
Since [[C1, ..., Ck]] <* [[C1],- -, [Ck], [0¥]] by Lemma E23] it suffices to show that
[[C], - [Ci], [0M]] < [[0,0],0]-
Since [[0,0],0] is atomic, this reduces to [[C;]] <* [[0,0],0] and [[0¥]] <* [[0,0],0]. For the
latter inequality, note that the substitution from p[ok] to bl%0] given by
Op L \p1- Xy, by bxy - brpTy,
is an atomic reduction and hence [[0¥]] <* [[0,0]] <* [[0,0],0]. Concerning the first inequal-
ity, write C; = [D1, ..., Dy| and note that we have

[Cil] = [[D1, -, D]

SS [[[D17]]7[[D2]]7"'7[[DZ]]] by Lemma
§s [Dl,Dl,[0,0], [[DQ]],...,[[D[]]] by Lemma

<*[Dy,...,Dy, Dy,...,Dy, [0,0%] by Corollary [4.17]
As we have C; = [Dy,..., D] <®[[0,0],0] and [[0,0]] <* [[0,0],0], we get
[D1,...,Dy, Dy,....Dy, [0,01°] <* [[0,0],0]
by Proposition 37l Hence [[C;]] <® [[0,0],0]. So we are done. O]

53. a < = H, <j Hg. We prove that o <  implies H, <; Hg by showing that

0% < (071 <3 [1,0] <3, [2) <5 [1,1,0] < [3,0] <j, [0,0],0).
(@) (i) (i@5)  (iv) (v) (vi)

(i) Follows directly from Lemma FLTGI).
(ii) Similar to Lemma [5.10 but easier.
(iii) On the one hand, [1,0] <f [2,0] as f! <® F? via oy = A2%. FAy®. 2. On the other

hand, [2,0] <7 [2] by Lemma [5.12]
(iv) This is Proposition
(v) Follows from Lemma [5.17 since [1,1, 0] is small.
(vi) A consequence of Lemma [5.18]
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6. ORDER TYPE OF <g, AND <

We are in the home stretch now. We have proven that the order type of the reduction
relation < is as depicted in the diagram on page dl The structure of this proof was given
in Subsection [[.4] and we have spent the previous sections filling in all the difficult details.
In this section we provide the final and easy bits of the proof that the order types of the
reduction relations <g, and <+ (see Definition [[.2) are depicted correctly as well.

6.1. [2] <p+ [1,0] and [0¥+1] <+ [0F]. Let us begin with [0¥+1] <+ [0%] for given k > 2.
It suffices to prove that

[Ok-i-l] <pr [02]7
because one can easily verify that [0%] <,+ [0"].

Lemma 6.1. For every k > 2 we have [0F] <,+ [0?].

Proof. We need to find a finite family of Béhm terms from [0*] to [0%] which is jointly
injective (see Definition [L2). Recall that (see [L3.T])

AS([0%) = {UF,..., UF}.
Given 4,j € {1,...,k} with i # j, there is a Bohm term M;; € A®([0*] — [0]) which
separates the terms UF and U ]k in the sense that

MjUF =5 U7 and  M;Uf =5 Uj.

Indeed, the Bohm term M;; = )\m[ok}azlxg. m Py --- P, does the job, where

Fe = { Z :)ftﬁervjise.
Hence the family of terms {M;;: i # j} is jointly injective. ]
Proposition 6.2. [2] <,+ [1,0].

Proof. We have shown there is no injective transformation from the type [2] to [1,0] (see
Subsection [3.2]). However, we will prove that the following Bohm transformations ¢ and o
from [2] to type [1,0] are jointly injective (and thus [2] <;+ [1,0]).

or £NhY. fhe op 2 AR fhfhe

It suffices to show that i and j can be recovered from & ( (i, j) ) and g( (4, j) ). This is indeed
the case as one we have the following equalities for (i, j) € A®([2]).

o((i,j) ) = ¢ o((i,4)) = cai—j+1.
We verify the latter equality and leave the other to the reader.

6((i,5)) =gy op 2. - opAal. z;
=5 UF)\Q;?_ ...UF)\x?. f(z'—j)xj
=3 opAzy. ---ap)\;pg_l, fFU=D) g gli=ile
= opal. opAadd . fETAD)e

—p fUTD R =y

We have proven that [2] <+ [1,0]. (]
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6.2. [2] <g, [1,0]. For the proof of [2] <g, [1,0] we need some preparations.

Lemma 6.3. Addition and multiplication on the Church numerals is definable in the fol-
lowing sense. There are closed terms My, My : [1,0] — [1,0] — [1,0] with

Micpmcn =gy Cmyn  and  Mycymcn =gy Cmn (n,m € N).
Proof. 1t is not hard to see that the terms
My = Xa®HplO1 10 ar(bfe)
My = Xa®HUpOU L0 (b f)e.
do the job. ]

Corollary 6.4. The Church numerals contain a pairing in the following sense. There is a
term My, : [1,0] — [1,0] — [1,0] such that

/ !/
Mycnem =gy Mpcpcpy = n=n andm=m.

Proof. The map P: (n,m) — %(n+ m)(n + m+ 1) +m, is a well known bijection be-
tween N? and N, called the Cantor pairing. Using Lemma [6.3] we obtain a term M, such
that Mp(cn,cm) =gy cp(n,m) for all n,m. ]

Proposition 6.5. [2] <, [1,0].
Proof. We need to find an R € A%([2] — [1,0]) such that
RM =g, RN — M=N (M, N € A°([2)).
Let o and ¢ be the substitutions from Proposition which form a multi-head reduction
from [2] to [1,0] and define R 2 Aml2. M, (mop)(mor).
Let M, N € A*([2]) with RM =g, RN be given, to prove M = N. Then
M, (Mor)(Mor) =gy My (Nor)(Nor).

So Mop =g, Nor & Mop =, Nor by Corollary But then M = N as ¢ and & are
jointly injective (see Proposition [6.2]). ]

7. CONCLUSION

We have proven Statman’s Hierarchy Theorem (see page d). With it we can mechanically
determine for all types A and B in T° whether A <pn B, whether A <; B, and whether
A <,+ B only by inspecting the syntactic form of A and B. Let us make some final remarks.

7.1. Contributions. The calculus of reductions (see Section []) used to prove the existence
of reductions is new (including the notions of strong reduction and atomic type). The
method to prove the absense of reductions from Subsection B3] is a generalisation of the
work of Dekkers in [Dek88].

The Hierarchy Theorem as presented here is slightly stronger than the one proven by
Statman in that the original version only completely determined the relations <g, and <+,
but not <, (see Theorem 3.4.18 and Corollary 3.4.27 of [BDS13]), while our version deter-
mines the relation <; as well. For this we had to add one canonical type, namely [2], and
prove (among other things), that [2] £, [1,0] (see Subsection 3.2).
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7.2. Outlook. The notions and notation introduced in this paper are easily adapted to a
setting with multiple base types a1, as,.... However, if one tries to determine the equiv-
alence classes of < in this setting one realises much more work has to be done. (Indeed,
try, for instance, to prove a variant of Theorem [L.8 for multiple base types.) Perhaps the
development of a software tool based on the calculation rules for strong reductions will be
of use in such a project.

7.3. Acknowledgements. We are grateful that a reviewer spotted an error in Subsec-
tion of a previous version of this manuscript.
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