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Foreword 
 
The NASA Conference on Intelligent Data Understanding (CIDU) is applications-oriented, with 
a focus on Earth Sciences, Space Sciences, and Aerospace and Engineering Systems 
Applications.  The conference originated in 2004 as a small workshop in Cleveland Ohio with 
about 25 participants.  This is the second year that CIDU is publishing full-length papers.  This 
year’s papers feature articles from international participants covering a wide range of topics such 
as smart grids, system health management, discovering climate phenomenon, text mining, and 
methods appropriate to analyze sky surveys.  CIDU is unique in creating a forum for the 
applications of data mining and machine learning to earth sciences, space sciences, and 
aerospace and engineering systems.  These high quality full-length papers represent the work of 
practitioners in the application areas as well as established researchers in the data mining and 
machine learning communities.  The conference features invited speakers, poster sessions, oral 
paper presentations, panel, and networking opportunities for interested researchers and students.  
The proceedings of CIDU 2011 will be archived in the NASA Center for Aerospace Information 
and will be indexed by DBLP.  Selected papers will be invited for consideration for the CIDU 
special issue in the Statistical Analysis and Data Mining Journal.  
 
CIDU 2011 is sponsored by the NASA Engineering and Safety Center and the NASA Aviation 
Safety Program.  The organizers are grateful for the support from these organizations. 

 
   Ashok N. Srivastava, NASA Ames Research Center (General Chair) 
   Nitesh V. Chawla, University of Notre Dame (Program Chair) 
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CIDU 2011 Core Topics 
 
Earth & Environmental Systems Applications  
- Climate and ecology data sciences  
- Climate modeling  
- Sustainability  
- Geographic information systems  
- Geospatial intelligence  
- Spatio-temporal data mining  
- Visual analytics for earth science data  
- High-performance computing applications  
- Evaluation or validation techniques  
 
Space Science Applications  
- On-board and real-time machine learning  
- Decision making under uncertainty  
- Constraint-driven data mining and machine learning  
- Event mining and robotic telescopes  
- Unsupervised and supervised learning in astrophysics  
- Highly scalable algorithms  
- Risk management in space missions  
- Classification in large sky surveys  
 
Aerospace and Engineering Systems  
- Related government engineering applications (DOE, DOD, others)  
- Systems health applications  
- Anomaly detection, diagnostics, and prognostics from large data sets  
- Text mining in aerospace information systems  
- Data driven reliability modeling  
- Adaptive system monitoring  
- System model identification  
- Large data set challenges  
- Exploratory mining of aerospace data  
- Privacy and security issues in aerospace data  
- Statistical process control using very large datasets  
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CIDU 2011 Conference Organization 
 

General Chair:  Ashok N. Srivastava (NASA AMES Research Center) 

Program Chair:  Nitesh V. Chawla  (University of Notre Dame) 

Earth Science Applications 
Area Chair: 

 Claire Monteleoni, (Columbia University) 
 

Space Science  
Applications Area Chair: 

 Kirk Borne (George Mason University) 

Aerospace and Engineering 
Systems Area Chair:  

 Paul Melby, (MITRE)  

Posters Chair:  Kanishka Bhadrui (NASA AMES Research Center) 

Proceedings Chair:  Amal Shehan Perera (University of Moratuwa, Sri Lanka ) 

Publicity Chair:  Karsten Steinhaeuser, (University of Notre Dame / ORNL) 

Local Arrangements Chair:  Elizabeth Foughty (NASA AMES Research Center) 

Communications Chair:  Kamalika Das (NASA AMES Research Center) 
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A SUSTAINABLE APPROACH FOR DEMAND PREDICTION IN SMART

GRIDS USING A DISTRIBUTED LOCAL ASYNCHRONOUS ALGORITHM

RAJARSHI MALLIK* AND HILLOL KARGUPTA**

Abstract. Energy production, distribution, and consumption play a critical role in the sustain-

ability of the planet and its natural resources. Electric power systems have been going through
major changes that are aimed to make the energy infrastructure “smarter”, scalable, and more

efficient. These new generation of smart energy grids need novel computational algorithms for

supporting generation of power from wide range of sources, efficient energy distribution, and sus-
tainable consumption. This paper argues that a fundamentally distributed approach with more

local flexibility is a lot more sustainable methodology compared to the traditional centralized

frameworks for analyzing and processing data. It considers the problem of predicting power gen-
eration and consumption trends over a distributed smart grid. Since power generation from solar,

wind, geothermal and other renewable sources are likely to be part of many households in near

future, both power generation and consumption data will be generated over a wide area network.
Moreover, a good part of the communication links between the household data sources and the

central server are likely to be over the wireless networks with low bandwidth and high data-plan
cost. Analyzing such data (some of it privacy sensitive) in a centralized is not scalable, sometimes

not privacy-preserving, and often not practical because of cost-sensitivity of the applications. This

paper presents a more sustainable distributed asynchronous algorithm for constructing energy de-
mand prediction models in a smart grid by multivariate linear regression. The paper offers the

algorithm, analysis, and experimental results.

1. Introduction

Sustainability implies resource consumption with little internal or external adverse impact so that
it can be practiced for an extended period. A system or a process is sustainable when its input and
output have little adverse impact on its environment and therefore can be accepted as a long term
practice. A system that is not sustainable often leads to the failure (sometimes catastrophic) of the
system itself or other systems in its environment. Sustainability in Electric Power systems is a very
important issue since it usually has a significant impact on the environment and other systems that
share the same environment. Electric power systems are undergoing a profound change driven by
a number of needs. Environmental impact, reliability, operational efficiencies in energy generation
and distribution along with alternate power generation technologies and “intelligent” appliances
are driving the need for developing the new generation of energy networks — the Smart Grids.
A sustainable Smart Grid would deliver high performance at the right cost with little impact on
the environment. This paper argues that this demands making the “smart” in the Smart Grid
really smart by deploying proper adaptive machine learning and data analysis techniques for energy
production and distribution.

The vast amount of sensor data from Smart Grid’s physical and operational state along with
environmental sensor data are being available as both real time and from archival stores which
contains important correlations, trends, and patterns that can be exploited for optimizing operations
with respect to sustainability metrics, such as, energy consumption, carbon footprint etc. However,
considering the large amount of data produced, manual inspection is virtually impossible and thus
automated knowledge discovery and data mining techniques are necessary to synthesize models for
enabling sustainable end-to-end operation. These data mining techniques and analytics will extract

*University of Maryland Baltimore County, rmallik1@umbc.edu
**University of Maryland Baltimore County, Agnik LLC, hillol@cs.umbc.edu.
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Figure 1. Smart Grids - Efficient two-way communication electrical power grids.1

prediction rules, which when embedded in distributed, decision support or real time data engines will
help shape electric consumption and optimize the grid leading to greater sustenance. But analyzing
data in a smart grid is unlikely to be both commercially and physically sustainable if we rely upon
centralized architectures since a smart grid is by definition comprised of large number of loosely
coupled asynchronous entities. Let us note the following observations:

• It is very unlikely that a single organization will be in charge of the entire Smart Grid and
it will be able to collect all the data at a central location. A centralized approach for data
analysis would require different competing business entities to share the data of their own
customers which is unlikely to be acceptable.
• Users may have reservations regarding giving up their own household data (often privacy

sensitive) to a business entity. Wide acceptance of the technology is likely be hindered
unless we are sensitive to the privacy issues. A centralized data mining approach is likely
to be very difficult to plement while preserving various heterogeneous privacy-preserving
regulations from different places.
• Many of the Smart Grid sensors (e.g. energy meter, appliance monitors) communicate with

remote servers over wide area wireless modems. Transmitting large volume of data over
low-bandwidth wireless modems is very expensive, not scalable, and have higher energy
consumption (therefore carbon emission) footprint.

This paper argues that a distributed approach would be more sustainable since it allows little or no
sharing of raw data, more suitable for integration with privacy-preserving techniques, and minimizes
overall communication among different nodes in the network. The paper specifically considers the
problem of multivariate regression in a distributed scenario since learning linear models is a common
problem in many statistical data analysis and adaptive learning techniques such as perceptrons and
kernel regression. Such techniques are widely used for predicting and forecasting which is directly
relevant to the energy demand forecasting problem considered in this paper.

1Courtesy U.S Government Accountability Office
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Rest of the paper is organized as follows. Section 2 looks at the related works and Section 3 places
the problem definition. Section 4 presents the overview of linear regression, its terms and notations.
Section 5 describes how normal equations are solved. Section 6 explains the iterative algorithm and
the choice of the gossip algorithm. Section 7 presents the experimental results and discusses the
simulations and measurement metrics. Finally, Section 8 concludes this paper.

2. Related Work

Predicting demand on a Smart Grid requires forecasting the difference between the energy pro-
duction and consumption based on several factors like geographical area, weather, type and number
of consumers and other patterns which are extracted from a series of events. A survey of challenges
related to computational sustainability in general and that of Smart Grids in the area of planning
and operating large complex digital ecosystems, controlling and measuring technologies from a pro-
ducer controlled network to a more decentralized system has been showed by Carla P Gomes et. al
[13]. There exists a body of literature dealing with algorithms and systems-related challenges for
information processing over smart grids. Hurdles like standards of interoperability in information
obtained from these smart grids are addressed by NIST [3]. The problem of estimation of time be-
tween failures in electric grids leading to greater sustenance has been previously modeled in [11]. The
problem is particularly related to multiple and distributed failure modes and causes with potential
explosion of data. Data mining challenges and techniques in sustainable and efficient transportation
systems with large volume of data are addressed in [12]. The impact of local consumption, group
behavior and its effect are also addressed giving rise to new challenges and opportunities. [17].
Intelligent techniques for smart grids have been explored elsewhere [19]. Various predictive models
for smart grid enabling devices like smart meters are explored elsewhere [10].

This paper considers the problem of distributed regression over smart grid. Therefore, it is
important to make a note of the existing work related to the distributed regression technique.
Hershberger et al.[15] considered the problem of solving global regression coefficients in a vertically
partitioned data distribution scenario. This is a synchrnized algorithm where each node computes
the wavelet transformation of the data and exchanges the significant coefficients in a synchronous
manner in order to regress the global coefficients of the model. Algorithms presented by Guestrin
et al.[14] performs linear regression in a network of sensors using in-network processing of messages
where instead of transmitting raw data it transmits only constraints thereby reducing communication
complexity. Bhaduri et al[5] addresses the problem by providing a scalable local algorithm for
multivariate regression. This paper makes use of a convergecast phase where data is sampled from
the network to a central post to compute the coefficients based on the samples followed by a broadcast
phase where these coefficients are distributed into the network and the results are monitored in-node.
Though the root of the convergecast tree is not pre-specified it inherently doesn’t steer clear of the
centralized approach once the tree is built and subsequently during tie resolution during broadcast
phase.

The current work makes use of a distributed sum computation technique which builds on existing
work. There has been a lot of work on distributed computation of averages (in general first order
statistics) more generally problem of reaching agreement or consensus among peers via distributed
computation[16][18]. The aggregation problem approach proposed by Bawa et al.[4] is to count
the sum and count queries subject to a model of network behavior and guaranteeing bound errors,
however it was explained calculating sums using this method can be costly and the protocols are
based mostly on building trees. Boyd et al.[6] presented a simple iterative gossip algorithm and
showed a connection between the averaging time of the algorithm and mixing time of an appropriate
random walk. Distributed summation is computed in asymptotically minimal rounds by Kempe’s
et al.[16] Push-Sum algorithm. Here we used Kempe’s push sum protocol to compute the linear
regression coefficients in a distributed environment.

The following section defines the distributed energy demand prediction problem in the context of
distributed regression.

3
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3. Problem Definition

This paper considers the problem of predicting energy demand using distributed energy consump-
tion and production data. It makes the following assumptions about the overall smart grid model
of energy management:

(1) With the advent of solar panels, smaller wind turbines, and geothermal technology, energy
production is likely to be a household process in the near future. Residences are likely to be
producing and supplying surplus energy to the community. In addition, traditional energy
companies will be producing and selling energy.

(2) Eventually, a smart grid will most likely be supporting multiple energy company. Therefore,
the household energy consumption data may not belong to a single company. Even if it
does, privacy protection of the consumer will be an important issue.

(3) A household or a corporate entity may or may not want to allow centralizing data

Energy demand for a household or an area can be computed from the household’s energy pro-
duction and consumption data. Forecasting the demand would require building predictive models
from the observed demand data and various other features such as consumption behavior, housing
and household characteristics, geographical location, season and time of the day. While there exists
many techniques for learning predictive models, multivariate regression is a popular well-understood
technique for constructing such predictive models. This paper considers the problem of learning
predictive models for the energy demand based on the observed household energy production and
consumption data.

Computing a global regression model from the data available at distributed sources can be costly,
inefficient and sometimes impractical in many scenarios because of various reasons such as large
number of data sources, the asynchronicity and dynamic nature of the networks, multi-organizational
structure of the environment and privacy issues among others.

The problem and proposed solution we present in this paper is abstracted on a distributed en-
vironment of the grid infrastructure. The data aggregators like smart meters can be seen as nodes
in a network represented by the grid, we can construct a network of N nodes of no specific overlay
topology. Each node Ni contains data tuples given by Xm

i where m is the number of features of
the data. We have assumed that the data present at each node is homogeneous in nature. These
data represent the information that is generated at each node by virtue of the consumption and
production characteristics of the grid network.Our goal is to learn a multivariate regression model
where we compute the approximate linear coefficients for the global regression model locally at each
node in a distributed and asynchronous manner.

4. Linear Regression - An Overview

Regression is the task of learning a target function f̂ that maps each attribute set x into a
continuous-valued output f(x). The goal is to find the target function that can fit the input data
with minimum error. Given a data set that contains n observations (~xi, f(~xi)) where i = 1, 2, ..., n
each ~xi corresponds to the set of attributes of the ith observation and f(~xi) corresponds to the

target variable. For linear regression the idea is to learn f̂(~xi) which approximates f(~xi) for all data
observations and is a linear combination of any d specified functions of x given by the general form

f̂(~xi) =
∑d−1
k=0 wkXk(~xi) where X(~xi) are arbitrary fixed functions of x and wk are the coefficients

or parameters that need to be estimated. Since f̂ is linear, the problem reduces to finding the
parameter vector w ∈ Rd such that y = f(x) = wTx.

Here in case of general linear regression we choose a linear model which we want to fit as f̂(~xi) =
w0 + w1xi1 + w2xi2 + . . . + wmxim where wj ’s are the coefficients that need to be estimated from
the dataset. For every data point in the set of n observations, the squared error is:

4
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E1 = [f( ~x1)− w0 − . . .− wmx1m]2

E2 = [f( ~x2)− w0 − . . .− wmx2m]2

...
En = [f( ~xn)− w0 − . . .− wmxnm]2

The total square error over all the data points is

SSE =
n∑
j=1

Ej =
n∑
j=1

Ej [f( ~xj)− w0 − . . .− wmxjm]

For linear regression, closed form expressions exist for finding the coefficients wi’s by finding the
partial derivatives of SSE with respect to the w′is and setting them to zero. In the matrix form it
can be written as - Xw = Y



n∑
i=1

x2i1

n∑
i=1

xi1xi2 . . .
n∑
i=1

xi1xim

n∑
i=1

xi2xi1

n∑
i=1

x2i2 . . .

n∑
i=1

xi2xim

...
...

. . .
...

n∑
i=1

ximxi1

n∑
i=1

ximxi2 . . .

n∑
i=1

x2im


×


w0

w1

...
wm

 =



n∑
i=1

xi1f(~xi)

n∑
i=1

xi2f(~xi)

...
n∑
i=1

ximf(~xi)



We solve the normal equation as shown above to get the coefficients of linear regression wi.

5. Solving Normal Equations

Given the data tuples comprising of the vector of predictor(x) and response(y) variables, finding
the regression coefficients is solving the linear equation of the form Aw = b where row vector w are
regression coefficients.A m-dimensional n data tuples are given by


x11 x12 . . . x1m y1
x21 x22 . . . x2m y2

...
...

. . .
...

...
xn1 xn2 . . . xnm yn


and the corresponding correlation matrix is given by

XT .X = A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm


All entries of correlation matrix A and b can be written as the sum of individual predictor variables

as shown next
5
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A =



n∑
i=1

x2i1

n∑
i=1

xi1xi2 . . .
n∑
i=1

xi1xim

n∑
i=1

xi2xi1

n∑
i=1

x2i2 . . .
n∑
i=1

xi2xim

...
...

. . .
...

n∑
i=1

ximxi1

n∑
i=1

ximxi2 . . .
n∑
i=1

x2im


b =



n∑
i=1

xi1yi

n∑
i=1

xi2yi

...
n∑
i=1

ximyi


We solve the normal equation of the form A.w = b to get the linear regression co-efficients.The

equation shown before are called the normal equations of the least-squares problem i.e., equations
that minimizes the sum of square differences between the left and the right sides of the equation. It
is called normal because b−A.w is normal to the range of A. Given a matrix equation of the form

(1) A.w = b

can be solved for the vector of parameters a by standard methods notably LU decomposition
and back substitution, Cholesky decomposition or Gauss-Jordan Elimination. In matrix form, this
can be written as

(2) (AT .A).w = AT .b

In theory, since AT .A is symmetric and positive-definite, Cholesky decomposition is the most
efficient way to solve the normal equations. Cholesky decomposition is about a factor of two faster
than alternative methods for solving linear equations. Cholesky decomposition constructs a lower
triangular matrix L whose transpose LT can itself serve as the upper triangular triangular part. In
other words we replace A by

(3) A = L.LT

i.e,


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . xnm

 =


L11 0 . . . 0
L21 L22 . . . 0

...
... . . .

...
Lm1 Lm2 . . . Lmm

 .

L11 L12 . . . L1m

0 L22 . . . L2m

...
... . . .

...
0 0 . . . Lmm



This factorization is sometimes referred to as ‘taking square root’ of a matrix A, though, because
of the transpose, it is not literally that. The component of LT are of course related to those of L by

LTij = Lji

Writing Equation 3 in components, we can readily obtain

(4) Lii =

(
aii −

i−1∑
k=1

L2
ik

) 1
2

(5) Lji =
1

Lii

(
aij −

i−1∑
k=0

LikLjk

)
j = i+ 1, i+ 2, . . . ,m− 1

The sequence in which Lij is solved is given by
6
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L11

↓
L21 −→ L22

↓ ↓
L31 −→ L32 −→ L33

↓ ↓ ↓
. . . −→ . . . −→ . . . −→

Now we need to solve the equation of the form L.LT .w = b. Substituting p = LT .w and solving
for p in the equation L.p = b is given by

(6) pi =
1

Lii

bi − i−1∑
j=1

Lijpj


i = 1, 2, . . . ,m

Finally solving for w, the regression coefficients in the equation LT .w = p, we have

(7) wi =
1

Lii

pi − m∑
j=i+1

Ljiwj


i = m,m− 1, . . . , 1

6. Iterative Approach

In this approach, data matrix at time t given by entries xij and yi where i = 1 . . . n, j = 1 . . .m.The
new data matrix formed by data tuples that arrived at time (t+ 1) is given by xij and yi where i =
(n + 1) . . . z, j = (n + 1) . . .m. So the new data matrix formed from the data during the whole
period is given by xij and yi where i = 1 . . . z, j = 1 . . .m

The corresponding correlation matrix remains unchanged except for the fact that the summation
terms is now to variable z as opposed to n before,

(8)

A =



z∑
i=1

x2i1

z∑
i=1

xi1xi2 . . .

z∑
i=1

xi1xim

z∑
i=1

xi2xi1

z∑
i=1

x2i2 . . .

z∑
i=1

xi2xim

...
...

. . .
...

z∑
i=1

ximxi1

z∑
i=1

ximxi2 . . .
z∑
i=1

x2im


Similarly Lii and Lji from equation 4 and 5 at time t and time (t+ 1) is given by

(9) Lii(t) =

(
aii(t) −

i−1∑
k=1

L2
ik(t)

) 1
2

(10) Lii(t+1) =

(
aii(t+1) −

i−1∑
k=1

L2
ik(t+1)

) 1
2
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(11) Lji(t) =
1

Lii(t)

(
aij(t) −

i−1∑
k=1

Lik(t)Ljk(t)

)

(12) Lji(t+1) =
1

Lii(t+1)

(
aij(t) −

i−1∑
k=1

Lik(t+1)Ljk(t+1)

)

We express the term Lii(t+1) as an iteration of Lii(t) in the following way

L2
ii(t+1) − L

2
ii(t) = aii(t+1) − aii(t) −

i−1∑
k=1

L2
ik(t+1) +

i−1∑
k=1

L2
ik(t)

(13) ⇒ Lii(t+1) =

 L2
ii(t)︸ ︷︷ ︸

Lookup

+
z∑

k=n+1

x2ki︸ ︷︷ ︸
NewData

−
i−1∑
k=1

L2
ik(t+1)︸ ︷︷ ︸

Already Calculated

+
i−1∑
k=1

L2
ik(t)︸ ︷︷ ︸

Lookup


1
2

where aii(t+1) − aii(t) =
z∑
k=1

x2ki −
n∑
k=1

x2ki =
z∑

k=n+1

x2ki

As we see from equation 13 that Lii(t+1) depends on the new data that becomes available at
time (t+1) and the not the whole data matrix. So the calculation of Lii(t+1) depends on lookup of
previous iteration, the new data arriving at time (t+1), the already calculated entries of the Lij(t+1)

matrix and again a simple lookup of the previous iteration of the entry Lij(t).
Similarly we express the term Lji(t+1) as an iteration of Lji(t) as follows

Lji(t+1).Lii(t+1) − Lji(t).Lii(t) = aij(t+1) − aij(t) −
i−1∑
k=1

Lik(t+1).Ljk(t+1) +
i−1∑
k=1

Lik(t).Ljk(t)

(14)

⇒ Lji(t+1) =
1

Lii(t+1)︸ ︷︷ ︸
Already calculated


z∑

k=n+1

xkixkj︸ ︷︷ ︸
NewData

−
i−1∑
k=1

Lik(t+1).Ljk(t+1)︸ ︷︷ ︸
Already calculated

+
i−1∑
k=1

Lik(t).Ljk(t)︸ ︷︷ ︸
Lookup

+Lji(t).Lii(t)︸ ︷︷ ︸
Lookup



We see from equation 14 that Lji(t+1) can be calculated iteratively from already calculated Lii(t+1),
new data arriving at time (t+1), already calculated entries of matrix Lij(t+1) and a lookup of the
previous values of Lij(t).

Similarly pi and wi from equation 6 and 7 at time t and time (t+ 1) is given as

(15) pi(t) =
1

Lii(t)

bi(t) − i−1∑
j=1

Lij(t)pj(t)



pi(t+1) =
1

Lii(t+1)

bi(t+1) −
i−1∑
j=1

Lij(t+1)pj(t+1)

(16)

8
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(17) wi(t) =
1

Lii(t)

pi(t) − m∑
j=i+1

Lji(t)wj(t)



wi(t+1) =
1

Lii(t+1)

pi(t+1) −
m∑

j=i+1

Lji(t+1)wj(t+1)

(18)

Expressing pi(t+1) of equation 16 and wi(t+1) of equation 18 as an iteration of their previous values
we have

pi(t+1).Lii(t+1) − pi(t).Lii(t) = bi(t+1) − bi(t) −
i−1∑
j=1

Lij(t+1)pj(t+1) +
i−1∑
j=1

Lij(t)pj(t)

⇒ pi(t+1) =
1

Lii(t+1)︸ ︷︷ ︸
Lookup


z∑

k=n+1

xkiyk︸ ︷︷ ︸
NewData

−
i−1∑
j=1

Lij(t+1)pj(t+1)︸ ︷︷ ︸
Already calculated

+
i−1∑
j=1

Lij(t)pj(t)︸ ︷︷ ︸
Lookup

+ pi(t).Lii(t)︸ ︷︷ ︸
Lookup

(19)

and

wi(t+1).Lii(t+1) − wi(t).Lii(t) = pi(t+1) − pi(t) −
m∑

j=i+1

Lji(t+1)wj(t+1) +
m∑

j=i+1

Lji(t)wj(t)

⇒ wi(t+1) =
1

Lii(t+1)︸ ︷︷ ︸
Lookup

 pi(t+1) − pi(t)︸ ︷︷ ︸
Lookup and calculate

−
m∑

j=i+1

Lji(t+1)wj(t+1)︸ ︷︷ ︸
Already calculated

+
m∑

j=i+1

Lji(t)wj(t)︸ ︷︷ ︸
Lookup

+wi(t).Lii(t)︸ ︷︷ ︸
Lookup



(20)

The iterative approach to solve normal equations can be extended to fit computations in dis-
tributed environments. Assuming there are N nodes in a network with data matrix at each node
represented by Xm

i where m represent the features of the data, then data communication among
nodes connected with each other over time to compute the regression coefficients can be perceived
as a asynchronous distributed problem. All of these assumptions are based on the fact that the data
is homogeneous in nature distributed at different nodes or sites. Calculations of linear co-efficients
can be iteratively solved and the expressions are additive in nature so a de-centralized calculation of
co-efficients are possible over large distributed environments overlayed by a communication strategy
or protocols like gossip based computations. In gossip protocol, a peer of a peer-to-peer network
exchanges data or statistics with a random peer. Kempe et al’s[16] Push-Sum protocol based on
gossip communication for computing sum at the nodes of a network is asymptotically optimal with
respect to convergence speed. Combining the Push-Sum algorithm with the iterative computation of
coefficients of linear regression we compute the approximate global coefficients with the same bound
of error as shown before. All of the above concepts relies on diffusion speed of uniform gossip based
on mass conservation as presented in theorem 3.1 of [16]. As shown the estimate of an average at a
node i, at time t is given by

vt,i.x
wt,i

where vt,i is local contribution vector, x is the node’s local value

9
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and wt,i is the weight. The relative error at node i is
|(

vt,i.x

wt,i
)− 1

n

∑
j xj |

| 1n
∑

j xj |
. By applying the triangle

equality under sum (Holder’s Inequality), we obtain

|(vt,i.xwt,i
)− 1

n

∑
j xj |

| 1n
∑
j xj |

= n.
|( vt,i
‖vt,i‖1

− 1
n .1).x|

|
∑
j xxj

|

≤ n.

∥∥∥ vt,i
‖vt,i‖1

− 1
n .1
∥∥∥
∞
. ‖x‖1

|
∑
j xj |

≤ ε.
∑
j |xj |

|
∑
j xj |

The relative error in the estimate of average at any node i is at most ε.
∑

j |xj |
|
∑

j xj | . So the relative error

is at most ε when values of xj have the same sign. To get sum only one node start with weight
w = 1 and the value computed at the nodes converges to sum. Since the calculations of regression
coefficients are additively decomposable we get a convergence of the coefficients to the true global
coefficients.

The overall approach of decomposition of the steps for solving normal equations and presenting
an iterative model for evaluating the model parameters without having to store the entire data at
a single place is the foundation of the algorithm. The algorithm proposed reduces the problem to
relatively simple primitive computation and makes use of the distributed asynchronous property to
get the desired results for distributed and peer-to-peer systems as against centralized computations.
Smart Grids connecting multiple power production and consumption nodes with embedded sensors
of various types capable of data storage, retrieval and computations can be seen as sensor networks
with decentralized architectures. These data repositories stored at these different nodes are hard to
centralize. Traditional off-the-shelf algorithm will not work in such environment since they typically
requires first centralizing the data for subsequent analysis. Even a client-server architecture-based
distributed system where the server sends the query to the different databases for accessing the data
for subsequent analysis is unlikely to scale because of the large volume, latency and also sensitive
aspect of the data in some cases. The following algorithm has the intrinsic property of distributed
computation and thus is deployable on nodes of such smart-grids.

Algorithm 1: Distributed Asynchronous Regression (DAR)

1: Initialization:Xm
n {The data matrix having m features and n instances}

2: Compute Lij(t), pi(t), wi(t)
3: while a node receives a message do
4: Lnewij , pnewi , wnewi ← receive()
5: Compute Lij(t+1), pi(t+1), wi(t+1)

6: end while
7: for φ(n) number of times do
8: choose a neighbor nbr uniformly at random
9: send Lij(t+1), pi(t+1), wi(t+1) to nbr

10: end for
11: return wi(t)

The distributed asynchronous regression algorithm (DAR) is shown in algorithm table 1. In the
given algorithm each node starts with a n×m dimensional data matrix Xm

n where m is the number of
features and n is the number of instances. Each peer Ni computes its own values of Lij(t), pi(t), wi(t).
The message that each node now sends comprises of the above calculated values and similarly each
node is equipped with a receive() construct that is set to listen for these values from its neighboring

10
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nodes. Once a node receives the new values they are labeled as Lnewij , pnewi , wnewi . The values of
Lij(t+1), pi(t+1), wi(t+1) are calculated as described in Section 6. To send a message to another node,
the current node chooses a neighbor uniformly at random and sends its current calculated values.
The number of rounds of such iterations is given by the function φ(n), where n is the number of
nodes in the network as mentioned. The algorithm terminates giving the approximate coefficients
of linear regression.

Theorem 1. The space complexity of the algorithm DAR running on each node is of order O(m2)
where m is the number of features and is independent of the number of data tuples.

Proof. As shown in Section 5 Equation 3 the dimensionality of covariance matrix A is O(m2),
the matrix containing the entries Lij(t) is of dimension m2 from Equations 4 and 5, and the vectors
pi(t) andwi(t) is of dimension m from Equations 6 and 7. At every iteration for calculating coefficients
we store and update each of Lij(t), pi(t) and wi(t) and compute new Lij(t+1), pi(t+1) andwi(t+1) so,

the total complexity is given by O(m2) +O(m) +O(m) = O(m2). �

The efficiency of this process is due to the fact that usually m << n and the calculation of
every iteration of coefficients is a mixture of lookups and already calculated components for each
computation.

Theorem 2. The communication cost for this algorithm DAR is of order O(log n) number of
messages where n is the total number of nodes in the network and messages passed are of constant
size.

Proof. The messages passed by each node is a vector of size of the dimension of the data tuples as
shown in Section 6. The size of such messages is equal to the number of coefficients calculated for
the linear regression which is determined by the dimensionality of the data tuples. So the payload
of each message is constant dependent on the number of features of the data tuples. On the other
hand the number of messages passed before the algorithm converges within ε relative error with a
probability at least 1 − δ for a network of n nodes is of the order O(log n + log 1

ε + log 1
δ ) given by

Theorem 2.1 in Kempe et al[16]. �

In gossip-based protocols, each node contacts one or a few nodes in each round and exchanges
information. The guarantees obtained from gossip are probabilistic in nature. The key issue is how
many rounds are needed for the local values to converge to a global value with sufficient accuracy.
The averaging time, which is the time required for the number of rounds to achieve a desired level
of accuracy of a gossip algorithm turns out to be closely related to the mixing time of Markov
chain which is the time until the Markov chain is close to its steady state distribution defined by
a random walk on the graph. The convergence rate is the speed with which this sequence reaches
its value. Boyd et al. [6] found that convergence speed depends on the second largest eigenvalue
of the stochastic matrix and proposed a subgradient method to optimize the neighbor selection
probabilities for each node in order to find the fastest mixing Markov chain on the graph. This
method is proved to work on complete graphs, expander graphs and peer-to-peer networks. The
averaging time for a randomized gossip algorithm defined by transition matrix P is given by

Tave(n, ε) = sup︸︷︷︸
x(0)

inf

{
k : P

(
||x(k)− xave~1||
||x(0)||

≥ ε

)
≤ ε

}

such that ε > 0, the ε-averaging time is the earliest time at which vector x(k) is ε close to
the normalized true average with probability greater than 1 - ε and ||.||2 denotes l2 norm and

||x(k)− xave~1||/||x(0)|| is referred as the relative error after k rounds.

Theorem 3. The number of rounds of gossip Rconv or the rate of convergence of the regression
coefficients wi for the proposed algorithm DAR is bounded by the number of nodes n, the relative
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error ε and the second largest eigenvalue of the transition matrix for the given set of nodes in the

network and is expressed by Rconv ≤ logn+log ε−1

1−λ2
.

Proof. The rate of convergence of Markov chain whose transition matrix is given by P is characterized
by the mixing time of a Markov chain with transition matrix P̃ where P̃ = 1

2 (I−P ) as shown in Boyd
et al. [6]. We know the mixing time of a Markov chain can be bounded in terms of its eigenvalues.

Given P a stochastic matrix and defining P̃ implies it is also stochastic and has largest eigenvalue
λ1 = 1 and remaining eigenvalues non-negative. It also follows that the mixing time of the Markov
chain, which is the measure of the amount of time needed to guarantee each coefficient calculated at
each each node is within the ε-error of the centralized value, with transition matrix P̃ is bounded in

terms of its second largest eigenvalue λ2 and is given by Tmix(ε, P̃ ) ≤ logn+log ε−1

1−λ2
, Diaconis et al.[9]

where Tmix(ε, P̃ ) is the ε mixing time or number of rounds of gossip given the transition matrix P̃ .
Given the knowledge of the number of nodes in the network, the second largest eigenvalue of the
transition matrix we see that the rate of convergence of the regression coefficients or the number of
rounds of gossip Rconv following the DAR algorithm is characterized by the mixing time Tmix(ε, P̃ )

and so Rconv can be upper bounded by the same expression and is given as Rconv ≤ logn+log ε−1

1−λ2
.
�

7. Experimental Results

7.1. Experimental Setup. We have implemented our algorithms in Distributed Data Mining
Toolkit(DDMT)[8] developed by the DIAIDC research lab at UMBC. We use topological infor-
mation generated by the Barabasi Albert(BA) model in BRITE [7] since it is often considered a
reasonable model for peer-to-peer infrastructure. On top of the network generated by BRITE, we
simulate gossip based communication.

Figure 2. Simulated hourly electricity demand in the state of New york by County
in a typical day of Summer.

7.2. Experimental Data. The data is collected from the consumption section of Residential En-
ergy Consumption Survey (RECS)[1] 2005 which is a national area-probability sample survey that
collects energy related data for occupied housing units. The data attributes included housing unit
characteristics like mobile homes, single family detached house and apartment buildings etc., the
number of people living in each household, the average energy consumption per house by dryer,
dishwasher, refrigerator and other electric appliances. From the yearly consumption data we first

12

2011 Conference on Intelligent Data Understanding 12

TOSHIBA
Pencil



characterized the usage in seasonal pattern of summer and winter. We seperated electricity con-
sumption data like that of air-conditioning which is more used in summer and room heating and
water heaters which are more used in winter to simulate household consumption behavior. We then
brought down the seasonal consumption behavior to per day depending on the time of day introduc-
ing peak energy usage during morning and evening and off-peak usage rest of the time in the day. To
simulate variational usage we again introduced white Gaussian noise to get the hourly consumption.
From the RECS data we choose to simulate the hourly energy consumption of households for the
state of New York.

For the production data by photovoltaic(PV) cell we used System Advisor Model(SAM) [2] sim-
ulator. With default system array size of 352mm per house hold and taking weather conditions
like temperature, wind speed, shading factor we simulated the hourly production data for the same
region. The demand by region was simulated by finding the difference between the production and
consumption per hour for a typical summer day for the state of New York. The simulated demand
model over a period of one day is hosted on web service found elsewhere.2

Figure 3. Actual demand vs distributed prediction for a county per hour.

7.3. Simulation Results. The experiments were carried out for approximately 7 million residential
homes for the state of New York grouped by 62 counties. The consumption and production data
were simulated on an hourly basis. From this data for a typical summer day we ran the DAR
algorithm to get the predicted demand and plotted it against the actual demand from the simulated
data. The results of which are presented in the graphs below. In Figure 3 we have the time of the
day on the x axis and the power demand on the y-axis.

The dotted lines represents the predicted demand obtained from the DAR algorithm and the
solid lines represent the actual demand from the simulated data. In Figure 4 we have the same axes
but here we compare the actual demand and the predicted demand obtained by centralized method.
Figure 5 we compare the demand prediction by the centralized method and our proposed distributed
asynchronous method. In Figure 6 we show the comparison between communication cost in terms
of bytes of data that gets transferred for the centralized approach and distributed approach. As
seen from the figures the x axis represents the problem size, here the number of households that
are producing the data and the y axis represents the size of the message that are transferred in the
network. As seen from the figure the communication cost increases linearly with increase in size for
the centralized algorithm whereas communication cost increases logarithmically for the distributed
algorithm making it suitable for scalable applications. From the demand prediction figure we see
that as the number of rounds of running the algorithm increases for each node the prediction value
asymptotically reaches the centralized prediction thereby presenting a small and acceptable error
margin.

2http://geocommons.com/maps/38838
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Figure 4. Actual demand vs centralized prediction for a county per hour.

Figure 5. Distributed prediction vs centralized prediction for a county per hour.

Figure 6. Communication cost for the centralized vs distributed approach.

8. Conclusion

This paper explored the problem of predicting energy demand in a distributed smart grid en-
vironment. It argues that the centralized approach to learn and monitor such predictive models
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is not sustainable for both business and technical reasons. Participation of different business en-
tities, household production of energy, and privacy-sensitive power consumption data are some of
the reasons since they often prohibit centralized collection of the the observed data. This paper
considers a multi-variate regression-based approach for predicting energy demand and offers a novel
technique for learning linear regression models in a distributed and asynchronous way. It analyzes
the performance of the algorithm and offers experimental results. Overall, the paper demonstrates
that a distributed asynchronous algorithm can be used to learn predictive models over smart grids
in a scalable manner.
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P-MATCH and QUBIT – Methods for Extracting Critical Information from 
Free Text Data for Systems Health Management 

ANNE KAO1, STEPHEN POTEET2, DAVID AUGUSTINE3 
 
 

ABSTRACT. In order to achieve integrated aircraft health management, multiple data sources regarding aircraft 
maintenance as well as aviation safety have to be studied together to achieve a holistic view.   While some data sources 

contain only structured data as found in standard relational databases, free text data often provide critical information that 
cannot be fully expressed in structured data.  The wealth of information goes beyond what can be achieved by coding the 

free text into a set of fixed categories. The text mining problem is fundamentally different from casual exploratory search of 
the Internet.  Analysts need to extract detailed information with high recall from very noisy text data, with lots of non-

standard spellings and abbreviations. The extraction task cannot overlook analysts’ important domain knowledge. In this 
paper, we will examine two data sources, one from airplane maintenance logs involving aircraft parts and systems, and the 
other from the Airplane Safety Reporting System (ASRS), a collection of anonymous aviation safety self-reports involving 
operational issues.  We will illustrate innovative methods we have developed that can aid analysts in extracting critical 

information in these two different data sources.  Our methods use a combination of natural language processing and string 
matching, and we suggest ways of using machine learning and interactive feedback to provide an easy way for the analysts to 

utilize their domain knowledge to improve the system and achieve systems health management goals. 
 

1. INTRODUCTION 
In order to maximize the safety as well as the economy of a vehicle’s performance, 
whether it is an airplane, automobile or spacecraft, it is crucial to take an integrated view 
of all vehicle related data. These include on-board sensor data, scheduled and 
unscheduled maintenance records and reports, reports related to operations of the 
vehicle, and other environmental data (such as weather condition and how congested a 
highway or an airport is).  In order to achieve success in vehicle health management and 
keeping operating conditions economic, all of these various factors have to be examined 
together.  The volume of data is vast and the data sources are diverse. On the other hand, 
the data often have missing and incorrect values.  Data mining techniques should be able 
to offer us a plethora of useful approaches to analyzing this data.  However, a lot of 
technical domain knowledge (e.g. engineering design and manufacturing) is required 
when applying data mining techniques to this problem.  The complexity in the data goes 
far beyond the cliché market analysis of products and customer demographical data. 
 
In this paper, we will focus on airplane health management.  While examples used are 
drawn from aviation, readers will find that most discussions carry strong commonalities to 
other types of vehicle health management.  Furthermore, while the number of data 
sources supporting a complete airplane health management system go well beyond the 
short list mentioned above and is easily in the hundreds, we will focus our discussion on 
two types of data sources in particular, namely, aviation safety reports and airplane 
maintenance log book data.  These data sources contain both structured and unstructured 
data.  However, the wealth of information is in the unstructured free text data.  Our 
discussion will further focus on analysis of the free text data, and how that can be mined 
and used in conjunction with structured data. 
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2. GENERAL PROBLEM DESCRIPTION 
Airplane maintenance data and aviation safety data represent two very different types of 
information and technical challenges.  The volume of maintenance data is huge.  For one 
major airplane model (e.g. 747 or 777) at one major airline, there can be over 100,000 
maintenance records.  The maintenance data can come from an airline, or from the 
Boeing organized consortium ARMS ISDP (Airplane Reliability and Maintainability 
System In-Service Data Program), which contains maintenance data from more than 
twenty major airlines.  The data contains unscheduled maintenance data and, sometimes, 
scheduled maintenance data.  For the current discussion, we will focus on log book data, 
which is the record of line maintenance (i.e. maintenance at the airport gate).  The free 
text fields include (1) the complaint text which records problems reported by the pilot, 
crew or mechanics, and (2) the resolution text which records the actions taken to fix each 
problem.  The guideline is that each record should record one single problem;  however, 
this is not always true, partly due to the complexity of the problem.    
 
Aviation safety data are collected through open source news reports, internal airline 
reports, airline reports of operating issues to the manufacturer, and self-reporting by 
individuals to the Airplane Safety Reporting System (ASRS) managed by NASA.  It is 
important to distinguish these data from accident investigation data.  Through major 
efforts by airplane manufacturers and operators, airplanes are extremely safe and there 
have been very few accidents.  In the rare cases an accident does occur, there would be an 
in-depth forensic analyses and report on what happened.  However, the goal of health 
management is not to focus on these few accidents, but to analyze near accidents and 
other unexpected aviation events to identify potential risk areas in order to further reduce 
the chance of accidents.  Unfortunately, this task is impeded by the fact that safety data is 
often somewhat sketchy and lacks important details.  For example, ASRS reports contain a 
fair amount of operational issues that relate to weather, airport condition, and crew and 
pilot activities. However, they only contain the year and month of the reports, and not the 
specific date of the event, and do not give the airline involved, let alone the flight.  This is 
by design to make the information anonymous and protect the reporter’s identity, but it 
makes it hard to match the report with more specific airport or weather conditions that 
obtained at the time of the incident, other than what the report explicitly states.  There is 
a lot less safety data than maintenance data; however, it is much harder to categorize all of 
the records into a fixed set of categories that would be both comprehensive enough to 
cover all cases and detailed enough to distinguish specific issues. 
 
In order to better understand human factors issues and operational issues, it is crucial to 
study the safety data.  However, in order to ascertain system or part reliability, or spot 
potential metal fatigue and long term wear and tear, it is important to mine the 
maintenance data.    
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Both maintenance and safety data suffer from missing values, as well as duplications and 
pseudo-duplications.  A maintenance record can report on multiple actions performed on 
a single part or even actions performed on multiple parts (even though the guideline is 
one part per record). A maintenance problem can be deferred if not flight critical, 
resulting in multiple records for the same problem so that a simple search would over-
identify a problem.   Worse, a maintenance problem can take more than one try to get 
fixed, even though it is closed out after the first try under the mistaken belief that it is 
resolved. In this case, there is nothing that ties the records together; they are treated as 
unrelated problems by the system.  Similarly, since safety reports are largely self reports, 
the same problem can be reported multiple times by different people, often with very 
diverse points of view.  The lack of key discriminating information makes it hard to 
identify duplicates with complete confidence.  Missing values are a common problem for 
both maintenance data and safety data.  Different airlines have different practices on how 
to fill in various data fields.  For example, how many times a non-flight critical issue is 
identified but deferred is not always filled out.  Since safety data is self-reporting data, the 
reporting person may not always fill in information such as the flight phase when the 
event occurred (take off, cruising, or landing). 
 

3. P-MATCH 
In this section, we will illustrate how to use a combination of knowledge-based natural 
language processing and various string matching algorithms to solve a high impact part 
name analysis problem.   
 
3.1. The part name reference problem. The log data provides documentation on what 
problems have occurred and what maintenance actions have been performed.   Reliability 
studies of parts typically are interested in all of the maintenance actions performed.  The 
result helps determine a recommended maintenance schedule for airlines, and how a 
specific fleet or a specific airplane deviates from its class. Alternatively, a real-time health 
management application may be only interested in fix effectiveness and thus only focus on 
the actions that successfully fix each of the problems reported.  In addition, the data can 
be used to study the reliability of parts, proactively identify required upcoming 
maintenance, and support supply management to avoid over-stocking or under-stocking 
issues.  For this type of application, only replacements would be of interest, and resetting, 
cleaning or adjusting actions would not be.  In a complex business such as the airline 
industry, it can also help operation management; for example, by keeping the airline from 
sending an airplane to a station that is not equipped to perform any likely upcoming 
maintenance. 
 
As noted above, a major part of the problem is that there are numerous spelling and ad 
hoc abbreviation problems in the data. Here is an example of a part name term, 
‘computer’, and some of the variations on how it is expressed in the log data: 

computer, comptr, compter, computor, compuer, computo 
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Furthermore, one variant, ‘comp’, is ambiguous and, in addition to “computer”, can mean: 
compressor, compartment, compensator 

Compounding the problem, a part name typically consists of multiple words, each 
exhibiting many variants, and the words in the part name from a given list may not all 
occur in a maintenance record or may occur in a different order.  For example, the part 
name: 

Overhead Panel Bus Controller (L), M23112 (P11) 
may occur in a maintenance record as: 

COMPLAINT: REF ADD 913 STS MSG LEFT O/H PNL BUS CONTROL 
INTERMITTENT TAGS OFF K02648Y 
RESOLUTION: FIM ACTIONED AS PER MSG 23-48802 OPBC REPLACED IAW MM 
23-93-01 GRND CHKS AND TESTS C/OUT SATIS TAGS ON B25092G 

The rendering of the part name in the COMPLAINT text leaves off the equipment number 
(M23112) and the panel (P11) the part is located on (it being redundant with “left” in this 
case), realizes “L” as “left” and removes the parentheses and relocates it to the beginning 
of the part name. In the RESOLUTION text, the whole thing is reduced to an acronym, 
“OPBC”, and any indication of location (“left” or the panel) is left off (since one of these 
has been mentioned in the COMPLAINT text).  Note that it is the less informative of 
these, the acronym, that is adjacent to the maintenance action performed (“replaced”). All 
of this makes trying to find a good match even harder. 
 
Clearly searching for an exact match of the string representing the part name is not going 
to help. While using a synonym list could help with acronyms like “O/H” and “OPBC”, it 
would not be a very good way of handling all the misspellings and ad hoc abbreviations 
illustrated by the “computer” example above.  The number of parts is very large (in the 
thousands) and number of spelling variations for the words in part names is also very large 
(often 10-20 and sometimes over 40).  This would make constructing an exhaustive list 
highly labor intensive if possible at all.  Furthermore, it is also hard to foresee what types 
of spelling variations might occur, given that one major type of error is to fuse two words 
together (leaving out the space in between). Traditional natural language processing 
approaches, which would try to parse the sentences of the log record, would fare even 
worse, since, in addition to requiring an entry in the lexicon for each misspelling, they 
would have to associate them with grammatical information as well (like what part-of-
speech they are) [1]. 
 
3.2. Our solution. Our solution is to combine knowledge-based natural language 
processing techniques and various string matching techniques.  We call our approach 
Partname Matching by Analysis of Text Characteristics, or P-MATCH. 
 
First, we will briefly summarize our approach. We begin with a given list of the part names 
that we are interested in, the “target part name list”.  This is typically a subset of all the 
parts on an airplane, for example, the parts that can be repaired or replaced during a brief 
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stopover between flights, i.e. the “line replaceable units” or LRUs. We take advantage of 
the structure of part names, so the first step is to parse the part names on our list 
according to this structure. Next, for each maintenance record, we use a list of the 
maintenance actions we are interested in along with the results of the part name parsing 
to identify a candidate part name string, a sequence of words that likely refers to a part 
that we are interested in. Then we use one or more fuzzy string matching algorithms to 
compare this candidate part name string with the part names on the target part name list. 
We then use the results to select the most likely part name from the target list. 
 
Inspired by linguistic analysis of noun phrases as basically consisting of a head noun and 
modifiers, we parse part names into a head noun that tells us what general type of part it 
is (e.g. a switch), essential modifiers that determine the specific type of part it is (e.g. 
“outflow valve” in “outflow valve switch”), and peripheral modifiers that primarily indicate 
location (e.g. “aft” in “aft outflow valve switch”). The head is typically the last word in the 
part name, but sometimes the last word is so general that it is likely that log data may 
leave it out completely and the second to the last word should be treated as the head, for 
example “Control Display Unit”, will often be described simply as a “control display” or 
some variant thereof.  In addition, certain types of modifiers may occur after the head in 
the target list of part names, though they are typically easy to recognize by their form (e.g. 
alphanumeric) or the fact that they occur in parentheses or after a comma.  For example: 

Control Display Unit (Center), N34303 (P11) 
“N34303” is the equipment number of this part, rather than a part of the part name per se. 
“Center” is the location and a peripheral modifier. “P11” is the panel it is located on and is 
typically not included in the log data or, if it is, not necessarily adjacent to the part name 
proper. 
 
Having parsed the target part names into heads and modifiers, the system then examines 
the log data. There are a number of ways in which we can start, depending on the task. 
One task we might be asked to perform with P-MATCH would be to find parts that had 
been removed, replaced or repaired to help analyze fix effectiveness. For this, we typically 
begin by searching for variants of the verbs representing these particular maintenance 
actions.  By starting our search with the verb we were able to make the search more 
efficient. We not only narrow the number of records that have to be examined in detail, 
but we also anchor our search in the text for the string representing the part name. Note 
that there can be quite a few variations of these verbs. Some of the variants of “replace” in 
the data are: 

replaced, repl, rplaced, replacd, replced, repaced, replaed, replacement, replac, 
replaced, rplcmnt, replace, repla, replae 

However, it is worth noting that the total number of verbs involved is an order of 
magnitude smaller than the total number of part names involved.  We find this list of 
variants by searching a list of words extracted from a large set of the data using a fuzzy 
string matching algorithm.  
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Often a maintenance record will contain multiple verbs (e.g. the engineer checked one 
part, adjusted another part, and finally replaced yet another part). When dealing with fix 
effectiveness, we are typically interested in the last verb in the maintenance message 
based on the fact that, in process descriptions, actions are typically described in the same 
temporal order as they occur in the real world (authors of maintenance reports never 
write "before we replace X, we reseated X") and we want the final action performed. An 
exception to this is that variants of “checked OK” frequently follow the action of 
replacing/removing/repairing, so it would be ignored. Another way of finding the 
appropriate part in a message to analyze fix effectiveness would be to organize 
maintenance actions into a prioritized set of categories. For example, the categories and 
their priority might be: removed/ replaced, repaired, deferred, reset, OK, other.  In this 
task, we find all the verbs in the maintenance message and then select the one with the 
highest priority as the starting point from which to search for the candidate part name. 
On the other hand, if we are trying to assess part reliability, we may want to find all the 
parts mentioned whatever the action performed was. In this case, we search for all the 
verbs and find associated part names near them, often yielding multiple parts per 
maintenance message. 
 
The next step is to identify a candidate part name string from the maintenance record. 
The candidate string is a sequence of words in the maintenance text that is likely to name 
a part in the target part name list.  In general, part names are contiguous strings of part 
name modifiers followed by a part name head; however, there are exceptions to this. As 
noted above in the case of the “left overhead panel bus controller”, a fuller description of 
the part (e.g. the location “left”) may occur earlier in the record, or even in a different field 
(COMPLAINT text) from the action verb that indicates which part we are actually 
interested in (typically located in the RESOLUTION text).  These different descriptions of 
the part need to be synthesized. In addition, references to location (“right”, “left”, 
“forward”, “aft”, “Zone A”, panel number) frequently occur after the head (e.g. “ECS CARD 
R”, where “R” is “right”). Given this, we search first for a part name head in the vicinity of 
the verb, then search for possible modifiers of that head adjacent to it. Since the verb can 
be active or passive (e.g. “replaced XXX valve” or “XXX valve replaced”), both sides of the 
verb are searched. The head and its associated modifiers are derived from the parse of the 
target part name list described earlier. Because of the possibility of misspelling, the head 
and the modifiers are searched using a fuzzy string matching criteria. After these 
modifiers are collected, the rest of the message is searched for other occurrences of the 
head (or a variant of it, e.g. “vlv” for “valve”) and, if one is found, additional modifiers 
adjacent to it are collected. Finally, the head and all of its modifiers are synthesized into a 
single part name candidate string.  
 
Occasionally, peripheral modifiers, in addition to occurring after the head can also occur 
in non-adjacent positions. For example, in one maintenance message there is a reference 
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to the “Upper Flow Control and Shutoff Valve (L Pack), V21511 (P110)”, but “LEFT PACK” 
occurs in the COMPLAINT text and “UPPER FLOW CONTROL VALVE” occurs in the 
RESOLUTION text. While it might be possible to extend the search for these peripheral 
modifiers to catch some of these, there is always the chance that the location does not 
refer to the part we are looking for, but to some other part. One way to deal with this 
would be to ignore or down-weight these location indicators during matching with part 
names from the target list. 
 
The resulting part name candidate string is then compared with all of the part names on 
the target list that have the same (or equivalent) head using another fuzzy matching 
algorithm. We are currently using a subset of the algorithms in SecondString [2]. 
Similarity algorithms can be divided into several different categories: string, token, and 
hybrid or two-level [3].  String-based algorithms process the entire string as a sequence of 
characters, applying one or more approaches to measure the dissimilarity, such as  
Levenshtein (edit-distance), Jaro (number and order of common characters), Jaro-Winkler 
(Jaro with added score for common initial substrings), or Jaro-Jones (which takes into 
account common number-letter substitutions, such as numeral ‘0’ and letter ‘O’).  Token-
based algorithms divide the string into tokens using one or more ‘space’ or punctuation 
characters, then compare tokens ignoring their order.  Examples include Jaccard (number 
of tokens common to both strings divided by the number of tokens in either string), TF-
IDF (cosine similarity of strings represented as vectors of Inverse “Document” Frequency 
weighted token frequencies), and the Jensen-Shannon distance (based on the Jensen-
Shannon divergence of probability distributions of tokens [4]).  Mixed or two-level 
algorithms tokenize the string, and then apply string similarity algorithms to the 
individual tokens.  Examples include Level2Jaro (the average similarity of matching tokens 
using the Jaro algorithm) and Soft TFIDF (Jaro-Winkler applied to the individual tokens 
and TF-IDF applied to the tokens above a certain similarity level). For a more complete 
description of the wide variety of string similarity algorithms that are available, see [5], [6], 
and [7]. For Jaro-Jones see [8].  The results of our initial experiments used Jaro, Jaro-Jones, 
Jaccard, Jensen-Shannon, and Level2Jaro see [9]. 
 

4. QUBIT 
In this section, we will illustrate how to support a user’s complex searches by offering a 
combination of text mining generated suggestions and knowledge compiled suggestions, 
together with information management techniques to further assist users to research high 
impact problems involving aviation systems, structures, and operations. 
 
4.1. The ad-hoc query problem. Analysts of health management systems do not always 
have the luxury of a predefined list of items on which they wish to perform standing 
queries, like the part-name problem described above.  For example, new investigations of 
aviation safety related issues usually demand users to come up with complex queries that 
have not been previously performed in short demand.  The search may involve parts and 
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systems as well as operational issues and environmental issues (such as volcano eruption).  
While users are subject matter experts who possess a high degree of engineering 
knowledge, it is very difficult for them to figure out all of the spelling variations and ad 
hoc ways of expressing the same concept or the same part or system.  The problem goes 
further.  It is not atypical for a complex query to include more than 100 conjuncts and 
disjuncts in an SQL statement.  Trying to rapidly refine queries of this level of complexity 
to get the accuracy required for the task is also a very daunting task.  QUBIT (QUery 
BuIlder Tool) is designed to solve this problem using two integrated features, which we 
describe below. 
 
4.2 Suggester. We utilize a number of methods to help the user come up with variations in 
search terms so that the users can focus on the search concept based on their engineering 
knowledge.  It should be noted that this is not the same as providing a synonym list, 
which many text databases support. There are several major differences.  First, a synonym 
list is typically obtained by having users enter the knowledge manually or by loading it 
from an existing knowledge base.  While a knowledge base can be, and is, one source of 
input for a QUBIT Suggester, the goal is to use text mining techniques wherever it makes 
sense to extract knowledge from the data and minimize the manual work.  Secondly, while 
it is possible for a user to edit the synonym list, a text database is not designed to allow the 
user to select or reject entries based on the goal of the search or the nature of the data 
being analyzed.  In contrast, by design our suggester provides multiple suggestions for the 
same term.  The user has the option of choosing what makes sense in the current search 
context. 
 
Some of major methods a suggester may employ are discussed below.  In all cases except 
the knowledge base, the text collection to be searched will be used as sample data for the 
Suggester to extract suggestions.  Depending on the size of the complete set of data, and 
the processing speed required to make the suggesting process interactive, the whole data 
set or a subset of it will be used as the sample data for this purpose.  Typically, more than 
one term is used in a search.  The Suggester will make suggestions for each search term.  It 
is also possible to have a multiple word search term (e.g. ‘main landing gear’) and the 
Suggester will treat this as a single term. Figures 1 and 2 show two possible incarnations of 
the Suggester illustrating some of the functions a Suggester might perform. 
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Figure 1. QUBIT Suggester, Sample Version 1 

 

Figure 2. QUBIT Suggester, Sample Version 2 

 

2011 Conference on Intelligent Data Understanding 24



4.2.1 Finding terms with a high co-occurrence with the search term.  The Suggester 
processes the sample data and displays a list of terms that co-occur with the search term, 
along with frequency counts, (depicted under the “Associated Words” column in Figure 1). 
Given a list of particular words (e.g. verbs), instances of those associated with the target 
term can also be shown, (shown in the “Associated Verbs” column in Figure 1).  Depending 
on the data and the application, three more parameters can be set to control this.  (a) A 
proximity window can be set so that, for example, only words that are no more than five 
words away from the search term are returned.  This will allow the suggester to only 
return co-occurring terms near the search term and therefore more likely to be related to 
the search term.  As a special case, by setting the window to be one, only terms 
immediately adjacent to the search term will be returned.  (b) The directionality of the 
window can be controlled, so that only co-occurring terms to the left or to the right of the 
search term are returned.  Of course, this can be combined with a proximity window. 
Based on the syntax of English, the terms immediate to the left of a search term which is a 
noun will tend to be modifiers of the search term.   (c) Finally, a frequency threshold can 
be set to limit the co-occurring terms to be displayed to the user to those with at least a 
certain frequency.  This can be used to prevent the Suggester from returning random 
examples.  The Suggester ranks the results by frequency and displays them to the user 
with a count next to each co-occurring term. 
 
4.2.2 Using fuzzy string matching algorithms to generate a potential match. 
The Suggester can use string matching algorithms, such as those described in the P-
MATCH section, to generate terms similar to the search term, (as depicted in- the “Fuzzy 
Match” column in Figure 1). Parameters like those discussed under P-MATCH can be 
employed.  These include the type of string matching algorithm to use, a similarity 
threshold, or the maximum number of results to be returned by the string matching 
algorithms.  The Suggester can have an option to display the similarity measure or the 
rank of the results returned. 
 
4.2.3 Using regular expressions to generate potential matches.  Some analysis tools allow 
user to use regular expressions to identify additional search terms [10].  However, , this is a 
very daunting task that is hard for subject matter experts to take on. The Suggester takes a 
different approach.  It automatically generates certain regular expressions for each search 
term and finds matches in the sample data to display to the user.  This is the most 
powerful way to deal with words fused together by error, which is very typical in noisy text 
data sets.  The Suggester can identify all “words” in the sample data beginning or ending 
with the search term, or containing it in the middle, without any space in between (as 
shown in the columns “Begins With”, “Ends With”, and “Contains” in Figure 1). 
Alternatively, the Suggester might just match all words in any or all of these categories, as 
shown in the “Wild Cards” column in Figure 2. Similarly, the suggester can return 
examples of words with a space arbitrarily inserted into them, which frequently occurs in 
the data (possibly as a result of the data being moved between data entry systems and data 
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storage systems).  The suggester can also make a regular expression substituting the letter 
“l” with the numeral “1”, if the letter “l” occurs in the search term, and similarly the letter 
“o” with the numeral “0”.  There are many other possibilities here. For example, the 
suggester can replace the ending of the word with a wild card, because words are 
frequently abbreviated in ad hoc ways. Alternatively, regular expressions can be used to 
search for words that are missing one or more vowels, since that is another common 
means of abbreviating.  The power of the Suggester here is to allow users to benefit from 
the use of regular expressions, without expecting them to construct regular expressions 
themselves. 
 
4.2.4 Using latent semantic analysis or other methods to generate terms which are 
semantically or topically related.  The Suggester can use latent semantic analysis [11], for 
example TRUST [12], to generate terms highly correlated to the search term using the 
sample data.  Semantically highly related terms can be identified using this method or 
similar text mining methods.  For example, it might find words that can occasionally be 
used in place of each other (i.e. synonyms or near synonyms or words that are otherwise 
closely related semantically but not in terms of spelling) such as “blower” and “fan”, 
“circuitboard” and “motherboard”, or “wiring” and “harness”, if they are used sufficiently 
frequently and in similar contexts. 
 
4.2.5 Using a knowledge base.  The Suggester can use any knowledge base that is available.  
This includes what a text database manager may return as a suggestion for a search term.  
Typically, this is a good method to handle acronyms as well as true synonyms that do not 
look anything like the original term, both of which are not always easy to identify with the 
above methods. We are using synonym and acronym lists such as those produced by FAA-
ASIAS as well as a Boeing internal thesaurus and acronym list. 
 
4.2.6 Using suggestions entered by peers.  The Suggester can also allow users to use terms 
that have been entered by their peers using the system. There is an option for a user to 
enter a variant of a term that they know of or have discovered in their search of the data 
but that has not been suggested by the system. The system will then provide this as a peer 
generated suggestion to other users, as shown under “Suggestions (Peer Generated)” in 
Figure 2. This provides a way for the system to let users leverage the expertise and 
experience of their peers. 
 
4.3 Query Builder.  Users in this domain rarely search with just one term.  After using the 
Suggester to determine which terms best express the concepts they are interested in, the 
user can now concentrate on constructing the actual query based on these concepts.  At 
this point, each concept will consist of a disjunction of terms.  Depending on the 
application domain, there may be an advantage to further categorizing the search 
concepts.  For example, in an application for fix effectiveness, the user often wants to 
organize the concepts into the following categories: part (or system), the condition of the 
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part, the action taken in fixing the problem, and the result of the fix.  In other 
applications, the search may be less structured and the system would offer a more flexible 
way to organize the concepts.  Either way, the users can now put these concepts into 
boxes representing different conjuncts of their query and possibly one or more negative 
concepts which, if found, would exclude a record from being returned. Note that if two 
concepts are placed in the same conjunct box (depicted as a green box in Figure 3), the 
system will treat this as a disjunct of those two concepts. For example, the query expressed 
in Figure 3 is: 

“engine AND takeoff AND (aborted OR reject) AND NOT shutdown” 
where each of “engine”, “takeoff” etc. are concepts consisting of a disjunction of terms, 
typically synonyms, abbreviations, acronyms, misspellings etc.  The system will then 
generate a complex machine executable query based on the user’s selections.  The user has 
the option of editing the generated complex search, though this is not typically done. 
 

 
Figure 3. QUBIT Query Builder 

 
The Query Builder provides a GUI to help the user formulate her query in a form that is 
inspired by conjunctive normal form (though not exactly the same). While conjunctive 
normal form is a classic concept in computer science, to the best of our knowledge, it has 
only been used in very few cases to support search [13] and no one has employed it in an 
interactive system to support complex search requiring in-depth domain knowledge.  The 
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combination of Suggester and Query Builder allows the user to focus on the concept 
instead of getting lost in the details of the query syntax. 
 

5. CONCLUSION 
In the paper, we have discussed the need to exploit text data in addition to sensor and 
other numerical and categorical data in order to improve vehicle systems health 
management. We have discussed some of the most salient problems with the data, mainly 
the fact that it is extremely noisy, with frequent ad hoc abbreviations and spellings. We 
have discussed in detail P-MATCH, an approach we have developed to find mentions of 
part names in this type of data. P-MATCH illustrates how a combination of knowledge-
based natural language processing techniques in conjunction with various string matching 
algorithms, mostly numerical, can leverage the strength of both. The following 
characteristics are inspired by linguistics-based NLP: (1) Target part names are parsed into 
head nouns, core modifiers and peripheral modifiers.  (2)Based on the fact that in English 
noun phrases non-phrasal modifiers precede the head noun, our algorithm searches to the 
left of the head for modifiers to include in the candidate part name, with the data-
motivated exception that peripheral modifiers, primarily indicating location, can occur 
more freely.  (3) We use the fact that in English process descriptions, actions are typically 
described in the same temporal order as they occur in the real world (authors of 
maintenance reports never write "before we replace X, we reseated X") to determine the 
final action taken. P-MATCH also illustrates how to solve part name extraction, an 
important type of entity extraction problem with some different characteristics from 
typical person and place name extractions.  Today’s entity extraction tools with person 
names and place names as their primary focus cannot adequately deal with the special 
characteristics of specific part name matching.  While P-MATCH is applied to the airline 
industry data today, it can benefit any industry with a large number of parts and large 
amount of log data. 
 
In addition, we have also discussed QUBIT, a method of supporting interactive ad hoc 
queries that exploit and rely on the user’s domain knowledge.  We have discussed how the 
combination of the user’s domain knowledge with the use of a Suggester can be a quite 
effective and how a structured but flexible GUI can guide the user in constructing complex 
queries. 
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DATA GUIDED DISCOVERY OF DYNAMIC CLIMATE DIPOLES

JAYA KAWALE, STEFAN LIESS, ARJUN KUMAR, MICHAEL STEINBACH, AUROOP GANGULY*,
NAGIZA F. SAMATOVA**, FRED SEMAZZI**, PETER SNYDER, AND VIPIN KUMAR

Abstract. Pressure dipoles in global climate data capture recurring and persistent, large-scale

patterns of pressure and circulation anomalies that span distant geographical areas (teleconnec-
tions). In this paper, we present a novel graph based approach called shared reciprocal nearest

neighbors that considers only reciprocal positive and negative edges in the shared nearest neighbor

graph to find dipoles in pressure data. To show the utility of finding dipoles using our approach, we
show that the data driven dynamic climate indices generated from our algorithm always perform

better than static indices formed from the fixed locations used by climate scientists in terms of
capturing impact on land temperature and precipitation. Another salient point of this approach

is that it can generate a single snapshot picture of all the dipole interconnections on the globe in

a given dataset making it possible to differentiate between various climate model simulations via
data driven dipole analysis. Given the importance of teleconnections in climate and the impor-

tance of model simulations in understanding the impact of climate change, this methodology has

the potential to provide significant insights.

1. Introduction

The Earth is known to exhibit continued changes in atmospheric and ocean circulation by which
thermal energy is distributed on the surface of the Earth and which brings about changes in weather
and climate on the globe. Teleconnections are recurring long distance patterns of climate anomalies
related to each other at large distances. Such teleconnections have proven to be important for
understanding and explaining climate variability in many regions. Typically, these teleconnections
are represented by time series known as climate indices [3], which are often used in studies of
the impact of climate phenomena on temperature, precipitation, and other climate variables. For
instance, the El Niño-Southern Oscillation (ENSO) index captures sea surface temperature (SST)
variability in several locations at once; the Pacific-North American teleconnection pattern relates
to the El Niño phenomenon, which in turn enables prediction of rainfall, snowfall, droughts, or
temperature patterns with a few weeks to a few months lead time in North America. One important
class of climate indices are pressure dipoles, which are characterized by pressure anomalies of opposite
polarity appearing at two different locations at the same time.

Scientists have known of the existence of such dipoles for about a century [26, 16]. Two of the
best known pressure dipoles are the North Atlantic Oscillation (NAO) and the Southern Oscillation
(SO). NAO, which is traditionally described by the difference in anomalies in sea level pressure (SLP)
between Akyureyri in Iceland and Ponta Delgada in the Azores, captures the large-scale atmospheric
fluctuations between Greenland and Northern Europe. It was first observed in 1770-1778 [23] and
was labeled NAO in 1924 [27]. The Southern Oscillation Index (SOI) is measured as the difference in
SLP anomalies at Tahiti and Darwin, Australia and captures fluctuations in SLP around the tropical
Indo-Pacific region that correspond to the El Niño Southern Oscillation (ENSO) phenomenon [24].
These dipoles are defined by static locations but the underlying phenomenon is dynamic. Many of
the dipoles (e.g., SO, NAO) have been discovered by examining the local data at specific locations.
Such manual discovery can miss many dipoles. Ever since the satellite data became widely available
in the early 1970s, pattern analysis such as EOF analysis has been used to identify individual dipoles
and the climate indices over a limited region, such as Arctic Oscillation (AO) index [25]. However,
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there are several limitations associated with EOF and other types of eigenvector analysis; namely, it
only finds a few of the strongest signals and physical interpretation of such signals can be difficult.

In this paper, we present a novel graph based approach to discover dipoles using a Shared Recip-
rocal Nearest Neighbor(SRNN) algorithm. Our approach allows us to detect all dipoles represented
in an individual global dataset within the selected time frame and to determine their individual
strengths. It makes it possible to discover new dipoles that may not have been seen. It enables
tracking the movements of these dipoles and studying their interactions in a much more systematic
way. Another important application of global dipole analysis is in the understanding of the skill
of various General Circulation Models (GCMs) used for climate prediction. Various GCM models
exhibit variability in their predictions of various climate variables, as they use different representa-
tions of physical interactions in the climate system. Hence they often diverge in their predictions
and sometimes even offer contradicting projections of changes in various regions in response to dif-
ferent greenhouse gas emission scenarios. Our current approach provides a comprehensive view of
the dipoles on Earth and, hence, a power to test various models in terms of their ability to capture
dipoles. Despite the prevalence and importance of teleconnections in climate science and climate
related impacts, an adequate study quantifying the teleconnections in the climate models is still
lacking. Similarities or differences in dynamic dipole structure can offer valuable insights to climate
scientists on model performance, which further aids in assessing reliability of climate prediction
simulations.

1.1. Related Work and Motivation. Steinbach et al. [18, 19, 20] showed the utility of using
Shared Nearest Neighbor(SNN) algorithm to find known climate indices. At first, a climate graph
was constructed in which each node represents a region of the Earth and an edge between a pair of
nodes represents pairwise correlation between the anomaly time series of the corresponding regions.
The clusters were found in the climate graph using SNN and some of the centroid of the clusters
corresponded to known climate indices. Further some pairs of discovered clusters also showed high
correlation with many SLP based climate indices defined as dipoles. Other researchers, including
Tsonis et al. [22], Donges et al. [6] and Steinhaeuser et al. [21], studied the behavior of climate
graphs as complex networks and showed correspondence between features in climate graph and
major teleconnection patterns such as NAO.

Kawale et al. [12] formally defined the notion of a dipole in the context of a climate graph
and presented a dipole detection algorithm that focused on the negative correlations in contrast to
the previous approaches that either used positive[18] or absolute value correlations[22, 6, 21]. The
approach also showed better correlation with the static indices and area-weighted impact on the
land anomalies as compared to [18, 19, 20]. Kawale et al. noted that many more positive edges
than negative edges exist in the climate graphs and most of these positive edges are uninteresting,
as they are between nearby regions and thus primarily due to spatial autocorrelation. In contrast,
every significant negative correlation represents a potentially interesting teleconnection. Negatively
weighted, or simply negative, edges in the climate network can be crucial for finding dipoles, as
the dipole regions, by definition, have opposite polarity anomalies. The approach was based upon
picking up the most negative edge in the complete graph and building regions around it so that the
two regions are negatively connected across each other but within them they are positively connected
to each other. The approach then iteratively removed the edges of the dipole found from the climate
network to find dipoles in the data.

There are several shortcomings with the iterative algorithm in [12]. First, it is computationally
expensive, as it works in edge space. Figure 1 shows the distribution of negative edges in the
NCEP/NCAR reanalysis data. At a 2.5 degree resolution, there are about 10000 nodes and 55
million edges. Out of them, there are about 1 million edges with edge weights below -0.4. 1 If we
consider a higher threshold, there will be fewer negative edges but we may miss many dipoles. Some

1With a finer 0.5 degree resolution, the number of nodes increases 25 times and the number of edges increases even

further.
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Figure 1. Degree plot of the Negative edges around the globe.

dipoles are inherently weaker in nature as compared to the others. For example, the SOI dipole
is much weaker than the AO dipole and most of the negative edges spanning SOI regions have
correlation much weaker than the -0.4 threshold used to limit the number of edges2 Our proposed
approach as does simultaneous clustering of nodes instead of iteratively removing edges and that
significantly brings down the amount of computation. Second, the number of candidate dipoles
generated by the algorithm in [12] is enormous, as we only remove the edges from the climate
network that have already been included in dipoles discovered in previous iterations. This results
in many surrogate dipoles for a single dipole. Third, the algorithm uses various parameters. There
were four parameters in the algorithm. Our current approach has only a single parameter K.

1.2. Our Contribution. The main contributions of our paper are as follows:

(1) We present a novel graph based approach to find dipoles in any spatio-temporal data that
overcomes the shortcomings of the previous approaches [18, 12].

(2) Our approach allows us to have a single snapshot of all the dipoles on the globe. This was
not possible using the previous best approach[12]. The new approach enables us to discover
new dipoles and comprehensively study the behavior, interaction, and movement of various
dipoles in a more precise manner.

(3) We show an application of dipole analysis to understand the differences between GCMs
which are used for climate change prediction.

2. Background and Data Preliminaries

2.1. Dataset. We use sea level pressure (SLP) data from the NCEP/NCAR Reanalysis project
as well as from the output of the GCMs. SLP is used to find the dipoles because most of the
important climate indices are based upon pressure variability. The NCEP/NCAR reanalysis project
is a gridded dataset of 2.5 degree resolution for all locations on the Earth created using a mix of
observations and interpolations to have data for all the grid points on the Earth. The data spans
1948—present and there are 10512 grid points in the 2.5 degree resolution data. We use monthly
mean values for the 60 years of data (corresponding to 720 monthly values). The NCEP/NCAR
reanalysis is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA [11], available for
public download at [4].

We use simulation output data from six of the more than 20 general circulation models (GCMs)
from the Fourth Assessment Report (AR4) of the IPCC [15]. These models produce large-scale,

2In order to find such weaker dipoles, in [12] data smoothing was necessary as a preprocessing step which adds another
parameter - the degree of smoothing to be used. In contrast, our proposed approach is able to find all the dipoles

using the raw data without any smoothing.
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mainly physics-based simulations of the coupled atmosphere/ocean system for understanding the
climate and projecting climate changes. Complex climate model simulations are run by about
20 laboratories across the world to make predictions of anticipated future changes in climate and
to inform the Intergovernmental Panel on Climate Change (IPCC) [15]. Compared to weather
forecast models, which are used for forecasts up to 10 days, these GCMs are designed to make stable
projections over many decades or even centuries. GCMs might therefore not capture individual
weather events and dynamic oscillations, but only very large-scale patterns and the overall state of
the global climate. GCMs predict a global temperature increase over the next century in response to
increased greenhouse gas concentration in the atmosphere [15]. In order to evaluate the overall model
skill, simulations start in a known period of the past and model results can be compared to readily
available observations for this period. This process is known as hindcast. As the model simulations
continue into periods beyond present time, where no observations are available yet, the results are
known as forecast. A list of the six GCM models used in our study is as follows - CCCMA CGCM 3.1
(Canadian Centre for Climate Modelling and Analysis) , GISS Model E-H (NASA Goddard Institute
for Space Studies), CSIRO 3.0 (Commonwealth Scientific and Industrial Research Organisation) ,
GFDL 2.1 (Geophysical Fluid Dynamics Laboratory), BCCR BCM2.0 (Bjerknes Centre for Climate
Research) and UKMO HadCM3 (Hadley Centre for Climate Prediction and Research).

2.2. Seasonality Removal. Most of the data in Earth Science is associated with a strong season-
ality due to the Earth’s revolution. The seasonality forms the strongest signal and it masks out
other signals in the data. In order to take care of the seasonality, we construct anomaly time series
from the raw data by removing the monthly mean values of the data. This is done as follows:

µm =
1

end− start+ 1

end∑
y=start

xy(m),∀m∈{1..12}

xy(m) = xy(m)− µm,∀y∈{1948..2009}
In this equation, start and end represent the start and end years to consider for the mean and define
the base for computing the mean for subtraction (in our case 1948 and 2009). µm is the mean of the
month m and xy(m) represents the value of pressure for the month m and year y. Once we remove
the monthly means, the resulting values are the anomaly time series for that location.

2.3. Network Construction . Once we get the anomaly series from the raw pressure data, we
construct a complete graph out of the data using the approach used earlier by [22, 6, 21, 18, 12] by
taking the pairwise correlation between the anomaly time series of all pairs of location on the Earth.
The nodes in the graph represent locations on the Earth and the edges represent the correlation
between the anomaly timeseries of the two locations on the Earth.

2.4. Notation. We represent the undirected weighted graph asG = (V,E), where V = {V1, V2, ..., VN}
represent the N (= |V |) vertices in the graph and E is a N X N matrix in which cell Ei,j ,
1 ≤ i, j ≤ N , indicates the edge weight between vertices Vi and Vj . For every vertex Vi the set
Si = {Vi1 , Vi2 , ...., ViN−1

}, where i1, i2, ...., iN−1 is a permutation of the set {1, 2, ..., N}\ i, such that,

Ei,i1 ≥ Ei,i2 ≥ ... ≥ Ei,iN−1
. LetKNN+

i = {Vi1 , Vi2 , ...., ViK} andKNN−i = {ViN−K
, ViN−K+1

, ...., ViN−1
}.

The edges from Vi to nodes in KNNi are referred to as extremal edges.

3. Our Approach

Dipoles are defined as a pair of regions such that locations within each region are highly positively
correlated with each other and locations across these regions are negatively correlated to each other.
To find dipoles we use a clustering approach that groups together locations on the globe that
are similar in terms of i) the locations to which they are most strongly negatively correlated and
ii) locations to which they are positively correlated. This first requirement is motivated by the
centrality of negative correlation in the definition of dipole, while the second helps to produce
spatially contiguous clusters since nearby locations tend to have positive correlations. These clusters
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can serve as the ends of dipoles and the set of all possible pairs are further evaluated to yield
candidate dipoles. Since regions involving dipoles can be of different size, shapes and strength, we
use a clustering scheme based on the shared nearest neighbor concept that is particularly effective in
addressing such requirements. In this section, we define our approach based upon shared reciprocal
neighbors to find the dipoles in climate data.

We model the climate data as an undirected weighted graph GC = (V C , EC), where V C is the
set of nodes representing grid locations on the Earth and EC is the set of undirected edges between
these locations. The edge weight represents the correlation between the anomaly time series of
the locations, such that, positive edge weight between two locations indicate that they experience
a similar climatic phenomenon and negative edge weight indicates that they exhibit an opposite
climatic phenomenon. Our algorithm to compute dipoles consists of four major steps, mentioned as
follows:

• Step 1: Construction of reciprocal graph GR from the climate data graph GC . This involves
forming the list of k nearest positive and negative neighbors of each object using the original
similarity measure, where k is a parameter chosen by the user and considering only the edges
that are reciprocal, i.e. which lie on each other’s nearest neighbor list.
• Step 2: Construction of Shared nearest neighbor graph (GSNN− and GSNN+). This is done

by redefining the similarity of each pair of objects in terms of the number of their common
(shared) nearest reciprocal neighbors.
• Step 3: Merging of GSNN− and GSNN+ to construct GSRNN graph.
• Step 4: Finding dipoles using density based clustering on GSRNN .

The further details of the algorithm are mentioned as follows.

3.1. STEP 1: Construction of Reciprocal Graph. We begin by considering the original graph
GC = (V C , EC) as described in Section 2.3. We construct the reciprocal graph GR = (V C , ER),
where ER ⊆ EC as follows:

ER
i,j =


1 if V C

i ∈ KNN
+
j ∧ V C

j ∈ KNN
+
i

−1 if V C
i ∈ KNN

−
j ∧ V C

j ∈ KNN
−
i

0 otherwise

(1)

The main idea behind reciprocal is to pick the K highest positively and negatively correlated locations
(extremal set) corresponding to a given location and then consider an edge between two locations
if they appear in each other’s extremal set. From the definition of dipoles, we know that any two
regions that actually form dipoles would be in each other’s negative extremal set and the nodes
within a region would be in their positive extremal set. The benefits of computing the reciprocal
graph is manifold: Firstly, it reduces the size of the original graph drastically (asymptotic upper
bound of reduction is θ(N/K) but in practice it is much more); Secondly, it filters noise (such as
anomalous locations or regions, weakly correlated locations).

Corollary 3.1. The graph GR achieves θ(N/K) reduction in the number of edges over GC . This
is easy to see. Since every node in GR has at most 2 ∗K neighbors, the number of edges in GR are
θ(N ∗K). The number of edges in GC are θ(N ∗N).

Note that building the reciprocal graph is essential to eliminate spurious inter-connections between
the locations. The concept of reciprocity holds more importance in negative correlations than in
positive correlations as in spatial data, due to autocorrelation, nearby objects are very similar and
hence reciprocity exists by nature in positive correlations. But for negative correlations, reciprocity
is much more meaningful and helps in weeding out spurious negative correlations. Consider the
location Tahiti which is a part of the SO dipole. The KNN− and the reciprocal edges coming out
from Tahiti are shown in the figure 2. From the figure, we see that Tahiti has many edges going to
the North pole in the KNN−, however only the ones going to Darwin in Australia survive in the
reciprocal graph.
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Figure 2. All KNN− and only reciprocal edges from Tahiti using K=50

3.2. STEP 2: Construction of Shared Nearest Neighbor graph (GSNN− and GSNN+).
The reciprocal graph GR retains the edges which are mutually extreme (highly positive or negative)
between all the location pairs. GR essentially captures the dipole regions and their inter-connections
yet the extraction of these regions require us to cluster graph nodes into set of regions. Additionally,
clustering helps us in identifying spurious regions that result due to a small number of spurious
extremal edges (making GR robust to any choice of K << N). We propose a variant of SNN
algorithm [18] for clustering the reciprocal graph. The main idea of SNN algorithm is to form
groups based on how many shared neighbors two nodes have in the graph. It is important to note
that the SNN algorithm alone could not extract the most precise dipoles, as suggested by prior
work [12]. This motivates us to propose the following variant of SNN algorithm. We construct
two graphs GSNN+ = (V C , ESNN+) and GSNN− = (V C , ESNN−) by running SNN algorithm on
positive and negative edges of GR, respectively. More formally, the edge weights of the two graphs
are estimated as follows:

(2) E
SNN+

i,j = |{k : V C
k ∈ V C ∧ ER

i,k = 1} ∩ {k′ : V C
k′ ∈ V C ∧ ER

i,k′ = 1}|

(3) E
SNN−
i,j = |{k : V C

k ∈ V C ∧ ER
i,k = −1} ∩ {k′ : V C

k′ ∈ V C ∧ ER
i,k′ = −1}|

Equations 2 and 3 estimate the number of shared neighbors two nodes have and considers the
number of shared neighbors as the edge weight. The motivation behind two separate graph is that
since a node can have two types of neighbors in GR; those with +1 edge weights and others with −1
edge weight. As a result, these neighbors need to be counted separately. It is crucial to treat the
two types of edges separately because otherwise a single application of SNN algorithm would allow
locations that are close to one of the dipole regions to have significant edge weight even when they do
not participate in the dipole phenomenon. The next step in which we combine the above two graphs
makes it clear why a single application of SNN would not yield qualitatively and quantitatively good
dipoles. In equation 2 and 3, we simply count the number of shared neighbors between all location
pairs. Instead, we can also compute a weighted sum, where the weights take into account the ranks
of the shared nearest neighbors from the two lists (see [10]). This idea allows us to compute the
edge weight as a weighted sum of the reciprocal links shared between the nearest neighbor list of the
two nodes. The weight is computed by taking the mean of the ranked order of the reciprocal links
in the two neighbor lists. The weighted version performs slightly better than the counting version
and we use it throughout to present our results.

Overall, nodes with high edge weights in GSNN+ indicate two things. Firstly, the two locations,
corresponding to the nodes, share positive correlation in their climate and this correlation is high
for both the nodes (guaranteed by GR). Secondly, these nodes are part of a cluster where this
positive climate phenomenon is maximal (counting of positive neighbors, equation 2). In practice,
this cluster corresponds to spatially co-located places on Earth. Similarly, GSNN− gives us a sense
of which negative regions these nodes associate with. It is possible for two nodes to have high edge
weight in one graph and yet a low or 0 edge weight in other graph; forming the basis of the next
step of our algorithm.

6

2011 Conference on Intelligent Data Understanding 35

TOSHIBA
Pencil



Figure 3. Dipoles discovered using our algorithm for K = 25, 100 (density plot of
sum edge weight of nodes in GSRNN ). The red regions represent the regions of high
density and the blue regions represent regions of low density.

3.3. STEP 3: Merging of GSNN− and GSNN+ to construct GSRNN graph. The two graphs
GSNN+ and GSNN− form graph components or cliques with high inter clustering coefficient than
intra clustering coefficient. It is possible for two nodes to have high edge weight in one graph yet a
very low edge weight in other. To illustrate this consider two geographically close points; one inside
one end of a dipole (say x) and other outside it (say y). Indeed, x and y would share high positive
correlation on climate variables (such as air pressure, temperature) due to spatial autocorrelation.

As a result it is possible for the two nodes to have moderate to high E
SNN+
x,y . On the other hand,

the point y would not have very high negative correlation with the other end of the dipole region
corresponding to x, as it is not a part of the dipole. It is also possible that two regions have a

high edge weight E
SNN−
x,y and a low edge weight E

SNN+
x,y which indicates that the two locations are

spatially distant and cannot be a part of the same end of the dipole. Hence a single application of
SNN in step 2 does not yield good results (because then both point x and y are claimed to be part
of the dipole region). The example presented above presents an intuitive justification of our merging
criteria: multiply the edge weight of GSNN− and GSNN+ to form GSRNN = (V C , ESRNN ). More
formally,

(4) ESRNN
i,j = E

SNN−
i,j ∗ ESNN+

i,j

Note that the only parameter that our algorithm uses is K (defined in Section 3.1) to compute the
extremal edges. A large choice of K would result in a lot of spurious connections, where a small
choice of K would surface only the most significant regions within the dipoles. The merging criteria
chosen above makes the dipole discovery less sensitive to the choice of K (and robust for moderate
values of K). The robustness can be seen in Figure 3 which shows that with increasing the value of
K only increases the size of dipole regions and yet it does not surface any spurious region claiming
it to be dipole. Steps 1, 2 and 3 of the algorithm are illustrated by the example presented in figure
4.

3.4. STEP 4: Finding dipoles using density based clustering on GSRNN . Figure 3 shows
the density plot of locations, where density for a location is defined as the weighted degree (sum of
edge weights) of that location. From the visual inspection of figure 3, it is clear that the spatially
contiguous red regions form a single dipole region. These regions can be extracted using a spatial
clustering algorithm over the latitude, longitude and the intensity of the locations. We propose
a method which is motivated from the Denclue algorithm [9], which finds clusters in data based
upon local density attractors. Specifically, we use latitude and longitude to determine the local
attractor (point with the highest density) in the neighborhood of locations. The algorithm proceeds
by attaching every node in the graph to its local attractor by moving in the direction of increase in
density. In the next step, we hierarchically merge attractors that are very close and have a positive
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Figure 4. Illustration of Steps 1,2 and 3: Blue edges are reciprocal negative and
red edges are reciprocal positive. First box on the left shows the original reciprocal
graph. Second box shows GSNN− . Note that edges A, B and C get connected as
they share negative neighbors P, Q & R. Also the node X gets connected to A, B
and C since X shares P and Q with them. Third box has GSNN+ and all the nearby
nodes get connected. Fourth box shows GSRNN with overall similarity defined as
the product of the two. This helps in separating node X from nodes A, B & C.

correlation in order to remove extraneous attractors. The details of the algorithm are presented in
Algorithm 1.

The locations that remain in A form the cluster centers and they become the attractor of all
the points in their neighborhood (as assigned in LA in algorithm 1). The points that are attracted
to a given cluster center are part of the same cluster. Next we compute the correlation of every
cluster pair to find the dipoles from the clusters. After this we label all the cluster pairs having a
sufficient negative correlation as a dipole, where by sufficient we mean a user provided correlation
threshold. However, the threshold does not matter as there are far fewer cluster pairs generated and
we can label all the cluster pairs having a correlation < 0 as dipoles. The significance of these cluster
pairs can later on be ranked on the basis of their strength or impact on land temperature/pressure
anomalies as we see later in the Section. 4.1.

Algorithm 1: Local attractor based clustering.

Let, DSi,j be geographical distance between locations i and j.
Let, CORRi,j be anomaly correlation between locations i and j.

Let, Di =
∑N

j=1 E
SRNN
i,j , ∀i ∈ {1, 2, ..., N} (location density).

Let, A = {1, 2, ..., N} (local attractor set - initially set to all locations on Earth).
Let LAi = i (local attractor of all nodes are set to themselves initially).
repeat

for i ∈ A do
j = argmink(DSi,k : k ∈ A ∧ k 6= i)
if DSi,j < Distance-Thresh AND CORRi,j > Correlation-Thresh then

if Di ≥ Dj then
A = A \ j {Eliminate j from attractor set as i is the attractor of j}
LAz = i,∀z ∈ {1, 2, ..., N} ∧ LAz = j

else
A = A \ i {Eliminate i from attractor set as j is the attractor of i}
LAz = j, ∀z ∈ {1, 2, ..., N} ∧ LAz = i

end if
end if

end for
until convergence {If A doesn’t change in two successive iterations, then algorithm converges}
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Figure 5. Dipoles in SLP NCEP data from 1948-1967. The color background
shows the SRNN density identifying the regions of high activity. The edges represent
the dipole connection between two regions.

3.5. Algorithm Features. The proposed algorithm runs in O(N2) space and time. Moreover, our
approach can be implemented quite efficiently. The previously known approach [12] takes more than 1
day to run and the proposed approach runs in less than 20 minutes for the NCEP/NCAR Reanalysis
SLP dataset at a 2.5◦ resolution. It further improves over the previous approaches by eliminating
spurious dipoles and filtering of noise automatically. Additionally, it has only one parameter K (and
not sensitive to its choice as well) in contrast to the previous algorithm, which had four parameters.
Additional advantages of this approach over the previous ones are that it can find weak dipoles and
it produces a much more reasonable number of candidate dipoles as shown further in Section. 4.1.

4. Experimental Evaluation

The goal of our experimental evaluation is three-fold. First, we want to show that the dipoles
generated by our approach are similar in terms of their power as compared to the ones found in
[12]. Next, we discuss the utility of a global snapshot view of the dipoles. Finally, we show how the
technique can be used to study the behavior of various GCMs and understand their predictability
for various climate change scenarios.

4.1. Evaluation of Dipoles. We construct networks from the NCEP/NCAR data using anomaly
time series for a period of 20 years with a sliding window of 5 years so as to study the gradual change
in the climate networks. Thus, for the 60 years of NCEP/NCAR data we had 9 networks spanning
20 years each. We ran the dipole detection algorithm for each of the 9 periods. Fig 5 shows the
dipole interconnections in the first 20 year periods from 1948-1967.

In order to compute the “goodness” of the dipole clusters generated, we use three measures defined
in [12]:

(1) Dipole correlation with known climate indices: Strong correlation indicates that the gen-
erated dipoles are good representatives of the known climate indices. The known climate
indices are provided by the Climate Prediction Centre’s (CPC) [1] website.

(2) Dipole strength: It is defined as the mean negative correlation of all the edges in the two
ends of the dipole. A dipole is stronger if the correlation is more negative.

(3) Dipoles’ impact on land : This allows us to finally test the utility of dipoles generated by our
approach as compared to the static ones used by climate scientists. The impact is computed
by taking the aggregate area weighted correlation of the climate index with the temperature
anomalies.
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Table 1. Correlation of our dynamic indices with known climate indices (K = 25)

Start year SRNN

SOI NAO AO WP AAO1

1948 0.9035 0.7764 0.8121 0.7290 -

1953 0.7038 0.7689 0.8177 0.7287 -

1958 0.8998 0.7716 0.8065 0.7323 -

1963 0.8895 0.7246 0.7848 0.7341 -

1968 0.9279 0.7500 0.7859 0.7581 -

1973 0.9267 0.7590 0.8400 0.7319 -

1978 0.9452 0.7403 0.7654 0.7361 -

1983 0.9400 0.6625 0.8215 0.7274 0.9193

1988 0.9437 0.7185 0.8121 0.7042 0.9277

Table 2. Strength of the dipoles (K = 25)

Start year SRNN

SOI NAO AO WP AAO1

1948 -0.2184 -0.4087 -0.4951 -0.3413 -

1953 -0.1663 -0.3804 -0.4395 -0.2814 -

1958 -0.2924 -0.4308 -0.4746 -0.3883 -

1963 -0.3275 -0.1731 -0.4189 -0.3974 -

1968 -0.3510 -0.1726 -0.4286 -0.3547 -

1973 -0.3890 -0.4458 -0.4576 -0.3293 -

1978 -0.3243 -0.3014 -0.5256 -0.3253 -

1983 -0.3582 -0.2173 -0.5667 -0.2557 -0.3578

1988 -0.2621 -0.3324 -0.5253 -0.3606 -0.3530

To test whether the right dipoles are being found using our methodology, we compute the cor-
relation of the dipoles with the static indices known by climate scientists from the CPC website[1].
Table 1 shows the correlation between the static and dynamic climate indices using K = 25 nearest
neighbors. These results are comparable to [12]. An important point to note is that even though
the AO and AAO static indices are defined by climate scientists by taking a huge region(70 degree
latitude each) doing a PCA kind of analysis, we are still able to find a region based definition for
these dipoles with a correlation > 0.85. Table 2 shows the strength of different dipoles during dif-
ferent network periods. The AO dipole is the strongest dipole in all the network periods. The SOI
dipole has a weaker strength than the NAO/AO dipoles. Note that the numbers in [12] were lower as
smoothing was used in the data. The real utiliy of data driven dipoles lies in the fact that they are
able to capture land temperature and precipitation anomalies related to these dipoles better than
the static indices used by climate scientists. In order to show the utility of our dipoles we take an
area weighted correlation of land temperature with the static and dynamic indices. Only locations
having correlation > 0.2 are considered to compute the area weighted impact and the aggregate
impact is divided by the total land area to generate a single number. We also varied the threshold
by 0, 0.1, 0.3, 0.4, etc and saw a similar difference in between the static and dynamic indices. Figure
6 shows the aggregate area weighted correlation of land temperature anomalies using the static and
dynamic NAO dipoles. The area weighted correlation of land temperature is much higher using a
dynamic index as compared to the static index even while using different values of K. Fig 7 shows
the correlation of land temperature anomalies using the static and dynamic NAO index. From the
figure, we see that both static and dynamic NAO have a similar pattern but the dynamic index
shows a much stronger correlation with land temperature anomalies. To validate that the land

1The AAO climate index data at the Climate Prediction Center is available only from 1979.
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Figure 6. Area weighted impact on land temperature using static and dynamic
NAO. The boxplot shows the spread of impact on land temperature using 100
random locations.

Figure 7. Correlation of land temperature anomalies using static and dynamic
NAO.

impact generated by our identified dipoles is not spurious, we perform a randomization test. We
randomly select 100 positively correlated time series from locations on Earth that are most likely
not a part of any dipole. We compute their impact on land temperature anomalies. The boxplot in
Figure 6 shows the spread of the impact using the 100 random locations and the blue line in the box
shows the mean of the impact using these locations. Note that static and dynamic indices have a
much stronger impact as compared to the random baseline. The dynamic index always generates a
stronger impact than the static one for different numbers of nearest neighbors K. We also get similar
results for the SOI dipole as reported in [12] and again the correlations are higher for dynamic indices
than for static ones. We are also able to show a better impact on precipitation anomalies using CRU
observational data[2] but do not report the numbers due to space constraints. The biggest advantage
of our current approach as compared to [12] is that it allows us to have a comprehensive view of the
dipoles and their interactions. Figure 5 illustrates the dipole connections in the first network, which
represents the period 1948 to 1967. The figure is generated by connecting the local attractors of all

11

2011 Conference on Intelligent Data Understanding 40

TOSHIBA
Pencil



Figure 8. NAO/AO interactions in the three periods, 1948-1967, 1968-1987, and
1988-2007.

Figure 9. GFDL and BCM Hindcast

the cluster pairs labeled as dipoles. The figure shows that the NCEP/NCAR data reproduces the
known climate patterns and indices during the first 20-year time range: the Northern Hemisphere
pattern from west to east, the Pacific/North-America Pattern (PNA; which is actually a tripole) in
the top left corner, the NAO and AO in the central top, and the West Pacific oscillation (WP) on
the top right. In the Southern Hemisphere and equatorial region, there are SOI connecting the west
Pacific warm pool and eastern Pacific with a line from the central right eastward to the right end
of the plot and showing up again in the far left to connect to the eastern Pacific, the South Pacific
Convergence Zone to the East of Australia crossing the map to the right and showing up on the left
end in the southern Pacific, the South Atlantic Convergence Zone connecting South America and
the south Atlantic, a dipole over Africa that relates local rainfall anomalies to ENSO [8], and the
Indian Ocean Dipole (IOD) in the southern Indian Ocean. The four peaks over the Southern Ocean
are due to high and low pressure systems related to the Antarctic Circumpolar Current.

Our approach’s ability to detect and visualize all the dipoles on the globe as in Figure 5 empowers
our understanding of climate data in many ways. For example, Figure 8 illustrates dynamic changes
in the interactions of the NAO/AO dipoles in the NCEP data when compared for different time
periods, 1948-1967, 1968-1987, and 1988-2007.

Moreover, using a technique like this one, we can explore the data from the various model simu-
lations, and quantify the goodness of the models using the simulations as we see further in the next
subsection 4.2.

4.2. Understanding IPCC AR4 Models. Our SRNN based dipole detection algorithm allows us
the ability to compare the performance of the different models by looking at their dipole networks.
We detected dipoles in the data from various IPCC climate models using both backward (hindcast)
and forward model predictions (forecast or projections). The hindcast and projections data generally
cover the period of 1850—2000 and 2000—2100, respectively. We used the hindcast 1948—2000 data
to have an overlap with the NCEP data. For model projections, the data for various climate change
scenarios is available. We used the IPCC scenario A1B that incorporates IPCC’s moderate case
assumption for increase in greenhouse gases and thus predicts the moderate amount of warming
amongst all scenarios. For the hindcast data, we constructed seven networks for the first seven
20-year periods investigated in the NCEP/NCAR reanalysis. For the 100 years of projection data,
we constructed five networks of 20 years without overlap.
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Figure 10. GFDL and BCM Forecast

Table 3. Strength of the NAO dipole in the 20 year networks in Hindcast data

Network Start year CCCMA GISS CSIRO GFDL BCM2.0 HadCM3

1 1948 -0.484 -0.4676 -0.4744 -0.4251 -0.55 -0.474

2 1953 -0.4962 -0.4667 -0.4605 -0.4274 -0.5719 -0.4817

3 1958 -0.5187 -0.4193 -0.4441 -0.4472 -0.5465 -0.5149

4 1963 -0.5304 -0.4244 -0.3962 -0.294 -0.5642 -0.4785

5 1968 -0.5191 -0.4263 -0.4056 -0.4263 -0.5296 -0.4558

6 1973 -0.4887 -0.4135 -0.2551 -0.4524 -0.4697 -0.4335

7 1978 -0.4456 -0.447 -0.2621 -0.5301 -0.5193 -0.4593

One way to quantify the output of the climate models is to look at the strength of the dipoles. We
study the strength of the two major dipoles NAO and SOI in selected model simulations. From the
several cluster pairs declared as dipoles our goal is to identify NAO and SOI. Hence, for every model
simulation, we created a static index based on the grid points over Iceland and the Azores for NAO
and over Tahiti and Darwin for SOI as per the way they are defined. After that, we picked up the
dipole cluster pair that had the highest correlation with the static index for the two static indices
and labeled them as NAO/SOI respectively. Tables 3 and 4 show the strength of the NAO dipole in
the various models in the hindcast and forecast modes. The table shows that all models reproduce
a NAO in hindcast mode, and the dipole strength in NAO forecast mode stays within the range of
the hindcasts. Tables 5 and 6 show the strength of the SOI dipole in the hindcast and the forecast
models respectively. The Table has only 3 columns as SOI as our algorithm detects SOI in only
3 of the 6 models. This result is consistent with the findings that models differ in their capability
to represent different climate indices [14],[13]. The ability to construct detailed spatio-temporal
characteristics of dipoles in simulation data can provide great insights on which models will perform
better regionally and can be of huge benefit to the modeling community. In the following we discuss
global dipole structure of two of the models as shown in Fig . 9.

Fig. 9 shows the dipole connections for hindcast period 1968-1987 for GFDL2.1 and BCM2.0,
respectively using a threshold of -0.2 to show the edges. GFDL2.1 shows strong SOI connections
from the west Pacific warm pool in the center right of the figure toward the right end of the figure
and then showing up again at the far left to make a connection to the equatorial central and eastern
Pacific. The AAO in the south Pacific and the Antarctic Circumpolar Current across the Southern
Ocean are also well defined. In the north, PNA in the top left and NAO and AO in the top center
can be detected. WP is seen in the top right over the west Pacific. The BCM2.0 simulation shows
a strong pattern over Africa and over the Indian Ocean to the right (IOD) that is visible but weaker
in the NCEP reanalysis (Fig. 5). The pattern in the north roughly resembles PNA, NAO, AO, and
WP in GFDL 2.1, and the pattern in the south show a weaker Antarctic Circumpolar Current.

Shukla et. al[17] suggested that the SOI might not necessarily persist in a much warmer climate
and instead change to a permanent state in which the SOI dipole is in a locked phase. This permanent
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Table 4. Strength of the NAO dipole in Forecast data scenario A1B

Network Start year CCCMA GISS CSIRO GFDL BCM2.0 HadCM3

1 2000 -0.4525 -0.405 -0.3529 -0.2753 -0.5141 -0.3844

2 2020 -0.4603 -0.4152 -0.4253 -0.5108 -0.5444 -0.4557

3 2040 -0.5308 -0.4611 -0.348 -0.4883 -0.5614 -0.4874

4 2060 -0.4542 -0.461 -0.3913 -0.443 -0.4493 -0.538

5 2080 -0.4921 -0.4 -0.4195 -0.3488 -0.5332 -0.4047

Table 5. Strength of the SOI
dipole in the 20 year networks in
hindcast data

Net Year CSIRO GFDL HadCM3

1 1948 -0.5421 -0.443 -0.2651

2 1953 -0.5122 -0.4603 -0.2835

3 1958 -0.6208 -0.5091 -0.3055

4 1963 -0.568 -0.5132 -0.3172

5 1968 -0.3826 -0.5482 -0.4233

6 1973 -0.3296 -0.5021 -0.4671

7 1978 -0.3638 -0.5186 -0.3187

Table 6. Strength of the SOI
dipole in projection data in sce-
nario A1B

Net Year CSIRO GFDL HadCM3

1 2000 -0.3401 -0.5856 -0.302

2 2020 -0.3559 -0.5412 -0.3278

3 2040 -0.3181 -0.3303 -0.4237

4 2060 -0.3338 -0.4015 -0.3598

5 2080 -0.2856 -0.3563 -0.385

so called El Niño condition produces higher SLP in the eastern Pacific and lower in the western Pacific
in a warmer climate based on regional terrestrial paleo-climatic data and general circulation model
studies. Our results on the forecast mode show a trend toward reduced SOI strength for the climate
models (Table. 6). Further, from the fig 10 we can see the reduced activity of dipoles in the tropics
as represented by much less connections than in the results for the present time (Fig.9), e.g. dipoles
over Africa and equatorial South America in the centers of Fig. 10 are reduced in the forecast
scenario. On the other hand, dipole structures over the mid-latitudes and Arctic regions in the
upper and lower parts of these figures are enhanced indicating the stronger dipole activity in these
regions. For NAO, our results show that forecast models capture NAO characteristics for the next
century. Knowledge like this can inform the climate modeling community about the shortcomings
of the models.

5. Discussion and Conclusion

In this paper, we presented a novel systematic shared nearest neighbor based approach to find
dipoles in global climate data. The approach is able to find dipoles as accurately as presented in
[12] with far fewer parameters and candidate dipoles generated. Furthermore, we can study the
interconnections between dipoles and show possible interactions between atmospheric oscillations.
Knowledge of these interactions is particularly important for predicting climate extreme events. For
example, while the cold winter over Europe in 2010 could be largely explained by NAO and other
local indices [5], the cold winter over North America at the same time is largely due to a combination
of NAO and ENSO [7], thus knowledge of patterns that span multiple dipoles can be useful. Using
this approach we can study the changes in their dynamics and structure in a much more systematic
manner.

Further, our approach gives us an alternative method to measure climate model performance.
Since the dipoles or teleconnections define the heartbeat of a climate system, we can measure how well
the dipoles are represented in the different model simulations. From our preliminary investigation,
we see that different models vary in their ability to capture dipoles. Indeed, some models seem
to miss some dipoles completely. Climate predictions so far mostly rely on taking averages of the
models and since dipoles are prevalent and important in climate data as they are known to be linked
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to climate variability across the globe, this result is very important in assessing the goodness of
a climate model and the value of making regional predictions from the model. Further, this can
provide insights into the creation of ensembles of the various models for further climate predictions.

Acknowledgments

This work was supported by NSF grants IIS-0905581 and IIS-1029771. Access to computing
facilities was provided by the University of Minnesota Supercomputing Institute.

References

[1] Climate prediction centre, http://www.cpc.ncep.noaa.gov/.

[2] Climatic research unit, http://www.cru.uea.ac.uk/.
[3] http://www.cgd.ucar.edu/cas/catalog/climind/.

[4] http://www.esrl.noaa.gov/psd/data/.

[5] J. Cattiaux, R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron. Winter 2010 in Europe: A
cold extreme in a warming climate. Geophysical Research Letters, 37(20):L20704, 2010.

[6] J. Donges, Y. Zou, N. Marwan, and J. Kurths. Complex networks in climate dynamics. The European Physical

Journal-Special Topics, 174(1):157–179, 2009.
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INCORPORATING NATURAL VARIATION INTO TIME SERIES-BASED

LAND COVER CHANGE IDENTIFICATION

VARUN MITHAL*, ASHISH GARG*, IVAN BRUGERE*, SHYAM BORIAH*, VIPIN KUMAR*,
MICHAEL STEINBACH*, CHRISTOPHER POTTER**, AND STEVEN KLOOSTER**

Abstract. The ability to monitor forest related change events like forest fires, deforestation for
agriculture intensification, and logging is critical for effective forest management. Time series re-

mote sensing data sets such as MODIS Enhanced Vegetation Index (EVI) can be used to identify

these changes. Most existing approaches work on small data sets spanning over a specific geo-
graphic region of a homogeneous vegetation type. Also, most of these need training samples or

require setting of parameters for each geographic region individually. These limitations make the

algorithms unscalable and restrict their global applicability. In this paper, we present a scalable
time series based change detection framework that overcomes these limitations of the existing

methods. We introduce the concept of natural variation in EVI for a given of location and in-
corporate it into the change detection paradigm. We evaluate the change events identified by our

approach using forest fire validation data in California and Canada. The results of this study

demonstrate that the inclusion of a measure of natural variability improves detection accuracy,
and makes the paradigm more robust across vegetation types and regions.

1. Introduction

Forests act as a sink of atmospheric carbon while disturbances such as fires and deforestation
cause the stored carbon to be released into the atmosphere. In addition, forests are home to many
ecosystems and these disturbances cause them severe damage. For efficient and effective management
of forest resources, reliable and quantifiable observation of forest cover changes at a global scale is
critical [18]. Some nations have allocated resources to monitor disturbances in their forests. As
an example, Brazil has developed a system for deforestation monitoring called PRODES. Regional
products such as these are infrequent because they require considerable resources. Therefore, there
is a need to develop a forest monitoring system to identify global forest disturbances.

Data collected from remote sensing instruments can be used to identify changes in forests. The
bulk of work in identifying land cover changes using remote sensing data involves image compari-
son methods [8, 16]. These methods include classifying locations using reflectance data and using
post-classification comparison to identify changes. They require training data sets for supervised
classification process. However, labeled data is available only for some regions in the world and
classifiers built using training examples from one region perform poorly if applied to another region.
Therefore, these techniques are region-specific and not globally applicable. Furthermore, the error in
classification gets compounded during change detection. In addition, several characteristics like rate
of change and the actual change date cannot be found using these image comparison based meth-
ods because these bi-temporal approaches compare snapshots between two dates and information
between those dates is not considered. On the other hand, time series-based approaches look at a
longer stretch of greater context and therefore can be utilized for providing fine grained information
about land cover dynamics that is necessary to quantitatively assess the carbon impact of land cover
changes [20]. Publicly available global time series data sets such as MODIS Enhanced Vegetation
Index (EVI) can be used to identify changes in forest cover. Hence there is increasing interest in
time series-based approaches to change detection in vegetation data [2, 4, 10, 12, 14, 15, 17, 21].

*University of Minnesota, <mithal,ashish,ivan,sboriah,kumar,steinbac>@cs.umn.edu
**NASA Ames Research Center, chris.potter@nasa.gov, sklooster@gaia.arc.nasa.gov.
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However, most of these methods have been used on small data sets spanning over a specific geo-
graphical area and comprising of a homogeneous vegetation. There is often a parameter setting
step that is fine-tuned for performance in that specific geographical region and vegetation. This is
a serious limitation that makes these algorithms difficult to apply on a global scale.

There are primarily three types of time series-based land cover change detection approaches.
Temporal segmentation methods divide the time series into homogeneuos regions and the boundary
of the segments indicate change in vegetation [4, 12]. These approaches aim to identify any change
in the vegetation type such as change from one land cover to other or changes in crops. Another
approach is to look for trends in the time series spanning over multiple years to identify gradual
decrease in vegetation [10, 23]. Such gradual changes represent forest degradation such as due to
insect infestation, long-term droughts, etc. The third approach, which is the focus of the paper,
is to identify an abrupt decrease in vegetation by predicting EVI values from a learned model for
the vegetation time series and using prediction error to identify a change [3, 6, 10, 15, 17, 21].
Roy et al. [21] use a model-based prediction scheme for identifying fires from time series data and
use this for generating the global Burned Area Product. Kucera et al. [15] use a CUSUM based
technique and model fitting to identify forest fires in Portugal. Hammer et al. [10] use a regression-
based technique to model the short and long term trends in NDVI for detecting deforestation in
pan-tropical rain forests, while Chandola and Vatsavai [6] use Gaussian Process regression and
PARASID (http://www.terra-i.org/) use a neural network for prediction. Lunetta et al. [17] use a
spatial anomaly detection method for identifying deforestation. Boriah [3] describe Yearly Delta, a
model based approach that uses mean annual EVI difference between successive years to identify
changes such as forest fires and show that it is comparable in performance to Recursive Merging
proposed in [4] which was shown in [5] to significantly outperform algorithm based on CUSUM and
the scheme proposed by Lunetta et al. [17].

Keogh et al. [13] proposed an anomaly detection approach to find discords in longer time series. If
an abrupt change occurs in a time series, the subsequence for that year will be unusual with respect
to remaining time series and therefore discord discovery can potentially be adapted for finding abrupt
changes. In our adaptation, annual discords are computed for each time series and the distance of
the discord to its nearest neighbor is considered the change score. In case of an undisturbed forest,
all annual segments are highly similar and therefore the discord score is low. For the time series in
which a fire occurs, this scheme identifies the change window accurately and flags it as a discord
giving it a relatively high discord score. However, performance is severely impacted in presence of
time series with no fire-related change but large noise or high inter-annual variations.

A global scale analysis reveals that some vegetation types are highly stable and show a small
decrease in EVI when a disturbance occurs, but this decrease can be significant compared to the
otherwise stable nature of past EVI values. On the other hand, some vegetation types show ran-
dom fluctuations in the EVI signal which occur due to atmospheric interference and various natural
sources ranging from soil conditions to variation in inter-annual temperature and precipitation.
Thus, significance of the Yearly Delta score differs based on the region and vegetation type, and
score thresholds need to be adjusted separately for different geographic regions and land cover types
to avoid too many false alarms. In this paper, we propose two time series change detection algo-
rithms that utilize the temporal structure present in the remote sensing data to incorporate natural
variability in the vegetation signal of a location in the Yearly Delta algorithm. The incorporation
of the concept of natural variation in the Yearly Delta algorithm improves the change detection
accuracy, and makes the paradigm more robust across vegetation types and regions. The evaluation
of the proposed method is done quantitatively using validation data on forest fires in California
and Yukon. We also compare performance of our algorithms against the output from Burned Area
Product, a well-known global NASA product for fire monitoring by Roy et al. [21]. The evaluation
results assert the importance of incorporating natural variability of vegetation in change detection.
In particular, the experiments illustrate the need for variability modeling if change detection is
performed on larger regions with multiple vegetation types.
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1.1. Key contributions. The key contributions of this paper are: (1) a novel, scalable framework
to identify significant abrupt changes in spatial-temporal remote sensing vegetation data sets to
address the problem of land cover change detection, (2) introducing a concept of natural variation of
EVI in the identification of changes in EVI signal, (3) a method to associate significance to observed
annual changes in EVI with respect to the natural variability of the location, and (4) a quantitative
evaluation of the performance of the proposed approach using validation data sets available for forest
fires in California and Yukon and also comparison with an existing well-known global fire monitoring
product.

1.2. Organization of the paper. We describe the data used in this study in Section 2. Section
3 presents the proposed change detection framework and the details of the proposed algorithms.
Section 4 describes the validation data and evaluation methodology for this paper. Section 5 provides
analysis of the results and Section 6 discusses the key challenges in the task of land cover monitoring,
limitations of the proposed algorithms and the future research directions.

2. Data and Preprocessing

Global remote sensing data sets are available from a variety of instruments at different spatial
resolutions as a sequence of snapshots of measurement values. In principle, the proposed algorithms
can be applied to any geospatial dataset that features regular, repeated observations, consistent
image registration and well-defined composite indicators of vegetation. In this study, we use the
Enhanced Vegetation Index (EVI), a data product derived from measurements taken by the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor on NASA’s Terra satellite and distributed
through the Land Processes Distributed Active Archive Center [1]. EVI essentially measures the
“greenness” signal (area-averaged canopy photosynthetic capacity) as a proxy for the amount of
vegetation at a particular location. MODIS data has been used to generate a continuous record of
the EVI index at spatial resolution of 250 meters from February 2000 to the present. This index is
generated at a temporal frequency of 16 days: each instance in the product is composited using the
highest quality data from 16 daily raw observations.

In this study we use MODIS EVI data for California and Yukon. The data for California is at 250
m spatial resolution and 16 day temporal resolution. A spatial mask of MODIS landcover classes
[9] was used to separate land cover categories of interest (forests, savannas and shrubs) from other
categories like agriculture and urban using the MODIS MCD12Q1. The data set DSCalifornia has
3,389,564 pixels and predominant changes include forest fires, deforestation and urban expansion.
The other dataset, DSCanada is MODIS EVI at 1km spatial resolution for Yukon Province in
Canada. The data set has 551,275 pixels with the major change type as forest fires. This data set
has significant homogeneity and no MODIS land cover mask was used. Winter months for this data
set were pre-processed to an EVI value of 0 because winters are snow-clad at this latitude and have
no vegetation response.

3. Algorithm Description

In this section, we describe the two proposed change detection algorithms to identify abrupt
decrease in vegetation such as due to forest fires and deforestation. The main intuition behind
these algorithms is that in stable forests, EVI values for future time steps tend to be similar to
previous years when accounting for seasonal variation. On the other hand, changes like fires and
deforestation are characterized by an abrupt decrease in EVI after the event. The algorithms build
a model that is used for predicting the expected EVI values for the future years. Deviation of the
future observations from the predicted value indicates a change. A measure that quantifies the
deviation of future observations from the model prediction is used to assign the change score. One
possibility is to predict the EVI for each time step, and use the prediction error as change score.
However, this method is susceptible to noise in the data and causes too many false alarms. Figure
1 has some time steps when the observed EVI is lower than usual though there is no change in the
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Figure 1. Noise in EVI data can cause false alarms.

location. A methat that only relies on one time step for change detection will falsely identify such
locations as changed. One approach to address this issue of noise susceptibility is to use the notion
of persistent decrease, and flag a time series for change only if a significant fraction of time steps
from a time window of size m exceed the threshold. This idea of persistence is used by Roy et al.
[21] in their algorithm to identify fires from daily remote sensing time series. Another approach is
to predict a more stable statistic, for example, the mean of the successive time steps over an year is
more robust to noise than deviation from prediction at a single time step. This approach is used in
the Yearly Delta algorithm discussed in [3] and [18].

In the following, we describe the Yearly Delta algorithm and its two new variations: Variability-
Aware Yearly Delta and Vegetation-Independent Yearly Delta. Our focus is to incorporate the
natural variation of EVI time series for a location in assigning the change score. This concept of
variability proposed in the paper is applicable to both approaches, Burned Area and Yearly Delta.

3.1. Yearly Delta algorithm (YD). The main intuition behind this algorithm originally presented
in Boriah [3] and also used in Mithal et al. [18] is that for the time step corresponding to the date of
abrupt change event, the difference between the annual mean EVI of the previous and following year
will be high. YD algorithm considers the previous year as the model and assigns a change score to
each time step as the difference between the mean annual EVI of the previous year and the following
year. The YD score for a location is the maximum change score across all time steps and the time
step with the maximum score is considered the time point for the change. The pixels are ranked
based on their YD score and a certain number of the top ranked pixels are considered as changes.
This algorithm works under the assumption that the pixels which have an abrupt change event will
get a higher score than those which do not have an abrupt change event because the undisturbed
pixel typically do not have an unusually large EVI decrease from one year to next. Figure 2(a) shows
a location in California with a fire occurrence. We can see an abrupt decrease in EVI value after the
fire in year 2008 that will lead to a high mean annual EVI difference and therefore a high YD score.

3.2. Variability-Aware Yearly Delta (VD). The observations in the future years vary from the
model built based on previous years due to natural variability arising from changes in weather, soil
conditions, etc. Shrub land cover shows a variety in the natural variation in their EVI signal and are
very sensitive to changes in local climate conditions of precipitation and temperature in comparison
to forests which are more resilient to such climatic changes. Thus, the mean annual EVI differences
are not expected to be always 0 for the unchanged locations. Also, this variability depends on the
location’s local geography and land cover type. The change score should reflect the significance of
the deviation with respect to the natural variation of vegetation response for that location. The
YD algorithm does not make use of information about the natural variation in EVI. The same YD

score can correspond to a significant loss of vegetation for some vegetation type or can occur due
to natural variation in others. To understand this, consider the two time series in Figure 2(a) and
2(b) that have the same YD score. Figure 2(a) corresponds to an actual change in year 2008, while
Figure 2(b) has the same YD score for year 2005 due to inter-annual natural variability that exists
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(a) EVI time series for a pixel in forest lo-
cation with YD score of 0.29 and VD score

of 0.21 for year 2008.
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(b) EVI time series for a pixel in shrub lo-
cation with YD score of 0.3 and VD score

of 0.07 for year 2005.

Figure 2. Illustrative examples to understand the power and limitations of the YD algorithm
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(a) MODIS Forests
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(b) MODIS Savannas
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Figure 3. Scatter plot of mean variability (µvar) against the YD score for different
land cover categories in California.

in shrubs. The limitation of YD to distinguish between the two types of changes illustrated by
Figure 2(a) and 2(b) motivates the need to incorporate the notion of natural variation in the change
detection paradigm. One possibility is to use the differences in EVI values in the past to model
the natural variation of a location. In this approach, each annual segment in the first k years is
considered a model and the remaining k− 1 segments are considered observed values and the mean
Manhattan distance for each of the pairs is computed to give a distribution of variability scores for
that location. A YD score that lies in this distribution is likely to occur even by random fluctuation.
So we modify the score as YD score relative to the mean of this distribution (µvar) for each location.
The new score is called the VD score and is computed as VD score = YD score - µvar

To illustrate the advantage of subtracting the µvar from YD score, we show the scatter plots of
YD score against µvar for a random sample derived from three different land cover categories in
California. Figure 3 shows the unchanged locations as blue circles and changed locations as red
circles. The vertical line in green shows the constant YD score of 0.08 and the oblique line in red
shows the constant VD score of 0.04. These scores were chosen for the two algorithms because they
gave similar number of changed events. Circles lying to the right half of these lines will have change
scores higher than the line boundary and will be detected as changes by the algorithms respectively.
Thus, the blue circles in this right half are the false positives of the algorithms. We see in Figure 3(a)
that both algorithms will correctly identify the fires on the forest land cover though after subtracting
variability we will reduce some of the errors. Figure 3(b) shows the same plot for savannas. Here
we notice that YD will make more errors as compared to VD and incorrectly label a few unchanged
locations as changed. The scatter plot for Open Shrublands is shown in Figure 3(c) and we see that
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this is a difficult category and performance of both YD and VD is poor. However, the number of
mistakes made by VD is significantly lower to those by YD. These scatter plots illustrate the utility of
modeling variability in the change score especially in the highly variable land cover types. Similarly,
in Figures 2(a) and 2(b), we see that the two locations get the same YD score, but VD is able to
incorporate the inherent variability of the locations and gives very different change scores.

Our experiments show that any value for k between 3 and 5 works well. Since the first k years
are used for modeling natural variability, change detection starts from k + 1 year and changes in
the first k years are not detected. Also note that this method assumes that the first few years that
are used for variability modeling are undisturbed in the location. If a change event occurs during
these initial years, it will cause the location to get a high variability score and a later change at
that location will go undetected. This limitation can be addressed by using a sliding window of the
previous k years instead of the first k years for computing variability under the assumption that
abrupt changes such as fires and deforestation do not happen multiple times in k years.

The VD algorithm highlights the importance of incorporating the natural variation of vegetation
at a location in computation of the change score. In the discussion above, we see that µvar is
a good indicator of expected natural variations in mean annual EVI differences and using the VD

score can significantly improve the performance, especially in some land cover types. Boriah et al. [5]
illustrated a similar advantage of modeling variability in the context of their segmentation algorithm
Recursive Merging.
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cluster of locations with a wider spread.

Figure 4. The distribution of variability scores (mean Manhattan distances be-
tween annual segments) of groups of pixels from two different locations in California
with same µvar (i.e. around 0.02).

3.3. Vegetation-Independent Yearly Delta (VID). Consider the scenario where the distribution
of the mean Manhattan distances between annual segments for two locations in different types of
vegetation have the same mean (µvar) but different spread. In this scenario, if the same decrease in
mean annual EVI was noticed in the two locations, the VD algorithm will give them the same score.
However, the probability that the decrease in mean annual EVI was observed by a random chance
is different for the two locations. For the location with smaller spread of distribution (i.e. smaller
standard deviation) the probability that this mean annual difference is by random chance is lower,
and for the location with a wider spread (i.e. higher standard deviation) this probability is higher.
VD, which will assign same score, is unable to distinguish between the two cases. This is a serious
limitation for VD if it is used for a composite data set with multiple types of vegetation. In such a
scenario, locations will have different spread of their variability score distribution and a higher VD

score threshold will miss the actual change that occurred in the more stable vegetation and therefore
have a poor recall for those vegetation types. On the other hand, a lower VD score threshold will
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Figure 5. EVI time series for a location in California with highly stable initial
years (before year 2005) for which the variability modeling was done and larger
variations due to climatic variability in later years. Such locations are incorrectly
identified as changed by the VID algorithm.

have many false positives from locations that have a wider spread of variability distribution because
unchanged pixels will also have same VD score by random chance.

As an illustrative example, two locations in DSCalifornia were chosen and the 30 nearest neighbors
for the two locations were computed based on Manhattan distance measure between their EVI time
series. The mean Manhattan distance between annual segments for each pixel in the two groups were
computed and Figure 4 shows the distribution of the mean Manhattan distances between annual
segments of the two groups. These groups have similar mean variability (µvar) but different spread
in the distribution of the variability scores. The same mean annual EVI decrease observed has a
different probability of occurring by natural variation in the two vegetation types. For example,
if the YD score was 0.04 then the probability that this would be observed by natural variation in
Figure 4(a) is considerably small, but Figure 4(b) has a high probability of getting this score by
natural variability. Thus, there is a need to further scale the VD score with the standard deviation
of the variability score distribution to accurately estimate the significance of the change.

The VID algorithm tries to address this limitation by including the standard deviation of the
variability in the change score. It assumes that the random fluctuations in mean annual EVI for a
particular vegetation type are normally distributed for a location and estimates the mean µvar and
standard deviation σvar of the variability score distribution as the maximum likelihood estimates
for the distribution.
The new score is called the VID score and is computed as VID score = (YD score - µvar) / σvar.

This score can be viewed as the z-statistic from the standard normal distribution. A high VID

score threshold implies a lower false positive rate and vice-versa. In addition, fixing the same VID

score threshold for all locations will incur same false positive rate across vegetation type. This,
however, depends on the assumption that for different vegetation types the variability scores have
a near normal distribution and the future EVI values also follow the same distribution if there is
no change event. We observe that the assumption is true in most cases and the false positive rate
for the algorithm is independent of the vegetation type. Due to climatic and other factors, for
some vegetation types this assumption is not true and the false positive rates are higher for these
vegetation types for the same score threshold. As an example, see Figure 5 which is the EVI time
series of a location in California in which the variability changes with time perhaps due to changes
in precipitation.

Note that we add a small number (1% of EVI scale) to the estimate value of σvar. In case the
σvar is close to 0 for a very stable location, this avoids a small change from getting an extremely
high VID score. This is especially important for locations with highly stable EVI such as in arid and
semi-arid areas, where slightly high vegetation response for a single year due to higher precepitation
might lead to a false alarm due to a high VID score.
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Figure 6. The histograms show the number of pixels of each land cover type (using
the MODIS land cover map) inside the fire polygons and in entire California.

4. Evaluation

We use the same evaluation strategy as described in Boriah et al. [5] to understand the relative
performance of different change detection techniques. The following describes the validation data
used in this study and provides a brief overview of the evaluation methodology.

4.1. Validation Data. Change detection studies are frequently plagued by the lack of good ground
truth data [19] which forces the evaluation process to be more qualitative in nature. In this study,
we have utilized high quality validation data for fires generated by an independent source, and are
thus able to perform an objective quantitative evaluation. Specifically, we obtained fire boundaries
generated by the state of California for the fire seasons for the years 2006 through 2008 and the
province of Yukon in Canada for years 2004 to 2008. The validation data is in the form of polygons
which represent the boundaries of forest fires. Our EVI data is georeferenced by the latitude and
longitude value for the pixel center. Thus, a pixel is considered inside a polygon if the pixel center
lies inside it, otherwise it is considered outside the polygon.

The histogram in Figure 6(a) shows the distribution of land cover type of the pixels that lie inside
the validation polygons for California; i.e., these are the pixels which actually burned according to
the validation data. The figure shows that shrubland and savannas account for a significant portion
of the burned regions in California. The land cover types included in our study are MODIS forests,
savannas and shrubs and we exclude the pixels belonging to the “other” MODIS landcover category
in our California data set. This is because land cover categories such as agriculture that belong to the
“other” category have a vast number of changes and majority of these changes are not related to fires
and therefore will be considered as false positives by our validation data. Also, the fraction of pixels
belonging to the “other” category in the validation data is small compared to their fraction in the
entire California data (as seen in Figure 6(b) that shows the distribution of land cover categories in
California). In DSCanada we include the entire state of Yukon without any MODIS land cover mask
as in this region almost all locations are forest, savanna or shrub. Also note that there are non-fire
related changes in the forest, savanna and shrub MODIS categories such as logging and conversion to
agriculture which are not covered in the fire polygons. Such changes will be incorrectly considered
as false positives. However, we expect that this issue will impact performance of all algorithms
similarly and will not change their relative performance.

4.2. Evaluation Methodology. The change detection algorithms assign a change score to each
location, and the locations are ranked according to the descending order of their change score.
The algorithm flags the top n ranked locations as change events and the lower ranked locations
as unchanged. By computing the intersection with the validation data, we find the number of
true positives (TPn), false positives (FPn), true negatives (TNn) and false negatives (FNn) as
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Predicted

Fire No Fire

Validation Data
Fire TPn FNn

No Fire FPn TNn

Table 1. Confusion matrix.

shown by Table 1. Our evaluation of the performance of the change detection algorithms is based
on computation of the precision and recall that are two well-known metrics used to evaluate the
performance of algorithms in information retrieval, machine learning and data mining [22] and given
by:

Precision, pn =
TPn

TPn + FPn

Recall, rn =
TPn

M
To compare the relative performance of different techniques, we plot the precision and recall curve

for the ranked list of pixels for the values 1 ≤ n ≤ M . An ideal change identification algorithm
should have a precision of 1 and a steadily rising recall from 0 to 1 as n increases from 1 to M. M
in our case is the actual number of pixels inside fire polygons.

5. Discussion of Experimental Results

The performance of the three algorithms described in Section 3 is evaluated and analyzed in this
section. The precision and recall plots for the data set on Yukon and California are used to under-
stand the accuracy differences between the three algorithms on different vegetations. DSCalifornia
data set comprises of many different land cover types and to illustrate the effect of incorporating
variability in the change detection algorithms. This data was subsetted based on MODIS landcover
map and results are reported for only forests and shrubs in addition to the entire data for Califor-
nia. A comparison with Burned Area Product is also reported to further highlight the ability of the
algorithms to identify forest fires from EVI data.

5.1. Performance of proposed approaches. Figure 7(a) and Figure 7(b) show the precision
and recall curve for the three algorithms in California (only forests) and Yukon respectively. The
performance of the three algorithms is comparable in the data sets that comprise of only MODIS
forest land cover category in California and in entire Yukon province. All three algorithms perform
well and are able to identify fires in these areas with high recall and precision, but the two algorithms
with variability incorporated show slightly better results. The reason behind the good performance
of all algorithms on the DSCalifornia data set is that forests have lower variability and typically
have a stable EVI which has an abrupt decrease primarily in case of an actual land cover change.
The decrease in precision occurs primarily because the algorithms identify other changes like logging
that also show an abrupt decrease in EVI but as the validation data is limited to forest fires these
changes are considered as false positives. This limitation of the validation data is further discussed in
Section 6. The slight improvement in performance by modeling natural variability comes because of
presence of some non-forested locations in the data set. We use the MODIS forest map in California
for this data set but it is inaccurate and includes some shrubs and agriculture lands labeled as forests.
The VD and the VID algorithms are more resilient to such misclassifications in land cover map. This
is because farms are by nature highly variable due to shifts in cropping dates and other reasons,
and as such get a high variability score and are therefore eliminated by algorithms that incorporate
variability modeling, but are detected as changes by YD because it gives these locations a higher
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Figure 7. Precision and Recall curves for three algorithms. black for VID, red for
VD and green for YD

change score. The locations in DSCanada data set have primarily MODIS forest, savanna and shrub
category. The EVI signal for all locations in this data set has considerable homogenity and therefore
VD and VID are only slightly better compared to YD. We see that VID performs slightly worse than
VD on the DSCanada. This is because the EVI time series in Canada have some observations with
an unusually high EVI value. If this noise occurs in the first few years that are used to model the
variability, the variability of that location will be high and as a result a change in the later years
at that location will not get detected due to the high variability score. These outliers negatively
impact results by incorrectly increasing variability for such locations and since VID uses variability
modeling more strictly as compared to VD, it gets negatively impacted due to these outliers to a
greater extent and shows a slightly worse performance than VD as seen in Figure 7(b).

The contrast between the performance of the algorithms becomes evident when we evaluate on the
entire DSCalifornia data set. This is because this data set has multiple land cover types (including
shrubs) and variability modeling becomes essential in the case of some of the land cover categories.
Figure 7(c) shows the quantitative performance for the three algorithms on this data set. We notice
that the YD algorithm performs significantly poorer than its counterparts that incorporate variability
modeling. This is not surprising as shrubs form the dominant land cover type in the data set and they
have high variability due to their higher sensitivity to climate variation. YD gives a high change score
to many locations even if they are not burned and thus leads to a poor precision on the composite
data set (DSCalifornia). This fact is further illustrated in Figure 7(d), which shows the performance
of the three algorithms on DSCalifornia with open shrubs only. The precision of YD on this data set
is exceptionally poor and indicates that YD is not a good change detection algorithm for this land
cover type though its performance is comparable to other algorithms in forests. Since the number
of shrubs in the composite data set DSCalifornia is high, the poor precision of YD on this data set
is explainable. The high variability of shrubs is also present in the first few years used to compute
µvar and thus the VD is able to perform better and shows a considerably improved performance
over YD on DSCalifornia. Again, this fact is supported by the observation in Figure 7(d) where
precision of VD is significantly better than that for YD. The VID algorithm that also models the
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Figure 8. VID performs better on Low EVI locations and correctly detects changes
in such locations.

spread of the variability distribution along with the µvar, is able to work well across different land
cover types. This is primarily because DSCalifornia (open shrubs only) has EVI time series with
large variations in the spread of their variability scores (see Figure 4(b)). The VID score takes into
account the information about the distribution’s spread and therefore avoids several false alarms
from this vegetation, while other algorithms make many mistakes on this particular vegetation. Low
recall on the DSCaliforina (only open shrublands) data set is primarily due the fact that for many
pixels inside fire polygons the EVI shows no significant change. Other bands of the spectrum have
to be analyzed to be able to identify these burnt locations. An example EVI time series of such a
location that was inside a fire polygon but has little change in EVI is shown in Figure 9. The vertical
red line marks the date of fire. We see that the decrease in EVI was too small to be identified by
these algorithms.

Another observation is that the VID algorithm has much better performance in locations with
low mean EVI (see Figure 8(a)). These vegetation types are typically stable and even after a
change event, the decrease in EVI response in small in magnitude. Since VID models the standard
deviation in the variability, these vegetation types have low σvar and therefore even smaller changes
get identified. This is the case with fires in the open shrub land cover for California which typically
occur in locations with extremely stable low mean EVI values (an example is shown in Figure 8(b)).
We observe that the VID score is independent of the the magnitude of the original time series and
has therefore has comparable performance across vegetation types with different mean EVI.

5.2. Comparison with Burned Area Product. We use the output of the Burned Area Prod-
uct to evaluate its performance on DSCalifornia and DSCanada. A location is considered burned
according to the Burned Area Product if it flags a burn in the years under consideration. There is
also a resampling step required before using the Burned Area Product which is available at 500 m
spatial resolution. For DSCalifornia which is at 250 m resolution, all 250 m pixels that lie within
a 500 m pixel get the same label. For DSCanada which is at 1 km spatial resolution, a 1 km pixel
is labeled burned if any of the 500 m pixels that lie within the 1 km pixel are considered burned.
The differences in the performance of this product and our algorithms occur due to two reasons:
(1) the change detection mechanism used in this product is different from our approaches and (2)
the underlying data set used for the generation of this product is thermal band instead of EVI. The
Burned Area Product indicated 34,986 locations to have burned in 2006-2008 in DSCalifornia. Out
of these 24,890 are inside the polygons. The precision and recall are 71.1% and 18.1% for Burned
Area Product on DSCalifornia. In Canada, the performance of Burned Area Product is better than
that in California. The Burned Area Product reports 15,005 pixels burned in 2004-2008 out of which
13,513 are in polygons. The precision and recall are 90% and 55.5% respectively on DSCanada. For
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Figure 9. A burned location in California correctly identified by Burned Area
Product and went undetected by our approaches because it shows little change in
EVI signal. The vertical red line marks the change date.

the same precision as Burned Area, the YD algorithm has a similar recall on both DSCalifornia and
DSCanada. This indicates that YD has a comparable performance to the technique by Roy et al.
[21] that is used to generate the Burned Area Product. For a similar precision on the two data
sets as the Burned Area, recall for the VID algorithm is around 50% on the DSCalifornia and 60%
on DSCanada. The results on DSCalifornia are significantly better for the VID algorithm over the
YD and Burned Area. This is because this data set has multiple vegetation types present in it and
VID that incorporates the natural variation of EVI time series in the change detection paradigm
performs better. The same idea of incorporating variability in the change detection framework can
potentially be used with the Roy et al. [21] approach and improve their change detection accu-
racy. Furthermore, we notice some complementarity between the change events detected by the two
approaches. This is primarily due to the different data set (thermal band) used by Burned Area
Product. Several changes like Figure 9 which are not prominent in EVI signal are detected in the
Burned Area Product.

6. Concluding Remarks

In this paper, we described two novel time series change detection algorithms that can be used to
identify abrupt vegetation loss and extend the Yearly Delta algorithm by introducing the concept
of natural variation in EVI time series of a location. The results of the study demonstrate the
importance of modeling natural variation in the vegetation signal for each location for accurately
estimating the significance of the change in EVI signal. The evaluation of the proposed method is
done quantitatively using the validation data on forest fires from California and Yukon. The evalua-
tion results demonstrate the ability of our proposed approach in identifying occurrence of forest fires
from a remote sensing vegetation dataset (Enhanced Vegetation Index) with high accuracy. These
algorithms are computationally fast (3000 timeseries are processed per second using a MATLAB
implementation on a desktop), making it possible to process the entire globe at 1 km spatial reso-
lution in less than a day on a standard desktop computer. Since computation for each time series
is independent, the algorithms are easily parallelized. In the following, we discuss the limitations of
the current work and possible directions for future research.

• Limitation of evaluation methodology: A careful look at the false positives of the
Vegetation-Independent Yearly Delta algorithm reveals that it finds many changes that do
not correspond to fires. This is because an abrupt decrease in EVI is also caused by other
forest disturbances such as logging, floods, conversion to agriculture, etc (Figure 10(a)). In
addition, it often finds gradual decreases in EVI that might occur due to slow forest degra-
dation such as in Figure 10(b). These locations, though genuine forest cover disturbances,
are considered false positives because they are absent in the validation data which is re-
stricted to forest fires. Lack of exhaustive validation data for land cover change is a serious
challenge with evaluation of forest monitoring algorithms. A fair evaluation is possible if an
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(b) Gradual decrease in time series.

Figure 10. EVI time series for a pixel not present in fire polygons while the time
series indicate change.

(a) EVI time series of a shrub lo-
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with an unusually low vegetation for

a single year.
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(b) EVI time series for a pixel that

was inside a fire polygon and not de-
tected by the VID algorithm.

Figure 11. Example time series to illustrate the need for including climate vari-
ables like precipitation in change detection framework.

additional characterization step to identify the type of the change is included. This is par-
ticularly challenging because several types of changes often have similar EVI signature. For
example, fires and deforestation often show the same characteristic abrupt decrease in EVI.
Exploiting complex spatial and temporal structures present in the EVI data in conjunction
with other data sets (eg. thermal band) could help distinguish between such changes.

• Modeling of variations due to climate variables: Figure 11(a) shows an example of a
location that shows unusually low values for the vegetation index in one of the years. This
signature was present in many pixels in shrublands in California and appears to be the result
of a drought-like condition. These pixels are flagged as changes by our algorithms since they
correspond to sudden drop in vegetation, but they are considered as false positives in the
context of detecting fires or deforestation events. Figure 11(b) is an example of a pixel
that was not identified as a change, though it was in the validation data. This pixel had
a high variability score perhaps because the vegetation is highly sensitive to precipitation
etc., hence the relatively smaller decrease was missed. One approach to correctly handle
such cases, is to model variations due to changes in climate and incorporate it in the change
detection paradigm. Hammer et al. [10] use rainfall in the month as a dependent variable
in the regression equation for monthly NDVI to account for changes in rainfall. The extra-
seasonal relationship between rainfall and NDVI is captured by this term. In addition, a
long term trend in amount of rainfall leading to a trend in NDVI can be captured.
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Figure 12. EVI time series for a pixel not present in fire polygons but was detected
as change due to a noisy value in year 2008.

• Noise Reduction: Noise in the EVI time series poses a significant challenge to any change
detection algorithm. For example, all algorithms in this study falsely identify changes in
cases such as in Figure 12 where there is a noisy observation in year 2008 that increases the
mean annual EVI for that year. There is a need to design a noise reduction technique that
is cognizant of characteristics of remote sensing data sets and that utilizes the information
about quality of observations, cloud and aerosol conditions that are available with the data.
The remote sensing community has developed many noise reduction techniques to reduce the
impact of noise in these data sets [11]. However, since these techniques were not designed
to account for a possibility of an abrupt change, these smoothing-based techniques tend to
distort the actual change point [7]. It is therefore not possible to directly apply an off-the
shelf noise reduction technique, and new noise reduction techniques need to be developed
that are suitable in the context of change detection.
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(a) EVI time series (in blue) for a lo-

cation with a single fire and the cor-

responding YD score time series (in
red).
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(b) EVI time series (in blue) for a

location with two fires and the cor-

responding YD score time series (in
red).

Figure 13. EVI time series and corresponding YD time series for single and mul-
tiple changes

• Identifying multiple changes in time series: Another limitation of the proposed ap-
proach is that it can find only a single change in a time series. The ability to find multiple
changes will become critical as these time series are increasing in time dimension with more
satellite data being collected. The change detection framework needs to be extended to allow
for finding multiple changes in the time series. Thus instead of assigning each location a
single change score, time steps of a location should get flagged as changes if they correspond
to local maximas that are higher than the score threshold. As an example, Figure 13(a)
shows the EVI and YD score time series for a single change. The peak in the YD score time
series corresponds to the change point. Figure 13(b) shows the EVI time series for a location
with two fires. The YD score time series shows two peaks that are separated in time and
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peak at the time of fire. Both these peaks should be flagged as changes and the location will
have two change events.

• Choice of Model: The change detection algorithms described in this paper use the previous
year as a model for EVI values of the current year. A more robust model can be built using
the median of the EVI values in the previous k years. This is especially useful in eliminating
false alarms due to noise in data or climate variations such as seen in Figure 5. In this figure
the vegetation response is high for two years and the YD score will be high for the next year
that has a low response. But if the median score for the previous 5 years was used the score
will be low and not get falsely detected as change.
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PSEUDO-LABEL GENERATION FOR MULTI-LABEL TEXT CLASSIFICATION

MOHAMMAD SALIM AHMED1, LATIFUR KHAN1, AND NIKUNJ OZA2

Abstract. With the advent and expansion of social networking, the amount of generated text

data has seen a sharp increase. In order to handle such a huge volume of text data, new and

improved text mining techniques are a necessity. One of the characteristics of text data that makes

text mining difficult, is multi-labelity. In order to build a robust and effective text classification

method which is an integral part of text mining research, we must consider this property more

closely. This kind of property is not unique to text data as it can be found in non-text (e.g.,

numeric) data as well. However, in text data, it is most prevalent. This property also puts the

text classification problem in the domain of multi-label classification (MLC), where each instance

is associated with a subset of class-labels instead of a single class, as in conventional classification.

In this paper, we explore how the generation of pseudo labels (i.e., combinations of existing class

labels) can help us in performing better text classification and under what kind of circumstances.

During the classification, the high and sparse dimensionality of text data has also been considered.

Although, here we are proposing and evaluating a text classification technique, our main focus is

on the handling of the multi-labelity of text data while utilizing the correlation among multiple

labels existing in the data set. Our text classification technique is called pseudo-LSC (pseudo-

Label Based Subspace Clustering). It is a subspace clustering algorithm that considers the high and

sparse dimensionality as well as the correlation among different class labels during the classification

process to provide better performance than existing approaches. Results on three real world multi-

label data sets provide us insight into how the multi-labelity is handled in our classification process

and shows the effectiveness of our approach.

1. Introduction

Classification is an important part of text data analysis as has been pointed out in text research

over a long period of time. With the increase of its volume, it has become necessary that we find

automated means for text classification. However, text data is different from its non-text counterpart

in a number of ways. The first difference that we look into and address in this paper is that text

data tends to address multiple topics at the same time. As a result, they can be associated with

multiple class labels giving rise to multi-labelity. And, these class labels are not independent of one

another, indicating the existence of correlation or label dependence across the class labels. One of

the main contributions of this paper is to take this correlation into account during the classification

process.

We must also consider the high and sparse dimensionality of text data. All documents in text

data sets are written in plain language. Since the vocabulary of any natural language is vast, the

dimensionality is very high and compared to the whole vocabulary, only a few words appear in each

document which gives rise to the sparseness.

1The University of Texas at Dallas, salimahmed@utdallas.edu, lkhan@utdallas.edu
2NASA Ames Research Center, nikunj.c.oza@nasa.gov.
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Another important consideration during text classification is the availability of labeled data.

Manual labeling of data is a time consuming task and as a result, in many cases, they are available

in limited quantity. If we consider just the labeled data, then we are sometimes left with too little

data to build a classification model that can perform well. On the other hand, if we ignore the class

label information of the labeled data, then we are forsaking valuable information that could allow

us to build a better classification model.

If we look into the literature, we see that usually, text classification approaches focus on a specific

characteristic of text data such as its high dimensionality, multi-labelity or availability of limited

labeled data. As a result, many of these methods can not be used universally. Sometimes, the

underlying theory of these methods may become incorrect. For example, Entropy Weighting K

Means approach [12] uses a subspace clustering approach that is based on the entropy of the features

or dimensions. If the data is multi-label, then the entropy calculation of that method no longer

holds ground. This happens in case of SISC [3], too, which is our previously formulated semi-

supervised subspace clustering algorithm that considers both the high dimensionality and limited

labeled data challenges. In SISC [3], however, the measure that becomes incorrect is the class

impurity calculation. Also, it is only applicable for multi-class text data, not multi-label data, let

alone considerations of label correlation.

In face of all these challenges, traditional as well as state-of-the-art text classification approaches

perform poorly on multi-label data sets as we have found through our experiments. In order to

address this multi-labelity scenario, we extended SISC to formulate SISC-ML[4] which is a multi-

label variation of SISC. However, if we look closely into the data, we find that not all the classes

co-occur with the same frequency. Which implies that the correlation among different class labels

are not the same. In order to incorporate this correlation information during the clustering process,

We, therefore, extended SISC [3] further based on this correlation information and formulated

pseudo-LSC in this paper.

The reason behind choosing SISC as our classification method for extension is due to its notion

of subspace clustering. Subspace clustering allows us to find clusters in a weighted hyperspace [10]

and can aid us in finding documents that form clusters in only a subset of dimensions. In our

proposed pseudo-LSC (pseudo-Label Based Subspace Clustering) approach, we augment the original

class labels in the data set with pseudo-labels which are actually combinations of multiple class

labels. Assigning such pseudo-labels allows us to use the correlation among different class labels

during clustering and to achieve better classification performance.

In short, we have a number of contributions in this paper. First, pseudo-LSC is a semi-supervised

subspace clustering algorithms that successfully finds clusters in the subspace of dimensions irre-

spective of the data being multi-class or multi-label. Second, our proposed algorithm performs well

in practice even when a very limited amount of labeled training data is available. Third, at the

same time, this algorithm minimizes the effect of high dimensionality and its sparse nature during

training. Finally, we compare pseudo-LSC with other classification and clustering approaches to

show the effectiveness of our algorithms over three benchmark multi-label text data sets.

2
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The organization of the paper is as follows: Section 2 discusses related works. Section 3 presents

the theoretical background of pseudo-LSC, the semi-supervised multi-class text classification ap-

proach. Section 4, then describes how pseudo-LSC handles multi-labeled data. Section 5 discusses

the data sets, experimental setup and evaluation of our approach. Finally, Section 6 concludes with

directions to future research.

2. Related Work

We can divide our related work based on the characteristic of our proposed pseudo-LSC. pseudo-

LSC is a semi-supervised approach, it uses subspace clustering, and most important of all, it can

handle multi-label data. Therefore, we have to look into the state-of-the-art methods that are

already in the literature for each of these categories of research.

Approaches that have been proposed to address multi-label text classification, including margin-

based methods, structural SVMs [19], parametric mixture models [21], κ-nearest neighbors (κ-

NN) [25], and ensemble pruned methods [16]. One of the most recent works include RAndom

k-labELsets (RAKEL) [20]. In a nutshell, it constructs an ensemble of LP (Label Powerset) clas-

sifiers and each LP is trained using a different small random subset of the multi-label set. Then,

ensemble combination is achieved by thresholding the average zero-one decisions of each model per

considered label. MetaLabeler [18] is another approach which tries to predict the number of labels

using SVM as the underlying classifier. Most of these methods utilize the relationship between

multiple labels for collective inference. One characteristic of these models is they are mostly super-

vised [16, 20, 18]. Aside from multi-label text classification, there are also work on regret analysis

and loss function for such classification. In [9], Dembczynski et al. compare two loss functions

namely subset 0/1 loss and Hamming loss for different multi-label classifiers. They focus mainly

on the close connection between conditional label dependence and loss minimization. Unlike their

approach, we are utilizing the unconditional label correlation that exists in the data as well as cluster

impurity minimization.

Semi-supervised methods for classification is also present in the literature. This approach stems

from the possibility of having both labeled and unlabeled data in the data set and in an effort to use

both of them in training. In [5], Bilenko et al. propose a semi-supervised clustering algorithm derived

from K-Means, MPCK-MEANS, that incorporates both metric learning and the use of pairwise

constraints in a principled manner. There have also been attempts to find a low-dimensional subspace

shared among multiple labels [12]. In [24], Yu et al. introduce a supervised Latent Semantic Indexing

(LSI) method called Multi-label informed Latent Semantic Indexing (MLSI). MLSI maps the input

features into a new feature space that retains the information of original inputs and meanwhile

captures the dependency of output dimensions. Our method is different from this algorithm as our

approach tries to find clusters in the subspace. Due to the high dimensionality of feature space in text

documents, considering a subset of weighted features for a class is more meaningful than combining

the features to map them to lower dimensions [12]. In [7] a method called LPI is proposed. LPI

is different from LSI which aims to discover the global Euclidean structure whereas LPI aims to

discover the local geometrical structure. But LPI only handles multi-class data, not multi-label data.

In [17] must-links and cannot-links, based on the labeled data, are incorporated in clustering. But, if
3
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the data is multi-label, then the calculation of must-link and cannot-link becomes infeasible as there

are large number of class combinations and the number of documents in each of these combinations

may be very low. As a result, this framework can not perform well when using multi-label text data.

There has been some subspace clustering approaches to minimize the impact of high dimension-

ality on classification. Subspace clustering can be divided into hard and soft subspace clustering. In

case of hard subspace clustering, an exact subset of dimensions are discovered whereas soft subspace

clustering determines the subsets of dimensions according to the contributions of the dimensions

in discovering corresponding clusters. Examples of hard subspace clustering include CLIQUE [2],

PROCLUS [1], ENCLUS [8] and MAFIA [11]. A hierarchical subspace clustering approach with au-

tomatic relevant dimension selection, called HARP, was presented by Yip et al. [23]. HARP is based

on the assumption that two objects are likely to belong to the same cluster if they are very similar to

each other along many dimensions. But, in multi-label and high dimensional text environment, the

accuracy of HARP may drop as the basic assumption becomes less valid. In [14], a subspace cluster-

ing method called nCluster is proposed. But, it has similar problems when dealing with multi-label

data. In [22], Wang et al. focuses on an ensemble approach and proposes a nonparametric Bayesian

clustering ensemble method to discover the number of clusters for consensus clustering. In [13],

SciForest has been proposed which uses clustering for finding group of anomalies/outliers. There,

Liu et al. employ a split selection criterion to choose a split that separates clustered anomalies from

normal points. They also makes use of randomly generated hyper-planes in order to provide suitable

projections that separate anomalies from normal points. However, such a clustering is not applicable

for multi-label text classification. Other soft clustering include [6] where spectral decomposition of

the normalized affinity matrix is performed. The affinity matrix indicates the similarity measure

between any two instances in the training set and therefore, depends too much on the quality of the

similarity measure. Also, [6] focuses on using such clustering on graph data rather than text data.

pseudo-LSC uses subspace clustering in conjunction with κ-NN approach. In this light, it is

closely related to the work of Jing et al. [12], Frigui et al. [10] and Ahmed et al. [3]. The closeness is

due to the subspace clustering and fuzzy framework respectively. A significant difference with Frigui

et al. [10] is that, unlike pseudo-LSC, it is unsupervised in nature. Another work that is closely

related to ours is the work of Masud et al. [15]. In [15], a semi-supervised clustering approach called

SmSCluster is used. They have used simple K-Means Clustering and it is specifically designed to

handle evolving data streams. Finally, SISC [3] is another subspace clustering approach which has

close resemblance to our approach. But, it is designed for only multi-class data. It has a multi-label

variation called SISC-ML [4]. However, as mentioned previously, SISC-ML does not consider the

class label correlation and assumes the class labels to be independent of each other. Our proposed

pseudo-LSC is different in this respect as it does not make such class label independence assumption.

It is also not specific for multi-class or multi-label data as is the case for SISC or SISC-ML. pseudo-

LSC can work with a data set irrespective of it being multi-class or multi-label and therefore,

addresses many of the challenges associated with text classification simultaneously.

4
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Notation Range Explanation

xi i = 1 : n i-th data point in the n document data set

dj j = 1 : m j-th binary feature of m unigram features for

data point xi

ti i = 1 : p i-th class of p classes in the data set where p = |T |

cl l = 1 : k l-th cluster of k subspace clusters

wl l = 1 : k Membership weight of data point xi of l-th

subspace cluster

Lcl - Total number of labeled points in cluster cl

Table 1. SISC Notations

3. Multi-Label Classification

In this section, we describe theMLC problem in more detail and formalize it from a soft-clustering

perspective. Along the way, we introduce the notations used throughout the paper.

3.1. Problem Statement. Let X denote the training instance space X̂ denote the test set. Also,

let T = t1, t2, . . . , tp be a finite set of class labels. We assume that any instance x across the training

and test set is associated with a subset of labels T ∈ 2T ; this subset is often called the set of relevant

class labels while the complement of T is considered as irrelevant for x. Our goal is to predict

the probability of a test instance x̂i to belong to each class label tr, r = 1 : p. In short, for each

test instance x̂i ∈ X̂ , we generate a class label vector y = (y1, y2, . . . , yp), in which yi = [0, 1] and
∑p

i=1 yi = 1.

In this paper, we define a multi-label classifier h as an X → Y mapping that assigns a class-label

vector y i ∈ Ŷ to each test instance x̂i ∈ X̂ . Therefore, the problem of MLC can be stated as follows:

Given training data in the form of a finite set of observations (x ,y) ∈ X ×Y, the goal is to learn

a classifier h : X → Y that generalizes well beyond the training observations. Table 1 specifies some

of the notations that will be used throughout this paper.

It should be noted that since we are using a soft subspace clustering formulation, each training

instance xi ∈ X is a member of all the k subspace clusters (but with different membership weights).

Apart from these notations, the following two measures are also used in pseudo-LSC as has been

defined for SISC in [3].

3.2. Description of pseudo-LSC. In pseudo-LSC, each data point may belong to multiple clus-

ters. The weight with which a data point belongs to a particular cluster is referred to as cluster

membership weight. For a data point, these membership weights across all the clusters sum up to

1. So, the membership weights can be regarded as probabilities with which a data point belongs

to a cluster. Also, pseudo-LSC applies subspace clustering and the weight of a dimension in a

cluster represents the probability of contribution of that dimension in forming that cluster. These

dimension weights within a cluster are kept as a vector and the different dimension vectors of the

clusters indicate how the clusters are different from one another. We, therefore, have to update

three parameters during our clustering process - the dimension weights within each cluster, the
5
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Figure 1. pseudo-LSC Top Level Diagram

cluster membership weights of each data point and the cluster centroids. pseudo-LSC utilizes the

Expectation-Maximization(E-M) approach that locally minimizes the following objective function.

F (W,Z,Λ) =

k
∑

l=1

n
∑

j=1

m
∑

i=1

w
f
ljλ

q
liDlij ∗ (1 + Impl) + γ

k
∑

l=1

m
∑

i=1

λ
q
liχ

2
li(1)

where

Dlij = (zli − xji)
2

subject to
k

∑

l=1

wlj = 1, 1 ≤ j ≤ n, 1 ≤ l ≤ k, 0 ≤ wlj ≤ 1

m
∑

i=1

λli = 1, 1 ≤ i ≤ m, 1 ≤ l ≤ k, 0 ≤ λli ≤ 1

In this objective function, W , Z and Λ represent the cluster membership, cluster centroid and

dimension weight matrices respectively. Also, the parameter f controls the fuzziness of the mem-

bership of each data point, q further modifies the weight of each dimension (λli) of each cluster cl

and finally, γ controls the strength of the incentive given to the Chi Square component.

Our algorithm is formulated using the E-M approach. In the E-Step, the dimension weights

and the cluster membership weights are updated. Initially, every data point has equal membership

weights across the clusters and the dimensions are given equal weights, too. During the dimension

weight and cluster membership weight update, the cluster impurity is calculated using the pseudo-

labels, not the original class labels. In the M-Step, the centroids of the clusters are updated and the

summary statistics, i.e., the representation (percentage) of each class label present in the cluster, is

updated. During the summary calculation, the membership weights are used. In the final step, the

κ nearest neighbor clusters are identified for each test point where κ is a user defined parameter.

The distance is calculated in the subspace where the cluster resides. If κ is greater than 1, then

during the class probability calculation, we multiply the class representation with the inverse of the

subspace distance and then sum them up for each class across all the κ nearest clusters.

6
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3.3. Impurity Measure. Each cluster cl, l = 1 : k, has an Impurity Measure [15] associated with it.

This measure quantifies the amount of impurity within each cluster cl. If the data points belonging

to cl all have the same class label, then the Impurity Measure of this cluster Impl is 0. On the other

hand, if more and more data points belonging to different class labels become part of cluster cl, the

Impurity Measure of this cluster Impl also increases. This component has been used to modify the

dispersion measure for each cluster. Its use helps in generating purer clusters in terms of cluster

labels. However, it should be noted that Impl can be calculated using only labeled data points. If

there are very few labeled data points, then this measure does not contribute significantly during

the clustering process. Therefore, we use 1 + Impl, so that unlabeled data points can play a role in

the clustering process. Using Impl in such a way makes pseudo-LSC semi-supervised.

Impl = ADCl ∗ Entl

Here, ADCl indicates the Aggregated Dissimilarity Count and Entl denotes the entropy of cluster

cl. In order to measure ADCl, we first need to define Dissimilarity Count [15], DCl(xi, yi):

DCl(xi, yi) = |Lcl | − |Lcl(t)|

if xi is labeled and its label yi = t, otherwise DCl(xi, yi) is 0. Lcl indicates the set of labeled

points in cluster cl. In short, it counts the number of labeled points in cluster cl that do not have

label t. Then ADCl becomes

ADCl =
∑

xi∈Lcl

DCl(xi, yi)

Summing up the ADCl for all the class labels provide us with the ADCl for the entire cluster.

The Entropy of a cluster cl, Entl is computed as

Entl =

|T |
∑

t=1

(−plt ∗ log(p
l
t))

where plt is the prior probability of class t, i.e., plt =
|Lcl

(t)|

|Lcl
| . It can also be shown that ADCl is

proportional to the gini index of cluster cl, Ginil [15]. But, in pseudo-LSC method, the data points

have fuzzy cluster memberships. So, the ADCl calculation needs to be modified to incorporate

this concept into pseudo-LSC. Rather than using counts, the membership weights are used for the

calculation. This is reflected in the probability calculation.

plt =

n
∑

j=1

wlj ∗ jt

where, jt is 1 if data point xj is a member of class t, and 0 otherwise. This Impurity Measure

is normalized using the global impurity measure, i.e., the impurity measure of the whole data set,

before using in the subspace clustering formulation.

3.4. Chi Square Statistic. During the clustering process, it may happen that the clusters are

formed using only a few features. However, if only a few features (e.g., 2 or 3 features) are involved

in the clustering with their dimension weights being greater than 0, they may fail to play any role
7

2011 Conference on Intelligent Data Understanding 66

TOSHIBA
Pencil



during the label prediction step. This may happen as those few features may never appear in a test

document rendering us unable to ascertain the κ-NN clusters of a test data point. To prevent such a

scenario to happen, this Chi Square component has been included in the objective function so that

more features or dimensions have nonzero weights and can participate in the clustering process. It

works against the dispersion component of the objective function to create a balancing effect and

ensures that clusters are not formed in just a few dimensions. From a clustering perspective, the

conventional Chi Square Statistic can be defined as,

χ2
li =

m(s1s4 − s2s3)
2

(s1 + s3)(s2 + s4)(s1 + s2)(s3 + s4)

where

s1 = number of times feature di occurs in cluster cl

s2 = number of times feature di occurs in all

clusters except cl

s3 = number of times cluster cl occurs without feature di

s4 = number of times all clusters except cl occur

without feature di

m = number of dimensions

This Chi Square Statistic χ2
li indicates the measure for cluster cl and dimension di. However,

if the conventional approach is used for calculation of s1, s2, s3, s4 and m, then a threshold has

to be specified to determine which point can be regarded as a member of a cluster. This not only

brings forth another parameter, but also the membership values themselves are undermined in the

calculation. So, pseudo-LSC modifies the calculation of these counts to consider the corresponding

membership values of each point. The modification is provided below:

s1 =

n
∑

j=1

∑

di∈xj

wlj , s2 = 1−

n
∑

j=1

∑

di∈xj

wlj

s3 =

n
∑

j=1

∑

di /∈xj

wlj , s4 = 1−

n
∑

j=1

∑

di /∈xj

wlj

m = total number of labeled points

3.5. Update Equations. Minimization of F in Eqn. 5 with the constraints, forms a class of con-

strained nonlinear optimization problems. This optimization problem can be solved using partial

optimization for Λ, Z and W. Detailed derivation of the update equations can be found in [3].

3.5.1. Dimension Weight Update Equation. Given matrices W and Z are fixed, F is minimized if

(2) λli =
1

Mlij

∑m
i=1

1
Mlij

8
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where

Mlij =







n
∑

j=1

w
f
ljDlij ∗ (1 + Impl) + γχ2

li







1

q−1

3.5.2. Cluster Membership Update Equation. Similar to the dimension update equation, the update

equations for cluster membership matrix W can be derived, given Z and Λ are fixed. The update

equation is as follows:

(3) wlj =
1

Nlij

∑k
l=1

1
Nlij

where

Nlij =

{

m
∑

i=1

λ
q
liDlij

}
1

f−1

3.5.3. Cluster Centroid Update Equation. The cluster center update formulation is similar to the

formulation of dimension and membership update equations. The update equations for cluster

center matrix i.e., Z can be derived, given W and Λ are fixed. The update equation is as follows:

(4) zli =

∑n
j=1 w

f
ljxij

∑n
j=1 w

f
lj

4. Handling Multi Labeled Data

The previously described Impurity Measure calculation is only applicable for multi-class data

where each document may belong to only a single class label. This constraint ensures that the

calculated probabilities always sum up to 1. However, if each data point may belong to more than

one class label, the sum of probabilities may become greater than 1. One way would be to convert

the classification problem into T binary class problems and modify the Impurity Measure to handle

the multi-label data in such a way. But, doing so is only feasible if all the class labels are independent

of each other. Our experience with multi-label data also indicate that there is a correlation among

the different class labels. In order to handle the multi-labelity as well as the co-occurrence of the

class labels, our proposed pseudo-LSC generates pseudo-labels which are combinations of one or

more original class labels in the data set. In short, we transform the multi-label data set into a

multi-class data set where each data point can belong to only a single pseudo-label. The following

example illustrates how the pseudo-labels are generated.

As can be seen from the example in Table 2, the 5 data points belong to 3 pseudo-labels. And

each of the pseudo-labels may constitute of one or more original class labels in the data set. After

assigning such pseudo-labels to the data points, the new data set becomes multi-class. Therefore,

the pseudo-LSC multi-class algorithm becomes applicable to such a data set. In Figure 3.1, we show

how the text data is converted from its original label to pseudo-labels. In this example, data points

x1, x2 and x3 are assigned pseudo-labels p1, p2 and p3 respectively. This pseudo-label generation is
9

2011 Conference on Intelligent Data Understanding 68

TOSHIBA
Pencil



Data Labels

x1 t1, t3
x2 t1, t2, t4
x3 t2

x4 t1, t3
x5 t2

Pseudo Labels Label Sets

p1 t1, t3
p2 t1, t2, t4
p3 t2

Data Pseudo Labels

x1 p1
x2 p2
x3 p3
x4 p1
x5 p3

Table 2. Construction of Pseudo Labels In pseudo-LSC

only applicable during the Impurity Measure calculation. The original class labels are used in all

other calculations during the classification process.

5. Experiments and Results

We have used a total of three multi-label data sets to verify the effectiveness of our algorithm

on multi-label data. In all cases, we used fifty percent data as training and rest as test data in

our experiments as part of 2-fold cross-validation. Similar to other text classification approaches,

we performed preprocessing on the data and removed stop words from the data. We used binary

features as dimensions, i.e. features can only have 0 or 1 values. The parameter γ is set to 0.5. For

convenience, we selected 1000 features based on information gain and used them in our experiments.

In all the experiments related to a data set, the same feature set was used. We performed multiple

runs on our data sets. And in each case, the training set was chosen randomly from the data set.

5.1. Data sets. We describe here all the three data sets that we have used for our experiments.

(1) Reuters Data Set: This is part of the Reuters-21578, Distribution 1.0. We selected 10, 000

data points from the 21, 578 data points of this data set and henceforth, this part of the

data set will be referred to as simply Reuters data set. We considered the most frequently

occurring 20 classes in our experiments. Of the 10, 000 data points, 6, 651 are multi-labeled.

(2) 20 Newsgroups Data Set: This data set is also multi-label in nature. We selected 15, 000

documents randomly for our classification experiments. Of them 2, 822 are multi-label doc-

uments and the rest are single labeled. We have performed our classification on the top 20

classes of this data set.

(3) NASA ASRS Data Set: We randomly selected 10, 000 data points from the ASRS data set

and henceforth, this part of the data set will be referred to as simply ASRS Data Set. We

considered 21 class labels (i.e., anomalies) in our experiments.

5.2. Base Line Approaches. We have chosen 3 sets of baseline approaches. First, since we are

using κ-nearest neighbor (κ-NN) approach along with clustering approach, we compare our method

with the basic κ-NN approach. Second, we compare two subspace clustering approaches. They

are SCAD2 [10] and K-means Entropy [12] approaches. The reason behind using them as baseline

approaches is that they have similarities in objective functions with our methods. So, a comparison

with them will show the effectiveness of our algorithms from a subspace clustering perspective.

Finally, we perform experiments using two multi-label methods and compare them to pseudo-LSC.
10
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Figure 2. ROC Curves for (a) NASA ASRS Data Set (b) Reuters Data Set (c) 20
Newsgroups Data Set.

Methods ASRS Reuters 20 Newsgroups

pseudo-LSC 0.637 0.821 0.874

Pruned Set 0.469 0.56 0.60

MetaLabeler 0.58 0.762 0.766

κ-NN 0.552 0.585 0.698

SCAD2 0.482 0.533 0.643

K Means Entropy 0.47 0.538 0.657

Table 3. Area Under The ROC Curve Comparison Chart For Multi-Label Classification

They are Pruned Set [16] and MetaLabeler [18] approaches. Both these methods are state-of-the-

art multi-label approaches and use SVM as their base classifiers. We, therefore, did not choose

SVM as a baseline approach as it is already takes part in the comparison through these multi-label

approaches. Also, it was not possible to used SISC [3] as it is applicable only for multi-class data,

not multi-label data. Below we describe these 5 baseline approaches briefly.
11
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5.2.1. Basic κ-NN Approach. In this approach, we find the nearest κ neighbors in the training set

for each test point. Here κ is a user defined parameter. After finding the neighbors, we find how

many of these neighbors belong to the t-th class. We perform this calculation for all the classes.

We can then get the probability of the test point belonging to each of the classes by dividing the

counts with κ. Finally, using these probabilities, for each class, we generate ROC curves and take

their average to compare with our methods.

5.2.2. K-Means Entropy. This is another soft subspace clustering approach that we compare with

pseudo-LSC. Its objective function has two components, the first one is based on dispersion and the

second one is based on the negative entropy of cluster dimensions. Another difference between this

approach and SCAD2 is that it is not fuzzy in nature. So, a training data point can belong to only a

single cluster. The objective function that is minimized, as specified in [12] to generate the clusters,

is as follows:

F (W,Z,Λ) =
k

∑

l=1

n
∑

j=1

m
∑

i=1

wljλliDlij + γ

k
∑

l=1

m
∑

i=1

λlilog(λli)(5)

5.2.3. SCAD2. SCAD2 [10] is a soft subspace clustering method with a different objective function

than the pseudo-LSC method. This clustering method is also fuzzy in nature and can be considered

the most basic form of fuzzy subspace clustering. As it does not consider any other factors during

clustering except for dispersion. Its objective function has close resemblance to the first term of

the pseudo-LSC objective function. As mentioned earlier, the reason we have used this method as

benchmark is due to this similarity. The objective function of SCAD2 is as follows:

F (W,Z,Λ) =
k

∑

l=1

n
∑

j=1

m
∑

i=1

w
f
ljλ

q
li|xij − zli|

2(6)

After performing this clustering using the same E-M formulation of pseudo-LSC, we use κ nearest

clusters of each test point to calculate label probabilities.

5.2.4. MetaLabeler. This is a multi-label classification approach that learns a function from the data

to the number of labels [18]. It involves two steps - i) constructing the meta data set and ii) learning

a meta-model. Unlike our formulation of pseudo-labels in pseudo-LSC, the label of the meta data for

this method is the number of labels for each instance in the raw data. There are three ways [18] that

this learning can be done. We have applied the Content-based MetaLabeler to learn the mapping

function from the features to the meta-labels (i.e., the number of class labels). As specified in [18],

we consider the meta learning as a multi-class classification problem and use it in conjunction with

One-vs-Rest SVM. We, therefore, train T + 1 SVM classifiers where T is the total number of class

labels in the data set. Of them, one is a multi-class classifier and the rest are One-vs-Rest SVM

classifiers for each of the classes. We then normalize the scores of the predicted labels and consider

them as probabilities for generating ROC curves.

12
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Methods ASRS Reuters 20 Newsgroups

pseudo-LSC 0.637 0.821 0.874

pseudo-LSC Without Chi Square 0.455 0.532 0.582

Table 4. Area Under The ROC Curve Comparison Chart For Chi Square Statistic

5.2.5. Pruned Set. The main goal of this algorithm is to transform the multi-label problem into a

multi-class problem. In order to do so, Pruned Set [16] method finds frequently occurring sets of

class labels. Each of these sets (or combinations) of class labels are considered as a distinct label.

The benefit of using this approach is that, only those class label combinations that occur in the data

set and the user does not need to consider an exponential amount of class label combinations. The

user specifies parameters like what is the minimum count of a class label combination to consider

it as frequent and the minimum size (i.e., class combinations having at least r class labels) of such

sets or combinations.

At first, all data points with label combinations having sufficient count are added to an empty

training set. This training set is then augmented with rejected data points having label combinations

that are not sufficiently frequent. This is done by making multiple copies of the data points, only

this time with subsets of the original label set. So, some data points may be duplicated during

this training set generation process. This training set is then used to create an ensemble of SVM

classifiers. We have also varied the number of retained label subsets to add to the training set and

chose the best result to report.

5.3. Evaluation Metric. In all of our experiments, we use the Area Under ROC Curve (AUC) to

measure the performance. For all the baseline approaches and our pseudo-LSC method, we generate

each class label prediction as a probability. Then, for each class we generate an ROC curve based

on these probabilities and the original class labels. After generating all the ROC curves, we take the

average of them to generate a combined ROC curve. Finally, the area under this combined ROC

curve is reported as output. This area can have a range from 0 to 1. The higher the AUC value,

the better the performance of the algorithm.

5.4. Results and Discussion. As can be seen from Figure 2(a), pseudo-LSC performs much bet-

ter than the baseline approaches. In Table 3, the AUC values for pseudo-LSC and all the baseline

approaches are provided. With the ASRS data set, the AUC value for pseudo-LSC is 0.637. The

closest performance is provided by the state-of-the-art MetaLabeler approach which is 0.58. There-

fore, there is around 5%-8% increase in performance with our approaches.

Similar results can be found for Reuters and 20 Newsgroups data sets. In Figure 2(b) and

Figure 2(c), we provide these results. Just like the ASRS data set, pseudo-LSC provides much

better results. For Reuters data set, our algorithm achieves AUC values of 0.821 and the nearest

baseline approach value is 0.762. And, for 20 Newsgroups data set, the AUC value achieved is 0.874

whereas, the nearest value is 0.766.

5.5. Impact of Chi Square Statistic. We have included the Chi Square Statistic in our objective

function to achieve better performance by ensuring that more features have nonzero dimension
13
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weights as opposed to only a few features having nonzero weights and generating the clusters over

a larger subset of dimensions. This increases the probability that a test point will have some of

those nonzero features making the distance calculation meaningful. We have performed experiments

to determine the impact of this component on the classification performance. To do so, we have

removed this component from the objective function and performed the same experiments. We

found that using it indeed increases the performance quite significantly. The objective function used

in this case is given below.

F (W,Z,Λ) =
k

∑

l=1

n
∑

j=1

m
∑

i=1

w
f
ljλ

q
liDlij ∗ (1 + Impl)(7)

The results are provided in Table 4.

6. Conclusions

In this paper, we have presented pseudo-LSC, a semi-supervised text classification approaches

based on fuzzy subspace clustering that considers the correlation among different class labels by

generating pseudo labels during the clustering process. It provides a unified approach to perform

classification on both multi-class and multi-label data. The experimental results on real world multi-

labeled data sets like ASRS, Reuters and 20 Newsgroups, have shown that pseudo-LSC outperforms

κ-NN, K-Means Entropy based method, SCAD2 and state-of-the-art multi-label text classification

approaches like Pruned Set and MetaLabeler in classifying text data.
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ON THE STATISTICS AND PREDICTABILITY OF GO-AROUNDS

MAXIME GARIEL*, KEVIN SPIESER*, AND EMILIO FRAZZOLI*

ABSTRACT. This paper takes an empirical approach to identify operational factors at busy airports that may
predate go-around maneuvers. Using four years of data from San Francisco International Airport, we begin our
investigation with an analysis of sequence of landing aircraft that may increase the probability of go-around
occurrence. Then we take a statistical approach to investigate which features of airborne, ground operations
(e.g., number of inbound aircraft, number of aircraft taxiing from gate, etc.) or weather are most likely to
fluctuate, relative to nominal operations, in the minutes immediately preceding a missed approach. We analyze
these findings both in terms of their implication on current airport operations and discuss how the antecedent
factors may affect NextGen. Finally, as a means to assist air traffic controllers, we draw upon techniques from
the machine learning community to develop a preliminary alert system for go-around prediction.

1. INTRODUCTION

A missed approach or go-around (GA) occurs when an aircraft aborts its landing and is forced, instead,
to land on a subsequent approach. It is tempting to speculate that lack of visibility at decision height or pilot
error, that is a pilot’s inability to safely land the aircraft in a given situation, are a leading cause of GAs.
Indeed, low ceiling and visibility increase the potential for missed-approach and the workload for pilots and
controllers [10]. Nevertheless, as it is shown in this paper, weather may only accounts for a small fraction of
the total number of GA. However, interviews with air-traffic controllers during visits to Logan International
Airport in Boston and Laguardia Airport in New York refute these claims; rather, the controller’s testimony
suggests operational errors, such as a runway incursion, late runway departure from an aircraft taking off
or holding position line violation are the primary causes of GAs. The remainder of this paper analyzes the
arrivals at Sand Francisco International Airport (SFO). Before giving an expert’s view on GA at SFO, we
present some motivation for this study.

To increase airport throughput, NextGen’s high-density operations [11] are projected at more airport’s
than today’s class B airports. High-density operations require high performance procedures and aircraft
equipage to enable Closely Spaced Parallel Approaches with delegated separation procedures. Despite the
increased automation, the technologies, there will always be errors or unexpected events leading to missed
approach. Avionics for de-conflicted missed approaches for converging is still in the roadmap of NextGen
but has not been addressed yet [9]. To take full advantage for these high throughput operations, the number
of missed approaches needs to be minimized, and therefore a thorough understanding of the factors that lead
to missed approach is necessary.

Go-arounds increase the workload of air traffic controllers, as landing sequences must be amended to
accommodate the aircraft that failed to land [2]. In addition, a GA is a loss of a landing spot, a scarce
resource, reducing the capacity of the airport. On a related note, the requisite revamping schedules taxes an
airport system that maintains high-safety standards largely through comprehensive planning and delegation,
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FIGURE 1. Simplified SFO diagram and selected runway configuration

go-arounds are also undesirable from a safety perspective [14]. Finally, go-arounds are costly for airlines,
both in terms of the added fuel cost and the logistic delays absorbed from spending extra time airborne [13].

This report is an exploratory study aimed at addressing the following questions i.) can we identify factors
that lead to GAs and ii.) if so, can these causes be identified in real-world data sets from major airports to
predict GAs? If the factors causing GAs can be identified, then mitigation action can be taken in order to
reduce the number of GAs without impacting airport throughput.
Presentation of SFO airport. San Francisco International Airport (SFO) is notorious for two things. Its
unpredictable weather and its parallel runways. The weather will be analyzed in the next section. Regarding
the runways, SFO has two sets of close parallel runways, as depicted in Figure 1. In the runway configuration
illustrated, aircraft take-off from runways 1R-L (parallel runways), and land on runway 28R-L (also parallel
runways, separated by only 750 ft); this is the configuration in use approximately 80 percent of the time.
Due to the close proximity of the landing runways, the runways cannot be used for simultaneous instrument
landings, reducing the hourly landing capacity from 60 to 30 aircraft. The weather conditions are called
Visual Meteorological Conditions (VMC) and Instrument Meteorological Conditions (IMC). The modes of
operation for the TRACON and the SFO tower differ between Visual Flight Rule (VFR) operations during
VMC and Instrument Flight Rules (IFR) during IMC. VMC conditions enable simultaneous parallel landings
while IMC required single file landings. Therefore, the causes for GA may differ from one more of operation
to the other.

According to a manager from the SFO tower, and from reports from the Northern California TRACON,
there are many reasons for aircraft to be sent around. GA may be initiated either by pilots or by Air Traffic
Control (ATC). The principal causes are explained below.
Presence of another aircraft on the surface: One of the major factors that trigger GA is the presence of
another aircraft on the active runway when a landing aircraft passes over the runway threshold. It is often the
preceding landing aircraft that has not cleared off the runway yet. In the configuration depicted on Figure 1,
it may also be an aircraft taking-off on runways 1R or L that has not cleared the runway intersection when
the landing aircraft passes over the threshold of runway 28 R or L.
Pilot initiated GA: One of the main causes for pilots to initiate a GA is an unstable approach. An unstable
approach can be due to a pilot accepting, from ATC, a short turn to final and then realizing that the aircraft
is too high or too fast. Such high-energy/unstable approaches present a safety risk and therefore pilots may
decide to go-around. Another reason for pilot initiated GA are wind-shear alerts which are safety critical
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alerts. Finally, and particularly at night, a pilot may initiate a GA after having been cleared for a VFR
landing and finding themselves in a cloud, since ATC cannot see the clouds.
Pilot initiated GA, parallel landings: Another factor that trigger GA at SFO are alerts from the Traffic
Collision Avoidance System (TCAS) [16]. TCAS is a system that alerts pilots of potential collisions or near
mid-air collision with other aircraft. While working well in en-route environment, it presents a high level of
nuisance alerts during close parallel approaches [6]. These procedures often trigger a TCAS alerts, which
can be disregarded if pilots have the other aircraft in sight and follow ATC instructions. While disregarded
by most pilots, some airlines with very strict company procedures mandate pilots to nevertheless execute a
GA.
ATC initiated GA, single file landings: During IFR operations, when landings occur in a single file of
aircraft, the compression effect may lead to loss of separation. The compression effect is the result of aircraft
significantly slowing down just before landing. If the difference in ground speed between an aircraft about
to land and its follower becomes to large, then the compression effect is also large and may result in a time
separation at landing not long enough. Therefore, ATC have to initiate a GA.
ATC initiated GA, parallel landings: There are two important rules for the parallel landing procedures.
These rules regulate overtakings when aircraft are side-by-side. There exist 4 categories of aircraft when
dealing with wake vortices: Small, Large, Heavy and 757. The first rule is that no large should overtake a
small and the second rule is that no heavy or 757 may overtake any other aircraft. If one of the rule is about
to be broken, ATC will require one of the two aircraft to go-around. The aircraft sent around can be either
the one over-taking or the one over-taken. The controller decides which option is safer.

Figure 2 presents the causes of GA as recorded by the Northern California TRACON (NCT). These data
correspond to all the GA from September 2010 to March 2011, with a total of 356 GA [15]. These reports
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FIGURE 2. Go-Around causes as recorded by the NCT

suggest that 35% of the GA are initiated by pilots or may be due to an equipment problem. Traffic on
the runway accounts for 27% of the GA and the compression effect for 22%. Then, re-sequencing mishap
account for less than 11% of the GA and finally, other factors such as TCAS alerts or earthquakes account
for less than 6%.

These reports present an “after-the-facts” analysis of the GA, seen from the air traffic controllers. In this
paper, we try to identify conditions that may increase the probability of GA or explanatory factors, in a more
detailed manner than simply saying “compression”. For instance, is there a particular traffic configuration
that increases the probability of GA due to compression?
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The remainder of this report is structured as follows. Section 2 describes the datasets used to construct
our corpus of flight data. Section 4 provides a statistical analysis of conditions that may be closely associated
with GAs and Section 5 explores the idea of using these findings as a means to predict GAs. Conclusions
are presented in Section 6.

2. DATA PRESENTATION AND SELECTION

In an attempt to identify factors that precipitate a GA, data was collected from three complimentary
datasets over a four-year period spanning January 2006 to December 2009. Following cleaning and syn-
chronization, the data was combined to create a single master dataset. The objective of this dataset is to
create a “state” vector for the system at every minute. In this sense, the system in question is comprised of
the airport, the airspace surrounding it, and the weather conditions. The generated state vectors also contain
information about the past (averages and changes over 5, 10 and 15 minutes intervals).

2.1. Data presentation. Airspace data: This dataset contains data for all of the flights recorded by the
secondary radar located at Oakland International Airport (OAK). It is from the Automated Radar Terminal
System (ARTS). A 3 month sample of the data is available for download on DashLink [4] In the full data set,
it appears the range of the radar was increased from 45 to 60 NM over the four years of interest. To ensure
consistency over the 4 year period only the data in a radius smaller than 45 NM was kept. For each flight, the
dataset contains the aircraft’s 4-D trajectory as well as metadata such as flight identification, origin airport,
destination airport, etc. We kept only flights departing or arriving at one of the three largest airports in the
Bay Area, that is San-Francisco International Airport (SFO), Oakland International Airport (OAK) and San
Jose International Airport (SJC).

Ground data: The ground data was extracted from the Aviation System Performance Metric (ASPM) flight
database. This database contains a record of both the scheduled time and actual time for pullback from gate,
takeoff, and landing for each aircraft at each major airport in the United States. This data is available for
download from the Federal Aviation Administration (FAA) website [5]. To compliment the airspace fields,
the relevant fields for all flights taking off or landing at SFO were extracted from the ASPM dataset.

Weather and runway data: The weather information and the runway configuration for SFO was extracted
from the ASPM Airport database. This database is also available on the FAA website [5]. The database
includes the weather (visibility, cloud ceiling, wind speed and direction) as well as the runway configuration
in use. Figure 1 depicts the layout of SFO. In the configuration illustrated, aircraft take off from runways
1R-L (parallel runways), and land on runway 28R-L (also parallel runways); this is the configuration in use
approximately 80 percent of the time. Among weather-related fields, the temperature was not always avail-
able at each time instant. In these cases, the temperature measurement used was obtained by interpolation
neighboring entries.

Aircraft Category: The landing category of aicraft (heavy, large, small) was obtained from a database
containing all the aircraft models and their wake vortex category. This category is determined from ICAO
standards.

2.2. GA identification. To facilitate our investigation of GAs, we assembled a corpus of samples, each of
which is one of two types: i.) samples of the airport state during nominal operations in which no GAs occur
and ii.) samples of the airport state during a window in which a GA does occur. The following rule was
used to label a flight as containing a GA: a flight contains a GA if during the plane’s terminal flight phase,
the plane’s altitude increases for fifteen consecutive measurements following a period in which the plane
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descended for at least ten consecutive radar measurements. At the sample rate at which measurements were
taken, this corresponds to approximately 70 seconds of continuous increase in altitude, following 45 seconds
of continuous descent. This criterion identified nearly all GAs and was discerning enough to exclude the
trajectories of helicopters and short-haul flights not associated with GAs. This method of detecting GAs
was validated through manual verification on a large sample of trajectories. For example, Figure 3 shows
a sample landing trajectory containing a GA. The blue line shows the portion of the trajectory prior to the
GA. The yellow segment corresponds to the 45 seconds of descent preceding the GA. The instant at which
the GA is initiated is indicated with a red cross. Finally, the grey line corresponds to the period of at least
70 seconds of climb following the GA. The remainder of the trajectory, including the eventual landing, is
shown in black.
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FIGURE 3. Sample landing trajectory containing a GA

Figure 4 shows the number of GA gathered from the data, by quarter, starting in 2006. From top to bottom
along each bar: red corresponds to GAs occurring when the runway configuration is different that landing on
takeoffs on runway 1 R/L and landings on runways 28R/L (e.g. aircraft taking-off and landing on runways
10R/L) blue corresponds to the GA occurring on the selected runway configuration but at night (23:00 to
7:00); yellow corresponds to GA occurring during day time (7:00-23:00), on runways 28 R/L, but during
IMC; and green corresponds to the corpus of GAs selected for this study, that is VMC on runways 28R/L,
between 7:00 and 23:00. Due to missing data, these numbers do not reflect the exact count of GAs at SFO.
The following section presents an analysis of landing sequences during IMC and VMC, and the associated
probability of GA occurrence.

3. LANDING SEQUENCE ANALYSIS

In this section, we analyze the sequence of aircraft that precedes a GA. The objective is to determine if
some landing sequences are more likely to predate a GA.

3.1. Sequence description. Spacing between aircraft at landing is determined by aircraft weight categories.
There are 4 categories: Small, Large, Heavy and 757 (There also exists a special category, “Super” just for
the Airbus A380). Since rules regarding heavy aircraft and 757 are very similar, these two categories were
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FIGURE 4. Distribution of GA

merged in this analysis under the denomination “heavy”. The separation between aircraft is due to the wake
vortex created by aircraft; the heavier the aircraft, the bigger the wake vortex. For each aircraft, we created
its preceding landing sequence. Tables 1 and 2 present the prior probability distribution for each type of
preceding aircraft, for VMC and IMC, respectively. The prior correspond to the probability of an aircraft
executing a GA given the type of preceding aircraft. The probability multiplication factor corresponds to the
increase in probability of a GA with respect to the overall probability of occurrence of GA, P(GA). This
analysis encompasses all the runway configurations

TABLE 1. Increased probability of GA with respect to average probability of GA in VMC

Preceding aircraft Prior Probability multiplication factor Number of occurrences
Prec P(GA|Prec) P(GA|Prec)/P(GA)

No aircraft 1.12×10−2 2.6775 24
Small 0.42×10−2 1.0021 299
Large 0.39×10−2 0.9246 798
Heavy 0.53×10−2 1.2751 229
Any 0.42×10−2 1 1350

TABLE 2. Increased probability of GA with respect to average probability of GA in IMC

Preceding aircraft Prior Probability multiplication factor Number of occurrences
Prec P(GA|Prec) P(GA|Prec)/P(GA)

No aircraft 2.4×10−2 3.3094 7
Small 0.63×10−2 0.8847 79
Large 0.68×10−2 0.9465 284
Heavy 0.96×10−2 1.3431 84
Any 0.71×10−2 1 454

Table 1 shows that during VMC and in average, the risk of executing a GA is multiplied by 2.6 for
aircraft with no other aircraft landing in the previous 10 minutes. Nevertheless, this is very unfrequent. It
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also suggests that the risk of GA is increased by 27.5% when following a heavy/757 aircraft. Table 2 shows
the same trends, during IMC. GA are 3.3 times more likely to occur when there is no preceding aircraft than
in average. Also, it is 34% more frequent when following a heavy/757 aicraft.

The following section will takes a different approach to the analysis by creating a state vector for the
system, for every minute. Then, the empirical probability distribution functions for each parameter are
compared between the nominal data set and the GA dataset.

4. TEMPORAL ANALYSIS

This section presents a statistical analysis of the distribution of the different variable features for both
nominal and GA flights. The nominal samples used in this section consist of 120,000 samples that were
randomly taken from points in time no less than 15 minutes away from a flight that performs a GA. The GA
corpus contains all 2,512 GA samples. For all figures presented in this section, the values corresponding
to the GA flights are shown in red, values corresponding to “nominal” flights are shown in blue. The
following discussion highlights operational factors that we found interesting, either because the data showed
a significant difference between the nominal and GA sample distributions, or because there was remarkably
little difference between the two distributions.

4.1. State vector creation. The datasets presented in section 2.1 were used to create a state vectors for the
system. The fields of the state vectors are listed in Table 3. Most of the states are not directly available from
the dataset and requires preprocessing and analysis. For instance, the number of heavy aircraft landing in
the past 15 minutes required the processing of the entire database as well as a secondary database to match
aircraft type (e.g. Boeing 747) and the landing category (e.g. heavy). The values of the fields were sampled
for every minute in time during the four years of study. If a GA occurs within the one minute sample window
we refer to the sample as a GA sample. Otherwise, the sample is referred to as a nominal sample. In the
event a portion of the data associated with a particular sample of interest was absent, the sample was removed
from the data set in order to ensure uniformity among dataset entries. The study focused on the periods of
higher traffic density, that is 7:00 to 23:00 local time.
Table 3 presents the fields that were used as states to represent the system.

4.2. Single parameter analysis.

4.2.1. Weather. Weather is an important factor for aircraft operation as well as for airport runway configu-
ration and operation. Table 4 presents the number of flights that landed during VMC and IMC as well as the
number of GA occurring during each type of condition. The probability of a GA is increased by 71% during
IMC versus VMC.

Figure 5 shows the distribution of nominal and GA flights as a function of various weather parameters.
Figure 5(a) presents the frequency of the samples as a function of the visibility. A visibility of 10 nmi
indicates that the actual visibility was at least 10 nmi. It appears the visibility at SFO is greater than 10 nmi
approximatively 83% of the time, but only 75% of go arounds occur during these conditions. GAs appear
to occur at a greater rate during low visibility conditions with 25% of GAs occurring in 17% of the time in
which visibility is lower. Adverse weather conditions significantly increase the probability of GA, only 25
% of GA occur during poor weather conditions. Figure 5(b) presents the nominal and GA distributions as a
function of headwind. A negative headwind corresponds to a tailwind. Most of the flights land with positive
to no headwind, and the headwind does not appear to be a significant cause of GAs. In negative headwinds,
that is tailwinds, GAs appear to be more frequent. The crosswind, is not depicted but does not seem to have
an impact on GAs. Figure 5(c) presents the altitude of the sky’s ceiling. All ceiling altitudes over 10,000 ft
were trimmed to 10,000 ft. The data suggests a low ceiling is associated with an increase in the likelihood
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TABLE 3. Sate vector description

Index Fields Name: “Airspace data”
1 Time of the day
2-5 Number of ac, SFO inbound, current, average 5, 10, 15 min
6-8 Number of ac, SFO inbound, variation 5, 10, 15 min
9-12 Number of ac, SFO outbound, current, average 5, 10, 15 min
13-15 Number of ac, SFO outbound, variation 5, 10, 15 min
16-29 Number Same as 2-15 for OAK.
30-43 Number Same as 2-15 for SJC
44-46 Landing rate at SFO (ac/min) 5, 10, 15 min
47-49 Time elapsed to land the previous 4, 8, 12 ac at SFO
50-52 Departure rate at SFO (ac/min) 5, 10, 15 min
53-55 Time elapsed to takeoff the previous 4, 8, 12 ac
56-58 Landing rate at OAK (ac/min) 5, 10, 15 min
59-61 Time elapsed to land previous 4, 8, 12 ac at OAK
62-64 Departure rate at OAK 5, 10, 15
65-67 Time elapsed to takeoff the previous 4, 8, 12 ac at OAK
68-70 Landing rate at SJC (ac/min) 5, 10, 15 min
71-73 Time elapsed to land the previous 4, 8, 12 ac at SJC
74-76 Departure rate at SJC (ac/min) 5, 10, 15 min
77-79 Time elapsed to takeoff the previous 4, 8, 12 ac at SJC
80-88 Number of small, large, heavy, ac landing at SFO

in past 5, 10, 15 min
89-97 Number of small, large, heavy, ac taking-off from SFO

in past 5, 10, 15 min

Index Fields Name: “Ground data”
98-101 Number of ac taxiing in, current, average 5, 10, 15 min
102-104 Number of ac taxiing in, variation 5, 10, 15 min
105-108 Number of ac taxiing out, current average 5, 10, 15 min
109-111 Number of ac taxiing out, variation 5, 10, 15 min
112-115 Number of ac in the runway queue, current,

average 5, 10, 15 min
116-118 Number of ac in the runway queue, variation 5, 10, 15 min
119 Total estimated departure delay
119-124 Number of ac out delayed > 0, 10, 20, 30, 45 min
125 Average delay by aircraft, out
126 Total estimated delay from schedule, arrivals
127-131 Number of ac delayed in > 0, 10, 20, 30, 45 min
132 Average delay by aircraft, in
Index Fields Name: “Weather data”
133 1 for visual MC and 0 for instrument MC
134-135 Ceiling, Visibility, Temperature
136-139 Wind Angle, windspeed, headwind, crosswind
140 Number of Runway(s) used for landing
141 Number of Runway(s) used for take offs

TABLE 4. Number of flights, GA and probability of GA during VMC and IMC

Conditions All Daytime GA P(GA|Conditions) GA & day P(GA|Conditions&day)
IMC 116,315 100,961 813 7.0×10−3 752 7.4×10−3

VMC 470,514 438,168 1,926 4.1×10−3 1,860 4.2×10−3

IMC 19.8% 18.7 29.7% 28.8% - -
VMC 80.2% 81.3 70.3% 71.2% - -

of a GA. Figure 5(d) shows the distributions as a function of temperature. The plots suggest GAs are more
likely to occur at “higher” temperatures.
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FIGURE 5. Analysis of the weather related parameters

4.2.2. Time of day. Figure 6 presents the sample distributions arranged by time of the day from 7:00 to
23:00 local time. The nominal distribution is not uniform on account of the runway configuration used and
missing data; on some days, data for the morning was missing for unknown reasons. It appears that there
are two peaks where GAs occur more frequently: from 9:00 to 14:00 and then again from 19:00 to 21:00. In
the interim, the frequency of GAs achieves a minimum near 15:30.
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FIGURE 6. Distribution of Time for the nominal observations and the GA

4.2.3. Number of aircraft inbound for SFO. Figure 7 shows the distribution corresponding to the number of
airborne flights inbound for SFO present in the terminal airspace. Figure 7(a) shows the number of aircraft
at the time the sample is taken, Figure 7(b) shows the average number of aircraft during the 15 minutes
preceding the sample. Intuitively, these statistics capture a measure of an air traffic controller’s current and
recent activity level, respectively. The GA and nominal distributions are similar, but there is a visible shift
in the mean; the mean of the GA distribution is approximatively 3 aircraft larger than that of the nominal
distribution. Figures 7(c) and 7(d) present the distributions for nominal and GA flights as a function of
the difference between the number of aircraft in the system at present and the number of aircraft 5 and
15 minutes ago, respectively. The 5 minute variation does not illustrate a significant difference between
distributions. The 15 minute distributions suggests that the distribution of GAs is shifted slightly to the right
relative to the associated nominal distribution.
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FIGURE 7. Analysis of the number of aircraft incoming to SFO

4.2.4. Landing/takeoff rates at SFO and aircraft types. Figure 8 presents the landing rates (number of air-
craft landing per minute) over the past 5 and 15 minutes (Figures 8(a) and 8(b)), as well as the number of
heavy and large aircraft landing over the past 5 minutes (Figures 8(c) and 8(d)), respectively. It appears that
a higher landing rate increases the likelihood of a GA, but not in a very important manner. Moreover, it
appears that higher numbers of large and heavy aircraft also tend to increase the likelihood of a GA occur-
ring. Although omitted here, the number of small aircraft landing in the past 5, 10 and 15 minutes displayed
no significant difference between nominal and GA distributions. Also omitted, for similar reasons, are the
distributions corresponding to the takeoff rate at SFO.

4.2.5. Number of aircraft outbound from SFO. Figure 9 depicts the distributions associated with the number
of aircraft outbound from SFO, and the variation over 5 minutes. There is no significant difference between
the data corresponding to GAs and nominal flights. We omit the associated average and variation plots for
5, 10, and 15 minutes as there are no significant differences between the nominal and GA distributions. The
outbound traffic does not appear to have a statistical impact on the occurrence of GAs.
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FIGURE 8. Analysis landing/takeoff rates at SFO and aircraft types
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FIGURE 9. Analysis of the number of aircraft outbound from SFO

4.2.6. Number of aircraft inbound for OAK - Landing rate. Figure 10 presents the distribution of the number
of flights present in the terminal airspace (in the air) and inbound for OAK. Figure 10(a) shows the number
of aircraft at the time the sample is taken. Figure 10(b) shows the average number of aircraft during the 15
minutes preceding the time of the sample. These measures reflect the current activity of the controllers and
their workload over the past 15 minutes. The nominal and GA distributions do not differ significantly, mean-
ing the number of aircraft inbound for OAK does not appear to have a statistical impact on the occurrence of
GAs at SFO. Figures 10(c) and 10(d) present the difference between the number of aircraft simultaneously
present at the time of the sample and the number in the system 5 and 15 minutes in the past, respectively. The
GA distribution is shifted slightly to the right of the nominal distribution, suggesting GAs occur more fre-
quently when there is an increase in the number of aircraft inbound for OAK during the preceding minutes.
Note that the plots are not centered at 0, suggesting a correlation between the runway configuration used at
SFO and changes in the traffic volume inbound for OAK. The landing rates at OAK over the preceding 5, 10
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FIGURE 10. Analysis of the number of aircraft incoming to OAK

and 15 minutes are not presented, since they do not imply any significant statistical impact on GAs at SFO.

4.2.7. Number of aircraft outbound from OAK - Takeoff rate. Distributions in the number of aircraft out-
bound from OAK, the variation in the number of aircraft outbound as well as the takeoff rates are not
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presented; they present no significant difference between the data corresponding to the GA and nominal
samples.

4.2.8. Number of aircraft inbound to/outbound from SJC - Landing/takeoff rates. In terms of instantaneous
or average number of aircraft, the distributions associated with the number of aircraft inbound to and out-
bound from SJC do not show significant differences. Figure 11 presents the distribution of the difference in
the current number of inbound aircraft and the number of inbound aircraft 5 and 15 minutes ago. It appears
an increase in the number of aircraft inbound for SJC tends to indicate an increase in the frequency of GAs
at SFO. Note that the plots are not centered at 0, suggesting a correlation between the runway configuration
used at SFO and the changes in traffic volume inbound for SJC. The landing and takeoff rates at SJC over 5,
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FIGURE 11. Analysis of the changes in number of aircraft incoming to SJC

10 and 15 minutes are not presented; they do not appear to have a statistical impact on GAs at SFO.

4.2.9. Number of aircraft on the airport surface, inbound. Figure 12 presents the distributions associated
with the number of inbound aircraft taxiing at SFO. Figure 12(a) shows the number of aircraft at the time
the sample is taken and Figure 12(b) shows the average number of aircraft over the preceding 15 minutes.
These measures reflect the current congestion at the airport for aircraft taxiing-in. The shape of nominal
and GA distributions are very similar, with the GA distributions being slightly skewed toward higher aircraft
counts. Figures 12(c) and 12(d) present distributions for the difference between the number of aircraft
simultaneously present at the time of sample and 5 and 15 minutes ago, respectively. The plots would
suggest that a high number of incoming aircraft slightly increases the probability of having a GA, but some
GAs occur when there are only a few incoming aircraft. The 5 minute variation in the number of inbound
aircraft is slightly shifted toward the negative numbers for the GAs, meaning that GAs are more likely to
occur when the number of aircraft inbound on the surface diminishes. This effect is not visible in the case
of 15 minute variations.
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FIGURE 12. Analysis of the number of aircraft taxiing at SFO, inbound
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4.2.10. Number of aircraft on the airport surface, outbound. Figure 13 presents the distributions of the
number of inbound aircraft taxiing at SFO. Figure 13(a) shows the number of aircraft at the time the sample
is taken and Figure 13(b) shows the average number of aircraft over the preceding 15 minutes. These
measures reflect the current congestion at the airport, for aircraft taxiing-in. The shape of the distribution of
the GAs and the nominal samples are very similar; there are slightly more GAs at the higher aircraft counts.
It appears that a high number of outbound aircraft has an impact on the probability of having a GA, but some
GAs occur when there are only a few incoming aircraft. The 15 minutes plot suggests that having an average
of more than 10 aircraft taxiing out has a significant impact on GAs.

The difference between the number of aircraft simultaneously present at the time of the sample and 5, 10
and 15 minutes in the past are not depicted, since they do not show any particularly interesting results.
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FIGURE 13. Analysis of the number of aircraft taxiing at SFO, outbound

4.2.11. Delays. Figure 14 shows the distributions as a function of the number of aircraft delayed. Fig-
ure 14(a) shows the distribution of the number of inbound aircraft with a delay, taxiing into the gate. Fig-
ure 14(b), presents the distribution for delays greater than 20 minutes. It appears that GAs are less likely
to occur when there are no delayed aircraft taxiing to a gate. For delays greater than 20 minutes, although
40% of the time there are no aircraft delayed to this extent, 33% of the GAs occur under these conditions,
indicating large delays may contribute to a GA.

Figures 14(c) and 14(d) present the same distributions for the case of aircraft taxiing out. While 25% of
the time there are no more than two aircraft with a delay, 15% of the GAs occur under these conditions.
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FIGURE 14. Analysis of the number of aircraft delayed at SFO

4.3. Discussion of results. From this analysis, three main factors leading to an increased probability of a
GA are the weather, the airborne traffic density and aircraft mix, and finally, the ground traffic and its delays.
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4.3.1. Weather: When the visibility or the ceiling are low, the rate of GAs is much higher than in good
weather conditions. A likely explanation is the lack of visibility at decision hight forcing the pilot to initiate
a missed approach and return. Wind, including tailwind and crosswind do not appear to have a significant
impact on the probability of GAs to occur. The weather has a direct impact on GAs, but at SFO, the number
of GAs due to poor weather conditions is only 25%. The temperature appears to have a slight impact on
the GA, meaning that GA are more likely to occur during warm days, or during summer. Note that this
seasonality factor that does appear in the time distribution of Figure 4

4.3.2. Traffic density and aircraft mix: The analysis suggests that having a large number of incoming aircraft
increases the probability of having a GA. From a human factor’s perspective, a large number of aircraft
simultaneously present in the terminal airspace increases the workload of the controllers, probably leading
to more “operational errors” and violation of minimum separation at distances. The terminal airspace is
rather small and congested, therefore dealing with many aircraft becomes complex very quickly and leads
air traffic controllers to vector and reroute aircraft [8]. In a previous study [7], it was shown that limiting
the number of aircraft simultaneously present in the TRACON tends to allow for more direct routes, hence
reducing the perceived complexity, and eventually, maybe reducing the probability of a GA. However, there
are some GAs that occur when there are only a few incoming aircraft, perhaps a testament to the sporadic
and haphazard nature of the event.

The aircraft mix appears to have an effect on the likelihood of GA. A high number of large and heavy
aircraft landing in the past 5 to 15 minutes increases the probability of a GA. Possible explanations include
the separation distance between aircraft becoming too small.

There is also evidence to suggest the variation in the number of planes being metered to OAK has an
impact on the likelihood of a GA; a positive change in the number of aircraft incoming into OAK seems to
increase the probability of a GA occurring at SFO. A possible explanation is a shift in cognitive perception
for the controllers in charge of the sequencing and merging for SFO, OAK and SJC. Since most of the
traffic in the TRACON is directed to SFO, a sudden increase in the number of aircraft inbound for OAK or
SJC requires a shift of attention from the controller, probably breaking his current mental model [12] of the
situation. This analysis shows the coupling effect between the airport, not only because of the traffic that
needs to be separated, but also from a controller’s point of view. This correlation between GA at SFO and
variation in incoming traffic for OAK is really unexpected since SFO and OAK operations are supposedly
decoupled, different controllers for each airport.

4.3.3. Ground traffic and delays. It appears that a large number of aircraft taxiing out at SFO increases the
probability of a GA occurring. In addition, an average over 15 minutes of more than 10 aircraft taxiing
out has a visible impact. Note also that delays affecting either inbound or outbound aircraft increase the
probability of GAs. It appears that human errors such as runway incursion, holding lines violation or late
takeoff from runway are more likely to occur during high density outbound ground traffic and when delays
affect ground traffic.

5. AN ALERTING SYSTEM FOR GO-AROUNDS

In this section, we present a system to evaluate the potential of a GA. The first step is to classify GAs
from nominal samples using the available data. The second step is to evaluate the potential of a GA at each
time step. We first introduce the issues related to predicting these rare and poorly separated events, before
presenting the results of our classification and prediction results based on the method of linear discriminant
analysis.
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5.1. Classification and Prediction issues. There are a number of factors that make classification and tem-
poral prediction of GAs difficult. First, GAs are rare events. Although this is auspicious form an air trans-
portation perspective, it makes learning difficult and introduces a strong statistical bias in our corpus of
training examples. To improve learning, it is natural to use a modified training set with roughly an equal
number of nominal and GA samples. This can be accomplished by either withholding a large portion of
nominal examples from the corpus, up-sampling the GAs, or a combination of the two methods. One of
the main issues with this dataset is that nominal and GA samples are very poorly separated in the sample
space (as presented in section 4). As false positives (nominal samples that are labelled as GA samples) are
especially undesirable in our context, we must seek to learn relationships that separate the training data.
Because of the poor separability of the samples, it is not possible to predict GAs and maintain a low rate of
false positives. Therefore, we aim at evaluating “high risk” time samples which have a higher probability of
having a GA. These high risk time samples will be denoted by an “alert level”. The objective is to maximize
the number of GAs positively identified during the alert level while minimizing the total number of samples
in the alert level.

5.2. Linear discriminant analysis. Linear discriminant analysis is a statistical method commonly used to
separate samples into several classes [1]. In our case, we are concerned with only two classes of samples:
nominal state vector samples with label y = 0 and GA state samples with label y = 1. We will assume GAs
and nominal samples are generated according to a two-label Gaussian mixture model. For this purpose, our
corpus of samples, {xi}N

i=1, xi ∈ R135 is split into two groups, a training group and a test group. A strong
assumption made by LDA is that the conditional probability density functions p(x|y = 0) and p(x|y = 1)
are both normally distributed with mean and covariance (µ0,Σ0) and (µ1,Σ1), respectively. Then, a feature
vector x is assigned the label 0 if it satisfies

(x−µ0)
T

Σ
−1
y=0(x−µ0)+ ln|Σy=0|− (x−µ1)

T
Σ
−1
y=1(x−µ1)− ln|Σy=1|< T,(1)

where T is a threshold value that reflects the frequency of a label and the |Σ| denotes the determinant of
Σ. Otherwise, x is assigned the label 1. By sweeping T downward from a very large number to zero, we
can progressively decrease the rate at which 0 labels are assigned. That is, we can control the number of
GAs that we are able to identify correctly. However, correctly identifying the bulk of the GAs comes at the
expense of having a large number of false positives.

5.3. An alert system for GA. We used LDA on three years of data to classify GA and nominal samples. A
separate year of data was withheld to test the classifier’s predicative capabilities. The training set consists of
randomly selected nominal samples and all the GA from 2006 to 2008. The test set contains all the available
samples from 2009. Figure 15 presents the result of the classification and prediction. The green curve (top)
is corresponds to the training set and the blue curve (bottom) to the test set. The horizontal-axis represents
the fraction of time predicted as alert-level, that is the fraction of the time where GAs are likely to occur.
The y-axis represents the proportion of actual GAs that occurred during a period of alert-level. The crosses
on the green line correspond to the different values of the threshold T (Eq. 1). By fixing a value of T , one
can choose the number of samples residing in the alert-level. The dashed black line indicates the increased
probability of a GA occurring during an alert-level as compared to the remainder of the time. The line 1x
indicates complete randomness of the prediction. When the green line is over the 4x line, a GA is 4 times
more likely to occur as compared to the remainder of time, that is the time when the alert is off. For instance,
the green line intercepts the 9x line at 15% of the time in threat level. This means that the predictor can be in
“threat level” 15% of the time and capture 39% of the GAs. During alert-level time, GAs are 9 times more
likely to occur than during the remaining 85% of the time.
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To further analyze the results of the predictive system, we looked at the distribution over time of the
samples predicted in to be in alert levels, that is we ran our alert system on 2009 data, at a given design
point. The design parameter, T , was selected so that, during training, 15% of the samples are in threat level,
resulting in the capture of 39% of the GAs. Figure 16 presents the time distribution of the nominal samples,
GA and samples identified in alert-level. The alert-level curve follows the same pattern as the GA curve over
time. The predictive system slightly over-estimate the risk during the morning peak and under-estimates the
risks during the evening peak.

5.4. Other methods. To improve the classification results, we tried different methods. We also split the
dataset in a different manner. Instead of using 2006 to 2008 data for training and 2009 for test, we randomly
picked 80% of the data for training and the remaining 20% for test. This explains the difference between
Figures 15 and 17 for the results on the initial dataset.

To overcome the problem of the imbalance between the datasets, we then tried to over-sample the GA
dataset using using the Synthetic Minority Over-sampling Technique (SMOTE) [3]. SMOTE creates syn-
thetic examples for the under-represented class (GAs in our case). When increasing the number of GA
samples to 120,000 (the number of nominal samples). Figure 17 presents the results of the training using
SMOTE in grey. The test results are presented in pink and in green. The pink curve contains synthetic test
data while the green only contains real data. The large gap between training and test curves indicates that
the classifier over-fitted the data during training and performed poorly during testing.

We then tried to use a `1 logistic regression ?? for attribute selection and prediction. As shown in fig-
ure 17, the performance does not improve. The results are very sensitive to the value chosen for the λ

parameter.

6. CONCLUSION

This paper investigated a number of airport operational features, each of which is readily accessible
to on-duty air traffic controllers, and they fluctuate in the time period preceding a missed approach. We
showed the important interconnection between surface operations, airborne operations, airports located in
the vicinity of each other, air traffic control procedures, and system delays. By analyzing how the distribution
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of these features varied between nominal and go-around operations, we provided a statistical mechanism to
gain insight into which factors are more likely to be a discernible precursor to go-arounds. Interpretations
for these results were provided in terms of the current operational policies in place at busy metropolitan
airports. Armed with the new insight afforded by these statistics, we proposed a framework for developing
an automated alert system to identify systems in which there is a high potential of having a missed approach.
Unfortunately, the machine learning techniques employed to this end would mandate the alert system be “on”
for an exorbitantly large amount of time to capture most of the go-arounds. It appears that the prediction
of go-arounds is a very challenging task and this study has highlighted unexpected factors that have an
impact on the probability of a missed approach. For example, factors such as the airport coupling effect on
controllers needs to be accounted for in the design of high-density metroplex operations.
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SMOOTHED QUANTILE REGRESSION FOR STATISTICAL DOWNSCALING
OF EXTREME EVENTS IN CLIMATE MODELING

ZUBIN ABRAHAM*, FAN XIN**, AND PANG-NING TAN*

Abstract. Statistical downscaling is commonly used in climate modeling to obtain high-resolution
spatial projections of future climate scenarios from the coarse-resolution outputs projected by
global climate models. Unfortunately, most of the statistical downscaling approaches using stan-
dard regression methods tend to emphasize projecting the conditional mean of the data while pay-
ing scant attention to the extreme values that are rare in occurrence yet critical for climate impact
assessment and adaptation studies. This paper presents a statistical downscaling framework that
focuses on the accurate projection of future extreme values by estimating directly the conditional
quantiles of the response variable. We also extend the proposed framework to a semi-supervised
learning setting and demonstrate its efficacy in terms of inferring the magnitude, frequency, and
timing of climate extreme events. The proposed approach outperformed baseline statistical down-
scaling approaches in 85% of the 37 stations evaluated, in terms of the magnitude projected for
extreme data points.

1. Introduction

An integral part of climate modeling is downscaling, which seeks to project future scenarios of
the local climate based on the coarse resolution outputs produced by global climate models (GCMs).
Two of the more common approaches to downscaling are dynamic downscaling and statistical down-
scaling. Dynamic downscaling uses a numerical meteorological model to simulate the physical dy-
namics of the local climate while utilizing the climate projections from GCMs as initial boundary
conditions. Though it captures the geographic details of a region unresolved by GCMs, the simula-
tion is computationally demanding while its spatial resolution remains too coarse for many climate
impact assessment studies. Statistical downscaling establishes the mathematical relationship be-
tween the coarse-scale GCM outputs and the fine-scale local climate variables based on observation
data. Unlike dynamic downscaling, it is flexible enough to incorporate any predictor variable and
is relatively inexpensive. Most of the statistical downscaling approaches employ regression methods
such as multiple linear regression, ridge regression, and neural networks to estimate the conditional
mean of the future climate conditions. These methods are ill-suited for predicting extreme values of
the climate variables.

An alternative approach is to use techniques such as quantile regression, which aims to minimize an
asymmetrically weighted sum of absolute errors, to estimate the particular quantile that corresponds
to extreme values [26]. Unfortunately, quantile regression tends to overestimate the response variable
resulting in a large number of data points being falsely predicted to be extreme. Figure 1 represent
the histogram of the distribution of observed temperature at a weather station in Canada. The
lines represent the distribution of the predicted values for temperature obtained using multiple
linear regression (MLR) and quantile regression. An observation is considered an extreme data
point if its response variable is in the top 5 percentile of observations. The shape of the tail of the
distribution that represents extreme data points (observed and projected) is shown in Figure 2. It is
clear from the figures that methods such as multiple linear regression (green line) that estimate the
conditional mean tend to underestimate the tail of observed probability distribution, while quantile
linear regression (red line) overestimates the tail part of the probability distribution. As elaborated

*Michigan State University, Dept of Computer Science, abraha84@msu.edu, ptan@cse.msu.edu
**Michigan State University, Dept of Statistic, fanxin@msu.edu.
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in Section 5, it was found that for the 37 stations evaluated, at an average, quantile regression
predicted a datapoint to be an extreme point more than twice as frequently as the actual frequency
of observed extreme data points.
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Figure 1. Histogram of observed temperature.
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Figure 2. Tail of the histogram.

To address this overestimation, we propose a method known as smoothed quantile regression
(LSQR) that reduces the absolute error of extreme data points by introducing a smoothing term
that brings the predicted response value of extreme points closer to the value corresponding to the
percentile of extreme data points. This smoothing term also provides a means to easily extend
the objective function to a semi-supervised learning setting (LSSQR). Semi-supervised learning, in
addition to using the training data, can also use the distribution characteristics of the predictor
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variables of the test set to glean a better estimate of the distribution of data upon which the model
will be applied.

In summary, the main contributions of this paper are as follows:

• We demonstrate the limitation of MLR, ridge regression and quantile regression in predicting
extreme values.

• We present a smoothed quantile regression framework for extreme values prediction.
• We also extend the framework to a semi-supervised setting.
• We demonstrate the efficacy of our learning framework on climate data (temperature) ob-

tained from the Canadian Climate Change Scenarios Network website [1]. Both the super-
vised and the semi-supervised proposed frameworks outperformed the baseline methods in
85% of the 37 stations evaluated, in terms of magnitude, frequency and the timing of the
extreme events.

The remainder of this paper is organized as follows. Section 2 covers some of the related work.
Section 3 introduces the reader to the notations and terminology used in the paper. Relevant
approaches, such as quantile regression are also introduced. Section 4 introduces the objective
function of the proposed supervised and semi-supervised model, as well as the analysis of the model.
This is followed by a detailed description of our algorithm and experimental results in Section 5.
Finally, we present our conclusions and suggestions for future work in Section 6.

2. Related Work

Time series prediction has long been an active area of research with applications in finance [40],
climate modeling [19][12], network monitoring [10], transportation planning [24], etc. There are
several time series prediction techniques available, including least square regression [27], recurrent
neural networks [23], Hidden Markov Model Regression [22], and support vector regression [33].

Given the growth in the number of climate models in the earth science domain, extensive research
has been done to best utilize these models [31] as well as focus on downscaling surface climate
variables like temperature and precipitation time series from these global climate models (GCM)
[12, 13, 19, 39]. Identifying and modeling extreme events in climatology has recently gained a lot of
traction [7]. Unfortunately, the common regression techniques mentioned earlier that may be used
for downscaling, focus on predicting the conditional mean of the response variable, while extreme
values are better identified by conditional quantiles that corresponds to the extreme values. Hence,
unlike the common regression techniques mentioned earlier that focus on predicting the conditional
mean, the motivation behind the presented model is focusing on the conditional quantile, using an
approach similar to quantile regression [26].

Variations of quantile regression such as non-parametric quantile regression and quantile regres-
sion forests have been used to infer the conditional distribution of the response variable which may
be used to build prediction intervals [34, 30]. Also, variants of quantile regression that estimate
the median are used due to its robustness to outliers when compared to traditional mean estimate
[41]. [21] presented a statistical downscaling approach to estimate censored conditional quantiles of
precipitation that uses QR. The conditional probability of the censored variable is estimated using
a generalized linear model (GLM) with a logit function to model the nature of the distribution of
precipitation and hence cannot be directly applied to model temperature. Mannshardt-Shamseldin
et. al. [28] demonstrate another approach to downscaling extremes through the development of a
family of regression relationships between the 100 year return value (extremes) of climate modeled
precipitation(NCEP and CCSM) and station-observed precipitation values. Generalized extreme
value theory based approaches have also be applied to model extreme events like hydrologic and wa-
ter quality extremes, precipitation, etc [36, 6]. The Pareto distribution [47, 48], Gumbel [49, 50] and
Weibull [51] are the more common variants of General extreme value distribution used. But these
techniques are probabilistic based that emphasize trends pertaining to the distribution of future
extreme events and not the deterministic timing of the occurrence of the extreme event.

3
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The drawback of building a model that primarily focuses on only a particular section of the
conditional distribution of the response variable is the limited amount of available data. Hence,
the motivation for incorporating unlabeled data during model building. There have been extensive
studies on the effect of incorporating unlabeled data to supervised classification problems, including
those based on generative models[18], transductive SVM [25], co-training [8], self-training [44] and
graph-based methods [5][45]. Some studies concluded that significant improvements in classification
performance can be achieved when unlabeled examples are used, while others have indicated other-
wise [8, 15, 17, 35, 42]. Blum and Mitchell [8] and Cozman et al. [15] suggested that unlabeled data
can help to reduce variance of the estimator as long as the modeling assumptions match the ground
truth data. Otherwise, unlabeled data may either improve or degrade the classification performance,
depending on the complexity of the classifier compared to the training set size [17]. Tian et al. [35]
showed the ill effects of using different distributions of labeled and unlabeled data on semi-supervised
learning.

3. Preliminaries

Let Dl = {(xi, yi)}n
i=1 be a labeled dataset of size n, where each xi ∈ Rd is a vector of predictor

variables and yi ∈ R the corresponding response variable. Similarly, Du = {(xi, yi)}n+m
i=n+1 corre-

sponds to the unlabeled dataset. The objective of regression is to learn a target function f(x, β)
that best estimates the response variable y. β is the parameter vector of the target function. n
represents the number of labeled training points and m represents the number of unlabeled testing
points.

3.1. Multiple linear regression (MLR) and ridge regression. One of most widely used forms
of regression is multiple linear regression. It solves a linear model of the form

y = xT β + ε

where, ε ∼ N(0, σ2) is an i.i.d Gaussian error term with variance σ2. β ∈ Rd is the parameter
vector. MLR minimizes the sum of squared residuals

(y −Xβ)T (y −Xβ)

which leads to a closed-form expression for the solution

β̂ = (XT X)−1XT y

A variant of MLR, called ridge regression or Tikhonov regularization is often used to mitigate over-
fitting. Ridge regression also provides a formulation to overcome the hurdle of a singular covariance
matrix XT X that MLR might be faced with during optimization. Unlike the loss function of MLR
the loss function for ridge regression is

(y −Xβ)T (y −Xβ) + λβT β,

and its corresponding closed-form expression for the solution is

β̂ = (XT X + λI)−1XT y

where, the ridge coefficient λ > 0 results in a non-singular matrix XT X +λI always being invertible.
The problem with both MLR and ridge regression is that they try to model the conditional mean,
which is not best suited for predicting extremes.

3.2. Quantile Linear Regression(QR). The τ th quantile of a random variable Y is given by:

QY (τ) = F−1(τ) = inf{y : FY (y) ≥ τ}
where,

FY (y) = P (Y ≤ y)
is the distribution function of a real valued random variable Y and τ ∈ [0, 1].

4

2011 Conference on Intelligent Data Understanding 95

TOSHIBA
Pencil



Unlike MLR that estimates the conditional mean, quantile regression estimates the quantile (e.g.,
median) of Y .To estimate the τ th conditional quantile QY |X(τ), quantile regression minimizes an
asymmetrically weighted sum of absolute errors. To be more specific, the loss function for quantile
linear regression is:

N∑

i=1

ρτ (yi − xT
i β)

where,

ρτ (u) =

{
τu u > 0
(τ − 1)u u ≤ 0

Unlike MLR and ridge regression that have a closed-formed solution, quantile regression is often
solved using optimization methods such as linear programming. Linear programming is used to solve
the loss function by converting the problem to the following form.

min
u,v

τ1T
nu + (1− τ)1T

nv

s.t. y − xT β = u− v

where, ui ≥ 0 and vi ≥ 0. But as shown in Figures 1 and 2, quantile regression often overestimates
data points resulting in too many false positive extreme events predicted.

4. Framework for smoothed quantile regression

Given that the primary objective of the model is to accurately regress extreme valued data points
and quantile regression has been shown to perform relatively better that its least square counterparts
that tend to underestimate the frequency and magnitude of extreme data points, the proposed
objective approach of the proposed frameworks is modeled around linear quantile regression. Section
4.1 describes smoothed quantile regression (LSQR) and its objective function. Section 4.2 proposes
a semi-supervised extension to LSQR which is then followed by mathematical properties of the
behavior of the objective function.

4.1. Smoothed quantile regression (LSQR). We propose a quantile-based linear regression
model that is based on the assumption of smoothness, i.e., data points whose predictor variables are
similar, should have a similar response. We use this notion of smoothness as an integral part of the
framework as experiments provided in Section 5 demonstrate this characteristic in the dataset used.
The smoothness assumption could be described as the constraint

n∑

i,j

wij(fi − fj)2 < c

where wij is a measure of similarity between data point i and j, f the predicted value of the response
variable and c is a constant.

Also, since the framework doesn’t restrict the training set only to extreme data points, the
smoothing component of the objective function tends to implicitly cluster data points resulting in
better distinction of the response variables of an extreme valued data point and a non-extreme
valued data point. Empirical results comparing supervised quantile regression to the proposed semi-
supervised model illustrate this point as shown in Section 5. The term

wij = exp(−||xi − xj ||2
σ

) i, j ∈ [1, 2, . . . , n]

is equivalent to the radial basis function and is used to capture the similarity between the predictor
variables of data point i and data point j. σ is a scale parameter used to control the distance above
which two data points are not considered as being highly coupled.

5
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Assuming linear regression, f(xi, β) = xiβ, the smoothing term can be reformulated as
n∑

i,j

wij(f(xi, β)− f(xj , β))2 = fT ∆f = βT Σβ

where,
Σ = XT ∆X

∆ = D −W

and D is a diagonal matrix such that Dii =
∑n

j=1 wij and W = {wij}|ni,j=1.
Coupling smoothing with the objective function of linear qunatile regression, we end up with the

following optimization problem.

min
β

n∑

i=1

ρτ (yi − xT
i β) + λβT Σβ

As can be clearly observed from the objective functions of LSQR, λ → 0 results in an estimate
similar to quantile linear regression while, λ → ∞ results in the estimate of the response variable
converging towards the target quantile of data. This is because a large λ would penalize any non-
zero difference between fi and fj very harshly thereby minimizing the error by setting fi = α, ∀i ∈
[1, 2, . . . , n], thereby reducing the error from the second component of the equation to 0. This reduces
the loss function to the following

f(β) =
n∑

i=1

ρτ (yi − α), β = (α, 0, 0, . . . , 0)T

The formal proof of this is provided in the following theorem.

Theorem 1: f(xi, β) → y(nτ) as λ →∞, ∀i ∈ [1, 2, . . . , n].
Proof : Let y(i) be the ith smallest element among yk|nk=1 and y(i) < αi <= y(i+1).

When λ →∞, the loss function can be rewritten in terms of αi as follows
i∑

k=1

(1− τ)(αi − y(k)) +
n∑

k=i+1

τ(y(k) − αi) +
n∑

i,j=1

Wij(αi − αi)

which is equivalent to minimizing

τ
n∑

k=1

y(k) −
i∑

k=1

y(k) − (nτ − i)αi

or maximizing
i∑

k=1

y(k) + (nτ − i)αi = li

Therefore,
lj − lj−1 = yj − αj−1 + (nτ − j)(αj−1 − αj)

Hence, ∀j : j ≤ nτ , lj − lj−1 >= 0, since (yj − αj−1), (nτ − j) and (αj−1 − αj) are all ≥ 0.
Similarly, ∀j : j ≥ nτ ,

lj − lj+1 = αj+1 − yj+1 + (nτ − j)(αj − αj+1) ≥ 0

Hence, if ∃i : i = nτ , then α = y(nτ). But if, i < nτ < (i+1), then α is in the interval [y(i), y(i+1)] ¤
Figure 3 is a plot that tracks the values of β for different λ values. The figure shows that the

regression parameter vector β will converge to (α, 0, 0, . . . , 0)T as λ increases. β0 is the regression
parameter that corresponds to the column of 1’s in the design matrix.

6
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Figure 3. Influence of parameter λ on the regression coefficients β in LSQR.

Figures 4 and 5 plots the influence of λ on the predicted values returned from LSSQR. i.e., as the
value of λ increases, LSSQR shrinks the prediction range to the quantile τ . Figure 5 is a zoomed-in
image, capturing the tail of Figure 4.

4.2. Linear semi-supervised quantile regression (LSSQR). The objective function of LSQR
can be easily extended to a semi-supervised learning setting since the smoothing factor (the second
term in the equation) is independent of y. Therefore, by extending the range of the indices i
and j of the smoothing term to span 1 to n + m, the predictor variables of the unlabeled data
Xu = [xu1, ..., xum]T can be harvested.

The objective function of the LSSQR is

arg min
β

n∑

i=1

ρτ (yi − xT
i β) + λ

n+m∑

i,j

wij(xT
i β − xT

j β)2

5. Experimental Results

In this section, the climate dataset that is used for statistical downscaling is described. This is
followed by the experimental setup, which address the inherent properties of the dataset, such as
its periodic nature. Once the dataset is introduced, we analyze the behavior of baseline models
developed using MLR, ridge regression and quantile regression and contrast them with LSQR and
LSSQR. The efficacy of the models in accurately measuring the magnitude, the relative frequency
and timing of forecasting a data point as an extreme event is measured.

5.1. Data. All the algorithms were run on climate data obtained at 37 weather stations in Canada,
from the Canadian Climate Change Scenarios Network website [1]. The response variable to be
regressed (downscaled) corresponds to daily temperature values measured at each weather station.

7
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Figure 4. Influence of λ on the probability distribution of the predicted values
obtained from LSSQR.

Figure 5. Influence of λ on the probability distribution of the predicted extreme
values obtained from LSSQR.
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The predictor variables for each of the 37 stations correspond to 26 coarse-scale climate variables
derived from the NCEP re-analysis data set, which include measurements of airflow strength, sea-
level pressure, wind direction, vorticity, and humidity, as shown in Table 1. The predictor variables
used for training were obtained from the NCEP re-analysis data set that span a 40-year period
(1961 to 2001). The time series was truncated for each weather station to exclude days for which
temperature or any of the predictor values are missing.

Table 1. List of predictor variables for temperature prediction.

Predictor Variables
500 hPa airflow strength 850 hPa airflow strength
500 hPa zonal velocity 850 hPa zonal velocity
500 hPa meridional velocity 850 hPa meridional velocity
500 hPa vorticity 850 hPa vorticity
500 hPa geopotential height 850 hPa geopotential height
500 hPa wind direction 850 hPa wind direction
500 hPa divergence 850 hPa divergence
Relative humidity at 500 hPa Relative humidity at 850 hPa
Near surface relative humidity Surface specific humidity
Mean sea level pressure Surface zonal velocity
Surface airflow strength Surface meridional velocity
Surface vorticity Surface wind direction
Surface divergence Mean temp at 2 m

5.2. Experimental setup. As is well known, temperature, which is the response variable in our
experiments, has seasonal cycles. To efficiently capture the various cycles, de-seasonalization is
performed prior to running the experiments. As is common practice in the field of climatology, a
common approach to de-seasonalization is to split the data into 4 seasons (DJF, MAM, JJA, SON)
where ’DJF’ refers to the months of December-January-February in the temperature timeseries.
Similarly, ’MAM’ refers to March-April-May, and ’JJA’ refers to June-July-August and ’SON’,
September-October-November. In effect, for each station, we build 4 different models, corresponding
to the 4 seasons. The training size used spanned 6 years of data and the test size, 12 years. During
validation, the parameter λ was selected using the score returned by RMSE for extreme data points.
A data point is considered extreme if its response variable is greater than .95 percentile (Threshold-
1) of the whole dataset corresponding to the station. QR was implemented using the interior point
algorithm as detailed in [2]. Broyden Fletcher Goldfarb Shanno (BFGS) method was used to solve
the LSQR and LSSQR optimization problem.

5.3. Evaluation criteria. The motivation behind the selection of the evaluation metrics was the
intent to evaluate the different algorithms in terms of accuracy of the prediction of extreme values,
the timing of the extreme events as well as the frequency with which a data point is predicted to be
an extreme data point. The following metrics are used to capture the above evaluation criteria for
the various models:

• Root Mean Square Error (RMSE), which measures the difference in magnitude between the
actual and predicted values of the response variable, i.e.:

RMSE =
√∑n

i=1(y
′
i−f ′i)

2

n . RMSE was computed on those days that were observed to be
extreme data points.

• Precision and recall of extreme events are computed to measure the timing accuracy of the
prediction. F-measure, which is the harmonic mean between recall and precision values, will
be used as a score that summarizes the precision and recall results.
F-measure = 2×Recall×Precision

Recall+Precision

9
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• The frequency of predicting extreme data point for the various methods was measured by
computing the ratio of the number of data points that were predicted to be extreme to the
number of observed extreme data points.

To summarize, RMSE is used for measuring the accuracy of the predicted magnitude of the response
variable, whereas F-measure can be thought of as measuring the correctness of the timing of the
extreme events.

5.4. Baseline. We compared the performance of LSQR and LSSQR with baseline models created
using multiple linear regression (MLR), ridge regression (Ridge), and quantile regression (QR). All
the baselines were run for the same 37 stations and for all the 4 seasons. Also, a comparison of
the performance of the proposed supervised framework (LSQR) is made with its semi-supervised
counterpart (LSSQR), where LSSQR demonstrated an improved performance over LSQR for the 37
stations evaluated upon as shown in Table 2. Table 2 summarizes the tally of percentage of times
LSSQR outperformed LSQR over the 4 seasons for the given 37 stations. As seen in the table,
LSSQR showed an improved performance in terms of both RMSE and F-measure.

Table 2. The relative performance of LSSQR compared with LSQR with regard
to the extreme data points.

Win Loss Tie
RMSE 68.25% 31.75% 0%
F-measure 60.14% 37.16% 2.7%

5.5. Results. As mentioned earlier, experiments were run separately using each of the baseline
approaches and LSQR and LSSQR for the 4 seasons (DJF, MAM, JJA, SON) of the year for each
of the 37 stations’ data. The results over all the seasons and stations are summarized in Tables
3 and 4 while the individual results of each season in Figures 6 and 8. Table 3 summarizes the
relative performance of LSQR with respect to the baseline methods in terms of RMSE of extreme
data points and F-measure of identification of extreme data points. During testing, a data point
is considered extreme, if its response variable is greater than .95 percentile (Threshold-1) of the
whole dataset corresponding to the station. For the purpose of analysis, results of using the .95
percentile of the response variable in the training set (Threshold-2) to identify extreme data points
are also summarized. The fact that the results obtained by using the two different baselines is an
indicator that the training data did capture the distribution of the response variable reasonably
well. LSQR consistently outperformed the baselines both in terms of RMSE and F-measure. It
must also be noted that LSQR did outperform MLR and Ridge in terms of recall of extreme events
comprehensively across each of the 37 stations and seasons.

Table 3. The percentage of stations LSQR outperformed the respective baselines,
with regard to the extreme data points.

MLR Ridge QR

RMSE Threshold-1 88.51% 87.84% 80.40%
Threshold-2 89.19% 87.84% 79.05%

F-measure Threshold-1 59.45% 60.13% 72.97%
Threshold-2 56.08% 58.10% 79.05%

Similarly, Table 4 summarizes the relative performance of LSSQR with respect to the baseline
methods in terms of RMSE of extreme data points and F-measure of identification of extreme data
points. Like LSQR, LSSQR consistently outperformed the baselines both in terms of RMSE and

10
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Table 4. The percentage of stations LSSQR outperformed the respective baselines,
with regard to the extreme data points.

MLR Ridge QR

RMSE Threshold-1 87.16% 85.14% 85.13%
Threshold-2 87.84% 86.49% 81.76%

F-measure Threshold-1 60.13% 58.78% 75.67%
Threshold-2 56.75% 59.45% 81.75%

F-measure. It must be noted that LSSQR outperform MLR and Ridge in terms of recall of extreme
events comprehensively across each of the 37 stations and seasons.

Figure 6 gives a breakdown of the performance of the LSSQR over each of the 4 seasons of the
37 stations using Threshold-1 for the purpose of marking a data point as extreme. The figure is
a bar chart of percentage of stations that LSSQR outperformed MLR, ridge regression and QR in
prediction accuracy for only extreme data points in the test set. RMSE was used to compute the
accuracy of each model in predicting extreme value data points, at the 37 stations. As seen in the
plot, LSSQR outperforms MLR, ridge regression and QR in each of the four seasons across the 37
stations.
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Figure 6. Ratio of stations LSSQR outperforming baseline in terms of RMSE of
extreme data points.

Figure 7 shows a graph that depicts the percentage of stations LSSQR outperformed MLR, ridge
regression and QR in terms of identifying extreme data points over 37 stations. Again, LSSQR
comprehensively outperforms MLR and ridge regression over all the 37 stations and 4 seasons. But
as expected, QR outperforms LSSQR in terms of recall performance for each of the 4 seasons due
to the overestimating nature of QR, which consequently resulted in poor precision and which is
reflected in its F-measure score. At an average, quantile regression, predicted a datapoint to be
an extreme point more than twice as frequently as the actual frequency of observed extreme data
points. In fact, QR lost out to LSSQR in 91% of 37 stations across 4 seasons in terms of precision
of identifying extreme data points.

Figure 8 shows a graph that depicts the percentage of stations where LSSQR outperformed MLR,
ridge regression and QR in prediction accuracy based on F-measure of the identifying extreme data
points over 37 stations. Again, LSSQR outperforms MLR, ridge regression and QR for all the 4
seasons.
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Figure 7. Ratio of stations LSSQR outperforming baseline in terms of recall of
extreme data points.
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Figure 8. Ratio of stations LSSQR outperformin baseline in terms of F-measure
of extreme data points.

The performance improvement obtained by LSSQR in terms of predicting the extreme values can
be easily visualized in Figure 9. Figure 9 is a plot comparing the predicted response variable of
the various methods. The plot is restricted to only extreme data points for a station. As expected,
the predicted value of the response variable using multiple linear regression is often underestimat-
ing the observed temperature, while quantile regression regularly overestimates the prediction of
temperature and LSSQR lies in between MLR and QR and closer to the observed temperature.

6. Conclusions

This paper presents a semi-supervised framework (LSSQR) for recalling and accurately predicting
values for extreme data points. The proposed approach was applied to real world climate data
spanning 37 stations and was compared with MLR, ridge regression and quantile regression in terms
of the effectiveness the model demonstrated in identifying and predicting extreme temperatures for
the given stations. For future work, we will explore a non-linear variant of the smoothed quantile
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Figure 9. Prediction performance of extreme data points using MLR, Ridge, QR, LSSQR.

regression framework. We will also explore a semi-supervised variant of the non-linear smoothed
quantile regression model.
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TIME SERIES RECONSTRUCTION VIA MACHINE LEARNING: REVEALING

DECADAL VARIABILITY AND INTERMITTENCY IN THE NORTH PACIFIC

SECTOR OF A COUPLED CLIMATE MODEL

DIMITRIOS GIANNAKIS* AND ANDREW J. MAJDA*

Abstract. Many processes in atmosphere-ocean science develop multiscale temporal and spatial
patterns, with complex underlying dynamics and time-dependent external forcings. Because of the

possible advances in our understanding and prediction of climate phenomena, extracting that vari-

ability empirically from incomplete observations is a problem of wide contemporary interest. Here,

we present a technique for analyzing climatic time series that exploits the geometrical relationships

between the observed data points to recover features characteristic of strongly nonlinear dynamics

(such as intermittency), which are not accessible to classical Singular Spectrum Analysis (SSA).

The method utilizes Laplacian eigenmaps, evaluated after suitable time-lagged embedding, to pro-

duce a reduced representation of the observed samples, where standard tools of matrix algebra

can be used to perform truncated Singular Value Decomposition despite the nonlinear manifold

structure of the data set. As an application, we study the variability of the upper-ocean tem-

perature in the North Pacific sector of a 700-year equilibrated integration of the CCSM3 model.

Imposing no a priori assumptions (such as periodicity in the statistics), our machine-learning tech-

nique recovers three distinct types of temporal processes: (1) periodic processes, including annual

and semiannual cycles; (2) decadal-scale variability with spatial patterns resembling the Pacific

Decadal Oscillation; (3) intermittent processes associated with the Kuroshio extension and varia-

tions in the strength of the subtropical and subpolar gyres. The latter carry little variance (and

are therefore not captured by SSA), yet their dynamical role is expected to be significant.

1. Introduction

Coupled atmosphere-ocean processes exhibit variability across a broad range of time scales, in-
cluding seasonal, interannual, and decadal time scales [19, 27, 20, 21, 26]. There is a strong interest
among the climate community in extracting physically-meaningful information about this variabil-
ity using data from models or observations, with the goal of enhancing our understanding of the
underlying dynamics, and improving our predictive capabilities.

A classical way of attacking this problem is through Singular Spectrum Analysis (SSA), or one of
its variants [28, 3, 18, 15]. Here, a low-rank approximation of a dynamic process is constructed by first
embedding a time series of a scalar or multivariate observable in a high-dimensional vector space H

(called embedding space) using the method of delays [25, 24, 14], and then performing a truncated
singular-value decomposition (SVD) of the matrix X containing the embedded data [8]. In this
manner, information about the dynamical process is extracted from the left and right singular vectors
of X with the k largest singular values. The left singular vectors form a set of empirical orthogonal
functions (EOFs) which, at each instance of time, are weighted by the corresponding principal
components (PCs) determined from the right singular vectors to yield a rank-k reconstruction of X.

A potential drawback of this approach is that it is based on minimizing an operator norm which
may be unsuitable for the nonlinear processes encountered in atmosphere-ocean science (AOS).
Specifically, the PCs are computed by projecting onto the principal axes of the k-dimensional ellipsoid
that best fits the data in the least-squares sense. This construction is optimal when the underlying
dynamics are linear, but nonlinear processes will in general give rise to a manifold M in embedding
space that deviates significantly from an ellipsoidal shape. Physically, a prominent manifestation

*Courant Institute of Mathematical Sciences, New York University, dimitris@cims.nyu.edu, jonjon@cims.nyu.edu.

2011 Conference on Intelligent Data Understanding 107



of this phenomenon is failure to capture via SSA the intermittent patterns arising in turbulent
dynamical systems; i.e., temporal processes that carry low variance but play an important dynamical
role [13].

Despite their inherently nonlinear character, such data sets possess a natural linear structure,
namely the Hilbert space L2(M,µ) of square-integrable functions on M with inner product inherited
from the volume element µ of M (the Riemannian measure). This space may be thought of as
the collection of all possible weights that can be assigned to the data samples when making a
reconstruction, i.e., it is analogous to the space spanned by the right singular vectors in SSA [3].
Similarly, the left singular vectors are naturally identified with elements of the dual space H∗ to H.
Therefore, it is reasonable to develop algorithms that seek to approximate suitably defined maps
from L2(M,µ) to H∗. Such maps, denoted here by A, have the advantage of being simultaneously
linear and compatible with the nonlinear manifold comprised by the data.

In this paper, we advocate that this approach, implemented via algorithms developed in machine
learning, can reveal important aspects of complex AOS data sets which are not accessible to stan-
dard SSA. Here, an orthonormal basis for L2(M,µ) is constructed through eigenfunctions of the
Laplace-Beltrami operator on M , computed efficiently via sparse graph-theoretic algorithms [4, 10].
Projecting the data from embedding space H onto these eigenfunctions gives a matrix representation
of A, such that the optimal rank-k reconstruction with respect to the natural norm of maps from
L2(M, g) to H∗ is given by standard truncated SVD.

We demonstrate the efficacy of the scheme in an analysis of the North Pacific sector of the Com-
munity Climate System model version 3 (CCSM3) [12]. Using a 700-year equilibrated data set of
the upper 300 m ocean [1, 26, 7], we identify a number of qualitatively-distinct spatiotemporal pro-
cesses, each with a meaningful physical interpretation. These include the seasonal cycle, semiannual
variability, as well as decadal-scale processes resembling the Pacific Decadal Oscillation (PDO).

Besides these modes, which are familiar from SSA, the spectrum of the manifold-based algorithm
also contains modes with a strongly intermittent behavior in the temporal domain, characterized
by five-year periods of high-amplitude oscillations with annual and semiannual frequencies, sepa-
rated by periods of quiescence. Spatially, these modes describe enhanced eastward transport in the
Kuroshio extension region, as well as retrograde (westward) propagating temperature anomalies and
circulation patterns resembling the subpolar and subtropical gyres. The bursting-like behavior of
these modes, a hallmark of strongly-nonlinear dynamics, means that they carry little variance of the
raw signal (about an order of magnitude less than the seasonal and PDO modes). As a result, they
are not captured by linear SSA.

The plan of this paper is as follows. In Section 2 we describe our theoretical framework. In
Section 3 we apply this framework to the upper-ocean temperature in the North Pacific sector of
CCSM3. We discuss the implications of these results in Section 4, and conclude in Section 5.

2. Theoretical framework

We consider that we have at our disposal samples of a time-series xt of a d-dimensional climatic
variable sampled uniformly with time step δt. Here, xt ∈ R

d is generated by a dynamical system,
but observations of xt alone are not sufficient to uniquely determine the state of the system in phase
space; i.e., our observations are incomplete. For instance, in Section 3 ahead, xt will be a depth-
averaged ocean temperature field restricted in the North-Pacific sector of CCSM3. Our objective is
to produce a low-rank reconstruction of xt taking explicitly into account the fact that the underlying
trajectory of the dynamical system lies on a nonlinear manifold M in phase space.

The methodology employed here to address this objective consists of five basic steps: (1) embed
the observed data in a vector space of dimension greater than d via the method of delays; (2) map
the data from embedding space to a set of orthonormal Laplacian eigenfunctions; (3) evaluate a
low-rank approximation of the data in reduced coordinates determined through the eigenfunctions;
(4) convert the approximated data back to embedding space; (5) project to physical space R

d to
obtain the reconstructed signal. Below, we provide a summary of each step. Details of the procedure
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will be presented elsewhere. Hereafter, we shall consider that M is compact and smooth, so that a
well-defined spectral theory exists [6]. Even though these conditions may not be fulfilled in practice,
eventually we will pass to a discrete, graph-theoretic description [9], where smoothness is not an
issue.

Step (1) is familiar from the qualitative theory of dynamical systems [23, 25, 24, 14]. Under generic
conditions, the image of xt in embedding space H = R

n under the delayed-coordinate mapping,

(1) xt 7→ Xt = (xt, xt−δt, . . . , xt−(q−1) δt)

lies on a manifold which is diffeomorphic to M (i.e., indistinguishable from M from the point of
view of differential geometry), provided that the dimension n of H is sufficiently large. Thus, given
a sufficiently-long embedding window ∆t = (q − 1) δt, we obtain a representation of the nonlinear
manifold underlying our incomplete observations, which can be thought of as a curved hypersurface
in Euclidean space. That hypersurface inherits a Riemannian metric g, i.e., an inner product between
tangent vectors on M constructed from the canonical inner product of H.

Steps (2) and (3) effectively constitute a generalization of SSA, adapted to nonlinear data sets.
Recall that SSA is essentially an SVD decomposition,

(2) X = UΣV T ,

of the data matrix X = [X0, Xδt, . . . , X(s−1)δt], dimensioned n × s for s samples in n-dimensional
embedding space. Here, the key observation is that the map in Eq. (1) naturally gives rise to two
linear vector spaces, which are analogous to the spaces spanned by left and right singular vectors
of X [3]. The first is the space L2(M,µ) of square-integrable functions on M , where µ = (det g)1/2

is the volume element (Riemannian density) induced on M through the embedding M 7→ H. The
second space of interest is the dual space H∗ of H. The elements of H∗ are functionals, mapping
observed data points in H to the real numbers.

To see the correspondence with SVD, let f be a function in L2(M,µ), z an arbitrary vector in
H, and consider the dual vector h ∈ H∗ defined by

(3) h(z) =

∫

M

µ(Xt)f(Xt)〈Xt, z〉,

where 〈·, ·〉 is the inner product of H. That is, f assigns a weight proportional to f(Xt) on the
dual vector 〈Xt, ·〉, much like the i-th column of V weighs the i-th column of U in Eq. (2). What
one gains by phrasing the problem in this manner is a linear map A taking L2(M,µ) to H∗ via the
rule in Eq. (3), viz. A(f) = h. Note that this definition is basis-independent. Moreover, unlike the
nonlinear manifold M , A is amenable to analysis through the standard tools of linear algebra. In
particular, low-rank reconstruction of A is a well-defined notion.

Having the latter as an objective, the role of the Laplacian eigenfunctions in step (2) is to pro-
vide an orthonormal basis of L2(M,µ), in which the operator norm ‖A‖ can be straightforwardly
computed via the Frobenius norm of its matrix representation [Eq. (6) ahead]. Specifically, it is
well known that the eigenfunctions {φ0, φ1, . . .} of the Laplace-Beltrami operator ∆ associated with
the metric g, defined via ∆φi = λiφi (together with appropriate boundary conditions if M has
boundaries), lead to an orthogonal decomposition of L2(M,µ) into invariant subspaces Φi. That is,
we have [6]

L2(M,µ) =
∞
⊕

i=0

Φi with Φi = span{φk : λk = λi},(4a)

∫

M

µ(X)fi(X)fj(X) = 0 for any fi ∈ Φi, fj ∈ Φj , and j 6= i.(4b)

The components of A in this basis are

(5) Aij =

∫

M

µ(Xt)(Xt)iφj(Xt),

3
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with (Xt)i the i-th element of Xt, giving the operator norm through

(6) ‖A‖2 =
∑

ij

A2

ij .

Equation (5) may be interpreted as a Fourier transform on compact manifolds.
In applications, the Laplace-Beltrami eigenfunctions for a finite data set are computed by replacing

the continuous manifoldM via a weighted graph G, and solving the eigenproblem of a Markov matrix
P defined on G, constructed so that in the continuum limit, s → ∞, the generator of P (the graph
Laplacian) converges to ∆ [4, 11, 10, 5]. Note that the Markov matrix employed in this procedure is
highly sparse, which means that the cost of the eigenvalue problem for (λi, φi) grows linearly with
the number of samples.

The least-favorable scaling in the eigenfunction calculation involves the pairwise distance calcu-
lation between the data samples in embedding space. This scales quadratically with the number of
samples if done with brute force, which is the approach adopted here. However, an s log s scaling
may be realized if the dimension of H is small-enough for approximate kd-tree-based algorithms
to operate efficiently [2]. In the present study, all eigenfunction calculations were performed on
a desktop workstation. The scalability of this class of algorithms to large problem sizes has been
widely demonstrated in the machine learning and data mining literature.

In step (3), a rank-k approximation Ã of A is evaluated by selecting the first r invariant subspaces
in order of increasing λi (with l =

∑r
i=1

dimΦi ≥ k), and performing a truncated SVD of the n× l

matrix Â = [Aij ]j≤l. That is, in matrix notation, the nonzero components of Ã are

(7) Ã = UkΣkV
T
k ,

where Σk is a k× k diagonal matrix containing the k-largest singular values σi of Â, and Uk and Vk

are respectively n×k and l×k matrices whose columns are the corresponding left and right singular
vectors. The resulting operator is the highest-norm rank-k linear map from L2(M,µ) to H∗, whose
kernel is the orthogonal complement of

⊕r
i=1

Φi in L2(M,µ).

Step (4) involves computing the reconstructed data X̃t in embedding space via the inverse trans-
form [cf. Eq. (5)]

(8) (X̃t)i =

l
∑

j=1

Ãijφj(Xt).

Finally, in step (5), X̃t is projected to d-dimensional physical space by writing

(9) X̃t = (x̂t,0, x̂t,δt , . . . , x̂t,(q−1) δt),

and taking the average,

(10) x̃t =
∑

t′,τ :t′−τ=t

x̂t′,τ/q.

Note that if M is embedded as an ellipsoid in H, then a set of (possibly degenerate) Laplace-
Beltrami eigenfunctions will give the projections of Xt on the principal axes of the ellipsoid; i.e.,
the system trajectory φi(Xt) in the eigenfunction-based coordinates will be equivalent to the right
singular vectors in SSA.

3. Modes of variability in the North Pacific sector of CCSM3

We apply the method presented above to study variability in the North Pacific sector of CCSM3;
specifically, variability of the mean upper 300 m sea temperature field in the 700-year equilibrated
control integration used by Teng and Branstator [26] and Branstator and Teng [7] in work on
the initial and boundary-value predictability of subsurface temperature in that model. Here, our
objective is to diagnose the prominent modes of variability in a time series generated by a coupled
general circulation model.

4
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Figure 1. Eigenvalues λi of the graph Laplacian ∆ for the periodic, intermittent,
and low-frequency states. Here, we have defined ∆ as a positive semidefinite op-
erator, which means that the eigenvalues are non-negative, and obey the ordering
0 = λ0 < λ1 ≤ λ2 ≤ · · · . Moreover, we have normalized the first non-trivial
eigenvalue, λ1, to unity, since multiplication of the λi by the same constant can be
absorbed by rescaling the Riemannian metric g.

In this analysis, the xt observable is the mean upper 300 m temperature field sampled every
month at d = 534 gridpoints (native ocean grid mapped to the model’s T42 atmosphere) in the
region 20◦N–65◦N and 120◦E–110◦W. Throughout, we work with a two-year embedding window;
i.e., the dimension of embedding space is n = d× 24 = 12,816. For the calculations of the Laplacian
eigenvalues and eigenvectors we used the Diffusion Map algorithm of Coifman and Lafon [10].

Figures 1 and 2 show representative eigenvalues and eigenfunctions of the graph Laplacian. Since
we are interested in studying temporal evolution processes, we display the eigenfunctions graphi-
cally as plots of φi(Xt) versus t, and also show the corresponding Fourier power spectra. Moreover,
to study the spatial patterns associated with the eigenfunctions, we have performed temperature
field reconstructions by applying the inverse transform in Eq. (8) with Ãij replaced by the oper-
ator components Aij from Eq. (5) corresponding to each invariant subspace Φj . Figure 3 shows
reconstructions based on the eigenfunctions of Figure 2.

Carrying out this procedure systematically for several (∼ 100) of the eigenfunctions, we find that
they fall into three distinct families of periodic, low-frequency, and intermittent modes, described
below. Note that embedding [step (1)] is essential to the separability of the eigenfunctions into these
processes; the character of the eigenfunctions is mixed if no embedding is performed.

3.1. Periodic modes. The periodic modes come in doubly-degenerate pairs (see Figure 1), and
have the structure of sinusoidal waves with phase difference π/2 and frequency equal to integer
multiples of 1 year−1. The leading periodic modes, φ1 and φ2, represent the seasonal cycle in the
data. In the physical (spatial) domain [Figure 3(b)], these modes generate an annual oscillation
of the temperature anomaly, whose amplitude is largest (∼ 1◦C) in the western part of the basin
(∼ 130◦E–160◦E) and for latitudes in the range 30◦N–45◦N. Together with the higher-frequency
overtones, the modes in this family are the standard eigenfunctions of the Laplacian on the circle,
suggesting that the data manifold M has the geometry of a circle along one of its dimensions.

3.2. Low-frequency modes. The low-frequency modes are characterized by high spectral power
over interannual to interdecadal timescales, and strongly suppressed power over annual or shorter
time scales. As a result, these modes represent the low-frequency variability of the upper ocean,
which has been well-studied in the North Pacific sector of CCSM3 [1, 26]. The leading mode in
this family [φ5; see Figure 2(b)], gives rise to a typical PDO pattern [Figure 3(c)], where the most
prominent basin-scale structure is a horseshoe-like temperature anomaly pattern developing eastward
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Figure 2. Eigenfunctions of the graph Laplacian corresponding to the eigenvalues
from Figure 1 plotted in the temporal (left-hand panels) and frequency domains
(right-hand panels). (a) Seasonal eigenfunction φ1. (b) First low-frequency eigen-
function, φ5. (c) First intermittent eigenfunction, φ6.

Figure 3. Reconstructions of the upper 300 m temperature anomaly field (annual
mean subtracted at each gridpoint). Panel (a) shows the raw data in November
of year 91 of Figure 2. Panels (b–d) display reconstructions using (b) the seasonal
eigenfunctions, φ1 and φ2; (c) the first low-frequency eigenfunction, φ5, describing
the PDO; (d) the first two-fold degenerate set of intermittent eigenfunctions, φ6

and φ7, describing variability of the Kuroshio extension.
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along the Kuroshio extension, together with an anomaly of the opposite sign along the west coast
of North America. The higher modes in this family gradually develop smaller spatial features and
spectral content over shorter time scales than φ5, but have no spectral peaks on annual or shorter
timescales.

3.3. Intermittent modes. As illustrated in Figure 2(c), the key feature of modes of this family
is temporal intermittency, arising out of oscillations at annual or higher frequency, which are mod-
ulated by relatively sharp envelopes with a temporal extent in the 2–10-year regime. Like their
periodic counterparts, the intermittent modes form nearly degenerate pairs (see Figure 1), and their
base frequency of oscillation is an integer multiple of 1 year−1. The resulting Fourier spectrum is
dominated by a peak centered at at the base frequency, exhibiting some skewness towards lower
frequencies.

In the physical domain, these modes describe processes with relatively fine spatial structure,
which are activated during the intermittent bursts, and become quiescent when the amplitude of
the envelopes is small. The most physically-recognizable aspect of these processes is enhanced
transport along the Kuroshio extension region, shown for the leading-two intermittent modes (φ6

and φ7) in Figure 3(d). This process features sustained eastward propagation of small-scale, ∼ 0.2
◦C temperature anomalies during the intermittent bursts. The intermittent modes higher in the
spectrum also encode rich spatiotemporal patterns, including retrograde (westward) propagating
anomalies, and gyre-like patterns resembling the subpolar and subtropical gyres.

4. Discussion

4.1. Intermittent processes and relation to SSA. The main result of this analysis, which
highlights the importance of taking explicitly into account the nonlinear structure of AOS data sets,
is the existence of intermittent patterns of variability in the North Pacific sector of CCSM3, which
are not accessible through SSA. This type of variability naturally emerges by studying the properties
of individual invariant subspaces Φi of Laplace-Beltrami eigenfunctions on the data manifold (e.g.,
as done in Figure 3), but in order to produce a more accurate reconstruction, the SVD in Eq. (2)
must be applied to combine information from several Φi. Here, we apply this procedure to evaluate
a rank k = 30 reconstruction based on the leading l = 55 Laplace-Beltrami eigenfunctions (in order
of increasing λi), and compare the results with SSA.

As shown in Figure 4, the leading singular values of Ã from Eq. (7) fall into four distinct families,
separated by spectral gaps; viz. {σ1, σ2}, coupling almost entirely to the annual eigenfunctions, φ1

and φ2; {σ3, . . . , σ12}, dominated by the low-frequency modes in Figure 1 with weak contributions
from the intermittent modes; {σ13, σ14}; coupling almost entirely to the semiannual modes, φ3 and
φ4; {σ15, . . . , σ21}, dominated by the intermittent modes with some coupling to the low-frequency
modes with high λi.

Typical temperature-anomaly patterns associated with these processes are shown in Figure 5.
There, the Kuroshio modes of Figure 3(d) become augmented by temperature anomalies developing
along the West Coast of North America, and transported westwards at high latitudes or in the
sub-tropics. These features, displayed in Figure 5(f), resemble the subpolar and subtropical gyre.
The semiannual modes [Figure 5(e)] also exhibit significant amplitude along the West Coast, which
is consistent with semiannual variability of the upper ocean associated with the California current
[22]. Note that the semiannual modes appear early in the λi spectrum of the Laplacian, but their
explained variance, as measured by σi, is comparatively small. In separate calculations, we have
verified that the SVD decomposition of A is qualitatively robust with respect to the number l of
Laplacian eigenfunctions used as basis functions for L2(M,µ).

A key point brought out by Figures 4 and 5 is that reconstructions based on machine learning
are in close agreement with SSA for the annual and low-frequency modes, but intermittent modes
have no SSA counterparts. In particular, instead of the qualitatively-distinct families of processes
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Figure 4. Singular values σi (normalized so that σ1 = 1) evaluated through Lapla-
cian eigenmaps from Eq. (7) (solid line) and SSA (dashed line). The periodic, low-
frequency, and intermittent modes indicated here are used in the temperature field
reconstructions of Figure 5.

Figure 5. Reconstructions of the upper-300 m temperature anomaly field of the
700-year CCSM3 control run through machine learning and SSA. Panel (a) shows
the raw data in October of year 45 of Figure 2. Panel (b) displays an SSA recon-
struction evaluated using singular vectors (SVs) 3–12 (the low-frequency modes;
see Figure 4). Panels (c–f) display reconstructions via Laplacian eigenmaps using

(c) the first two SVs of Ã in Eq. (7) (annual modes); (d) SVs 3–12 (low-frequency
modes); (e) SVs 13 and 14 (semiannual modes); (f) SVs 15–21 (intermittent modes).
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Figure 6. The Laplacian eigenfunction corresponding to the leading “low-
frequency” mode evaluated without embedding [cf. Figure (2b)]. Note the pro-
nounced spectral lines with period {1, 1/2, 1/3, . . . , 1/6} years.

described above, the SSA spectrum is characterized by a smooth decay involving modes of progres-
sively higher spatiotemporal frequencies, but with no intermittent behavior analogous, e.g., to mode
φ6 in Figure 2. Two of the SSA modes exhibit significant semiannual variability, but the frequency
content of these modes is not pure, featuring low-frequency beating patterns.

The σi values associated with the intermittent modes and, correspondingly, the contributed vari-
ance in temperature field reconstructions, is significantly smaller than the periodic or low-frequency
modes. However, this is not to say the dynamical significance of these modes is negligible. In fact,
intermittent events, carrying low variance, are widely prevalent features of complex dynamical sys-
tems [13]. Being able to capture this intrinsically nonlinear behavior constitutes one of the major
strengths of the machine-learning based method presented here.

4.2. The role of lagged embedding. The embedding in Eq. (1) of the input data xt in H is
essential to the separability of the Laplacian eigenfunctions into distinct families of processes. To
illustrate this, in Figure 6 we display the Laplacian eigenfunction that most-closely resembles the
PDO mode in Figure 2(b), evaluated without embedding (q = 1, ∆t = 0). It is evident from both
the temporal and Fourier representations of that eigenfunction that the decadal process recovered
in Section 3.2 using a two-year embedding window has been contaminated with high-frequency
variability; in particular, prominent spectral lines at integer multiples of 1 year−1 down to the
maximum frequency of 6/year allowed by the monthly sampling of the data. An even stronger
frequency mixing was found to take place in the corresponding temporal SSA modes. In general,
representing the dynamical information lost through partial observations via time-lagged embedding,
as advocated in the qualitative theory of dynamical systems [23, 25, 8, 24], significantly enhances
the quality of time-series reconstructions through either of the machine learning or SSA schemes.

In separate calculations, we have verified that the eigenfunctions separate into periodic, low-
frequency, and intermittent processes for embedding windows up to ∆t = 10 years. However, longer
embedding windows require more eigenfunctions to produce the same strength of reconstructed
signal via Eq. (7).

5. Conclusions

Combining techniques from machine learning and the qualitative theory of dynamical systems, in
this work we have presented a scheme for time series reconstruction, which takes explicitly into ac-
count the nonlinear geometrical structure of data sets arising in atmosphere-ocean science. Like clas-
sical SSA [15], the method presented here utilizes time-lagged embedding and truncated SVD to pro-
duce a low-rank reconstruction of time series generated by partial observations of high-dimensional,
complex dynamical systems. However, the linear operator used here in the SVD step differs cru-
cially from SSA in that its domain of definition is the Hilbert space of square-integrable functions
on the nonlinear manifold M comprised by the data (in a suitable coarse-grained representation via

9

2011 Conference on Intelligent Data Understanding 115

TOSHIBA
Pencil



a graph). These functions, analogous to the temporal modes (right singular vectors) in SSA [3], are
tailored to the nonlinear geometry of M through its Riemannian measure.

Applying this scheme to the upper-ocean temperature in the North Pacific sector of the CCSM3
model, we find a family of intermittent processes which are not captured by SSA. These processes
describe eastward-propagating, small-scale temperature anomalies in the Kuroshio extension region,
as well as retrograde-propagating structures at high latitudes and in the subtropics. Moreover,
they carry little variance of the raw signal, and display burst-like behavior characteristic of strongly
nonlinear dynamics. The remaining identified modes include the familiar PDO pattern of low-
frequency variability, as well as annual and semiannual periodic processes.

The nature of the analysis presented here is purely diagnostic. In particular, we have not touched
upon the dynamical role of these modes in reproducing the upper ocean dynamics in CCSM3. Here,
pertinent open questions are the significance of the intermittent modes in triggering large-scale
regime transitions [13], as well as potential improvements of the predictive skill and model error of
reduced models utilizing these modes [16, 17]. We plan to study these topics in future work.
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SEMI-SUPERVISED NOVELTY DETECTION WITH ADAPTIVE EIGENBASES,

AND APPLICATION TO RADIO TRANSIENTS

DAVID R. THOMPSON1,2, WALID A. MAJID2, COLORADO J. REED2, AND KIRI L. WAGSTAFF2

Abstract. We present a semi-supervised online method for novelty detection and evaluate its

performance for radio astronomy time series data. Our approach uses adaptive eigenbases to
combine 1) prior knowledge about uninteresting signals with 2) online estimation of the current

data properties to enable highly sensitive and precise detection of novel signals. We apply the

method to the problem of detecting fast transient radio anomalies and compare it to current
alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both

effective detection of interesting rare events and robustness to known false alarm anomalies.

1. Introduction

Recent discoveries in high time resolution radio astronomy data have drawn attention to a new
class of sources. Fast transients are rare pulses of radio-frequency energy lasting from microseconds
to seconds that might be produced by a variety of exotic astrophysical phenomena [6, 5, 11, 12]. For
example, X-ray bursts, neutron stars, active galactic nuclei, and extraterrestrial intelligence (ETI)
are all possible sources of short-duration transient radio signals. Such events are often discovered
serendipitously in high time resolution data collected for other purposes. These transients are
generally faint and difficult to detect, so improved detection algorithms can directly benefit the
science yield of all such commensal monitoring. Existing detection approaches rely on a specific
dispersed pulse model of the signal shape. This paper presents a new method for analyzing real-time
high-resolution radio astronomy data that operates without this model assumption. Therefore, it
can potentially detect a far broader class of anomalous events in real time, as well as unexpected
events that do not match a known profile.

We have formulated fast transient monitoring as statistical anomaly detection in a time series [16,
17]. The main challenges of our domain are:

• High dimensionality: Signals of interest span multiple antenna power measurements that
could include hundreds of time steps and frequency channels.
• Real time processing: With the exception of a few dedicated surveys, most high time

resolution data is too voluminous to archive. Therefore, events must be detected in real time
to select only the most interesting candidates for storage and later exhaustive analysis.
• Nonstationarity: Background noise characteristics change over time on medium to long

scales, manifesting as narrow-band noise or large-scale gain fluctuations that can appear and
disappear in response to hardware and observing conditions. Detection of anomalous “fast”
signals should be robust to these changes.
• False alarms: Certain known classes of events, such as momentary Radio Frequency Inter-

ference (RFI), are not astronomically interesting but are easily mistaken for fast transients.
It is important to avoid flagging these events as novel to avoid filling the detection buffer with
these false alarm events. Further, false alarms waste valuable astronomer time in reviewing
the results.

1david.r.thompson@jpl.nasa.gov
2 Jet Propulsion Laboratory, California Institute of Technology.
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This work proposes a new solution that learns a low-dimensional linear manifold for describing
the “normal” data. The novelty of our approach lies in combining basis vectors learned in an
unsupervised, online fashion from the data stream with supervised basis vectors learned in advance
from known false alarms. We thereby achieve adaptive, data-driven anomaly detection that also
exploits prior domain knowledge about signals that may be statistically anomalous but are not
interesting and should therefore be ignored. We identify truly interesting anomalies by compressing
and reconstructing the data [9] using the combined basis. High reconstruction error indicates a
signal that does not match the learned profile of the normal data. The unsupervised component
uses the incremental method of Lim et al. [13], an efficient online algorithm that satisfies real-time
constraints.

We evaluated the new method using data from the Parkes Multibeam Survey. This data set was
originally collected to search for pulsars, which are astronomical sources that emit radio pulses at
regular periods. However, several non-pulsar anomalies have recently been discovered in this dataset
[3], making it a compelling test case. We found that by explicitly filtering known false alarm patterns,
our approach yields significantly better performance than current transient detection methods. This
method shows promise for use in current and future astronomical surveys, including data to be
collected by the Square Kilometre Array, a radio telescope currently under development that will be
50 times more sensitive than any existing instrument.

2. Related Work

Generic approaches to anomaly detection are data-driven: they typically learn a representation
of the “normal” or uninteresting data, then identify any observations that do not match this model.
One such method is one-class support vector machine (SVM) classification [18], in which an SVM
is trained only on examples from the normal class and then detects any new data belonging to a
different, previously unobserved class. More recent efforts seek to include user-labeled examples.
Blanchard et al. [2] propose a semi-supervised technique that trains a classifier using two kinds
of data: labeled data known to be normal and an additional unlabeled sample that may contain
anomalous data. Both approaches aim to train a binary classifier that labels new items as either
“normal” or “anomalous.” The Blanchard technique further accommodates an upper limit on the
false anomaly detection rate. Our approach differs from these methods in that it specifically incor-
porates known examples of false alarms to further improve the system’s precision. In addition, our
system is designed for online operation rather than batch processing of previously collected data.

In contrast with statistical novelty detection, radio astronomers generally use physical models
of the anticipated events. If the precise shape of the event is known in advance, matched filtering
provides maximum sensitivity to detect faint transient pulses. These models reflect the fact that
signals from remote astronomical sources are dispersed. As the signal travels through the interstellar
medium that lies between the source and the observer, it encounters free electrons that absorb some
of the signal’s energy and delay its propagation. This affects lower frequency components more than
higher frequency components. The slight difference accumulates over long distances and ultimately
causes a broadband signal to appear dispersed in time, so that the lower frequency components
arrive later.

Real-time transient detection uses incoherent radio array data organized as a matrix of discretely
channelized measurements. In other words, observations occur across a range of radio frequency
channels at each time step. This data is typically portrayed as a two-dimensional image in which the
axes correspond to time and frequency. The pixel intensity shows observed power, the accumulated
squared voltage received by the antenna. Figure 1 (left) shows a pulse from pulsar J0742-2822 that
displays a typical dispersed “sweep.” Dispersion manifests as a time delay ∆tdelay that is inversely
proportional to the signal’s frequency. Following [14]:

(1) ∆tdelay = 4.1ms
DM k

∆ν2GHz
2
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Here ∆ν is the frequency difference. The amount of dispersion, or the Dispersion Measure (DM),
correlates with the number of interfering electrons present between the source and the observer [1].
It is commonly reported in parsecs per cm3. For regions of constant electron density, the amount of
dispersion suggests the physical distance to the source.
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Figure 1. Examples of typical and atypical transient signals. The image at left
shows a single pulse from pulsar J0742-2822, with a classic dispersed pulse pro-
file. Such signals can be found by inverting the dispersion effect prior to matched
filtering. More exotic and poorly understood phenomena, like the peryton signal
pictured at right, do not match typical dispersion and could benefit from model-
free detection strategies with fewer assumptions. This example shows a distinctive
“kink” in the curved signal. The narrow horizontal lines are narrow-band inter-
ference; such behavior is time-variable but not astronomically relevant and would
ideally not affect the detection decision.

The most common approach to detecting remote transient signals is tailored to the known proper-
ties of dispersion. Data is exhaustively dedispersed using a variety of different candidate DMs [1, 4].
Dedispersion re-aligns the observations in time to undo the effects of a given assumed DM, and then
sums the resulting signal across all frequency channels to yield a detection statistic. This tailored
summation is equivalent to a matched filter, and increases detection sensitivity over a naive sliding
window detection using all frequency channels. By seeking the maximum dedispersed sum across
all DMs, one can characterize the signal (and roughly the distance to the source). A dedispersion
search can also help separate genuine astronomical signals from Radio Frequency Interference (RFI).
Broadband RFI manifests as a vertical signal with no dedispersion (DM = 0); the pulse originates
locally and all frequencies arrive simultaneously.

This approach has proven effective for the detection of pulsars and other astronomical phenomena
[7, 11, 6, 12]. It can be implemented efficiently to keep up with streaming data using FPGAs, GPUs,
or other parallel architectures; dedispersion over multiple DMs is inherently highly parallelizable.
The weakness of this approach, however, is that it is sensitive to only one kind of signal. While
dispersion is a known phenomenon of all remote signals, some recently-discovered sources (Figure 1,
right) exhibit deviations from the expected shape which renders them difficult to detect. Further, it
is not known how many other exotic source types may currently be overlooked due to the detection
method’s dependence on one kind of signal model. The next section presents a more flexible strategy
that could operate in parallel with dedispersion searches, providing the capability to detect both
dispersed pulses and unanticipated novel events.
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3. Approach

We propose a new approach that combines 1) prior knowledge about uninteresting signals with
2) online estimation of the current data properties to enable flexible detection of novel signals. We
treat the data as a sequence of observations that arrive sequentially from the antenna. We combine
n such observed data points xi ∈ Rd as columns of a d×n data matrix X = [x1,x2, . . .xn]. Here, d is
the number of frequency channels observed at each time step. The goal is to compute a discriminant
function that maps each observation to a novelty score, f(xi) : Rd 7→ R. The discriminant value
should be small for typical data but large for interesting or novel data.

3.1. Constructing an eigenbasis. We exploit a popular strategy, detailed in [19] and [9], of
measuring the distance from the signal to a low-dimensional manifold learned from the data stream.
We will start by describing the simpler case of novelty detection in a static (non-adaptive) subspace.

We hypothesize that the “regular” data lies on a linear subspace in Rd′
with d′ � d. Subtracting

the data mean x̄ yields a translated matrix X̃ = [(x1 − x̄), (x2 − x̄), . . . , (xn − x̄)]. Singular Value

Decomposition (SVD) provides X̃ = UΣVT . The columns of U are the principal components: an
orthonormal basis with axes in the order of decreasing data variance. We form a low-dimensional
basis A using the first d′ columns of U. When n > d the SVD decomposition is undefined, but one
can still compute the matrix A via classical Principal Component Analysis (PCA), e.g., using the

eigenvectors corresponding to the largest eigenvalues of the covariance matrix X̃X̃T .
We quantify the novelty of observation xi using the Euclidean distance to the subspace, equivalent

to the L2-norm reconstruction error after first transforming xi into the low-dimensional basis and
then reconstructing an approximation x̂i. This suggests the following discriminant function which
is large for novel data and zero for points on the linear manifold.

(2) f(xi) = ‖xi − x̂i‖ = ‖(xi − x̄)−AAT (xi − x̄))‖2
The eigenvalue decomposition makes computing A difficult for large n. However, it is important

that our basis accommodate large data sets and long-timescale changes in the background. One
solution is to periodically recompute the entire matrix A in batch mode using a recent subset of
the data. In this work we favor the approach of Lim et al. [13] for efficient online updates to the
mean x̄ and eigenbasis A. This approach updates an SVD decomposition defined by some previous
data X̃p = UpΣpV

T
p . Each block update has a data matrix Xq with mean x̄q and decomposition

X̃q = UqΣqV
T
q . This gives a combined dataset Xr = [Xp|Xq]. Fortunately one can compute an

updated mean x̄r and eigenbasis X̃r = UrΣrV
T
r without having to store the old data explicitly. We

refer the reader to the Lim et al. text for details, but summarize their approach in Algorithm 1 below.
It relies on the widely-studied R-SVD procedure [8] which exploits the fact that a low-rank update
to the eigenbasis is decomposable into efficient block operations. The method extends R-SVD to the
case where the data are not assumed to have zero mean.

Algorithm 1: Lim et al. Algorithm for Sequential Eigenbasis Updates.

Input: Previous mean x̄p

Previous decomposition UpΣpV
T
p

Additional data Xq

Output: Revised mean x̄r

Revised decomposition UrΣrV
T
r

Compute x̄r = n
n+m

x̄p + m
n+m

x̄q, where n = |Xp| and m = |Xq|
Compute E =

(
Xq − x̄r1(1×m)|

√
nm
n+m

(x̄p − x̄q)
)

Use UpΣpV
T
p with E as input to R-SVD to compute UrΣrV

T
r

An advantage of the Lim et al. method is that one can downweight the old basis to introduce a
forgetting factor that allows the influence of old data to decay gradually as new points are added.
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This lets the basis shift to track a nonstationary distribution, and it accommodates observations of
arbitrary length.

3.2. Semi-supervised eigenbases. Automated novelty detection may need to exclude certain rare
events that are known in advance to be uninteresting. For example, there may be known false alarms
due to rare but recognizable noise. Another case where false alarms can be anticipated in advance
is through feedback from a human user based on follow-up processing of previous results. This
feedback could determine which previous detections had been erroneous. We incorporate informa-
tion about known false alarm patterns with a second basis trained to model these known examples.
Our semi-supervised novelty detection method uses a combined subspace with both supervised and
unsupervised components, shifting with long-term trends while still excluding the false alarms. Al-
gorithm 2 summarizes the procedure. We train an initial low-dimensional basis Us using data known
to be uninteresting. At runtime, we compute an adaptive mean x̄r and basis Ur using the Lim et al.
method, and also define a combined basis Uc = [Ur|Us] to span both the supervised basis and the
unsupervised data. We orthogonalize the new basis using QR decomposition with the Gram-Schmidt
method. The reconstruction error with respect to the combined basis yields a more reliable novelty
score.

Algorithm 2: Semi-Supervised Eigenbasis Novelty Detection.

Input: Supervised training data Xs of size l
Size m block updates of streaming, unsupervised data Xu

Output: Novelty scores f(x1), f(x2), . . .

Compute X̃s = [xs1 − x̄s, xs2 − x̄s, . . . ,xl − x̄s]

Use PCA with X̃sX̃
T
s or SVD with X̃s = UsΣsV

T
s to compute an orthonormal basis Us

Using the first block Xu1, compute an initial mean x̄p and eigenbasis UpΣpV
T
p

For each subsequent Xu:
Compute a revised mean x̄r and a revised decomposition UrΣrV

T
r using the Lim et al. method

Define a combined basis Uc = [Ur|Us]
Use QR decomposition to find a basis U′c that makes Uc orthonormal.
For each xi ∈ Xu:

Compute f(xi) = ‖(xi − x̄r)−U′cU
′
c
T (xi − x̄r)‖2

Note that the proposed approach does not preserve the mean of the initial false alarm distribution,
which is assumed to drift in a similar fashion as the mean of the dynamic distribution. User feedback
would permit a more sophisticated system that also updates the false alarm mean and basis online,
but we focus here on the simpler case where all training occurs in advance.

4. Evaluation

This semi-supervised anomaly detection method was motivated by applications in radio astron-
omy. We performed a comparative evaluation on a test set of radio array data using five linear and
nonlinear novelty detection algorithms: the traditional dedispersion approach, kernel PCA novelty
detection [9], one-class SVM novelty detection [18], unsupervised adaptive novelty detection using
PCA, and the proposed semi-supervised approach.

4.1. Data set. We use a selected portion of data from the Parkes Multibeam Survey, an extensive
search for Pulsars using the Parkes radio telescope of CSIRO [7, 15, 10]. This instrument views
the sky simultaneously through 13 receivers, effectively providing 13 independent antennas covering
adjacent, and slightly overlapping, areas in the sky. Receiver measurements are recorded at high
time resolution and transformed into channelized power measurements corresponding to the squared
voltage response at various discrete frequency channels. This specific data sequence contains ex-
amples of events known as perytons, first discovered by Burke-Spoloar and Bailes in their analysis
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of Parkes pulsar surveys [3]. Perytons are still poorly understood, and they are scientifically inter-
esting because they vary in frequency and approximate a dispersion curve. However, they do not
exactly match a dispersion profile, and their spatial distribution in the sky suggests that they are of
terrestrial (possibly atmospheric) origin.

In addition to these features, structured interference is often visible in the form of channel-specific
noise and gain fluctuations appearing as horizontal stripes. Such noise is pervasive and typical for
highly sensitive, cryogenically cooled receiver feeds. Our tests focus on approximately five minutes
of observation time in each of the 13 receivers. This span includes several tens of thousands of
timesteps recorded at a cadence of 0.125 milliseconds in each of 96 frequency channels near 1450
MHz. Figure 2 shows three examples of perytons. The red rectangle shows the size of an example
data window used to construct xi.

Segment!

Figure 2. True anomalies: Peryton events from the Parkes Multibeam Survey.

Figure 3 shows some examples of false alarms that are statistically uncommon but not scientifically
interesting. These specific examples are broadband pulses of Radio Frequency Interference (RFI),
probably emitted by some local artificial source. Such features are rare enough that they are not
well-represented in an unsupervised eigenbasis, but typical enough that they would dominate novelty
detection results if not handled explicitly.

Figure 3. False anomalies: Vertical stripes due to broadband RFI that is statisti-
cally anomalous but uninteresting.

4.2. Methodology. We subsample the data by a temporal factor of 20 so that it has a resolution
of 2.5 ms, and then analyze the data as a sequence of short non-overlapping segments that cross
all 96 vertical frequency channels and 6 horizontal timesteps. This segment width corresponds to a
15ms time interval, found empirically to be the best-performing value for all methods. We reorder
each segment into a single column vector x ∈ R384. Finally, we unify data from all beams into one
large dataset, witholding five beams (38%) for training purposes.

We compare five different detection methods that are broadly representative of different linear and
nonlinear anomaly detection approaches. First, we consider the proposed semi-supervised method
that combines supervised and unsupervised components and reports reconstruction error fss(xi).

6

2011 Conference on Intelligent Data Understanding 123

TOSHIBA
Pencil



Here we trained the subspace Us using 30 overlapping segments (Xs) drawn from three manually-
selected broadband RFI pulses. The second method is a purely unsupervised eigenbasis approach
based on reconstruction error from a low-dimensional basis fu(xi). It does not explicitly account
for RFI. The third method is the one-class SVM novelty detection of Scholkopf et al. [18]. Here we
use a radial basis kernel function selected with a grid search, and treat each test point’s distance to
the decision boundary as a real-valued novelty score.

The fourth method is kernel PCA: a non-linear extension of PCA. Kernel PCA novelty detection
first maps the data to a higher (generally infinite) dimensional features space, computes the principal
components in this space, projects the transformed data to a lower-dimension manifold, and defines
a novelty measure as the reconstruction error in the feature-space. Kernel functions allow the
reconstruction error to be calculated without explicitly [9]. However, this method never explicitly
calculates the principal components so it cannot be used as an adaptive technique in the manner
discussed in Algorithm 2. Instead we use the implementation of Hoffmann et al [9]. We use a radial
basis kernel function with parameters selected by a grid search.

Finally, we consider a state-of-the-art incoherent dedispersion and summation method which
searches DM values from 0 and 500. We correct each time step separately for each DM, use and
the maximum response from all DMs as the novelty score fd(xi). Time averaging did not improve
performance, so we report the single-timestep result.

In addition to labeling RFI, we obtained the precise locations of all peryton events noted in the
study by Burke-Spolaor et al [3]. These appeared to some degree in all antennas, though the signal
strength and character varied somewhat even for simultaneous observations. The concatenated
dataset provided 88 real novel events for our evaluation. We assigned each peryton an enclosing
time interval; any detection in this range counted as having successfully detected the peryton. Note
that we use the same time interval for all beams regardless of the actual signal strength. Perytons
that are weak in one or more beams penalize all detection methods equally, so we assume events are
always present for our (relative) performance assessment.

We evaluated each method by first computing novelty scores for the entire data set, sorting these
scores across all beams, and then counting the result of each trigger in order of decreasing novelty.
Each peryton can only be captured once, though multiple triggers within the same event do not
count as false positives. However, any detection falling outside a peryton interval counts as a false
positive.

4.3. Results. A visualization of the unsupervised and supervised bases created by our method
appears in Figure 4. Here we use 4 principal components as an unsupervised basis with online updates
from the data stream. These eigensignals (Figure 4, left) show high magnitude in the most variable
channels; at the time this eigensignal snapshot was captured, such channels comprised the major axis
of variance for the data set. A supervised basis of 10 dimensions models the known broadband RFI.
The top five such eigensignals appear in Figure 4, Right; they reflect the vertical profile of momentary
RFI pulses. Together, the two can accurately reconstruct a slow shift in channelized RFI conditions
along with any additive broadband pulses. This image shows the orthonormal segments after QR
factorization.

Figure 5 compares novelty detection scores for the entire observation sequence of the first test
beam, computed with a purely unsupervised basis (standard PCA), fu, and the semi-supervised
approach, fss. Interesting peryton events are noted by black triangles; the other signal spikes
correspond to various kinds of RFI. Five peryton signals were barely visible in the reconstruction
error of either method, due possibly to the alignment of non-overlapping segments or the inherently
weak visibility of those events in this beam. We exclude these five from the diagram for clarity. In
general the semi-supervised approach responds to the novelty of peryton events while filtering most
of the RFI. In contrast, broadband RFI contaminates the purely unsupervised approach; it accounts
for the three strongest responses by fu for this sequence.
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Unsupervised basis Supervised basis

Figure 4. Orthonormal principal components used to construct Uc from Ur (left)
and Us (right). The unsupervised portion (left) models channelized interference,
while the vertical structures in the supervised portion (right) represent momentary
broadband RFI.
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Figure 5. Semi-supervised learning filters out RFI events that would otherwise
dominate the detection results. This time series plot shows per-timestep novelty
evaluated for the first beam in the test set. Not all perytons are clearly distinguish-
able in this beam.

Figure 6 shows a Receiver Operating Characteristic (ROC) curve describing the tradeoff in pre-
cision and recall rates. We report the number of perytons captured for a variety of false positive
budgets. For real-time observations, false positive budgets beyond 10 are excessive. Generating
more than 10 false positives would represent greater than one detection event for every 5 seconds of
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observations, imposing an unrealistic burden on manual post-analysis. Future commensal campaigns
with constant observations and higher data volumes will demand even stricter limits. For this low
error budget, the semi-supervised approach considerably outperforms the competing methods: the
top 12 signals detected via fss are due to perytons, while the kernel PCA technique detects 5 false-
positives before the first peryton, and the unsupervised method reports more than 40 false positives
before finding the first real peryton. These runner-up methods require 250 and 200 false positives
respectively before they match the error-free retrieval rate of the semi-supervised approach. Note
that one might improve performance of any method further with additional hand-crafted RFI exci-
sion rules, such as a ban on zero-DM detections that are likely to be terrestrial. Naturally, such rules
are less general than a learning-based approach and might filter other interesting but unanticipated
phenomena.

The preceding results used a data segment size of 15 ms (6 time steps) to compose xi. We
evaluated sensitivity to segment length (see Figure 7). Segments of duration 10− 15 ms performed
best for this data set. It is possible that smaller segments are susceptible to noise while larger sizes
dilute the perytons. It might improve performance for large segments to use a higher-dimensional
basis for the unsupervised component. Such models might do a better job of modeling temporal
structure (such as switching interference) that begins to appear at these scales.

We also assessed the runtime of each method to determine whether they could be used in a
realistic real-time setting. Using a single core of a modern desktop processor, the runtime of the
dedispersion search method averaged 0.16 seconds per DM for the entire subsampled sequence, or
≈ 80 seconds for a typical search over 500 DM values. This could be divided easily among multiple
processors to provide faster processing for multiple beams. The eigenbasis approaches’ runtimes
depend strongly on the size of the block updates to the eigenbasis. For a single desktop processor
core performing block updates of size m = 100, the entire observation from a single beam was
processed at 5× real time (≈ 10 seconds/beam for the entire dataset). The time required was
slightly larger (up to ≈ 20 seconds/beam) for smaller block updates where constant-time overhead
costs had a larger impact. The accuracy of these techniques was nearly indistinguishable for all block
update sizes we tried. Varying the segment sizes also affected run time by up to a factor of two.
Kernel PCA and one-class SVM performed considerably slower than the dedispersion and eigenbasis
approaches as all computations were performed with an RBF kernel representation of the data: a
representation of size |x|2 = 3842 for this work. In our experiments we found these techniques
required ≈ 200 − 400 seconds/beam with block updates of m = 400. Furthermore, unlike the
dedispersion and eigenbasis techniques, the Kernel PCA and one-class SVM computation times scale
quadratically with the size of m. This reduces the generality of these methods, and in combination
with their large computational run-times, makes them unfeasible as real-time techniques. On the
other hand, we found the dedispersion and eigenbases approaches to be readily employable for real-
time use on general purpose computing hardware.

5. Discussion

Semi-supervised eigenbases have general applicability for anomaly detection in domains with
real-time requirements, high-dimensional input, and prior knowledge about false alarm events. Of
course, it is not necessary to incorporate this false alarm information directly into the novelty
detection model as we have done here. One could perform pre-classification to filter these events
prior to a purely unsupervised novelty detection stage. Nevertheless, there may be other advantages
to a combined approach. It is simple and easy to implement. The projection shifts to reflect any
underlying drift in the mean signal levels, so that a basis trained on previous false alarms remains
relevant. Further work will investigate ways to combine multi-scale models when the temporal extent
of the interesting events is not known in advance. Finally, application to the broader Parkes survey
catalogue will increase practical experience with the technique, and may even reveal additional
classes of RFI and astronomical transient events.
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Figure 6. ROC curves comparing eigenbasis novelty detection approaches with
the traditional dedispersion search.
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STATISTICAL INFERENCE BASED ON DISTANCES BETWEEN EMPIRICAL

DISTRIBUTIONS WITH APPLICATIONS TO AIRS LEVEL 3 DATA

DUNKE ZHOU* AND TAO SHI**

Abstract. Atmospheric Infrared Sounder (AIRS), a sensor aboard NASA’s Aqua satellite, has been collect-

ing temperatures, water vapor mass-mixing ratios, cloud fractions at various atmosphere pressure levels, and

other atmospheric observations. AIRS level 2 data has a 45 km ground footprint with global coverage. The

AIRS level 3 Quantization (L3Q) product summarizes valid level 2 data in each 5o × 5o latitude-longitude

grid box during a time period by a set of representative vectors and their associated weights, which can

be treated as an empirical distribution. In this paper, we study potential statistical tools using pairwise

dissimilarities that are suitable for analyzing this nontraditional type of data. Through theoretical anal-

ysis and simulations, we investigate several different dissimilarity measures and find Mallows distance is

preferable over others when the locations of the representative vectors are important for the analysis. We
apply MultiDimensional Scaling and clustering method to analyze AIRS data collected in December 2002.

The results from these studies provide insights on how statistical methods based on Mallows distance may

extract more information from the AIRS L3Q data than from the simple sample average summary in each

grid box.

1. Introduction

In recent years, scientists working on climate change have seen the explosion of the volume and complexity
of available data, both from remote sensing satellites of the National Aeronautics and Space Administration
(NASA) and from the output of massive climate model simulations. To reduce the massive data size, data
are first divided into subsets by spatial location, time period, or other grouping variables. Then summary
statistics, such as sample average and standard deviation, are used to represent each subset, and further
analysis is applied to these summaries. This approach works reasonably well when the data distributions
in different subsets have similar shapes. However, any information beyond the first two moments of the
empirical distribution is lost in this initial data reduction step.

Going beyond the averages and standard deviations, a data reduction method based on clustering was
suggested in [4, 5]. After clustering multivariate data vectors in one subset into groups, the data are
summarized by a set of representative vectors (mean of each cluster: m1, . . . ,mL) and their associated
weights or probabilities (w1, . . . , wL). In this way, the data in the i-th subset are represented by Si ≡
{mi,1, . . . ,mi,Li

;wi,1, . . . , wi,Li
}. While dramatically reducing the data size, the data summary Si, like a

multivariate empirical distribution, still keeps most information of the joint distribution of the data vectors
in the subset.

This strategy has been adopted by the Atmospheric Infrared Sounder (AIRS) project. AIRS collects tem-
peratures, water vapor mass-mixing ratios, cloud fractions, at various atmosphere pressure levels at each 45
km ground footprint in its level 2 data. The level 3 Quantization (L3Q) products summarize valid level 2
data vectors in each 5o×5o latitude-longitude grid box during a month or a season by a list of representative
vectors and their frequencies produced from a K-means clustering algorithm. As a result, each summary

*Department of Statistics, The Ohio State University zhou.208@buckeyemail.osu.edu

*Department of Statistics, The Ohio State University taoshi@stat.osu.edu.
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Si represents a record of the regional climate during the period of time. The AIRS L3Q products are pub-
licly available at http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings and more details can be found in
[4, 5].

Although the clustering based data summary preserves much more distributional information than sample
averages, statistical analysis tools for this new type of data summary are not widely available. Traditional
multivariate statistical methods have been developed mainly to deal with data vectors in an Euclidean
space. Geometry and linear projections play significant roles in those classical methods such as Principal
Component Analysis, Factor Analysis, Linear Regression, Canonical Correlation Analysis, et al. However,
these methods cannot be directly applied to these clustering based data summaries, since the concepts of
directions and projections are not well defined for this type of data.

In recent years, analysis methods using dissimilarity or distances between each pair of observations (vectors)
have drawn attentions in Statistic and Machine Learning. Examples include MultiDimensional Scaling
(MDS, [7]), Kernel Principal Components Analysis [23], Spectral clustering [28, 24, 19, 26] and estimation
[25], manifold learning [1, 20, 27]. In principle, this class of methods is more suitable to be applied to the
clustering based data summaries if the pairwise dissimilarity measure is properly chosen. In an initial study
reported in [6], MultiDimensional Scaling based on Mallows distances [18] was applied to the AIRS L3Q
data to display the year to year variation of local climates. It was illustrated that the leading second MDS
dimension may connect to certain physical features of the global climate. Mallows distance has also been
employed to help visualize the particle collisions in particle accelerator experiments as in [11] and to analyze
univariate histograms as in [13].

Besides the Mallows distance, several dissimilarity measures between distributions have been studied in
Statistics and Information Theory. These measures include Hellinger distance, Kullback-Leibler (K-L) di-
vergence, and χ2 divergence. In this paper, we will investigate the appropriateness of applying statistical
methods using certain dissimilarity measures. In particular, this paper concentrates on (1) characterizing and
summarizing the properties of these dissimilarity measures and (2) investigating the properties of statistical
analysis based on different dissimilarity measures and potential difference among their results.

In Section 2, we review several dissimilarity measures including Mallows distance and f -divergence, where
Hellinger distance, K-L divergence, χ2 divergence are special cases of the f -divergence. The properties of
Mallows distance are summarized and a brief comparison between Mallows Distance and f -divergence is
included. Mallows distance is found to be good at reflecting the difference in support-dependent features
of distributions such as mean and variance. Moreover, Mallows distance has advantage over f -divergence
when applied to discrete distributions with potential different supports, such as the AIRS L3Q data. On
the other hand, f -divergences, especially K-L divergence, have natural interpretation in information theory.
K-L divergence is preferred when such interpretation is desired, such as in predictability analysis in climate
dynamical models.

In Section 3, simulation studies are used to explore the potentials of statistical analysis tools such as MDS
based on different dissimilarity measures. Given a family of parametric distributions, one dataset is indepen-
dently drawn from each of the distributions. After summarizing each dataset into an empirical distribution,
MDS based on pairwise Mallows distance and MDS based on symmetrized K-L divergence between these
empirical distributions are carried out. Applying MDS based on Mallows distance to data sets drawn from
a family of univariate mixture Gaussian distributions, we find that one of leading dimensions of MDS based
on Mallows distance perfectly corresponds to the mean parameter and the other two leading dimensions
together represent the standard deviation and shape of the distributions in a nonlinear fashion. However,
MDS based on symmetrized K-L divergence does not show any clear patterns.
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Analysis based on Mallows distance using AIRS L3Q data collected in December 2002 is presented in Section
4. We illustrate that compared to mean summaries, AIRS L3Q data contains additional useful information
about configurations of regional short-term climates. By incorporating this configuration information, MDS
based on Mallows distance forms better low dimensional projections of regional short-term climates than
MDS based on Mean distance. Moreover, the configuration information also helps to form more consis-
tent clustering of regional short-term climates and to identify special climate observations through spectral
clustering based on Mallows distance. We conclude in Section 5 with conclusions and discussion.

2. Dissimilarity measures between distributions

In this section, we briefly review two types of dissimilarity measures between distributions: Mallows
distance and f -divergence. The latter one includes a few commonly used dissimilarity measures such as
Kullback-Leibler divergence (K-L divergence), Hellinger distance and χ2 divergence as special cases. Next,
we provide a short comparison between these two different types of measures and their applicabilities to
certain types of problems.

2.1. Mallows distance. Mallows distance (or Wasserstein distance) has been studied in many different
fields such as Probability, Statistics and recently Computer Science. A brief history of Mallows distance can
be found at [22]. In Statistics context, Mallows distance was first introduced in [18] as a metrication tool
such that the convergence in Mallows distance is equivalent to the weak convergence and convergence of the
q-th moment of a sequence of probability distributions. In short, Mallows distance between two distributions
is the minimum expected distance among all pairs of random variables having those two distributions as
marginal distributions. Mathematically, the Mallows distance is defined as

Mq(F,G) = inf
P

{

(EP ‖X − Y ‖q)1/q : (X,Y ) ∼ P, X ∼ F, Y ∼ G
}

, for q ∈ [1,∞).

The Mallows distance is also strongly connected with the Earth Movers’ Distance (EMD), which becomes
a popular way of measuring dissimilarities between images in computer science [16, 21]. It was shown in
[15] that the Mallows distance is exactly the same as the EMD when it is used to measures the difference
between two probability distributions. The EMD provide a nice interpretation of Mallows distance which
could help us understand the meaning of Mallows distance in applications.

Here we provide a brief survey of some important properties of Mallows distance scattered in different
literatures. We first list a few basic properties of Mallows distance [3] with q ≥ 1.

• Mallows distance Mq(F,G) satisfies the three requirements of a metric;
• Mq(Fn, F ) → 0 if and only if Fn → F weekly and

∫

‖x‖qdFn(x) →
∫

‖x‖qdF (x);

• For F and G defined on R, Mq(F,G) =
(

∫

1

0
|F−1(u)−G−1(u)|qdu

)1/q

.

For the commonly used Mallows distance with q = 2, it is known that

• For F (mean µF and sd σF ) and G (mean µG and sd σG) defined on R:

(1) M2

2
(F,G) = (µF − µG)

2 + (σF − σG)
2 + 2σFσG(1− ρQQ(F,G)) ,

where

ρQQ(F,G) =

∫

1

0
(F−1(u)− µF )(G

−1(u)− µG)du

σF σG
=

∫

1

0
F−1(u)G−1(u)du− µFµG

σF σG

is the correlation of the quantiles of the two distributions as represented in a classical QQ plot [12].
• For multivariate Gaussian distributions N(µ1,Σ1) and N(µ2,Σ2),

(2) M2

2
(N(µ1,Σ1), N(µ2,Σ2)) = ‖µ1 − µ2‖

2 + trace
(

Σ1 +Σ2 − 2(Σ
1/2
1

Σ2Σ
1/2
1

)1/2
)

.
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• For multivariate nonGaussians F (mean µF ) and G (mean µG),

(3) M2

2
(F,G) = ‖µF − µG‖

2 +M2

2
(F0, G0) ,

where F0 and G0 are derived by centering F and G at 0 [3]. Further decomposition of Mallows
distance would be much more complicated than in univariate case. However, the Mallows distance
is lower bounded by mean difference plus the measure of difference in covariance matrix as shown in
(2) and the conditions for the equality to hold are given in [9].

From these properties, we clearly see that the Mallows distance can be decomposed into the difference in
terms of location and configuration which includes spread, and shape. This decomposition of various aspects
of the difference between distributions turns out to be very crucial and helpful in our statistical analysis
based distances that will be detailed in Section 3 and Section 4.

2.2. f-divergence. Another type of dissimilarity measures between distributions is the f -divergence. In
general, the f -divergence is defined as

Df (F ||G) =

∫

f

(

dF

dG

)

dG,

where f is a convex function that satisfies f(1) = 0. It is easy to show that the K-L divergence, the Hellinger
distance and the χ2 divergence are f -divergence corresponding to f(t) = t log(t), f(t) = 1−

√
t and f(t) =

(1 − t)2 respectively. Moreover, many other well known divergences are also variants of the f -divergence.
For example, Jensen-Shannon divergence is the average of the K-L divergences of two distributions to their
average and Bhattacharyya distance is a transformation of Hellinger distance. More details about these
distances can be found at [2] and [17].

In statistics literature, these f -divergences are often used in information geometry as distance measures on
the space of distributions. Many classical statistical methods such as Maximum Likelihood Estimation would
have intuitive geometric interpretations. In addition, geometric methods could be employed to study the
statistical properties of those methods. Meanwhile, K-L divergence is well studied in information theory
due to the fact that K-L divergence exactly quantifies the redundancy of coding a source with a wrong
distribution. For further details of f -divergence, we refer readers to [8].

One important application of K-L divergence in atmosphere science research is to quantify the predictability
of future weather from climate dynamical systems. By interpreting the weather prediction as reducing
uncertainty about future weather, K-L divergence seems to be a natural way to the quantify the predictability
through its relative entropy interpretation in information theory. We refer readers to [14] and [10] for details
of application of K-L divergence in predictability analysis.

2.3. Comparison between Mallows distance and f-divergence. To compare the Mallows distance and
the f -divergence, we focus on discrete distributions in this section. Without loss of generality, two distribu-
tions can be represented as F = {(xi, pi), i = 1, ...n} and G = {(xi, qi), i = 1, ..., n}, where {x1, ..., xn} ⊂ Rd

is the union of the supports of F and G (some of the pi’s or qi’s could be zero). In this case, the Mallows
distance and f -divergence are defined as

(4) M2(F,G) = min∑
i
pij=pi,∀j∑

j
pij=pj∀i





m
∑

i=1

n
∑

j=1

pij ||xi − xj ||
2





1

2

,

and

(5) Df (F ||G) =

n
∑

i=1

qi f

(

pi

qi

)

,

respectively. Since some of the pi’s or qi’s could be zero, it is convenient to define f(0) = limt→0 f(t), and
0f(a

0
) = limt→0 tf(

a
t ) [8].
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A close investigation reveals several differences between these two classes of dissimilarity measures:

• Most importantly, the f -divergences defined in (5) are independent of the locations of distribution
support {x1, x2, . . . , xn}. Therefore, in general, they are not good at reflecting the difference in mean
or variance since such features depend on the support. Meanwhile, the Mallows distance is closely
related with the locations of {x1, x2, . . . , xn} and Equations (1), (2), (3) show that the differences
in mean and variance are key components of Mallows distance between two distributions. The sim-
ulation studies shown in the next section will further illustrate this key property of Mallows distance.

• In case that two discrete distributions F and G do not share the same support (some of the pi’s
or qi’s being zero), the f -divergence could be infinity for some choices of f ; for example, the K-L
divergence and the χ2 divergence. On the other hand, the Mallows distance is always finite and it
can be easily calculated by solving a linear programming problem.

To summarize, the Mallows distance is preferred in applications where support dependent features of dis-
tribution, such as mean and variance, are important, especially when the distributions have potentially
different supports. It also has an advantage of being a well defined true metric, which will be convenient
when the development of rigorous modeling is needed. On the other hand, when the relative locations of
points in the support is not meaningful, such as in a “bag-of-features” representation of documents, or when
information theoretical interpretation is desired, such as in predictability analysis, the f -divergence might
be more appropriate. In the rest of the paper, we will concentrate on studying the properties of statistical
analysis tools using Mallows distance with q = 2.

3. Statistical analysis on distributions

In statistics literature, most classical multivariate methods have been developed to deal with data vectors
in an Euclidean space, in which geometry and linear projections play significant roles. For example, the
popular Principle Component Analysis (PCA) seeks for a few orthogonal directions such that the linear
projection of data vectors on these directions preserve the largest variation. In this paper, our interest
is learning from a set of (empirical) distributions that do not lie on an Euclidean space, so PCA type of
methods can not be directly applied. In such situations, statistical methods using only pairwise dissimilarities
(distance) measures between subjects are more suitable. MultiDimensional Scaling (MDS) and Spectral
Clustering algorithms both fall in this category. In this section, we will mainly focus on dimension reduction
using MDS based on pairwise distance between distributions. The relationship between the leading MDS
dimensions and the characteristics of distributions will be illustrated through a simulation study. In addition,
the impact of the choice of distances will also be discussed. The MDS and Spectral clustering methods will
be applied to AIRS L3Q data in Section 4.

To illustrate the potential advantage of analysis based on Mallows distance that recovers information
beyond the first two moments, we use a simulation study that involves a family of univariate two-component
mixture Gaussian distributions that are indexed by its mixing proportion, mean and standard deviation:

(6)







Fπ,µ,σ = πN(µ1, σ
2

c ) + (1− π)N(µ2, σ
2

c )
X ∼ Fπ,µ,σ : s.t. 0 ≤ π ≤ 1, E(X) = µ,

Sd(X) = σ > 0, and σc =
1

2
σ







One interesting property of the parameterization of this family of mixture distributions is that the shape
of each distribution is only connected with the parameter π. In other words, the standardized versions of
two distributions with same π are exactly the same. Such independent parametrization of mean, variance
and shape would allow us to study the connection between the MDS dimensions and the parameters of
distribution more straightforwardly.
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Figure 1. MDS projections based on Mallows distance: Left panel shows the scatter plot
of MDS1 and MDS2 where µ and σ specify the color and size. Right panel is the scatter
plot of MDS2 and MDS3 where π and σ specify the color and size.

Under this scenario, let us first investigate the properties of MDS based on Mallows distance from theoretical
perspectives. Given two univariate distributions F and G, Eq.1 shows that

M2

2
(F,G) = (µF − µG)

2 + (σF − σG)
2 + 2σFσG(1− ρQQ(F,G))

where 1−ρQQ(F,G) equals to the Mallows distance between standardized versions of F and G. For distribu-
tions in the family defined by (6), the term ρQQ(F,G) is only a function of πF and πG. Several conclusions
can be drawn from this decomposition. First, the mean difference is an independent factor in determining
the Mallows distance. Therefore, one MDS dimension will reflect the relative locations of the means, if µ is
independent of σ and π in the parameter space of this family, Secondly, difference in σ is another important
contributor to the Mallows distance. Meanwhile, the size of σ interacts with the difference in π in deter-
mining the size of the Mallows distance. Thus, we do not expect σ and π can be independently represented
by any single MDS dimension. Instead, there should be two (or more) MDS dimensions explain the relative
locations of σ and π together. Since it is hard to explicitly represent ρQQ(F,G) in terms of πF and πG,
we will illustrate how σ and π are reflected in the MDS dimensions based on Mallows distance through a
simulation study.

In the simulation study, we setup a grid for (µ, σ, π) ∈ {1, 2, 3, 4, 5}×{1, 1.5, 2.5, 3, 3.5}×{0.1, 0.3, 0.5, 0.7, 0.9}.
For each given Fπ,µ,σ, an empirical distribution with 20 centers is constructed based on 1000 i.i.d. sampled
points. MDS based on the pairwise Mallows distance between these empirical distributions is carried out
and the scatter plots based on first three MDS dimensions are shown in Figure 1. The MDS plot in the left
panel has axes correspond to first two dimensions and is color coded according to µ and size coded according
to σ. The axes of the right panel are the second and third MDS dimensions, where color represents the
mixing weights π and symbol size stands for σ.

The left panel of Figure 1 clearly shows that the first MDS dimension exactly corresponds to the mean
parameter µ. This result confirms the theoretical interpretation discussed above. Meanwhile the second
MDS dimension roughly corresponds to overall standard deviation. However, the plot on the right panel
indicates that actually the second and third MDS dimensions together give a better characterization of overall
standard deviations and mixing weights. This also agrees with our expectation raised from the theoretical
analysis.
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Figure 2. MDS projections based on symmetrized K-L divergence: Left panel shows the
scatter plot of MDS1 and MDS2 where µ and σ specify the color and size. Right panel is
the scatter plot of MDS2 and MDS3 where π and σ specify the color and size.

The MDS results based on symmetrized K-L divergence using the same dataset are shown in a similar way
in Figure 2 for comparison purposes. As shown in the left panel, MDS1 and MDS2 together are related
to the µ and σ in a highly nonlinear pattern. On the other hand, none of these three MDS dimensions
shows any correlation with π. In addition, two pairs of distributions which differ the same amount in the
parameter space are mapped quite differently. Therefore, symmetrized K-L divergence does not properly
reflect the difference in the parameter space. This simulation result confirms our discussion in Section 2 that
K-L divergence performs badly in applications when the distribution support related parameters, such as
mean and variance, are of interests.

So far, we have shown the potential of MDS based on Mallows distance in terms of recovering underlying
structures related to the mean and the configuration (including spread and shape). These properties will
also help us interpret the MDS dimensions in the real data applications discussed in the next section.

4. Analysis of AIR L3Q data

Launched into Earth-orbit on May 4, 2002, the Atmospheric Infrared Sounder (AIRS) is one of six
instruments on board the Aqua satellite. AIRS level 1 data are the observed radiation (emitted and reflected)
in 2378 spectral channels from each 45 km ground footprint. Using retrieval algorithms based on Physics
knowledge, the level 1 data at each footprint is converted into level 2 data, which contains 11 atmospheric
temperatures and 11 water vapor mass-mixing ratios corresponding to the bottom 11 air pressure levels, 10
cloud fraction values corresponding to the same pressure levels except the surface, and other variables. The
volume of AIRS level 2 data produced in each year is about 33 GB.

AIRS level 3 Quantization (L3Q) products summarize valid level 2 data in each 5o × 5o latitude-longitude
grid box collected during a time period (a month or a season) by a list of representative vectors and their
frequencies. Therefore, this multivariate empirical distribution in each grid box represents a record of the
regional climate during the corresponding period of time. Compared to traditional data reduction methods
which summarize each dataset by its first two moments, this clustering based approach has the potential in
keeping the distribution configuration beyond sample means. In addition, outlier information in the dataset,
which represents special weather pattern, could also be retained. However, how to carry out statistical
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analysis on such datasets is an open problem, mostly because the data do not lie in an Euclidean space.
Fortunately, by interpreting AIRS L3Q data as a set of empirical distributions, statistical analysis based on
distance between distributions, such as MDS and spectral clustering, provides us with an alternative.

In this section, we apply MDS and spectral clustering on AIRS L3Q data with different dissimilarity measures
and study the difference in the results. Mallows distance between the empirical distributions in each pair
of grid boxes is the first dissimilarity measure in our study. Besides the Mallows distance, the Euclidean
distance between the mean vectors of the data in each pair of grid boxes is another measure one may use to
represent the dissimilarity which ignores the configuration information of empirical distributions. With the
AIRS L3Q data, the mean vectors for each grid box can be easily derived.

Analysis based on K-L distance is not suitable for this dataset due to its instability when applied to AIRS
L3Q data. We find that the water vapor mass-mixing ratios and cloud fraction variables have small or even
no variability between representative vectors within some empirical distributions, while they have significant
difference between the mean vectors of empirical distributions. Due to the nature of K-L distance, these
variables lead to extremely large K-L distances, even to infinity. Therefore, K-L distance does not seem to
be a proper measure of dissimilarity for analyzing the AIRS L3Q data.

4.1. Multidimensional Scaling. MDS based on Mallows distances was applied to AIRS L3Q data in winter
season of each year in [6], along with a comparison to MDS based on the distance between mean vectors of
each grid box. It turned out that the first dimension of MDS based on Mallows distance is almost identical
to the first MDS dimension based on the mean vectors. However, the second dimension of MDS based on
Mallows distance is much more similar to an important physical process called the vertical velocity than to
the second MDS dimension based on the mean vectors. Instead of trying to match the MDS2-Mallows with
physical process, we concentrate on interpreting such difference from a different angle which might provide
further understanding of the MDS results.
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Figure 3. MDS dimensions displayed in geographic maps: Left two panels are colored
by MDS1-Mallows and MDS2-Mallows. Right two panels are colored by MDS1-Mean and
MDS2-Mean. White blocks in the maps show the locations where data are missing.
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The dataset in this application is the AIRS monthly L3Q data collected in December 2002. The dataset
contains the valid empirical distributions in 2338 5o by 5o grid boxes. Two adjustments are applied to the data
before we perform further analysis. First, we remove the last three indicator variables which contain little
information about climate and are mostly used for reference purposes. Secondly, each remaining variable is
properly normalized such that weighted average and weighted sample variance of the representative vectors
of all empirical distributions are 0 and 1 respectively. With these two modifications, the observation in
each 5o by 5o grid box is a 32 dimensional discrete distribution. Based on this standardized data, Mallows
distances and mean distances between each pair of empirical distributions are computed and used in MDS.
To simplify our discussion, we introduce some notations first. The ith MDS dimension based on Mallows
distance will be denoted as MDSi-Mallows and MDSi-Mean corresponds to the one based on mean distance.

We first visualize the leading MDS dimensions using maps. Since each data point in a MDS dimension is
associated with the latitude and longitude of the grid box, MDS results can be displayed in maps where color
codes the value of MDS dimensions as shown in Figure 3. Similar to the findings presented in [6], MDS1-
Mallows matches with MDS1-Mean almost perfectly while MDS2-Mallows disagrees with MDS2-Mean in
some regions.

Recall that one of properties of the Mallows distance in Eq (3) is

M2

2
(F,G) = ||µF − µG||

2 +M2

2
(F0, G0),

where F0 and G0 are derived by centering F and G at 0 . For simplicity, we will call those two parts in the
decomposition as mean difference and configuration difference. The configuration of a distribution includes
information about its spread and shape. This decomposition may help us better interpret the results based
on Mallows distance. By dividing Mallows distance into two parts, we get a new distance matrix which
measures the difference in configuration. To be consistent with notations above, the i-th MDS dimension
based on configuration distance is represented as MDSi-Config.

On the left panel of Figure 4, we show the scatter plots of MDS1-Mean and MDS1-Config where color codes
the MDS1-Mallows. No obvious relationship is observed. In addition, as shown in Table 1, the eigenvalue
4.05×104 corresponds to MDS1-Mean is much larger than 0.27×104 for MDS1-Config. For the rest of MDS
dimensions of configuration distance, their corresponding eigenvalues are too small to have any significant
impact on MDS1-Mallows. Therefore, MDS1-Mean totally dominates the MDS1-Mallows.

Now let us concentrate on MDS2-Mallows. Plotted on the right panel of Figure 4 is the scatter plot of MDS2-
Mean and MDS1-Config where color codes the MDS2-Mallows. We observe that MDS2-Mean is negatively
correlated with MDS1-Config with a correlation −0.361. Table 1 also suggests that their eigenvalues (0.41×
104 v.s. 0.27 × 104) are also comparable. The color changing direction (MDS2-Mallows) in the right panel
of Figure 4 shows a linear combination of MDS2-Mean and MDS1-Config. This implies that we might be
able to get further understanding of MDS2-Mallows through interpreting MDS2-Mean and MDS1-Config
separately.

Eigenvalues 1 2 3 4 5
MDS-Mallows(×104) 4.13 0.50 0.38 0.32 0.25
MDS-Mean(×104) 4.05 0.41 0.31 0.10 0.064
MDS-Config(×104) 0.27 0.18 0.14 0.09 0.07

Table 1. Eigenvalues of MDS: For each distance, the first five eigenvalues of MDS dimen-
sions are shown.
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Figure 4. Scatter Plots of MDS Dimensions: Left panel shows the scatter plot of MDS1-
Mean and MDS1-Config. Points are colored by MDS1-Mallows and the arrow is indicates
changing of color. Right panel shows the scatter plot of MDS2-Mean and MDS1-Config.
The color represents MDS2-Mallows and the arrow indicates changing of color.

Through our analysis, we illustrate that AIRS L3Q data contains more information of the configuration of
the regional short-term climate than the mean summary. Especially we find that the major difference be-
tween MDS dimensions of Mallows distance and Mean distance is contributed by variations in configuration.
More specifically, MDS2-Mean is correlated with MDS1-Config and we hypothesize that MDS2-Mallows is
determined jointly by those two dimensions.

4.2. Clustering. As another way to explore the hidden structure in data, clustering analysis tries to identify
natural groups in data according to a given dissimilarity measure. Clustering methods could be applied on
AIRS L3Q data to identify typical regional short-term climate patterns and potential climate outliers. In
this section, we perform clustering on a subset of AIRS L3Q data collected in December 2002. Similar to
the MDS analysis, clustering is performed with both the Euclidean distance of mean summaries of AIRS
data and Mallows distance between empirical distributions. Significant differences are observed between two
clustering results. The clustering based on Mallows distance is more reasonable in a sense that the group
members are more consistent with each other in terms of short-term climate. Moreover, the clustering based
on Mallows distance detects some potential climate outliers which are missed by clustering using the mean
summaries.

In this application, we use a subset of the AIRS L3Q data collected in December 2002, which is a rectangle
area covering most of North American. The southwestern corner of the rectangle is located at [−135o, 15o]
and the northeastern corner is at [−50, 50]. Similar to the analysis in MDS, we also remove the three indicator
variables and normalize the remaining variables. In addition, we exclude the cloud fraction at the second
pressure level from the analysis. That is because the representative vectors in all empirical distributions
have constant value in this variable. In all, this subset of data includes 127 empirical distributions in 31
dimensions.

For clustering methods, we employ a recently developed Data Spectroscopic clustering algorithm[26], which
is one of many spectral clustering methods. Compared to the K-Means type of algorithm in [16], Data
Spectroscopic method is computationally much faster and does not have the problem of finding a local optimal
solution. In addition, Data Spectroscopic method has more power in identifying potential outliers. More
details of Data Spectroscopic method can be found in [26]. Data Spectroscopic clustering is implemented
on the selected data with mean distance and Mallows distance separately. The tuning parameter in Data
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Figure 5. Clustering displayed in geographic maps: Three panels are colored by Cluster-
Mean and Cluster-Mallows. White blocks in the maps show the locations where data are
missing.

Spectroscopic method is set to generate clustering with 5 groups, where the fifth group corresponds to the
identified outliers. We use Cluster-Mean and Cluster-Mallows to refer to the clustering results based on
those two different dissimilarity measures.

We first show the geographic map of the rectangle area with color coded groups in Figure 5. The left panel
shows Cluster-Mean and the right panel corresponds to Cluster-Mallows. Comparing these two clustering
results, we find that Cluster-Mean and Cluster-Mallows are similar to each other and we can match up the
groups with each other. Despite the similarity, two significant differences can still be observed. Firstly, there
are several regions being clustered differently based on mean distance and Mallows distance. These regions
are mostly on the geographical boundaries of some groups. Secondly, Cluster-Mean identifies one grid box as
potential outlier while Cluster-Mallows detects three more potential outliers. These three regions are labeled
as O1 −O3 in Figure 5. In the rest of this section, we concentrate on explaining these observed differences.

To better explain the differences in clustering results, let us start with describing a visualization method we
develop for investigating empirical distributions. Given an empirical distribution F , we separate it into two
parts: mean µF and configuration F0. Basically, µF is a 31 dimensional vector and F0 is a set of vectors,
each of which is associated with a weight. For each vector, we present it as a horizontal strip composed
of 31 blocks. For vectors in configuration, their weights in configuration will determine the heights of their
corresponding strips. Meanwhile, each block of strip will be color coded by the value of corresponding mean
or representative vector in that variable. Blocks 1−11 correspond to the values of atmosphere temperatures
starting from the surface level, blocks 12−22 represent the values of water vapor mass-mixing ratios and the
last 9 blocks are for cloud fractions starting from the third pressure level. To enhance the contrast between
blocks in visualization, all the values greater than 3 or smaller than −3 will be set to 3 or −3 in visualization.

With this visualization tool, we first show the center empirical distributions of Groups 1−4 in Cluster-Mallows
in Figure 6. The center empirical distribution of a group is defined as an empirical distribution which has the
smallest Mallows distance to all empirical distributions in the group. As in [16], we use an iterative algorithm
to find an approximate center empirical distribution for each group. A brief comparison shows that those
center empirical distributions not only differ in mean but also have significant difference in configuration,
especially in those variables related to cloud fractions. The significant difference in configuration among
center empirical distributions indicates that ignoring configuration information might lead to inconsistent
clustering of climate observations.
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Figure 6. Visualization of four center empirical distributions for Group 1-4 in Cluster-
Mallows.

We now turn our focus to the grid boxes which are classified into different groups in two clustering results.
Due to space limitation, we take grid boxes A2, B2, and C2, which are highlighted on the right panel of
Figure 5, as examples. As shown in Figure 5, these grid boxes are clustered differently in Cluster-Mean and
Cluster-Mallows. We also choose two reference grid boxes for each of {A2, B2, C2} for comparison purpose.
Two reference grid boxes, A1 and A3, are chosen such that A1 is in the same group as A2 in Cluster-Mean
and A3 is in the same group as A2 in Cluster-Mallows. In addition, A1 is assigned to the same group in
Cluster-Mean and Cluster-Mallows and so is A3. The grid boxes {B1, B3} and {C1, C3} are chosen similarly
with respect to B2 and C2. The geographic locations of the reference grid boxes are marked on the right
panel of Figure 5. We visualize the empirical distributions in {A1, A2, A3}, {B1, B2, B3}, and {C1, C2, C3}
on the top three, middle three and bottom three panels of Figure 7 respectively.

Visual comparisons of these empirical distributions in Figure 7 reveal interesting patterns. Let us take
{A1, A2, A3} as an example. By comparing the mean vectors shown on the top three panels of Figure 7, we
find that the empirical distribution in A2 is closer to that in A1 in terms of mean. On the other hand, both
configurations in A2 and A3 have large variability in variables 24− 26 which is missing in the configuration
in A1. Therefore, A2 is much closer to A3 than to A1 in terms of configuration. Moreover, by comparing
the empirical distribution in A2 with the center empirical distribution of Group 2 in Cluster-Mallows, we
observe that they share a similar pattern in configuration that shows large variability in variables 24 − 26.
This indicates that the special pattern of the empirical distribution in A2 relates to the feature of Group
2 in Cluster-Mallows. Therefore, A2 should be clustered into Group 2 (same as A3) if clustering regional
short-term climates is of our interest. Similar observations are made in the comparison of {B1, B2, B3} and
{C1, C2, C3}. From these comparisons, we illustrate that the clustering based on mean vectors will misclassify
some empirical distributions while Mallows distance has the ability to form more consistent clusters about
regional short-term climate.

Finally, we concentrate on the potential outliers. The three additional outlier regions identified in Cluster-
Mallows are marked as O1 − O3 in Figure 5 and their corresponding empirical distributions are plotted in
Figure 8. By comparing the mean vectors of empirical distributions in O1 − O3 with those of empirical
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Figure 7. Visualization of three groups of empirical distributions: The middle panels are
empirical distributions for three grid boxes which are clustered differently. The left and
right three panels are the reference empirical distributions for those in the middle panel. All
these empirical distributions are marked in Figure 5.
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Figure 8. Visualization of four potential outliers identified in Cluster-Mallows.

distributions in C1 − C3 and that of center empirical distribution of Group 4 in Cluster-Mallows , we do
not observe any specialties of mean vectors of those outliers. However, in terms of configuration, empirical
distributions in O1 − O3 show great variability in both temperature variables and cloud fraction variables.
Such large variability in temperatures is not obvious in other empirical distributions. Therefore, it is the
special pattern in the configuration that makes these three empirical distributions as outliers.
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Through our study, we further illustrate that mean vectors do not fully characterize the difference among
empirical distributions in AIRS L3Q data. Moreover, the configuration information in the empirical distri-
butions helps us better cluster the regional short-term climate observations and identify potential outliers.

5. Conclusions and discussion

In this paper, we study potential statistical methods to analyze an unconventional type of data, empirical
distributions. The class of statistical tools that only depend on pairwise dissimilarity measures is investigated
to show their applicability for this task. We summarize the theoretical properties of different dissimilarity
measures and find Mallows distance being more attractive than others in quantifying the difference between
empirical distributions with potential different supports, especially when the support of distribution matters.

The simulation on learning a family of mixture distributions suggests that the Mallows distance is a smooth
function of mean difference and configuration difference. When empirical distributions are constructed
from samples from a parametric family of distributions, the metric geometry induced by Euclidean distance
between parameters can be locally approximated by the metric geometry induced by the Mallows distance.
This implies the potential feasibility of using Mallows distance in some statistical methods such as Kernel
PCA, and Spectral clustering, whose results heavily depend on the local distances.

Through the analysis on AIRS L3Q data, we demonstrate that means and configurations both contain useful
information for analysis about regional short-term climate. Statistical methods based on Mallows distance
are useful tools to visualize and interpret such information. However, in order to answer some scientific
questions, statistical modeling is required. From the exploratory analysis shown above, the first two MDS
dimensions of Mallows distance exhibit some spatially clustering patterns. In addition, spectral clustering
also shows the existence of clustering patterns in empirical distributions. These observations indicate that a
mixture model might be a reasonable model for these empirical distributions. We will pursue this direction
in our future research.
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[22] L. Rüschendorf. Wasserstein Metric. Kluwer Academic, 1995.
[23] B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural

Computation, 10:1299–1319, 1998.
[24] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):888–905, 2000.
[25] T. Shi, M. Belkin, and B. Yu. Data spectroscopy: learning mixture models using eigenspaces of convolution

operators. In A. McCallum and S. Roweis, editors, Proceedings of the 25th Annual International Conference on
Machine Learning (ICML 2008), pages 936–943. Omnipress, 2008.

[26] T. Shi, M. Belkin, and B. Yu. Data spectroscopy: Eigenspace of convolution operators and clustering. Annals of
Statistics, 37(6B):3960–3984, 2009.

[27] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, 2000.

[28] Y. Weiss. Segmentation using eigenvectors: a unifying view. International Conference on Computer Vision, 1999.

15

2011 Conference on Intelligent Data Understanding 143

TOSHIBA
Pencil

TOSHIBA
Pencil



A MODEL-FREE TIME SERIES SEGMENTATION APPROACH FOR LAND

COVER CHANGE DETECTION

ASHISH GARG†*, LYDIA MANIKONDA†*, SHASHANK KUMAR**, VIKRANT KRISHNA*,
SHYAM BORIAH*, MICHAEL STEINBACH*, VIPIN KUMAR*, DURGA TOSHNIWAL**,

CHRISTOPHER POTTER***, AND STEVEN KLOOSTER***

Abstract. Ecosystem-related observations from remote sensors on satellites offer significant pos-

sibility for understanding the location and extent of global land cover change. In this paper, we

focus on time series segmentation techniques in the context of land cover change detection. We pro-
pose a model-based time series segmentation algorithm inspired by an event detection framework

proposed in the field of statistics. We also present a novel model-free change detection algorithm

for detecting land cover change that is computationally simple, efficient, non-parametric and takes
into account the inherent variability present in the remote sensing data. A key advantage of this

method is that it can be applied globally for a variety of vegetation without having to identify

the right model for specific vegetation types. We evaluate the change detection capacity of the
proposed techniques on both synthetic and MODIS EVI data sets. We illustrate the importance

and relative ability of different algorithms to account for the natural variation in the EVI data set.

1. Introduction

The goal of the land cover change detection problem is to detect when the land cover at a given
location has been converted from one type to another. It is very important to study land cover change
in order to understand its impact on local climate, radiation balance, biogeochemistry, hydrology, and
the diversity and abundance of terrestrial species [6, 17]. Such understanding can be very valuable
for policy makers, natural resource managers and researchers to address the issues related to global
environmental changes. A large body of change detection studies from remotely sensed imagery has
focused on comparisons between two images: one before and one after a change [8]. However, such
techniques are usually domain or region specific and require expensive training and thus are difficult
to scale globally. Recognizing these limitations, several algorithms have been developed [17, 16] to
detect changes in the time series of satellite-based observations such as the Enhanced Vegetation
Index (EVI) [3]. EVI, which is a product based on measurements taken from the MODIS instrument
on NASA’s Terra and Aqua satellites, is available globally at 250m and 1km resolution and at a
temporal frequency of 16 days, since February 2000.

A number of techniques [5, 11] have been developed recently for identifying sudden drops in the
vegetation index time series (e.g. in Figure 1(a)) or slow degradation (e.g. in Figure 1(b)) that can
occur due to fires or logging etc. However, these techniques are unable to effectively detect changes
such as conversion of forested land to crop land, intensification of agriculture, and change in cropping
patterns. These changes do not necessarily result in loss of vegetation, for example, see Figure 1(c)
for the change in cropping pattern from double to single crop per year. Rather, these changes result
in characteristic change in the regular pattern of the EVI time series. The ability to monitor such
land cover changes at local, regional and global scale is important due to their potential impact on
the environment.
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Figure 1. EVI vegetation time series (Feb–2000 to Sep–2010 -Vertical lines indicate yearly boundaries)
showing (a) Sudden drop in year 2003 at a location in California; (b) Slow degradation from 2006 to 2009
at a location in Washington; (c) Conversion of double to single cropping for a location in Zimbabwe in
2006. Note that the mean EVI for each year is similar for this time series.

The problem of detecting land cover changes can be posed as segmenting a vegetation index time
series. The goal of segmentation is to partition the input time series into homogeneous segments
such that the subsequence within a segment is homogeneous and the segments are heterogenous with
respect to each other. Segmentation thus is essentially a special case of change detection since by
definition successive segments are not homogeneous.

In this paper, we focus on time series segmentation techniques in the context of land cover change
detection. The key contributions of this paper are:

(1) We propose a model-based time series segmentation algorithm inspired by a statistical event
detection framework.

(2) We present a novel model-free change detection algorithm for detecting land cover change
that is computationally simple, efficient, non-parametric and takes into account the inherent
variability present in the remote sensing data. A key advantage of this technique is that it
can be applied globally for a variety of vegetation without having to identify the right model
for specific vegetation types.

(3) We evaluate the change detection efficacy of the proposed techniques on two data sets (i) sim-
ulated 16-day EVI time series containing phenological changes, and (ii) 16-day MODIS EVI
time series for a region in North Carolina for which an independent land cover classification
is available from National Oceanic and Atmospheric Administration (NOAA).

(4) We then illustrate the importance and the relative ability of different algorithms to account
for the natural variation in the EVI data set due to different vegetation types, climate
variability, geographic variability and errors in the data.

Organization of the Paper. Section 2 discusses previous work on segmentation techniques for land
cover change. In Section 3, we present the two change detection algorithms. Section 4 describes the
data used for experimentation. Section 5 presents the experimental evaluation with both simulated
and real input data sets. Section 6 contains concluding remarks. Note that most figures in this
paper are best seen in color.

2. Time Series Segmentation Techniques for Land Cover Change Detection:
Related Work

In this section, we discuss the time series segmentation algorithms in the context of land cover
change detection. In general, effective techniques for land cover change detection must be (i) scalable
to handle large scale high resolution data sets; (ii) stable and robust to varying vegetation types;
(iii) take into account noise and inherent variability present in the Earth Science data.
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One commonly used segmentation-based approach divides a time series into multiple segments
such that each segment can be approximately represented by a piecewise linear curve [13, 15]. The
two key steps in this approach are to determine the best linear curve within a segment and to
determine the number of segments in a time series. These techniques have been used in the remote
sensing community for extracting phenology characteristics (e.g. timing of maximum of the growing
season, length of growing season, onset of vegetation green-up) of the time series per year [7].
However, our work differs in that its objective is not to extract phenology characteristics but rather
to identify the changes in the time series.

Below, we present the next two broad categories, model-based and model-free segmentation ap-
proaches and how they can be adapted for land cover change detection. We focus on identifying
only one change in the time series though many of the techniques may be extended to find multi-
ple changes. We specifically discuss the relative capabilities of these techniques to handle inherent
variability and noise present in the data.

Model-based techniques involve fitting a model to a given time series. One such technique was
proposed by Guralnik et al in [12]. It considers segmentation as a problem of either recognizing the
change of parameters in the underlying model or the change of the most suitable model fit to the
time series. It is an iterative algorithm that fits a model to a time segment, and uses a likelihood
criterion to determine if the segment should be partitioned further. This approach is a top down
strategy [15] which works by considering every possible partitioning of the time series and splitting
it at the best location. Both the segments of the time series are then recursively partitioned in a
similar way until a stopping criterion is reached. For single change point detection, the techniques
aims at finding the first split. Therefore, in these techniques it is important to choose the correct
model to represent the segments and an appropriate threshold as a stopping criterion. We adapt
this technique for land cover change detection and evaluate it quantitatively. We also show that the
choice of model plays a critical role in the performance of this algorithm.

Another model-based approach, Breaks for Additive Seasonal and Trend (BFAST) proposed re-
cently by Verbesselt et al. [18] decomposes a time series into trend, seasonal and residual components.
The time series is divided into segments such that intra-segment trend is constant and inter-segment
trends are dissimilar. A trend breakpoint is associated with segment boundaries. The seasonal
component is handled in a similar fashion. The focus of this work is on a paradigm for identifying
multiple changes of different types, therefore we will not be comparing it directly in this paper.
However, in the context of finding a single change in the seasonal pattern (which is the focus of our
paper), BFAST is similar to the scheme presented in [12].

On the other hand, model-free time series segmentation algorithms do not assume any model
for the time series but rather work directly with the data values. One such technique is the Re-
cursive Merging algorithm proposed in [6] for land cover change detection. The algorithm starts
with each year as the segmentation of original time series of length t, i.e with t/p (where p is the
season length) segments. Next, the algorithm computes the cost of merging every adjacent pair of
segments and iteratively merges the lowest cost pair. The process is repeated until two segments are
left. The cost of merging can be computed in different ways, such as linear interpolation or linear
regression. The algorithm also incorporates the notion of variability in the time series and is shown
to be more effective than CUSUM [14] based change detection techniques and the change detection
technique proposed by Lunetta et al. in [16]. In our paper, we will propose another novel model-free
segmentation and compare it quantitatively with recursive merging and our adapted model-based
algorithm.

3. Change Detection Techniques

This section describes the two change detection methods proposed in this paper. In Section 3.1
we propose a model-based segmentation technique inspired by a framework proposed in [12]. In
Section 3.2 we propose a novel, simple and efficient model-free change detection algorithm which
offers scalability and robustness to varying characteristics of time series across the globe.
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All these approaches take as input the vegetation index time series and the annual season length
for a location and give as output the corresponding change score and change point. The locations
under study can be ranked according to the change score given by each algorithm. A good algorithm
will give higher ranking to the locations that are more likely to have changed.

Following are the list of notations used in this paper. Let D be a data set with N land locations
each of which has a time series of length T . The time series for a location corresponds to T 16-day
EVI observations at that location. We also define the following notation:

p: season length (here it is 23)
Y : the number of years of data in the data set =T

p

ni: an individual location nij : EVI value at time j for the location ni.
bi1, . . . , biy: list of annual cycles where, bi1 = [ni,1, ni,2, . . . , ni,23], bi2 = [ni,24, . . . , ni,46],

3.1. Model-Based Segmentation Algorithm. This approach follows a top-down segmentation
strategy and is inspired from a framework proposed by Guralnik and Srivastava [12]. The technique
follows an iterative algorithm that fits a model to a time segment, and uses a likelihood criterion
to determine if the segment should be partitioned further, i.e. if it contains a new change-point. In
other words, the likelihood criterion determines the statistical significance that a given time series
should either be defined using a different set of model parameters or two different models. The need
for two different models or a different set of parameters indicates that the time series contains a
change point.

In Algorithm 1 we provide the general framework of the change detection scheme and provide
specific details in the following paragraph.

1: Let p be the seasonal length
2: for each time series ts in a given dataset do
3: Consider the entire time series [ni,1, ni,2, ni,3, . . . , ni,T ] as a single segment
4: Choose a model that best fits the time series ts
5: Calculate the error of model L from the original time series

6: for each possible candidate timestamp t = p× j, where j ∈ [2, 3, . . . , length(ts)p − 2] do

7: Divide the time series into two segments at t
8: For each segment fit the best model separately and calculate the individual errors – L1, L2
9: end for

10: Choose min(L1 + L2), which is the minimum of L1 + L2 over all possible values of t

11: Score(Si) of ts is L−min(L1+L2)
L ;

12: Change Point for this time series ts is the index where min(L1 + L2) occurs
13: end for

Algorithm 1: Model-based segmentation approach for time series.

Algorithm 1 has three key aspects which we address below:

(1) Error computation between the model and the original time series of the segment: In [12]
the error for the model was calculated using residual sum of squares between the fitted
model and the original time series. However, EVI time series contains noise due to cloud
contamination which results in the sudden rise or fall of values in the time series. Since the
residual sum of squares is sensitive to outliers, these spikes in the EVI data make the error
computation less robust. Therefore, for EVI time series, we use the Manhattan distance
between the model and the segment as the error value.

(2) Choice of Model to fit the time series: The choice of appropriate model plays a critical role in
the performance of the scheme. There are two key properties that the model should possess
in this framework (i) the model should follow the seasonality of the EVI vegetation time
series data (ii) the model should not follow the change very well. For example, a piecewise
polynomial model, which follows both the seasonality and change, cannot be used as it would
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result in low error even if applied to a time series that is changed. Also, a non-seasonal model
results in high values of L, L1 and L2 and thus a lower score even for a changed time series.

In this paper, we use a harmonic model which was inspired from the work by Verbesselt
et al. [18] for estimating an EVI time series. The harmonic model follows the seasonality
well and is less sensitive to short term data variations and noise. The value of parameter
K used in the analysis is 3. We refer to this scheme as HM-Variability in this paper, where
HM stands for Harmonic Model.

(3) Score for the Time Series: In the original scheme, at every iteration, the value of the
likelihood criterion was calculated until it fell below a certain threshold. However, since the
focus is on a single change, we use the maximum value of the likelihood criterion obtained
in the first iteration as the change score. Normalization of the likelihood estimation by L in
the above scheme models the inherent variability of the time series. To evaluate the ability
of HM-Variability to model variability, we evaluate a variation of it that does not perform
the normalization step. We refer to that scheme as HM-NoVariability.

3.2. Model-Free Segmentation Algorithm: The two key characteristics of this algorithm are (i)
the technique does not assume any model for the time series but rather works directly with the data
values. It can therefore be applied to any periodic data without having to choose an appropriate
model (ii) the technique introduces a new method to incorporate the notion of variability in the
time series due to both noise in the data and climate variations.

The algorithm assumes that each time series undergoes a maximum of one phenological pattern
change. In particular, it assumes that a changed time series follows a certain pattern for the first
few years and then follows a different pattern for the next few years. For a non-changed pixel, its
time series follows the same pattern throughout its time period. There is a notion of pattern for
each annual segment. This technique does not use any model and is non-parametric.

The key idea of the proposed algorithm is to find two continuous segments in the time series
such that the annual years (objects) within each segment are very similar to each other while being
significantly different from the objects across the segments. The boundary of the segments represents
the change point in the time series. To model the similarity and differences between the objects for
each segment we calculate two terms: Cohesion and Separation. The cohesion of a segment is defined
as an average of the pairwise distance of all annual years within the segment. Cohesion for the time
series of a pixel is defined as an average of the cohesion of both the segments (see Figure 2). The
value of cohesion gives an estimate of the natural variability within the time series. Higher values
of cohesion indicate higher natural variability of the time series since it means that the distances
between the years in the same segment are also high. For example, the value of cohesion for a time
series with no noise or fluctuations would be zero since the annual cycles would look exactly same
within each segment. Likewise, the separation between two segments can be measured by the sum of
the distances from objects in one segment to objects in the other segment. The value of separation
indicates how distinct or well-separated the segments are to each other. The combination of cohesion
and separation values indicates the amount of change in the time series with respect to the natural
variation. In Algorithm 2, we describe in detail how every pixel is assigned a score and a change
point.

(1) C(i, t) =

∑
p=1:t

∑
q=1:tM(p,q)

t2−t +
∑

p=t+1:Y

∑
q=t+1:Y M(p,q)

(Y−t)2−(Y−t)

2

(2) S(i, t) =

∑
p=1:t

∑
q=t+1:Y M(p, q)

(Y − t)× t

Note that we assume that the change points occur no earlier than the end of second year and
no later than the second to last year since we want at least two annual years to be present in each
segment to account for inter-annual variability.
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Figure 2. Illustration of Cohesion and Separation. (a) Time series with different years A,. . . ,E; (b) Two
different circles containing 3 and 2 points (shown as small circles) represent two segments. The dark edges
represent the cohesion and the dotted lines represent separation between the segments; (c) Dissimilarity
matrix constructed by using the pairwise distances between years.

1: for each time series ts in a given dataset do
2: Create a dissimilarity matrix M for the time series
3: Each entry M(q, r) in the matrix contains the distance between the annual segments biq, bir
4: We use Manhattan distance between the vectors biq and bir
5: for each possible candidate timestamp t = p× i, where i ∈ [2 · · · length(ts)p − 2] do

6: Cohesion (C(i, t)) with respect to t is calculated as in Equation 1
7: Separation (S(i, t)) with respect to t is calculated as in Equation 2
8: Score(i, t) = S(i, t)− C(i, t)
9: end for

10: ChangeScore(i) ≡ maxtScore(i, t)
11: Change Point of this time series ts is the index where maxtScore(i, t) occurs
12: end for

Algorithm 2: Our proposed model-free segmentation algorithm

The key aspect of this algorithm is the use of values of cohesion and separation to distinguish
a real change from the natural variability of the time series. Using Figure 3, we illustrate how the
distance matrix looks for different types of series and the capability of the method to use all of the
existing information to incorporate variability and assign change scores. Consider the following:

6

2011 Conference on Intelligent Data Understanding 149

TOSHIBA
Pencil



 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

500

1000

1500

2000

2500

3000

(a) Unchanged time series with low

variability

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

500

1000

1500

2000

2500

3000

(b) Changed time series

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

500

1000

1500

2000

2500

3000

3500

(c) Unchanged time series with

high variability

Figure 3. Dissimilarity matrices for different kinds of time series. The blue values represent low values
while the red and yellow values are higher

(1) A time series with no change and low variability: The dissimilarity matrix for such a time
series is shown in Figure 3(a). Since each annual segment for such a time series would be
very similar, the dissimilarity matrix consists of low values which results in low cohesion and
separation, resulting in a overall lower score.

(2) A stable time series with a change: The typical dissimilarity matrix for such a time series is
shown in Figure 3(b) Notice that the separation values are high and the cohesion values are
low which results in a high score. Visually, notice that dissimilarity matrix has a roughly
block diagonal structure since the time series have well-seperated segments.

(3) A highly variable time series with no change: The dissimilarity matrix shown in Figure 3(c)
consists of all high values. If we consider only the separation between any two segments, we
would obtain a high score for the time series and wrongly label it as change. However, if we
consider the cohesion between the time series and the relative difference between cohesion
and separation, the time series would be given a low score since all values are relatively
similar. Visually also, there is no block-diagonal structure observed in the dissimilarity
matrix signifying that the time series does not have well-seperated segments.

The above discussion illustrates the importance of including measures of variability in the analysis
of vegetation index data set to effectively distinguish between an unusual event and an event within
the normal range of variability. In this paper, we refer to the scheme using only separation as
MF-NoVariability and using the difference of separation and cohesion i.e., S(i, t) − C(i, t) as MF-
Variability.

Another way to handle variability in the time series is to examine the distribution of the pairwise
distance values between the objects in the same segment and object across the segment. In this
paper we use the t-statistic as the scoring function. We refer to this scheme as MF-T-stat. The
scoring function in Algorithm 2 is replaced by the score below:

Score =
tstatistic(S(i, t), C(i, t)Seg1) + tstatistic(S(i, t), C(i, t)Seg2)

2

4. DATA AND EVALUATION METHODOLOGY

Below, we provide details of the simulated and the MODIS EVI data sets used for evaluation.

4.1. Simulated 16-day EVI Time Series: Simulated EVI time series are generated by summing
simulated seasonal and noise components. This procedure was adapted from [18]. The seasonal
component is created using an asymmetric Gaussian function (Equation 3) for each season. Two
different kinds of seasonal cycles are created by using x ∈ [1, p] for single cycles per year and x ∈ [1, p2 ]
for double cycles per year, where p is the season length.
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(3) f(x) =

 ae
−(b−x)2

c1 x ≥ b,

ae
−(b−x)2

c2 otherwise.

The parameters a and b determine the amplitude and the position of maximum or minimum with
respect to the independent time variable t, while c1 and c2 determine the width of the left and the
right hand side, respectively.

In addition to the seasonal component, the following two noise components were generated (i)
Noise Seasonal : Simulates the inter annual seasonal variability observed in the EVI values due
to climate variations and was generated using a random number generator that follows a uniform
distribution over a pre-defined range (ii) Noise Spike: A noise component that was added to a pre-
defined number of time stamps in each time series to simulate cloud contamination. The value of
the noise component also followed a uniform distribution between a pre-defined range.

The time series were generated in the following manner:

(1) Unchanged Time Series: The same values of the parameters are used in Equation 3 for all
individual years. Both noise components were added using the method as described above.

(2) Changed Time Series: The changed time series are constructed by changing the parameters
within a single time series after a certain year which is chosen randomly between years 2
and 8. Different parameters impact the time series in a different way. For example, Figure 4
illustrates a pattern change introduced from fifth year onwards by changing c1 from 10
to 100 while keeping all the other parameters fixed. The change in different parameters
corresponds to different land cover changes. For example, a change in only the amplitude
might represent a degradation of crop productivity or a change in only c1 or c2 might indicate
a different cropping pattern. However, to easily compare the relative performance of different
algorithms we only change the parameter b in the two different segments. Figure 5 shows
the effect of changing the parameter b in the two segments.

Using the above procedure different data sets were created which differed in the amount of noise:
DS1: It is a combination of multiple data sets (Table 1) which have similar amplitude range

but vary in the levels of noise. This was to simulate the areas with similar vegetation patterns but
different characteristics of noise due to geographic locations, climate patterns etc. All the data sets
used have the same number of changed and non-changed time series and contained both single &
double cycled time series in equal proportion.

DS2: This data set was created to simulate changes occuring in different vegetation phenologies
having different noise levels and extent of changes. The constructed data set is the combination of
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Name Amplitude NoiseSeasonal NoiseSpike % of time stamps Changed Non-Changed

DS-N1 [3000,7000] [-500,500] [1200,1500] 10 2000 20,000
DS-N2 [3000,7000] [-500,500] [1700,2000] 30 2000 20,000
DS-N3 [3000,7000] [-1000,1000] [1200,1500] 10 2000 20,000
DS-N4 [3000,7000] [-1000,1000] [1700,2000] 30 2000 20,000
DS-N5 [3000,7000] [-1500,1500] [1200,1500] 10 2000 20,000
DS-N6 [3000,7000] [-1500,1500] [1700,2000] 30 2000 20,000

Table 1. Summary of different data sets used to create data set DS1

the data sets shown in Table 2. Notice that it contains two data sets: DS-N7 with higher amplitude
& higher levels of noise and DS-N8 with lower amplitude & lower levels of noise.

Name Amplitude NoiseSeasonal NoiseSpike % of time stamps Changed Non-Changed

DS-N7 [3000,7000] [-1500,1500] [1700,2000] 30 2000 20,000
DS-N8 [1000,1500] [-500,500] [1200,1500] 10 2000 20,000

Table 2. Summary of different data sets used to create data set DS2

DS3: These data sets were created to illustrate the importance of choosing an appropriate model
in the model based change detection algorithm. DS3 consists of data sets shown in Table 3. DS-N9
is constructed using Assymetric Gaussian function as in Equation 3. DS-N10 is however constructed
using Wigner semicircle distribution model as in Equation 4. Changed time series are constructed by
changing the values of R ∈ [6, 11]. Both these data sets have 2,000 changed and 20,000 nonchanged
time series.

(4) f(x) =

{
2

πR2

√
(R2 − x2) −R < x < R,

0 otherwise.

Name Model Amplitude NoiseSeasonal NoiseSpike

DS-N9 Asymmetric Gaussian [8000,12000] [-500,500] [1200,1500]
DS-N10 Wigner semicircle [8000,10000] [-1500,1500] [2000,2500]

Table 3. Summary of data set DS3

4.2. 16-day MODIS EVI Time Series: The specific vegetation-related variable used in this
analysis was the Enhanced Vegetation Index (EVI) product that serves as a surrogate for the amount
of vegetation for a pixel; and is measured by the moderate resolution imaging spectroradiometer
(MODIS) instrument. In this paper, the temporal coverage of the data is from the time period
February 2000 – February 2010.

We selected a region in North Carolina containing 48,025 pixels of 250m resolution between North
35.99–35.3 and West 76.5–77. We refer to this data set as DSNC. This region was chosen because it
is known to have a variety of changes in land cover over the past 10 years. Also, a reasonably good
quality land cover classification map of this region is available from NOAA [4] at 30m resolution for
2001 and 2006 that can be used for validation. Each 250m pixel was assigned a set of 30m pixels
based on the nearest neighbor and a 250m pixel was considered a change if a certain threshold (10%
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Figure 6. Precision-Recall curve for DS1, Blue curve is Precision, Green curve is Recall. x-axis represents
the number of pixels (a) MF-Variability ; (b) MF-NoVariability ; (c) RecursiveMerging

in our analysis) of the 30m pixels within that 250m pixel had different land cover labels in 2001 and
2006. Using this threshold 7,367 pixels were considered changed. More details of the ground truth
generation are provided in the technical report [9].

4.3. Evaluation Methodology. Assume that for a time series data set D with N pixels, the
change detection technique returns a list of change scores of length N , where each change score is
a measure of the degree of change for the corresponding pixel. We also have a validation data set
which consists of true labels for each of the pixels; let M be the total number of actual changes
as determined by the validation data set. To evaluate the performance of a given change detection
algorithm at rank n, we count the number of true changes in the top n ranked pixels of the sorted
change scores of all the pixels, where n is the number of actual changes (1 ≤ n ≤ M). Let TPn be
the number of actual disturbances in the top n predicted disturbances, and FPn be the number of
pixels that are in the top n portion but are not actual disturbances.

We evaluate performance by examining the sorted list of change scores. The performance metrics
are defined as follows:

Precision, pn =
TPn

TPn + FPn
Recall, rn =

TPn
M

Note that as n increases, pn will tend to decrease and rn will increase. One specific value of
interest is the one when n is equal to the number of changed pixels (validation data). At this value
of n, pn = rn. Also, if the change detection algorithm does a perfect job of identifying changes, then
pn will remain at 1 upto this value of n and then start to drop for increasing values of n and rn will
linearly increase from 0 to 1 and then stay at 1 for larger values of n.

5. Experimental Results

5.1. Observations on Simulated Data Sets: Below we present precision and recall curves for
different algorithms on DS1, DS2, DS3 and DSNC. We particularly focus on the relative capabilities
of the algorithm to model natural variation. We also present results to illustrate the dependence of
model based algorithms on the choice of model.
5.1.1. MF-Variability Significantly Outperforms MF-NoVariability and RecursiveMerg-
ing for DS1:

The precision and Recall curves in Figure 6 for DS1 shows that MF-Variability significantly out-
perform MF-NoVariability and RecursiveMerging. The primary reason is that since dataset DS1
consists of time series with varying levels of variability (noise), the change detection algorithm must
take into account the change with respect to the natural variation. Since MF-NoVariability does
not depend on the value of cohesion, it is not able to model the natural variation in the time series.
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To illustrate the advantage of subtracting the cohesion from separation in MF-Variability, in
Figure 7 we show the scatter plots of the Separation and Cohesion values for a random sample of
2,000 changed (blue circles) and 20,000 non-changed time series (red circles) from DS1. The vertical
line in black shows the constant MF-NoVariability score of 898 and the oblique line in green shows
the constant score of MF-Variability score of 248. Points lying to the right half of these lines will
have scores higher than the respective line. These scores are chosen because they give similar number
of changed events. From the Figure 7, we notice that MF-NoVariability will make more errors as
compared to MF-Variability by incorrectly labelling a few unchanged time series as changed.

The discussion above illustrates that the notion of variability is important to incorporate in the
change detection algorithm. Using the value of cohesion as an indicator of the natural variation,
MF-Variability is able to significantly improve the results.
5.1.2. MF-T-stat outperforms MF-Variability for DS2:

Figure 8(a) shows the precision and recall curve for MF-Variability on DS2. Recall that DS2 consists
of two different kinds of vegetation patterns: (i) time series with higher amplitude and higher levels
of noise (DS-N7) (ii) time series with lower amplitude and lower level of noise (DS-N8). Table 4
shows the number of true and false positives from the individual data sets DS-N7 and DS-N8 when
MF-Variability is used on DS2. It is seen that only 325 points out of 2,000 changed points are
recalled from the data set DS-N8. Also, notice that almost all the false positives are from the
dataset DS-N7. This illustrates that because of the higher levels of noise present in DS-N7 and
smaller number of changes in DS-N8, MF-Variability gives a higher score to unchanged time series
in DS-N7 than compared to changed time series in DS-N8. It is therefore important to design a
scoring mechanism which takes into account the difference in variation observed in the time series
due to different phenological characteristics. As discussed in Section 4, Figure 8(a) illustrates how
MF-T-stat models the variance of the distribution in cohesion and separation values to significantly
improve the results. Table 5 further illustrates that the MF-T-stat is able to recall many more points
from DS-N8 as compared to MF-Variability.
5.1.3. HM-Variability outperforms HM-NoVariability for DS2:

Figure 9 shows the precision recall curve for HM-Variability and HM-NoVariability. It is seen
that HM-Variability significantly outperforms HM-NoVariability. The primary reason for better
performance of HM-Variability is similar to as explained above for the comparison of MF-T-stat
and MF-Variability. The normalization step in HM-Variability helps to model the difference in
variability of the two different combined data sets.
5.1.4. Model Choice plays a critical role in the performance of Model Based Algorithm:

To illustrate the importance of model choice, we show results on DS3 which consists of time se-
ries generated from two different models: asymmetric Gaussian (DS-N9) and Wigner Semicircle
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Figure 8. Precision-Recall curve for DS2 (a) MF-Variability (b) MF-T-stat
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Figure 9. Precision-Recall curve for DS2 (a) HM-Variability (b) HM-NoVariability

TP or FP DS-N7 DS-N8

TP 1569 325
FP 2102 4

Table 4. MF-Variability

TP or FP DS-N7 DS-N8

TP 1328 828
FP 925 918

Table 5. MF-T-stat

Distribution (DS-N10), as mentioned in Section 4. On this data set, MF-Variability significantly
outperforms HM-Variability as shown in Figure 10. The primary reason is that since the harmonic
model used in HM-Variability does not appropriately model the time series in DS-N10, the error
computation is not accurate. In particular, the error between the fit and the original time series
is particularly high for time series in DS-N10, resulting in lower score being assigned to such time
series due to the normalization step in HM-Variability. This is also represented in the number of true
and false positives detected by the algorithms for the individual data sets present in DS3 (shown in
Table 6 and Table 7). Note that only a few (767 out of 2,000) changed points are recalled from the
data set DS-N10. Also, notice that all of the false positives are from the data set DS-N9. Therefore,
the choice of the model in model-based algorithm is critical to its performance. On the other hand,
MF-Variability does not require any knowledge of model or choice of parameter and therefore is
robust to different phenologies and characteristics of time series globally. This is one of the key
properties of the MF-Variability algorithm for its application in global land cover change detection.
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TP or FP DS-N9 DS-N10

TP 2000 767
FP 1233 0

Table 6. HM-Variability

TP or FP DS-N9 DS-N10

TP 2000 1637
FP 0 363

Table 7. MF-Variability
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Figure 10. Precision-Recall curves for DS3 (a) HM-Variability ; (b) MF-Variability ; (c) MF-T-stat

5.2. Observations on real dataset: DSNC:. Figure 11 shows the precision recall curve for
different algorithms on DSNC. It is observed that none of the algorithms perform very well on
this dataset. This is primarily due to various issues associated with the validation data set which
complicates the evaluation. First, the resolution difference between the label dataset (30m) and the
MODIS EVI data set (250m) results in inaccuracy in assigning the proper set of labels to each 250m
pixel. Also, determining the threshold for the number of 30m pixels required to have changed for
each 250m pixel to be considered as change is challenging. For example, though a conversion of 10%
of 30m pixels within a 250m pixel from forest to barren land could be strongly reflected in the 250m
EVI signal, a 10% conversion from forest to pasture might not be reflected. Additional challenges
arise from the inability of the EVI signal to distinguish between some particular land cover types. A
pixel classified as Secondary Forest in 2001 and Mixed Forest in 2006 is considered changed according
to the validation data set but might not show a perceptible change in its EVI signal and thus would
not be detected by the change detection algorithm. Conversely, certain changes such as double
cropping to single cropping cycles which are clearly reflected in the EVI signal are not considered
change according to the ground truth because they have the same LCC label. Such pixels detected
by the algorithm are considered as false positives by the evaluation methodology and thus reduces
the observed performance of the algorithms.

Despite these challenges, note that all the algorithms still do significantly better than the random
curve shown in Figure 11. Also, it is observed that MF-Variability performs the best and significantly
better than MF-NoVariability. However, it is difficult to make precise statements about the relative
performance given the uncertainity associated with the validation labels.

6. Conclusion and Future Work

In this paper, we presented two time series segmentation techniques that can be used to identify
the pattern changes in the vegetation index time series. The results of this study also demonstrate
the importance of modeling the natural variation in the time series for accurately estimating the
significance of the change in the EVI signal. Both the techniques significantly outperformed another
recently proposed technique by Boriah et al [6]. The proposed model-based segmentation algorithm
was shown to be sensitive to the choice of model, however the model-free segmentation algorithm
requires no model and gives comparable or better results. The proposed model-free segmentation
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Figure 11. x− axis shows the number of pixels considered; y− axis shows the precision (range 0-1) and
recall (range 0-1); Precision-Recall curves on real data set (a) Random Algorithm (b) MF-Variability ; (c)
MF-NoVariability ; (d) HM-Variability ; (e) HM-NoVariability

algorithm has been applied globally at 1km EVI to detect various land cover changes [10] such as
forest to farmland conversions, change in cropping patterns, urbanization and the results are publicly
available via the online platform ALERTS [1]. The results indicate the ability of the algorithm to
provide rapid, inexpensive, robust, scalable and precise detection of land use change [2].

The proposed algorithms assume that only one pattern change occurs in the time series. However,
the ability to find multiple changes becomes critical as the length of the time series increases with
the continuous collection of satellite data. Therefore the existing techniques ought to be extended
to detect multiple changes. This could be challenging since the presence of multiple change points
might hinder the effective detection of the first change point using the top down segmentation
approaches. In addition, the techniques need to be adapted to discover changes even in the presence
of other changes such as gradual or abrupt drops. BFAST, a recently proposed technique [18]
outlines a framework to detect such changes, however the technique is computationally expensive
and hence not scalable for global application. The proposed techniques could be extended using
similar frameworks to detect such changes. Also, our techniques assume that the pattern changes
occur at the yearly boundaries which is not always true in the land cover change domain.
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SPARSE MACHINE LEARNING METHODS

FOR UNDERSTANDING LARGE TEXT CORPORA

LAURENT EL GHAOUI*, GUAN-CHENG LI*, VIET-AN DUONG**, VU PHAM***,
ASHOK SRIVASTAVA****, AND KANISHKA BHADURI****

Abstract. Sparse machine learning has recently emerged as powerful tool to obtain models of
high-dimensional data with high degree of interpretability, at low computational cost. This paper

posits that these methods can be extremely useful for understanding large collections of text

documents, without requiring user expertise in machine learning. Our approach relies on three
main ingredients: (a) multi-document text summarization and (b) comparative summarization of

two corpora, both using sparse regression or classification; (c) sparse principal components and

sparse graphical models for unsupervised analysis and visualization of large text corpora. We
validate our approach using a corpus of Aviation Safety Reporting System (ASRS) reports and

demonstrate that the methods can reveal causal and contributing factors in runway incursions.

Furthermore, we show that the methods automatically discover four main tasks that pilots perform
during flight, which can aid in further understanding the causal and contributing factors to runway

incursions and other drivers for aviation safety incidents.

1. Introduction

Sparse machine learning refers to a collection of methods to learning that seek a trade-off be-
tween some goodness-of-fit measure and sparsity of the result, the latter property allowing better
interpretability. In a sparse learning classification task for example, the prediction accuracy or some
other classical measure of performance is not the sole concern: we also wish to be able to explain
what the classifier means to a non-expert. Thus, if the classification task involves say gene data,
one wishes to provide not only a high-performance classifier, but one that only involves a few genes,
allowing biologists to focus their research efforts on those specific genes.

There is an extensive literature on the topic of sparse machine learning, with terms such as
compressed sensing [12, 5], l1-norm penalties and convex optimization [42], often associated with
the topic. Successful applications of sparse methods have been reported, mostly in image and signal
processing, see for example [15, 28, 31]. Due to the intensity of research in this area, and despite an
initial agreement that sparse learning problems are more computationally difficult than their non-
sparse counterparts, many very efficient algorithms have been developed for sparse machine learning
in the recent past. A new consensus might soon emerge that sparsity constraints or penalties actually
help reduce the computational burden involved in learning.

Our paper makes the claim that sparse learning methods can be very useful to the understanding
large text databases. Of course, machine learning methods in general have already been successfully
applied to text classification and clustering, as evidenced for example by [21]. We will show that
sparsity is an important added property that is a crucial component in any tool aiming at provid-
ing interpretable statistical analysis, allowing in particular efficient multi-document summarization,
comparison, and visualization of huge-scale text corpora.
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To illustrate our approach we focus here on Aviation Safety Reporting System (ASRS) text
reports, which is a crucial component of the continuing effort to maintain and improve aviation
safety. The text reports are written by members of the flight crew, air traffic controllers, and others
on a voluntary basis. The reports are de-identified so that the author and other specific information
regarding the flight is not revealed. Each report is a small paragraph describing any incident that
the author wishes to discuss and is assigned a category among a set of pre-defined ones by a team
of ASRS experts. The ASRS database consists of about 100,000 reports spanning approximately 30
years. Although the report intake fluctuates on a monthly basis, the ASRS report intake for March
2011 was 6148 reports. ASRS data are used by experts to identify deficiencies in the National
Aviation System so that they can be corrected. The data are also used to further deepen our
understanding of human factors issues in aviation which is a critical component of aviation safety.
It is widely thought that over two-thirds of all aviation accidents and incidents have their roots in
human performance errors 1.

The ASRS data contains several of the crucial challenges involved under the general banner of
“large-scale text data understanding”. First, its scale is huge, and growing rapidly, making the need
for automated analyses of the processed reports more crucial than ever. Another issue is that the
reports themselves are far from being syntactically correct, with lots of abbreviations, orthographic
and grammatical errors, and other shortcuts. Thus we are not facing a corpora with well-structured
language having clearly defined rules, as we would if we were to consider a corpus of laws or bills or
any other well-redacted data set. Finally, in many cases we do not know in advance what to look for
because the goal is to discover precursors to aviation safety incidents and accidents. In other words,
the task is not about search, and finding a needle in a haystack: in many cases, we cannot simply
to monitor the emergence or disappearance of a few keywords that would be known in advance.
Instead the task resembles more one of trying to visualize the haystack itself, compare various parts
of it, or summarize some areas.

In examining the ASRS data, we would like to be able to pinpoint some emerging issues, highlight
some trends, broken down by time, type of flight, incident, or airport. For example, the class
of incidents known as “runway incursion” might occur more frequently at some airports; runway
incursions might be due to different causes, necessitating differentiated responses (such as improved
ground lighting, or changes in taxiway configurations). How can we quickly figure out the type of
runway incursions involved at each airport, and respond accordingly?

Our paper is organized as follows. Section 2 is devoted to a review of some of the main models
and algorithms in sparse machine learning. We explain how these methods can be used in text
understanding in section 3. Section 4 illustrates the approach in the context of ASRS data, and
also reviews some prior work on this specific data set. Although our focus here is on ASRS data,
most of the approaches depicted here have been developed in the context of news data analysis, see
[18, 30, 6].

2. Sparse Learning Methods

In this section we review some of the main algorithms of sparse machine learning.

2.1. Sparse classification and regression.

2.1.1. The LASSO. Perhaps the most well known example of sparse learning is the variant of least-
squares known as the LASSO [41], which takes the form

(1) min
β
‖XTβ − y‖22 + λ‖β‖1,

where X is a n×m data matrix (with each row a specific feature, each column a specific data point),
y is a m-dimensional response vector, and λ > 0 is a parameter. The l1-norm penalty encourages

1See http://asrs.arc.nasa.gov for more information on the ASRS system. The text reports are available on this
website along with analyses performed by the ASRS analysts.
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the regression coefficient vector β to be sparse, bringing interpretability to the result. Indeed, if each
row is a feature, then a zero element in β at the optimum of (1) implies that that particular feature
is absent from the optimal model. If λ is large, then the optimal β is very sparse, and the LASSO
model then allows to select the few features that are the best predictors of the response vector.

2.1.2. Solving the LASSO. The LASSO problem looks more complicated than its classical least-
squares counterpart. However, there is mounting evidence that, contrary to intuition, the LASSO
is substantially easier to solve than least-squares, at least for high values of λ. As shown later, in
typical applications to text classification, a high value of λ is desired, which is precisely the regime
where the LASSO is computationally very easy to solve.

Many algorithms have been proposed for LASSO; at present it appears that, in text applications
with sparse input matrix X, a simple method based on minimizing the objective function of (1) one
coordinate of β at a time is extremely competitive [16, 33]. The so-called safe feature elimination
procedure [14], which allow to cheaply detect that some of the components of β will be zero at
optimum, enables to treat data sets having millions of terms and documents, at least for high values
of λ.

2.1.3. Other loss functions. Similar models arise in the context of support vector machines (SVM)
for binary classification, where the sparse version takes the form

(2) min
β,b

1

m

m∑
i=1

h(yi(x
T
i β + b)) + λ‖β‖1,

where now y is the vector of ±1’s indicating appartenance to one of the classes, and h is the so-called
hinge loss function, with values h(t) = max(0, 1− t). At optimum of problem (2), the above model
parameters (β, b) yield a classification rule, i.e. predict a label ŷ for a new data point x, as follows:
ŷ = sign(xTβ + b). A smooth version of the above is sparse logistic regression, which obtains upon
replacing the hinge loss with a smooth version l(t) = log(1+e−t). Both of these models are useful but
somewhat less popular than the LASSO, as state-of-the-art algorithms are have not yet completely
caught up. For our text applications, we have found that LASSO regression, although less adapted
to the binary nature of the problem, is still very efficient [30].

2.2. Sparse principal component analysis.

2.2.1. The model. Sparse principal component analysis (Sparse PCA, see [48, 47] and references
therein) is a variant of PCA that allows to find sparse directions of high variance. The sparse PCA
problem can be formulated in many different ways, one of them (see [39, 27]) involves a low-rank
approximation problem where the sparsity of the low-rank approximation is penalized:

(3) min
p,q
‖M − pqT ‖2F + λ‖p‖1 + µ‖q‖1,

where M is the data matrix, ‖ · ‖F is the Frobenius norm, and µ ≥ 0, λ ≥ 0 are parameters.
The model above results in a rank-one approximation to M (the matrix pqT at optimum), and

vectors p, q are encouraged to be sparse due to the presence of the l1 norms, with high value of
the parameters λ, µ yielding sparser results. Once sparse solutions are found, then the rows (resp.
columns) in M corresponding to zero elements in p (resp. in q) are removed, and problem (3) is solved
with the reduced matrix as input. If M is a term-by-document matrix, the above model provides
sparsity in the feature space (via p) and the document space (via a “topic model” q), allowing to
pinpoint a few features and a few documents that jointly “explain” data variance.

2.2.2. Algorithms. Several algorithms have been proposed for the above problem, for example [23,
39, 8]. In practice, one algorithm that is very efficient (although it is only guaranteed to converge
to a local minimum) consists in solving the above problem alternatively over p, q many times [39].
This leads to a modified power iteration method

p→ P (Sλ(Mq)), q → P (Sµ(MT q)),
3
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where P is the projection on the unit circle (assigning to a non-zero vector v its scaled version
v/‖v‖2), and for t ≥ 0, St is the “soft thresholding” operator (for a given vector v, St(v) =
sign(v) max(0, |v| − t), with operations acting component-wise). We can replace the soft thresh-
olding by hard thresholding, for example zeroing out all but a fixed number of the largest elements
in the vector involved.

With λ = µ = 0 the original power iteration method for the computation of the largest singular
value of M is recovered, with optimal p, q the right- and left- singular vectors of M . The presence
of λ, µ modifies these singular vectors to make them sparser, while maintaining the closeness of M
to its rank-one approximation. The hard-thresholding version of power iteration scales extremely
well with problem size, with greatest speed increases over standard power iteration for PCA when a
high degree of sparsity is asked for. This is because the vectors p, q are maintained to be extremely
sparse during the iterations.

2.2.3. Thresholded PCA. An alternative to solving the above that was proposed earlier for sparse
PCA is based on solving a classical PCA problem, then thresholding the resulting singular vectors
so that they have the desired level of sparsity. For large-scale data, PCA is typically solved with
power iteration, so the “thresholded PCA” algorithm is very similar to the above thresholded power
iteration for sparse PCA. The only difference is in how many times thresholding takes place. Note
that in practice, the thresholded power iteration for sparse PCA is much faster than its plain
counterpart, since we are dealing with much sparser vectors as we perform the power iterations.

2.3. Sparse graphical models.

2.3.1. Covariance selection. Sparse graphical modeling seeks to uncover a graphical probabilistic
model for multivariate data that exhibits some sparsity characteristics. One of the main examples
of this approach is the so-called sparse covariance selection problem, with a Gaussian assumption
on the data (see [34], and related works such as [17, 29, 45, 40, 26, 24]). Here we start with a
n × n sample covariance matrix S, and assuming the data is Gaussian, formulate a variant to the
corresponding maximum likelihood problem:

(4) max
X

log detX −TrSX − λ‖X‖1,

where λ > 0 is a parameter, and ‖X‖1 denotes the sum of the absolute values of all the entries in
the n×n matrix variable X. Here, TrSX is the scalar product between the two symmetric matrices
S and X, that is, the sum of the diagonal entries in the matrix product SX. When λ = 0, and
assuming S is positive-definite, the solution is X = S−1. When λ > 0, the solution X is always
invertible (even if S is not), and tends to have many zero elements in it as λ grows. A zero element
in the (i, j) entry of X corresponds to the conditional independence property between nodes i and
j; hence sparsity of X is directly related to that of the conditional independence graph, where the
absence of an edge denotes conditional independence.

2.3.2. Solving the covariance selection problem. The covariance selection problem is much more
challenging than its classical counterpart (where λ = 0), which simply entails inverting the sample
covariance matrix. At this point it appears that one of the most competitive algorithms involves
solving the above problem one column (and row) ofX at a time. Each sub-problem can be interpreted
as a LASSO regression problem between one particular random variable and all the others [34, 17].
Successful applications of this approach include Senate voting [34] and gene data analysis [34, 11]

Just as in the PCA case, there is a conceptually simple alorithm, which relies on thresholding.
If the covariance matrix is invertible, we simply invert it and threshold the elements of the in-
verse. Some limited evidence points to the statistical superiority of the sparse approach (based on
solving problem (4)) over its thresholded counterpart. On the computational front however, and
contrarily to the models discussed in the previous two sections, the thresholding approach remains
computationally competitive, although still very challenging in the high-dimensional case.

4
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2.4. Thresholded models. The algorithms in sparse learning are built around the philosophy that
sparsity should be part of the model’s formulation, and not produced as an afterthought. Sparse
modeling is based on some kind of direct formulation of the original optimization problem, involving,
typically, an l1 penalty. As a result of the added penalty, sparse models have been originally thought
to be substantially more computationally challenging than their non-penalized counterparts.

In practice, sparse results can be obtained via the use of any learning algorithm, even one that is
not necessarily sparsity-inducing. Sparsity is then simply obtained via thresholding the result. This
is the case for example with näıve Bayes classification, or Latent Dirichlet Allocation (LDA). In the
case of LDA, the result is a probability distribution on all the terms in the dictionary. Only the
terms with the highest weights are retained, which amounts in effect to threshold the probability
distribution. The notion of thresholded models refers to the approach of applying a learning algorithm
and obtaining sparsity with a final step of thresholding.

The question about which approach, “direct” sparse modeling or sparse modeling via threshold-
ing, works better in practice, is a natural one. Since direct sparse modeling appears to be more
computationally challenging, why bother? Extensive research in the least-squares case shows that
thresholding is actually often sub-optimal [30]. Similar evidence has been reported on the PCA case
[47]. Our own experiments in section 4 support this viewpoint.

There is an added benefit to direct sparse modeling—a computational one. Originally thresholding
was considered as a computational shortcut. As we argued above for least-squares, SVM and logistic
regression, and PCA, sparse models can be actually surprisingly easier to solve than classical models;
at least in those cases, there is no fundamental reason for insisting on thresholded models, although
they can produce good results. For the case of covariance selection, the situation is still unclear,
since direct sparse modeling via problem (4) is still computationally challenging.

The above motivates many researchers to “sparsify” existing statistical modeling methodologies,
such as Latent Dirichlet Allocation [4]. Note that LDA also encodes a notion of sparsity, not in the
feature space, but on the document (data) space: it assumes that each document is a mixture of
a small number of topics, where the topic distribution is assumed to have a Dirichlet prior. Thus,
depending on the concentration parameter of this prior, a document comprised of a given set of
words may be effectively restricted to having a small number of topics.

This notion of sparsity (document-space sparsity) does not constrain the number of features active
in the model, and does not limit overall model complexity. As a result, in LDA, the inclusion of
terms that have little discrimination power between topics (such as ‘and’, ‘the’, etc.) may fall into
multiple topics unless they are eliminated by hand. Once a set of topics is identified the most
descriptive words are depicted as a list in order of highest posterior probability given the topic. As
with any learning method, thresholding can be applied to this list to reveal the top most descriptive
words given a topic. It may be possible to eliminate this thresholding step using a modified objective
function with an appropriate sparsity constraint. This is an area of very active research, as evidenced
by [13].

3. Application to Text Data

3.1. Topic summarization. Topic summarization is an extensive area of research in natural lan-
guage processing and text understanding. For a recent survey on the topic, see [7]. There are many
instances of this problem, depending on the precise task that is addressed. For example the focus
could be to summarize a single unit of text, or summarize multiple documents, or summarize two
classes of documents in order to produce the summaries that offer the best contrast. Some further
references to summarization include [19, 20, 32].

The approach introduced in [18] and [30] relies on LASSO regression to produce a summary of
a particular topic as treated in multiple documents. This is part of the extraction task within a
summarization process, where relevant terms are produced and given verbatim [7]. Using predictive
models for topic summarization has a long history, see for example [37]; the innovation is the
systematic reliance on sparse regression models.

5
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The basic idea is to divide the corpora in two classes, one that corresponds to the topic, and the
other to the rest of the text corpora. For example, to provide the summary of the topic “China” in
a corpora of news articles from The New York Times over a specific period, we may separate all the
paragraphs that mention the term “china” (or related terms such as “chinese”, “china’s”, etc) from
the rest of the paragraphs. We then form a numerical, matrix representation X (via, say, TF-IDF
scores) of the data, and form a “response” vector (with 1’s if the document mentions China and
−1 otherwise). Solving the LASSO problem (1) leads to a vector β of regressor coefficients, one for
each term of the dictionary. Since LASSO encourages sparsity, many elements of β are zero. The
non-zero elements point to terms in the dictionary that are highly predictive of the appearance of
“china” in any paragraph in the corpus.

The approach can be used to contrast to set of documents. For example, we can use it to highlight
the terms that allow to best distinguish between two authors, or two news sources on the same topic.

Topic summarization is closely related to topic modeling via Latent Dirichlet Allocation (LDA)
[4], which finds on a latent probabilistic model to produce a probability distribution of all the words.
Once the probability distribution is obtained, the few terms that have the highest probability are
retained, to produce some kind of summary in an unsupervised fashion. As discussed in section 2.4,
the overall approach can be seen as a form of indirect, thresholding method for sparse modeling.

3.2. Discrimination between several corpora. Here the basic task is to find out what terms
best describe the differences between two or more corpora. In a sparse classification setting, we may
simply classify one of the corpora against all the others. The resulting classifier weight vector, which
is sparse, then points to a short list of terms that are most representative of the salient differences
between the corpora and all the others. Of course, related methods such as multi-class sparse logistic
regression can be used.

3.3. Visualization and clustering. Sparse PCA and sparse graphical models can provide insights
to large text databases. PCA itself is a widely used tool for data visualization, but as noted by
many researchers, the lack of interpretability of the principal components is a challenge. A famous
example of this difficulty involves the analysis of Senate voting patterns. It is well-known in political
science that, in that type of data, the first two principal components explain the total variance very
accurately [34]. The first component simply represents party affiliation, and accounts for a high
proportion of the total variance (typically, 80%). The second component is much less interpretable.

Using sparse PCA, we can provide axes that are sparse. Concretely this means that they involve
only a few features in the data. Sparse PCA thus brings an interpretation, which is given in terms
of which few features explain most of the variance. Likewise, sparse graphical modeling can be very
revealing for text data. Because it produces sparse graphs, it can bring an understanding as to
which variables (say, terms, or sources, or authors) are related to each other and how.

4. Application to ASRS Data

4.1. ASRS data sets. In this section our focus is on reports from the Aviation Safety Reporting
System (ASRS). The ASRS is a voluntary program in which pilots, co-pilots, other members of the
flight crew, flight controllers, and others file a text report to describe any incident that they may
have observed that has a bearing on aviation safety. Because the program is completely voluntary
and the data are de-identified, meaning that the author, his or her position, the carrier, and other
identifying information is not available in the report. After reports are submitted, analysts from
ASRS may contact the author to obtain clarifications. However, the information provided by the
reporter is not investigated further. This motivates the use of (semi-) automated methods for the
real-time analysis of the ASRS data.

A first data set is the one used as part of the SIAM 2007 Text Mining Competition. The
data consists in about 20,000 flight reports submitted by pilots after their flight. Each report is a
small paragraph describing any incident that was recorded during flight, and is assigned a category
(totaling 22), or type of incident. We refer to this data set as the “category” data set. In the
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category data set, the airport names, the time stamps and other information has been removed.
The documents in this corpora were processed through a language normalization program that
performs stemming, acronym expansion, and other basic pre-processing. The system also removes
non-informative terms such as place names.

We have also worked with an ASRS data set of raw reports that include airport names and contain
the term “runway incursion”. Our goal with this data set is to focus on understanding the causal
factors in runway incursions, which is an event in which one aircraft moves into the path of another
aircraft during landing or takeoff. A key question that arises in the study of runway incursions is to
understand whether there are significant distinguishing features of runway incursions for different
airports. Although runway incursions are common, the causes may differ with each airport. These
are the causal factors that enable the design of the intervention appropriate for that airport, whether
it may be runway design, runway lighting, procedures, etc. Unlike the category data set, these data
were not processed through a language normalization program.

4.2. Related work on ASRS data. In this section we list some previous work in applying data
mining/machine learning methods for analyzing ASRS data, along with pointers for further research.

Text Cube [25] and Topic Cube [46] are multi-dimensional data cube structures which provide a
solid foundation for effective and flexible analysis of the multidimensional ASRS text database. The
text cube structure is constructed based on the TF/IDF (i.e., vector space) model while the topic
cube is based on a probabilistic topic model. Techniques have also been developed for mining repet-
itive gapped subsequences [9], multi-concept document classification [43][44], and weakly supervised
cause analysis [1]. The work in [25] has been further extended in [10] where the authors have pro-
posed a keyword search technique. Given a keyword query, the algorithm ranks the aggregations of
reports, instead of individual reports. For example, given a query “forced landing” an analyst may
be interested in finding the external conditions (e.g. weather) that causes this kind of query and
also find other anomalies that might co-occur with this one. This kind of analysis can be supported
through keyword search, providing an analyst a ranked list of such aggregations for efficient browsing
of relevant reports. In order to enrich the semantic information in a multidimensional text database
for anomaly detection and causal analysis, Persing and Ng have developed new techniques for text
mining and causal analysis from ASRS reports using semi-supervised learning [36] and subspace
clustering [3].

Some work has also been done on categorizing ASRS reports into anomalous categories. It
poses some specific challenges such as high and sparse dimensionality as well as multiple labels per
document. Oza et al. [35] presents an algorithm called Mariana which learns a one-vs-all SVM
classifier per anomaly category on the bag-of-words matrix. This provides good accuracy on most
of the ASRS anomaly categories.

Topic detection from ASRS datasets have also received some recent attention. Shan et al. have
developed the Discriminant Latent Dirichlet Allocation (DLDA) model [38], which is a supervised
version of LDA. It incorporates label information into the generative model using logistic regression.
Compared to Mariana, it not only has a better accuracy, but it also provides the topics along with
the classification.

Gaussian Process Topic Models (GPTMs) by Agovic and Banerjee [2] is a novel family of topic
models which define a Gaussian Process Mapping from the document space into the topic space. The
advantage of GPTMs is that it can incorporate semi-supervised information in terms of a Kernel
over the documents. It also captures correlations among topics, which leads to a more accurate topic
model compared to LDA. Experiments on ASRS dataset show better topic detection compared to
LDA. The experiments also illustrate that the topic space can be manipulated by changing the
Kernel over documents.

4.3. Recovering categories. In our first experiment, we sought to understand if the sparse learning
methods could perform well in a blind test. The category data did not contain category names, only
referring to them with letter capitals. We sought to understand what these categories were about.
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Category term 1 term 2 term 3 term 4 term 5 term 6 term 7
A MEL install maintain mechanic defer logbook part
B CATA CATN airspace install MEL AN
C abort reject ATO takeoff advance TOW pilot
D grass CATJ brake mud veer damage touchdown
E runway taxi taxiway hold tower CATR ground control
F CATH clearance cross hold feet runway taxiway
G altitude descend feet CATF flightlevel autopilot cross
H turn head course CATF radial direct airway
I knotindicator speed knot slow airspeed overspeed speedlimit
J CATO CATD wind brake encounter touchdown pitch
K terrain GPWS GP MD glideslope lowaltitude approach
L traffic TACAS RA AN climb turn separate
M weather turbulent cloud thunderstorm ice encounter wind
N airspace TFR area adiz classb classdairspace contact
O CATJ glideslope approach high goaraound fast stabilize
P goaround around execute final approach tower miss
Q gearup land towerfrequency tower contacttower gear GWS
R struck damage bird wingtip truck vehicle CATE
S maintain engine emergency CATA MEL gear install
T smoke smell odor fire fume flame evacuate
U doctor paramedic nurse ME breath medic physician
V police passenger behave drink alcohol seat firstclass

Table 1: LASSO images of the categories: each list of terms correspond to the most predictive list
of features in the classification of one category against all the others. The meaning of abbreviations
is listed in Table 2.

Abbreviation Meaning

aborted take-off ATO
aircraftnumber AN

airtrafficcontrol ATC
gearwarningsystem GWS

groundproximity GP

groundproximitywarningsystem GPWS
groundproximitywarningsystemterrain GPWS-T

knotsindicatedairspeed KIAS

medicalemergency ME

Abbreviation Meaning

minimumdescent MD
minimumequipmentlist MEL

noticestoairspace NTA
resolutionadvisory RA

trafficalertandcollisionavoidancesystem TACAS

takeoffclear TOC
takeoffwarning TOW

temporaryflightrestriction TFR

Table 2: Some abbreviations used in the ASRS data.

To this end, we have solved one LASSO problem for each category, corresponding to classifying
that category against all the others. As shown in Table 1, we did recover a very accurate and
differentiated image of the categories. For example, the categories M, T, U correspond to the ASRS
categories Weather/Turbulence, Smoke/Fire/Fumes/Odor, and Illness. These categories names are
part of the ASRS Events Categories as defined in http://asrs.arc.nasa.gov/docs/dbol/ASRS_

Database_Fields.pdf. This blind test indicates that the method reveals the correct underlying
categories using the words in the corpus alone.

The analysis reveals that there is a singular category, labelled B. This category makes up about
50% of the total number of reports. Its LASSO images points to two terms, which happen to be two
categories, A (mechanical issues) and N (airspace issues). The other terms in the list are common
to either A or N. The analysis points to the fact that category is a “catch-all” one, and that many
reports in it could be re-classified as A or N.

4.4. Sparse PCA for understanding. A first exploratory data analysis step might be to plot the
data set on a pair of axes that contain a lot of the variance, at the same time maintaining some level
of interpretability to each of the four directions.

We have proceeded with this analysis on the category data set. To this end we have applied
a sparse PCA algorithm (power iteration with hard thresholding) to the category data matrix M
(with each column an ASRS report), and obtained Fig. 1. We have not thresholded the direction q,
only the direction p, which is the vector along which we project the points, so that it has at most
10 positive and 10 negative components. The sparse PCA plot shows that the data involves four
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Figure 1: A sparse PCA plot of the category ASRS data. Here, each data point is a category, with
size of the circles consistent with the number of reports in each category. We have focussed the axes
and visually removed category B which appears to be a catch-all category. Each direction of the
axes is associated with only a few terms, allowing an easy understanding of what each means. Each
direction matches with one of the missions assigned to pilots in FAA documents (in light blue).

different themes, each corresponding to the positive and negative directions of the first two sparse
principal components.

Without any supervision, the sparse PCA algorithm found themes that are consistent with the
four missions of pilots, as is widely cited in aviation documents [22]: Aviate, Navigate, Communicate,
and Manage Systems. These four actions form the basis of flight training for pilots in priority order.
The first and foremost activity for a pilot is to aviate, i.e., ensure that the airplane stays aloft and
in control. The second priority is to ensure that the airplane is moving in the desired direction with
appropriate speed, altitude, and heading. The third priority is to communicate with other members
of the flight crew and air traffic control as appropriate. The final priority is to manage the systems
(and humans involved) on the airplane to ensure safe flight. These high-level tasks are critical for
pilots to follow because of their direct connection with overall flight safety. The algorithm discovers
these four high-level tasks as the key factors in the category data set.

We validated our discovery by applying the Latent Dirichlet Allocation algorithm to the ASRS
data and set the desired number of topics equal to 4. Because there is currently no method to
discover the ‘correct’ number of topics, we use this high-level task breakdown as for an estimate of
the number of topics described in the documents. While the results did not reveal the same words
as sparse PCA, it revealed a similar task breakdown structure.

A a second illustration we have analyzed the runway data set. Fig 2 shows that two directions re-
main associated with the themes found in the category data set, namely “aviate” (negative horizontal
direction) and “communicate”. The airports near those directions, in the bottom left quadrant of
the plot (CLE, DFW, ORD, LAX, MIA, BOS) are high-traffic ones with relatively bigger number
of reports, as is indicated by the size of the circles. This is to be expected from airports where
large amounts of communication is necessary (due to high traffic volume and complicated layouts).
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Figure 2: A sparse PCA plot of the runway ASRS data. Here, each data point is an airport, with
size of the circles consistent with the number of reports for each airport.
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Figure 3: A sparse PCA plot of the runway ASRS data, with runway features removed.
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Another cluster (on the NE quadrant) corresponds to the two remaining directions, which we la-
belled “specifics” as they related to specific runways and taxiways in airports. This other cluster of
airports seem to be affected by issues related to specific runway configuration that are local to each
airport.

In a second plot (Fig. 3) we redid the analysis after removal of all the features related to runways
and taxiways, in order to discover what is “beyond” runway and taxiway issues. We recover the
four themes of Aviate, Navigate, Communicate and Manage. As before, high-traffic airports remain
affected mostly by aviate and communicate issues. Note that the disappearance of passenger-related
issues within the Manage theme, which was defining the positive-vertical direction in Fig 1. This
is to be expected, since the data is now restricted to runway issues: what involved passenger issues
in the category data set, now becomes mainly related to the other humans in the loop, pilots
(“permission”), drivers (“vehicle”) and other actors, and their actions or challenges (“workload,
open, apologized”).

A look at the sparse PCA plots (Figs. 3 and 1) reveals a commonality: the themes of Aviate and
Communicate seem to go together in the data, and are opposed to the other sub-group of Navigate
and Manage Systems.

N Words on Axis 5 8 10 20 50
Threshold PCA 1.8 3.77 5 10.5 21.15
SPCA 8.99 10.75 10.82 17.2 24.18
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Figure 4: Explained variance.

How about thresholded PCA? Fig. 4 shows the total explained
variance by the two methods (sparse and thresholded PCA) as a
function of the number of words allowed for the axes, for the category
data set. We observe that thresholded PCA does not explain as
much variance (in fact, only half as much) as sparse PCA, with the
same budget of words allowed for each axis. This ranking is reversed
only after 80 words are allowed in the budget. The two methods do
reach the maximal variance explained by PCA as we relax our word-
budget constraint. Similar observations can be made for the runway
data set.

4.5. LASSO images of airports. Our goal here is to use the runway data to help understand
what specific runway-related issues affect each airport. To do this, we consider a specific airport and
separate the runway incursion data in two sets: one set corresponds to the ASRS reports that contain
the name of the airport under analysis; the other contains all the remaining ASRS documents in our
corpus.

Using LASSO we can classify these two data sets, and discover the few features (terms in the
dictionary) that are strong predictors of the differences. Hence we are able to single out a short list
of terms that are strongly associated with the specific airport under consideration. Repeating this
process for every airport provides a global, differentiated view of the runway incursion problem, as
reported in the corpus analyzed. We have selected for illustration purposes the top twenty airports,
as ordered by the number of reports that mention their name. The resulting short lists for a few
of the airports are shown in Table 3. As expected, some airports’ images point to the runways of
that airport, and more importantly, to a few specific taxiways. The image of other airports, such as
YYXZ (Toronto), points to other problems (lines, in the case of YYZ), and taxiways issues are less
prevalent.

The LASSO analysis mostly points to specific runways for each airport. In order to go beyond this
analysis, we focus on a single airport (say DFW). In the left panel of Fig 5, we propose a two-stage
LASSO analysis allowing to discover a tree structure of terms. The inner circle corresponds to the
LASSO image of DFW. Then, for each term in that image, we re-ran a LASSO analysis, comparing
all the documents in the DFW-related corpus containing the term against all the other documents
in the DFW-related corpus.

The tree analysis highlights which issues are pertaining to specific runways, and where attention
could be focussed. In the airport diagram 6, we have highlighted some locations discussed next.
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airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE Rwy23L Rwy24L Rwy24C Rwy23R Rwy5R Line Rwy6R Rwy5L
DFW Rwy35C Rwy35L Rwy18L Rwy17R Rwy18R Rwy17C cross Tower
ORD Rwy22R Rwy27R Rwy32R Rwy27L Rwy32L Rwy22L Rwy9L Rwy4L
MIA Rwy9L TxwyQ Rwy8R Line Rwy9R PilotInCommand TxwyM Takeoff
BOS Rwy4L Rwy33L Rwy22R Rwy4R Rwy22L TxwyK Frequency Captain
LAX Rwy25R Rwy25L Rwy24L Rwy24R Speed cross Line Tower
STL Rwy12L Rwy12R Rwy30L Rwy30R Line cross short TxwyP
PHL Rwy27R Rwy9L Rwy27L TxwyE amass TxwyK AirCarrier TxwyY

MDW Rwy31C Rwy31R Rwy22L TxwyP Rwy4R midway Rwy22R TxwyY
DCA TxwyJ Airplane turn Captain Line Traffic Landing short
SFO Rwy28L Rwy28R Rwy1L Rwy1R Rwy10R Rwy10L b747 Captain
ZZZ hangar radio Rwy36R gate Aircraft Line Ground Tower
ERW Rwy22R Rwy4L Rwy22L TxwyP TxwyZ Rwy4R papa TxwyPB
ATL Rwy26L Rwy26R Rwy27R Rwy9L Rwy8R atlanta dixie cross
LGA TxwyB4 ILS Line notes TxwyP hold vehicle Taxiway
LAS Rwy25R Rwy7L Rwy19L Rwy1R Rwy1L Rwy25L TxwyA7 Rwy19R
PIT Rwy28C Rwy10C Rwy28L TxwyN1 TxwyE TxwyW Rwy28R TxwyV
HOU Rwy12R Rwy12L citation Takeoff Heading Rwy30L Line Tower
BWI TxwyP Rwy15R Rwy33L turn TxwyP1 Intersection TxwyE Taxiway

CYYZ TxwyQ TxwyH Rwy33R Line YYZ Rwy24R short toronto
SEA Rwy34R Rwy16L Rwy34L Rwy16R AirCarrier FirstOfficer TxwyJ SMA
JFK Rwy31L Rwy13R Rwy22R Rwy13L vehicle Rwy4L amass Rwy31R

Table 3: The terms recovered with LASSO image analysis of a few airports in the “runway” ASRS
data set.
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Figure 5: A tree LASSO analysis of the DFW (left panel) and CYYZ (right panel) airports,
showing the LASSO image (inner circle) and for each term in that image, a further image.

Figure 6: Diagram of DFW.
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For example, as highlighted in red in the airport diagram 6, the major runway 35L crosses the
taxiway EL, and the term in the tree image “simultaneously” evokes a risk of collision; similar
comments can be made for the runway 36R and its siblings taxiway WL and F. At those particular
intersections, the issues seem to be about obtaining “clearance” to “turn” from the tower, which
might be due to the absence of line of sight from the tower (here we are guessing that the presence
of the west cargo area could be a line-of-sight hindrance). The tree image is consistent with the
location of DFW in the sparse PCA plot (Fig. 3), close to the themes of Aviate and Communicate.

Similar comments can be made about the tree image of the CYYZ airport, as shown in the right
panel of Fig. 5. Note here that there is no mention of “ice” or other weather-related issues, which
indicates that the measures taken to address them seem to work properly there.

5. Conclusions and future work

We have discussed several methods that explicitly encode sparsity in the model design. This en-
coding leads to a higher degree of interpretability of the model without penalizing, or even improving,
the computational complexity of the algorithm. We demonstrated these techniques on real-world
data from the Aviation Safety Reporting System and showed that they can reveal contributing fac-
tors to aviation safety incidents such as runway incursions. We also show that the sparse PCA and
LASSO algorithms can discover the underlying task hierarchy that pilots perform.

Sparse learning problems are formulated as optimization problem with explicit encoding of spar-
sity requirements, either in the form of constraint or penalty. As such, the results have an explicit
tradeoff between accuracy and sparsity based on the value of the sparsity-controlling parameter that
is chosen. In comparison to thresholded PCA or similar methods, which provide “after-the-fact”
sparsity, sparse learning methods offer a principled way to explicitly encode the tradeoff in the
optimization problem. Thus, the enhanced interpretability of the results is a direct result of the
optimization process.

In the safety monitoring of most critical, large-scale complex systems, from flight safety to nuclear
plants, experts have relied heavily on physical sensors and indicators (temperature, pressure, etc).
In the future we expect that human-generated text reporting, assisted by automated text under-
standing tools, will play an ever increasing role in the management of critical business, industry or
government operations. Sparse modeling, by offering a great trade-off between user interpretability
and computational scalability, appears to be well equipped to address some of the corresponding
challenges.
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ABSTRACT. We describe the development of a system for an automated, iterative, real‐time classification of transient events 
discovered in synoptic sky surveys.   The system under development incorporates a number of Machine Learning techniques, mostly 

using Bayesian approaches, due to the sparse nature, heterogeneity, and variable incompleteness of the available data.  The 
classifications are improved iteratively as the new measurements are obtained.  One novel feature is the development of an automated 

follow‐up recommendation engine, that suggest those measurements that would be the most advantageous in terms of resolving 
classification ambiguities and/or characterization of the astrophysically most interesting objects, given a set of available follow‐up 
assets and their cost functions.  This illustrates the symbiotic relationship of astronomy and applied computer science through the 

emerging discipline of AstroInformatics. 
 
 
 
 
 

1. INTRODUCTION 

A  new  generation  of  scientific  measurement  systems  (instruments  or  sensor  networks)  is  now 
generating exponentially growing data streams, now moving  into the Petascale regime, that can 
enable  significant  new  discoveries.    Often,  these  consist  of  phenomena  where  a  rapid  change 
occurs, that have to be identified, characterized, and possibly followed by new measurements in 
the real time. The requirement to perform the analysis rapidly and objectively, coupled with huge 
data rates, implies a need for automated classification and decision making. 

This  entails  some  special  challenges  beyond  traditional  automated  classification  approaches, 
which are usually done  in  some  feature vector  space, with an abundance of  self‐contained data 
derived  from homogeneous measurements. Here,  the  input  information  is  generally  sparse  and 
heterogeneous: there are only a few initial measurements, and the types differ from case to case, 
and  the  values  have  differing  variances;  the  contextual  information  is  often  essential,  and  yet 
difficult  to  capture  and  incorporate  in  the  classification  process;  many  sources  of  noise, 
instrumental  glitches,  etc.,  can  masquerade  as  transient  events  in  the  data  stream;  new, 
heterogeneous data arrive, and the classification must be iterated dynamically.  Requiring a high 
completeness (don’t miss any interesting events) and low contamination (a few false alarms), and 
the need  to  complete  the  classification process  and make an optimal decision about  expending 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classification of the transient sources is the key to their interpretation and scientific uses, and in 
many  cases  scientific  returns  come  from  the  follow‐up  observations  that  depend  on  scarce  or 
costly resources (e.g., observing time at larger telescopes).  Since the transients change rapidly, a 
rapid  (as  close  to  the  real  time  as  possible)  classification,  prioritization,  and  follow‐up  are 
essential,  the  time scale depending on  the nature of  the  source, which  is  initially unknown.    In 
some  cases  the  initial  classification  may  remove  the  rapid‐response  requirement,  but  even  an 
archival (i.e., not time‐critical) classification of transients poses some interesting challenges. 

A number of synoptic astronomical surveys are already operating [see, e.g., 1,2,3,7,17,25,26,43], and 
much more ambitious enterprises [4,5] will move us into the Petascale regime, with hundreds of 
thousands of transient events per night, implying a need for an automated, robust processing and 
follow‐up, sometimes using robotic telescopes. Thus, a new generation of scientific measurement 
systems  is  emerging  in  astronomy,  and  many  other  fields:  connected  sensor  networks  which 
gather  and  analyze  data  automatically,  and  respond  to  outcome  of  these measurements  in  the 
real‐time, often redirecting the measurement process itself, and without human intervention. 

We are developing a novel set of techniques and methodology for an automated, real‐time data 
analysis  and  discovery,  operating  on  massive  and  heterogeneous  data  streams  from  robotic 
telescope sensor networks, fully integrated with Virtual Observatory (VO) [39,40,42].  The system 
incorporates machine learning elements for an iterative, dynamical classification of astronomical 
transient  events,  based  on  the  initial  detection measurements,  archival  information,  and newly 
obtained  follow‐up  measurements  from  robotic  telescopes.    A  key  novel  feature,  still  under 
development, will be the ability to define and request particular types of follow‐up observations in 
an  automated  fashion.    Our  goal  is  to  increase  the  efficiency  and  productivity  of  a  number  of 
synoptic sky survey data streams, and enable new astrophysical discoveries. 

 
2. THE CHALLENGE OF AN AUTOMATED, REAL‐TIME EVENT CLASSIFICATION 

A  full  scientific  exploitation  and  understanding  of  astrophysical  events  requires  a  rapid, multi‐
wavelength  follow‐up. The essential enabling technologies  that need to be automated are robust 
classification and decision making for the optimal use of follow‐up facilities.  They are the key for 
exploiting the full scientific potential of the ongoing and forthcoming synoptic sky surveys. 

The  first  challenge  is  to  associate  classification  probabilities  that  any  given  event  belongs  to  a 
variety  of  known  classes  of  variable  astrophysical  objects  and  to  update  such  classifications  as 
more data come  in, until a  scientifically  justified convergence  is  reached  [24].   Perhaps an even 
more  interesting  possibility  is  that  a  given  transient  represents  a  previously  unknown  class  of 
objects or phenomena,  that may  register as having a  low probability of belonging  to any of  the 
known data models.  The process has to be as automated as possible, robust, and reliable; it has to 
operate from sparse and heterogeneous data; it has to maintain a high completeness (not miss any 
interesting events) yet a  low false alarm rate; and it has to  learn from the past experience for an 
ever  improving, evolving performance. The next  step  is development and  implementation of an 
automated follow‐up event prioritization and decision making mechanism, which would actively 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determine and request follow‐up observations on demand, driven by the event data analysis.  This 
would  include  an  automated  identification  of  the most  discriminating  potential measurements 
from the available  follow‐up assets,  taking  into account their relative cost  functions,  in order to 
optimize both classification discrimination, and the potential scientific returns. 

An illustration of an existing, working system for a real‐time classification of astrophysical event 
candidates  in  a  real  synoptic  sky  survey  context  is  shown  in Fig.  2.   This  is  an Artificial Neural 
Network  (ANN)  based  classifier  [18]  that  separates  real  transient  sources  from  a  variety  of 
spurious  candidates  caused  by  various  data  artifacts  (electronic  glitches,  saturation,  cross‐talk, 
reflections, etc.), that operated as a part of the Palomar‐Quest (PQ) survey’s [7,26] real time data 
reduction pipeline.  While this is a very specialized instance of an automated event classifier for a 
particular sky survey experiment, it illustrates the plausibility and the potential of this concept.  A 
similar  approach,  using  Support  Vector  Machine  (SVM)  techniques  [11],  has  been  deployed 
successfully by the Lawrence Berkeley National Laboratory Nearby Supernova Factory [10,27].  Use 
of  image morphology  for  astronomical  image  classification  via machine  learning  has  long  been 
used successfully, e.g., [12,19,20].  Here we deploy it in a real‐time data reduction pipeline. 

 

Figure  2. Automated  classification of  candidate  events,  separating  real  astronomical 
sources  from  a  variety  of  spurious  candidates  (instrument  artifacts)  is  operational 
within the Palomar‐Quest) survey’s real time data pipeline [26,31].  Image cutouts on 
the  top  show  a  variety  of  instrumental  and  data  artifacts which  appear  as  spurious 
transients,  since  they  are  not  present  in  the  baseline  comparison  images.    The  two 
panels on the bottom show a couple of morphological parameter space projections, in 
which artifacts () separate well from genuine objects ().  A multi‐layer perceptron 
(MLP) ANN is  trained to separate  them, using 4  image parameters, with an average 
accuracy of ~ 95%.  From Donalek et al., [31] and in prep. 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However, the problem here is more complex and challenging: it is an astrophysical classification 
of  genuine  transient  events,  all  of which would  look  the  same  in  the  images  (star‐like),  so  that 
information other than image morphology must be used.  One problem is that in general, not all 
parameters  would  be measured  for  all  events,  e.g.,  some may  be missing  a  measurement  in  a 
particular filter, due to a detector problem; some may be in the area on the sky where there are no 
useful radio observations; etc.   Broader approaches to automated classification of transients and 
variables include, e.g., [28,30,31,44,45,46,47,48]. 

A  more  insidious  problem  is  that  many  observables  would  be  given  as  upper  or  lower  limits, 
rather  than  as  well  defined  measurements;  for  example,  “the  increase  in  brightness  is  >  3.6 
magnitudes”, or “the radio to optical flux ratio of this source is < 0.01”.  One approach is to treat 
them as missing data, implying a loss of the potentially useful information.  A better approach is 
to  reason about  “censored” observations,  that can be naturally  incorporated  through a Bayesian 
model by choosing a likelihood function that rules out values violating the bounds.  

3. A BAYESIAN APPROACH TO EVENT CLASSIFICATION 
 
We identify two core problems: classification (physical interpretation of an event), learning from 
compiled knowledge obtained by linking observations to phenomena, and recommendation (what 
are the optimal follow‐up observations for this particular event).  

The  main  astronomical  inputs  are  in  the  form  of  observational  and  archival  parameters  for 
individual objects, which  can be put  into  various,  often  independent  subsets. Examples  include 
fluxes measured at different wavelengths, associated colors or hardness ratios, proximity values, 
shape measurements, magnitude characterizations at different timescales, etc. The heterogeneity 
and sparsity of data  makes the use of Bayesian methods for classification a natural choice.  

Distributions  of  such  parameters  need  to  be  estimated  for  each  type  of  variable  astrophysical 
phenomena that we want to classify.  Then an estimated probability of a new event belonging to 
any given class can be evaluated from all of such pieces of information available, as follows. Let us 
denote  the  feature  vector  of  event  parameters  as  x,  and  the  object  class  that  gave  rise  to  this 
vector as y, 1 ≤ y ≤ K.  While certain fields within x will generally be known, such as sky position 
and brightness  in selected  filters, many other parameters will be known only  sporadically,   e.g., 
brightness change over various time baselines.  In a Bayesian approach, x and y are related via 

 

Because we are only interested in the above quantity as a function of k, we can drop factors that 
only depend on x.  We assume that, conditional on the class y, the feature vector decomposes into 
B roughly independent blocks, generically labeled xb.  These blocks may be singleton variables, or 
contain multiple variables, e.g., sets of filters that are highly correlated.  The resulting algorithm is 
called naive Bayes because of its assumption that we may decouple the inputs in this way [8,9]. 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This decoupling is advantageous to us in two ways.  First, it allows us to circumvent the “curse of 
dimensionality,”  because  we  will  eventually  have  to  learn  the  conditional  distributions  P(xb  | 
y = k) for each k.  As more components are added to xb, more examples will be needed to learn the 
corresponding distribution.   The decomposition keeps  the dimensionality of  each  feature block 
manageable.    Second,  such  decomposition  allows  us  to  cope  easily  with  ignorance  of  missing 
variables.  We simply drop the corresponding factors from the product above.   

 

Figure  3.    A  conceptual  outline  of  the  system.    The  initial  input  consists  of  the 
generally  sparse  data  describing  transient  events  discovered  in  sky  surveys, 
supplemented  by  archival  heterogeneous  measurements  from  external,  multi‐
wavelength archives corresponding to this spatial location, if available (e.g. radio flux 
and distance  to nearest galaxy).   Data are collected  in evolving electronic portfolios 
containing all  currently  available  information  for  a  given event.   These data  are  fed 
into the Event Classification Engine; another input into the classification process is an 
evolving  library  of  priors  giving  probabilities  for  observing  these  particular 
parameters  if  the event was belonging  to a class X.   The output of  the classification 
engine  is  an  evolving  set  of  probabilities  of  the  given  event  belonging  to  various 
classes  of  interest,  which  are  updated  as  more  data  come  in,  and  classifications 
change.   This  forms an input  into the Follow‐up Prioritization and Decision Engine, 
which  would  prioritize  the  most  valuable  follow‐up  measurements  given  a  set  of 
available follow‐up assets (e.g., time on large telescopes, etc.), and their relative cost 
functions.  What is being optimized is: (a) the new measurements which would have 
a  maximum  discrimination  for  ambiguous  classifications,  and/or  (b)  the  follow‐up 
measurements which would  likely  yield most  interesting  science,  given  the  current 
best‐guess event classification?  New measurements from such follow‐up observations 
will  be  fed  back  into  the  event  portfolios,  leading  to  dynamically  updated/iterated 
classifications, repeating the cycle. 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As  a  simple  demonstration  of  the  technique,  we  have  been  experimenting  with  a  prototype 
Bayesian Network (BN) model [32,33].  We use a small but homogeneous data set involving colors 
of  ~  1,000  reliably  classified  transients  detected  in  the CRTS  survey  [17,25],  as measured  at  the 
Palomar  1.5‐m  telescope.    We  have  used  multinomial  nodes  (discrete  bins)  for  3  colors,  with 
provision for missing values, and a multinomial node for Galactic latitude which is always present 
and is a probabilistic indicator of whether an object is Galactic or not.  The current priors used are 
for six distinct classes, cataclysmic variables (CVs; these are binary star system in which a compact 
stellar remnant such as a white dwarf or a neutron star accretes material from its companion in a 
fairly stochastic  fashion),  supernovae (SN;  these are exploding stars, and while  there are several 
distinct types, the overall behavior is very similar), blazars (beamed active galactic nuclei, or AGN, 
where we  are  looking  into  their  relativistic  jet),  other  variable AGN, UV Ceti  stars  (dwarf  stars 
undergoing gigantic equivalent of the Solar flares), and all else bundled into a sixth pseudo‐class, 
called  Rest.  Testing  is  done with  a  10‐fold  cross  validation,  in  order  to  assess  how  good  it will 
perform on an independent data set. 

Using a sample of 316 SNe, 277 CVs, and 104 blazars, and a single epoch measurement of colors, in 
the relative classification of CVs vs. SNe, we obtain a completeness of ~ 80% and a contamination 
of ~  19%, which reflects a qualitative color difference between these two types of  transients.    In 
the  relative  classification  of  CVs  vs.  blazars,  we  obtain  a  completeness  of  ~  70  –  90%  and  a 
contamination  of  ~  10  –  24%  (the  ranges  corresponding  to  different  BN  experiments),  which 
reflects  the  fact  that  colors  of  these  two  types  of  transients  tend  to  be  similar,  and  that  some 
additional  discriminative  parameter  is  needed.    Eventually  we  will  use  a  BN  with  an  order  of 
magnitude more classes, including divisions of different types of SNe, AGN, and a large variety of 
variable star  types (there are  literally hundreds of varieties of variable stars, but only a  few tens 
may  be  relevant  for  the  present  transients  search),  with  more  measured  parameters,  and 
additional  BN  layers.  Measurements  from  multiple  epochs  should  improve  considerably  the 
classifications.   The end result will be the posteriors  for  the "Class" node from the marginalized 
probabilities of all available inputs for a given object. 

In this  framework the priors come from a set of observed parameters  like distribution of colors, 
distribution of objects as a function of Galactic latitude, frequencies of different types of objects 
etc.  The posteriors we are interested in are determining the type of an object based on, say, its (r‐
i) color, Galactic latitude and proximity to another object etc. 

Sparse  and/or  irregular  light  curves  (LC)  from any given object  class  can have  sufficient  salient 
structure  that  can  be  exploited  by  automated  classification  algorithms. We  have  experimented 
with Gaussian Process Regression  [34], and  found  it  to be useful  for parameter estimation  for a 
certain types of LCs that can be represented by a standard data model (e.g., Supernovae). 

We  are  now  experimenting with  a  different  approach.    By pooling many  instances  of  an  object 
class’s LCs we can effectively represent and encode their characteristic structure probabilistically, 
and  construct  an  empirical  probability  distribution  function  (PDF)  that  can  be  used  for 
subsequent classification of new event observations.  This comparison can be made incrementally 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over  time  as  new  observations  “trickle  in”,  with  the  final  classification  scores  growing  more 
confident with each additional set of observations that is accumulated. 

Since  the  telescope’s  (flux‐only)  observations  come  primarily  in  the  form  of  single  magnitude 
changes over time increments – e.g., an observed (Δt, Δm) pair – we focus on modeling the joint 
distribution of all such pairs of data points for a given LC (Note: we consider all possible causal 
increments available, corresponding to Δt > 0). By virtue of being increments, these data and their 
empirical PDF will be invariant to absolute magnitude (the distance to the event generally being 
unknown) and time (the onset of the event not being known) shifts. Additionally, these densities 
allow flux upper  limits  to be encoded as well – e.g., under poor seeing conditions, we may only 
obtain bounded observations such as m > 18.  We currently use smoothed 2D histograms to model 
the  distribution  of  (Δt,  Δm)  pairs.  This  is  a  computationally  simple,  yet  effective  way  to 
implement a non‐parametric density model that is flexible enough for all object classes under our 
consideration.  Figure  4  shows  the  joint  2D histograms  for  3  classes  of  objects  and how  a  given 
probe LC measurements fit these 3 class‐specific histograms.  

 

Figure 4.   Examples of (Δm, Δt) pairs PDFs for three types of astrophysical transients: 
(a) SN Ia, (b) SN IIP and (c) RR Lyrae, using bins of width Δt = 1 day, and Δm = 0.01. 
The histograms were smoothed with a 3‐tap triangular Δt kernel = [0.25 0.5 0.25] and 
a Gaussian Δm kernel of FWHM = 0.05 mag. The set of diamonds superimposed on 
each panel are from a single test case of a SN Ia’s LC.  Note that PDFs for the two SN 
types  form  a  better  “fit”  to  the  observed  data  (diamonds)  than  the  RR  Lyrae’s  PDF 
(and SN Ia  is a better  fit  than SN II P). Various metrics on probability distributions 
can be used to automatically quantify the degree of fitness. 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In  our  preliminary  experimental  evaluations  with  a  small  number  of  object  classes  (single 
outburst like SN, periodic variable stars like RR Lyrae and Miras, as well as stochastic like blazars 
and CVs) we have been able to show that our gap event density models are potentially a powerful 
classification method from sparse/irregular time series like typical observational LC data. 
 

4. INCORPORATING THE CONTEXTUAL INFORMATION 

Contextual  information  can  be  highly  relevant  to  resolving  competing  interpretations:  for 
example, the light curve and observed properties of a transient might be consistent with both it 
being a cataclysmic variable star, a blazar, or a supernova.  If it is subsequently known that there 
is a galaxy in close proximity, the supernova interpretation becomes much more plausible.  Such 
information,  however,  can  be  characterized  by  high  uncertainty  and  absence,  and  by  a  rich 
structure – if there were two candidate host galaxies, their morphologies, distance, etc., become 
important,  e.g.,  is  this  type of  supernova more  consistent with being  in  the  extended halo  of  a 
large spiral galaxy or  in close proximity to a faint dwarf galaxy?   The ability to  incorporate such 
contextual information in a quantifiable fashion is highly desirable.  In a separate project we are 
investigating  the use of crowdsourcing as a means of harvesting  the human pattern recognition 
skills,  especially  in  the  context  of  capturing  the  relevant  contextual  information,  and  turning 
them into machine‐processible algorithms. 

A  methodology  employing  contextual  knowledge  forms  a  natural  extension  to  the  logistic 
regression and classification methods mentioned above. Ideally such knowledge can be expressed 
in a manipulable fashion within a sound logical model, for example, it should be possible to state 
the  rule  that  "a  supernova has  a  stellar  progenitor  and will  be  substantially  brighter  than  it  by 
several order of magnitude" with some metric of certainty and infer the probabilities of observed 
data matching it. Markov Logic Networks  (MLNs, [36]) are such a probabilistic framework using 
declarative  statements  (in  the  form  of  logical  formulae)  as  atoms  associated  with  real‐valued 
weights  expressing  their  strength.  The  higher  the  weight,  the  greater  the  difference  in  log 
probability between a world that satisfies the formula and one that does not, all other thing being 
equal. In this way, it becomes possible to specify 'soft' rules that are likely to hold in the domain, 
but subject to exceptions ‐ contextual relationships that are likely to hold such as supernovae may 
be  associated with a nearby galaxy or objects closer to the Galactic plane may be stars. 

A MLN defines a probability distribution over possible worlds with weights  that can be  learned 
generatively or discriminatively:  it  is a model for the conditional distribution of the set of query 
atoms Y  given  the  set  of  evidence  atoms X.   Inferencing  consists  of  finding  the most  probable 
state of the world given some evidence or computing the probability that a formula holds given a 
MLN  and  set  of  constants,  and  possibly  other  formulae  as  evidence.  Thus  the  likelihood  of  a 
transient being a supernova, depending on whether there was a nearby galaxy, can be determined. 

The structure of a MLN –  the set of formulae with their respective weights –  is also not static but 
can  be  revised  or  extended  with  new  formulae  either  learned  from  data  or  provided  by  third 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parties.  In  this way,  new  information  can  easily  be  incorporated.  Continuous  quantities, which 
form much of astronomical measurements, can also be easily handled with a hybrid MLN [37]. 

5. COMBINING AND UPDATING THE CLASSIFIERS 

An essential  task  is  to derive  an optimal  event  classification,  given  inputs  from a diverse  set  of 
classifiers such as those described above.  This will be accomplished by a fusion module, currently 
under development, illustrated schematically in Fig. 5. 

 

Figure 5. A schematic illustration of the event classifier combination challenge, to be 
implemented by the classification fusion module. Different aspects of available event 
information trigger different classifiers. In some cases more than one classifier can be 
used. How to combine the different outcomes is a subject of the ongoing work. 

A MLN approach could be used  to  represent  a  set of different  classifiers  and  the  inferred most 
probable  state  of  the  world  from  the  MLN  would  then  give  the  optimal  classification.  For 
example,  a  MLN  could  fuse  the  beliefs  of  different  ML‐based  transient  classifiers  –  4  give  a 
supernova and 3 give a cataclysmic variable, say – to give a definitive answer. 

We  are  experimenting  with  the  so‐called  “sleeping  expert”  [35]  method.    A  set  of  different 
classifiers each generally works best with certain kinds of inputs.  Activating these optionally only 
when  those  inputs  are  present  provides  an  optimal  solution  to  the  fusion  of  these  classifiers. 
Sleeping expert can be seen as a generalization of the IF‐THEN rule:  IF this condition is satisfied 
THEN activate this expert, e.g., a specialist that makes a prediction only when the instance to be 
predicted  falls  within  their  area  of  expertise.    For  example,  some  classifiers  work  better  when 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certain  inputs  are  present,  and  some  work  only  when  certain  inputs  are  present.    It  has  been 
shown that this is a powerful way to decompose a complex classification problem.   External or a 
priori knowledge can be used to awake or put experts to sleep and to modify online the weights 
associated to a given classifier; this contextual information may be also expressed in text. 

A crucial feature of the system should be the ability to update and revise the prior distributions 
on  the  basis  of  the  actual  performance,  as  we  accumulate  the  true  physical  classifications  of 
events, e.g., on the basis of  follow‐up spectroscopy.   Learning,  in  the Bayesian view,  is precisely 
the action of determining the probability models above – once determined, the overall model (1) 
can be used to answer many relevant questions about the events.  Analytically, we formulate this 
as determining unknown distributional parameters θ in parameterized versions of the conditional 
distributions above, P(x | y = k; θ).  (Of course, the parameters depend on the object class k, but 
we suppress this below.)  In a histogram representation, θ is just the probabilities associated with 
each  bin,  which  may  be  determined  by  computing  the  histogram  itself.    In  a  Gaussian 
representation, θ would be the mean vector μ and covariance matrix Σ of a multivariate Gaussian 
distribution, and the parameter estimates are just the corresponding mean and covariance of the 
object‐k data.  When enough data is available we can adopt a semi‐parametric representation in 
which the distribution is a linear superposition of such Gaussian distributions, 

 

This  generalizes  the  Gaussian  representation,  since  by  increasing  M,  more  distributional 
characteristics  may  be  accounted  for.    The  corresponding  parameters  may  be  chosen  by  the 
Expectation‐Maximization algorithm [13].  Alternatively, kernel density estimation could be used, 
with density values compiled into a lookup table [14,21]. 

We  can  identify  three  possible  sources  of  information  that  can  be  used  to  find  the  unknown 
parameters.    They  can  be  from  the  a  priori  knowledge,  e.g.  from  physics  or  monotonicity 
considerations,  or  from  examples  that  are  labeled  by  experts,  or  from  the  feedback  from  the 
downstream  observatories  once  labels  are  determined.    The  first  case  would  serve  to  give  an 
analytical  form  for  the  distribution,  but  the  second  two  amount  to  the  provision  of  labeled 
examples, (x, y), which can be used to select a set of k probability distributions. 

6. AUTOMATED DECISION MAKING FOR AN OPTIMIZED FOLLOW‐UP 

We  typically  have  sparse  observations  of  a  given  object  of  interest,  leading  to  classification 
ambiguities among several possible object types (e.g., when an event is roughly equally  likely to 
belong to two or more possible object classes, or when the  initial data are simply  inadequate to 
generate  a  meaningful  classification  at  all).    Generally  speaking,  some  of  them  would  be  of  a 
greater scientific interest than others, and thus their follow‐up observations would have a higher 
scientific  return.    Observational  resources  are  scarce,  and  always  have  some  cost  function 
associated with them, so a key challenge is to determine the follow‐up observations that are most 
useful for improving classification accuracy, and detect objects of scientific interest. 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There are  two parts  to  this challenge.   First, what  type of a  follow‐up measurement – given  the 
available set of resources (e.g., only some telescopes/instruments may be available) – would yield 
the maximum information gain in a particular situation?  And second, if the resources are finite 
and  have  a  cost  function  associated  with  them  (e.g.,  you  can  use  only  so  many  hours  of  the 
telescope time), when is the potential for an interesting discovery worth spending the resources? 

We  take  an  information‐theoretic  approach  to  this  problem  [15]  that  uses  Shannon  entropy  to 
measure ambiguity in the current classification.  We can compute the entropy drop offered by the 
available follow‐up measurements – for example, the system may decide that obtaining an optical 
light  curve with  a  particular  temporal  cadence would  discriminate  between  a  Supernova  and  a 
flaring  blazar,  or  that  a  particular  color  measurement  would  discriminate  between,  say,  a 
cataclysmic  variable  eruption  and  a  gravitational  microlensing  event.    A  suitable  prioritized 
request  for  the  best  follow‐up  observations  would  be  sent  to  the  appropriate  robotic  (or  even 
human‐operated) telescopes. 

Note  that  the  system  is  suggesting  follow‐up  observations  that  may  involve  imperfect 
observations  of  a  block  of  individual  variables.    This  is  a more  powerful  capability  than  rank‐
ordering individual variables regarding their helpfulness.  Furthermore, we will ascertain that the 
framework  accounts  for  the  varying  degrees  of  accuracy  of  different  observations.    The  key  to 
quantifying the classification uncertainty  is the conditional entropy of the posterior distribution 
for  y,  given  all  the  available  data.    Let H[p]  denote  the  Shannon  entropy  of  the  distribution p, 
which is always a distribution over object‐class y.  (The classification is discrete, so we only need 
to compute entropies of discrete distributions.)  Then, when we take an additional observation x+, 
uncertainty drops from H[p(y | x0)] to H[p(y | x0, x+)].   We want to choose the source x+ so that 
the expected final entropy is lowest.   To choose the best refinement in advance, we look for the 
largest expected drop in entropy. 

Because  all  observing  scenarios  start  out  at  the  same  entropy H[p(y  | x0)], maximizing  entropy 
drop is the same as minimizing expected final entropy, E[H[p(y | x0, x+)]].  The expectation is with 
respect to the distribution of the new variable x+, whose value is not yet known.  Therefore, this 
entropy  is a  function of the distribution of x+, but not the value of the random variable x+.   The 
distribution captures any imprecision and noise in the new observation.  In our notation, the best 
follow‐on observation thus minimizes, over available variables x+, 

 

This is equivalent to maximizing the conditional mutual information of x+ about y, given x0; that 
is, I(y; x+ | x0) [22].  The density above is known within the context of our assumed statistical model.  
Thus,  we  can  compute,  within  the  context  of  the  previously  learned  statistical  model,  a  rank‐
ordered list of follow‐on observations, which will lead to the most efficient use of resources. 

Alternatively, instead of maximizing the classification accuracy, we consider a scenario where the 
algorithm  chooses  a  set  of  events  for  follow‐up  and  subsequent  display  to  an  astronomer.  The 
astronomer  then  provides  information  on  how  interesting  the  observation  is.  The  goal  of  the 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algorithm  is  to  learn  to  choose  follow‐up  observations  which  are  considered most  interesting.  
This problem can be naturally modeled using Multi‐Armed Bandit algorithms (MABs) [38].   The 
MAB  problem  can  abstractly  be  described  as  a  slot  machine  with  k  levers,  each  of  which  has 
different expected  returns  (unknown  to  the decision maker).   The aim  is  to determine  the best 
strategy to maximize returns.   There are two extreme approaches: (1) exploitation ‐ keep pulling 
the  lever which, as per your current knowledge, returns most, and (2) exploration – experiment 
with different  levers  in  order  to  gather  information  about  the  expected  returns  associated with 
each lever.  They key challenge is to trade off exploration and exploitation. There are algorithms 
[47] guaranteed to determine the best choice as the number of available tries goes to infinity. 

In this analogy different telescopes and instruments are the levers that can be pulled. Their ability 
to discriminate between object classes forms the returns. This works best when the priors are well 
assembled and a lot is already known about the type of object one is dealing with.  But due to the 
heterogeneity  of  objects,  and  increasing  depth  leading  to  transients  being  detected  at  fainter 
levels,  and more  examples  of  relatively  rarer  subclasses  coming  to  light,  treating  the  follow‐up 
telescopes  as  a MAB will  provide  a  useful way  to  rapidly  improve  the  classification  and  gather 
more diverse priors.  An analogy could be that of a genetic algorithm which does not get stuck in 
a local maxima because of its ability to sample a larger part of the parameter space. 

This work is supported in part by the NASA grant 08‐AISR08‐0085, the NSF grant AST‐0909182, 
and the U.S. Virtual Astronomical Observatory; NS and YC were supported in part by the Caltech 
SURF program.  We thank numerous collaborators and colleagues for stimulating 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ANOMALY CONSTRUCTION IN CLIMATE DATA: ISSUES AND
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Abstract. Earth science data consists of a strong seasonality component as indicated by the
cycles of repeated patterns in climate variables such as air pressure, temperature and precipitation.

The seasonality forms the strongest signals in this data and in order to find other patterns, the

seasonality is removed by subtracting the monthly mean values of the raw data for each month.
However since the raw data like air temperature, pressure, etc. are constantly being generated

with the help of satellite observations, the climate scientists usually use a moving reference base

interval of some years of raw data to calculate the mean in order to generate the anomaly time
series and study the changes with respect to that.

In this paper, we evaluate different measures for base computation and show how an arbitrary
choice of base can skew the results and lead to a favorable outcome which might not necessarily be

true. We perform a detailed study of different base selection criterion and base periods to highlight

that the outcome of data mining can be sensitive to choice of the base. We present a case study
of the dipole in the Sahel region to highlight the bias creeping into the results due to the choice of

the base. Finally, we propose a generalized model for base selection which uses Monte-Carlo based

methods to minimize the expected variance in the anomaly time-series of the underlying datasets.
Our research can be instructive for climate scientists and researchers in temporal domain to enable

them to choose the right base which would not bias the outcome of the results.

1. Introduction

An important component of Earth Science data is the seasonal variation in the time series. Seasons
occur due to the revolution of the Earth around the Sun and the tilt of the Earth’s axis. The change
in seasons brings about annual changes in the climate of the Earth such as increase in temperature
in the summer season and decrease in temperature in the winter season. The seasonality component
is the most dominant component in the Earth science data. For example, consider the time series
of monthly values of air temperature at Minneapolis from 1948-1968 as shown in Figure 1. From
the figure, we see that there is a very strong annual cycle in the data. The peaks and valleys in the
data correspond to the summer and winter season respectively and occur every year. The seasonal
patterns even though important are generally known and hence uninteresting to study. Mostly,
scientists are interested in finding non-seasonal patterns and long term variations in the data. As a
result of the effect of seasonal patterns, other signals in the data like long term decadal oscillations,
trends, etc. are suppressed and hence it is necessary to remove them. Climate scientists usually aim
at studying deviations beyond the normal in the data.

In order to remove seasonality from the raw data, climate scientists generally remove the monthly
mean value from the raw data. For example, although more than 100 years of data are available
for the temperature anomaly time series at the National Climatic Data Center, only the 100 years
1901-2000 are used to calculate the annual cycle [3]. Often, climate scientists only take 30 years
as a reference interval and construct anomalies with respect to that interval. There are several
important results and implications derived from the anomalies constructed using a short reference
base. In general, climate data has complex structures due to spatial and temporal autocorrelation.

*Department of Computer Science, University of Minnesota, kawale, arkumar, steinbac, kumar@cs.umn.edu
**Department of Soil, Water and Climate, liess@umn.edu *** School of Statistics. University of Minnesota
chatterjee@stat.umn.edu.
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Figure 1. The figure shows the monthly mean air temperature at Minneapolis for
a 20 year period. From the figure we can see that there is a very high annual cycle
and the temperatures go up and down with the change of seasons.

The choice of the base significantly impacts the patterns that can be discovered from it and some
really important climate phenomenons are computed using a fixed base. For example, teleconnections
or long distance connections between two regions on the globe are represented by time series called
climate indices. Climate indices are time series that summarize the behavior of the selected regions
and are used to characterize the factors impacting the global climate. These climate indices are
computed by the Climate Prediction Center [1] using a moving 30-year base period and currently
they use a base period of 1981-2010. Another important set of results computed using a fixed base
are incorporated in the International Panel on Climate Change (IPCC) Fourth Assessment Report
on understanding climate change[13].

In this paper, we show how an arbitrary choice of base can skew the results and lead to favorable
outcome which might not necessarily be true. We examine four simple criterions for base selection
and empirically evaluate the differences in them. Our empirical evaluation of the different measures
reveals that the z-score measure is quite different from the other measures like mean, median and
jackknife. We further study the impact of using different base period to highlight that the outcome
of further analysis can be sensitive to the choice of the base. We present a case study of the Sahel
region to show that the dipole in precipitation in the region moves around and even disappears
with the choice of a different base. Finally, we propose a generalized model for base selection which
uses Monte-Carlo based sampling methods to minimize the expected variance of the underlying
datasets. Our research can be especially instructive to climate scientists in helping them construct
a generalized anomaly that does not create a bias in their analysis. Further, other researchers in
temporal domain can also benefit from our work and it will enable them to choose a bias-free base.
The main contributions of our paper are as follows:

• We present a systematic evaluation of four different measures of computing the base to con-
struct the anomalies. Our evaluation shows that using the mean for anomaly computation
might not be the right thing to do.

• We show that using a short base reference introduces a bias in the variance and show an
alternative approach to take care of the bias.
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• We present a case study of Sahel region to highlight that outcome of further analysis like
dipole detection can be sensitive to the selection of the base.

• We propose an algorithm based on Monte Carlo sampling for automatic selection of the ap-
propriate base which minimizes the variance across the time series. The algorithm suggests
using weighted base of 55 year time period rather than 30 years for our data spanning 62
years.

The paper is organized as follows: In Section 2, we define the related work examining the issues
with base construction. In Section 3, we describe the dataset used for our study. In Section 4, we
examine the different measures and different time periods that can be used for anomaly construction.
In Section 5, we describe our experiments evaluating the different measures and time periods. We
also present a case study of the Sahel region to show the impact of the different base period in dipole
analysis. In Section 6, we present a generalized approach for anomaly construction that computes a
weighted anomaly using Monte Carlo sampling and also present our results based on the approach.
Section 7 includes the discussions and the future road map for our work.

2. Related Work

Anomaly computation is a fundamental problem in climate science as most of the analysis of
climate data relies upon computation of the anomalies as the first step. There have been some
studies in the climate domain analyzing anomalies. Climate scientists mostly use a 30 year period to
construct the anomalies and remove the annual cycle. Other ways to remove the annual cycle are 1)
computing second moment statistics over each individual season by removing the first two harmonics
of the respective time series; and 2) averaging the second moment statistics over all years. More
techniques to remove the annual cycle include removing the first two or three harmonics (periods of
365.25, 182.625, and 121.75 days) e.g., [8] and [4]. Some of the less common practices involve looking
at more sophisticated techniques like removing the cyclostationary empirical orthogonal function [11]
or bandpass filtering, e.g. using a low-pass filter with 0.5 cycle/year [15]. More general methods are
described in Wei et al. [19].

However, these procedures fail to take into account the natural interannual variability that should
remain visible in the data. Therefore the procedures result in biased estimates of certain statistics
[17]. In particular, lag-autocorrelations are systematically negatively biased, which indicates that
uncertainty is added to climate data. Trenberth [17] shows for first order autoregressive time series
that the autocorrelations computed after the annual cycle is removed become negative after just
a few days lag. Consequently, the stochastic character of meteorological time series can result in
less statistically significant analysis. Kumar et al. [12] state that the analysis of observed climate
data often lacks separation of the total seasonal atmospheric variance into its external and internal
components, with external components being the influence of atmospheric initial conditions, the
coupled air-sea interactions, and boundary conditions other than sea surface temperatures, whereas
internal components are described by the atmospheric variability over time. Removing the annual
cycle should provide insight into the internal variability while leaving the external forcing intact.

Tingley et al. [16] discuss the impact of using a short reference interval in anomaly construction.
They show that using a short reference period, the variance of the records at the time interval is
reduced and inflated elsewhere. They show that the choice of the reference interval has a significant
impact on the second spatial moment of the time series in the temperature data set whereas the first
moment of the time-series is largely unaffected . They further use two factor ANOVA model within
a Bayesian inference framework.

Despite the importance of anomalies in the further impact on the results, there is no firm consensus
on how to deal with the systematic construction of anomalies and their impact on the various results.
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Apart from this, the authors are not aware of any systematic study comparing the different aspects
of anomaly construction in the climate data.

3. Dataset

We use the data from the NCEP/NCAR Reanalysis project provided by the NOAA / OAR/ ESRL
PSD, Boulder, Colorado, USA [9]. The goal of the NCEP project is to produce a comprehensive
atmospheric analysis using historical data (1948 onwards) from observations as well as other analysis
like projection. As a result of these analysis, there is a complete data assimilation for every grid
point on the Earth.

The NCEP/NCAR Reanalysis project has data assimilated from 1948 – present and is available
for public download at [2]. We use the monthly time resolution of data and it has a grid resolution
of 2.5◦ longitude x 2.5◦ latitude on the globe. We use the precipitation, air temperature and sea
level pressure data for our analysis as they represent the most important climate variables. In all, we
have 62 years of data (corresponding to 744 monthly values) for 10512 grid locations on the globe.

4. Different aspects of Anomaly Construction

We examine two aspects of anomaly construction: 1) the measure for anomaly construction and
2) the period used for anomaly construction in the following subsections.

4.1. Different measures for Anomaly Construction. The central idea behind anomaly con-
struction is to split the data into two parts: (a) data with expected behavior, and (b) anomaly
data that shows the variability from the expected, which is generally used for understanding climate
change phenomenon. For a given location i, its anomaly times series f ′i is constructed from the raw
time series fi by removing a base vector bi from it as follows:

(1) f ′i = fi − bi

A simple measure of computing the base bi is by taking the mean of all data (f i) present for location
i. However the sample mean would not be a good measure as the Earth science data is associated
with a large amount of seasonality. In order to account for this the base bi is computed by taking
a monthly mean for each month separately. It is not yet clear whether the mean is the right way
to compute the base or if there is a better measure to compute the base. We examine four simple
measures of base computations as follows:

• Mean: In this measure, the monthly mean values of the raw data are considered as the base
and subtracted from the data to get the anomaly series.

• Z-score: Another possible way to construct the anomalies is to remove the monthly z-
score values from the raw data. The z-score also accounts for the standard deviation in the
monthly values.

• Median: This is constructed by removing the monthly median values instead of the monthly
means as median can be a more robust measure when the data is skewed.

• Jackknife: This approach involves considering all points apart from the point itself in the
computation of the mean and variance measures and it produces an unbiased estimation of
variance just like Maximum aposterior Estimate (MAP).

We elaborate these measures and how they are computed in the following sub-sections.
4
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4.1.1. Mean. Monthly mean computation is the most widely used method to extract the anomalies
from the raw data. The mean subtraction makes the anomaly time series to have a zero mean. More
formally,

(2) f ′i(t,m) = fi(t,m)− µm,∀t ∈ {total − start, . . . , total − end},∀m ∈ month

where total-start and total-end values represent the actual size of the data. In general it is known
that taking mean would minimize the variance of the resulting series but it can also lead to over
fitting and conclusions that might not be true. Further, instead of using the entire data for base
computation, a short reference interval can be chosen. For example, if the data begins from 1900
to 2010, the base start and end years could be chosen as 1960-1990. We further discuss the issue of
choosing a short base in Section.4.2.

4.1.2. Z-score. The z-score normalization ensures that the resulting anomaly series has mean = 0
and standard deviation = 1. As a result, z-score can be considered to be more robust than the
mean but at the same time z-score based standardization can eliminate variations across different
locations on Earth which might not be desirable. The z-score measure is computed as follows:

(3) f ′i(t,m) =
fi(t,m)− µm

σm
,∀t ∈ {total − start, . . . , total − end},∀m ∈ month

4.1.3. Median. In scenarios where data is skewed, mean can be sensitive to outliers. In such settings,
median is typically considered to be more robust to outliers. As a result, we consider median as a
method for base computation:

(4) f ′i(t,m) = fi(t,m)−medianm,∀t ∈ {total − start, . . . , total − end},∀m ∈ month

4.1.4. Jackknife estimate. The Quenouille Tukey jackknife approach [20] is a useful nonparametric
estimate of mean and variance. The basic idea behind the jackknife estimator is to systematically
compute the mean estimate by leaving out one observation at a time from the sample set. Let
f1, f2, . . . , fn be the n points in the time series of a location x. The jackknife mean estimate is
computed at point fi by taking the mean of all points except fi as follows:

(5) Mean(fi) =
f1 + . . .+ fi−1 + fi+1 + . . .+ fn

n− 1

Thus the anomalies are constructed by excluding the value at each point f ix. We however still use
all the monthly values only to compute the jackknife estimate at each point. The variance measure
using the jackknife approach turns out to be:

(6) V ariance =

(
n

n− 1

)2

× V ariance(f1, . . . , fn)

In order to see this consider f1, . . . , fn to be variable during a given month. Then we have to
following:

V ariance =
1

n

∑
i

(fi −Mean(fi))
2

=
1

n

∑
i

(fi −
n

n− 1
×Mean+

1

n− 1
× fi)2

=
1

n

∑
i

n2

(n− 1)2
× (fi −Mean)2

=

(
n

n− 1

)2

× V ariance(f1, . . . , fn)
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The variance essentially turns out to be an unbiased estimate and is similar to the maximum
aposterior probability (MAP) estimate of the model. MAP is similar maximum likelihood estimate
(MLE) but also incorporates a prior distribution over the quantity one wants to estimate. MAP
estimation can therefore be seen as a more robust form of MLE estimation. However the main
problem with an approach based on jackknife is that it requires a lot of computation.

4.2. Different Time Periods for Anomaly Construction. As mentioned earlier, an anomaly
series is constructed from the raw time series by removing a base value from it. The base value
is generally considered to be the mean of the data. Since the true theoretical mean is not known,
the base value is created by taking the sample mean of the data. However, most of the times a
short reference interval is chosen to compute the base and changes with respect to that are studied.
There is no absolute truth or guidelines available to choose the reference interval. Climate scientists
generally choose the base as a moving 30 year period and study the changes with respect to that.
However a moving short reference interval is problematic and can result in spurious results and
conclusions. In order to highlight the problems associated with picking an arbitrary short base, we
consider an example of teleconnections looking into the drought of the Sahel region in Africa in the
Section 5.3.

5. Experiments and Results

5.1. Comparison of Different Measures of Anomaly Construction. Our first task is to em-
pirically evaluate the differences in the four different measures described in Section 4.1. We use the
precipitation data for our analysis. Using all the 62 years of data from the NCEP/NCAR website,
we first construct an anomaly series for each location on the Earth using the four different measures.
Further, we also construct complex networks by taking pairwise correlation between all locations on
the Earth as used by several researchers like [14], [10], [5], [18] to find patterns in climate data. The
nodes in the graph represent all the locations on the Earth and the edges represent pairwise correla-
tion between the anomaly time series of all the nodes on the Earth. Our goal is to evaluate whether
there are statistically significant differences between different measures to compute anomalies. In
order to measure the statistically significant difference, we consider the following three criterion:

• Mean based difference: We compute the mean of anomaly time series using different measures
and then compute the difference in mean for each pair of measure. The mean difference would
be statistically significant if we can say with 95% confidence that the mean of difference is
non-zero.
• Correlation based difference: Here we compute the correlation of every point with respect

to other points on the globe using the four measures and check if the correlation values are
impacted by using different measures for anomaly construction.
• Monthly variance based difference: Here we check if the monthly variance of the anomaly

time series at each location is different for pairs of anomaly computation measure or not.

We use t-test to test if the difference between two measures follows a Gaussian distribution with
mean = 0 and unknown variance. Thereby, our null hypothesis, H0 is that two measures lead to
the same result and alternate hypothesis, Ha is that the two measures are different.

Tables 1, 2 and 3 show the number of locations where two measures lead to significant differences
in the anomaly time series. Here we make an observation that z-score and median lead to significant
differences from each other as well as the mean and the jackknife. Z-score based base computation
yields the most significant difference as it leads to statistically significant changes in correlations
and monthly variances at more than 9000 grid locations on the Earth. The z-score measure also
stands out if we look at the monthly variance of each point. On the other hand, mean and jackknife
seem to be similar. Median differs from the two over the mean difference based comparison. This
is perhaps expected as the median and the mean values are not the same and all the other bases
have zero monthly mean. Overall this result indicates that different measures used to compute base
can lead to drastically different results. This result makes it intuitively clear that z-score might not
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be the best way to compute the base. In order to compare the mean and the median, we examine
the skew in the anomaly time series after using the mean to construct the anomalies. To determine
the skew, we check the kurtosis of the anomaly series at each location on the Earth. The kurtosis
falls within the range of 2.6-3.5 for more than half of the locations on the Earth which is acceptable
for a normal distribution. However, some locations have a very high skew and the kurtosis value is
as high as 10. Fig 2 shows the histogram of kurtosis for all the locations and also shows the skew
in the time series at a random location on the Earth. This suggests that the mean might not a
good measure to compute the anomalies and median might be a better choice. However, further
investigations are still needed to understand the right measure for anomaly computation.

Method Mean Median z-score Jackknife
Mean - 692 0 0

Median - - 1281 674
z-score - - - 0

Jackknife - - - -
Table 1. Number of locations that rejected the null hypothesis at 95% confidence
interval in the two sample t-test examining the anomalies at the different locations
for precipitation.

Method Mean Median z-score Jackknife
Mean - 0 5303 0

Median - - 5152 0
z-score - - - 5303

Jackknife - - - -
Table 2. Number of locations that rejected the null hypothesis at 95% confidence
interval in the two sample t-test examining the correlation of each location with
the different locations for precipitation.

Method Mean Median z-score Jackknife
Mean - 0 9152 0

Median - - 9152 0
z-score - - - 8998

Jackknife - - - -
Table 3. Number of locations that rejected the null hypothesis at 95% confidence
interval in the two sample t-test examining the monthly variance at the different
locations for precipitation.

5.2. Comparison of different time periods for anomaly construction. The previous results
show that for a fixed base period there exists different ways to compute the base which can lead to
drastic differences in the anomaly time series. Here we try to see if we can fix a measure (say mean)
then check if varying the base period affects the anomaly time series. In order to do this, we examine
three base periods: a) first 20 years b) entire 62 years and c) last 20 years. We also experiment
with base period length of 30 years but that leads to similar results so for the sake of presenting the
extremes, we present results choosing 20 years as a base.

We construct the anomaly series for each location corresponding to the given base periods. We
selected mean as the measure of computing the base. In order to compare the time series, we used
KL-divergence criteria to see if different base periods have different effects on anomaly time series.
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Figure 2. a) Kurtosis histogram b) The mean subtracted anomaly shows a skew
in the data.

The KL-divergence is defined as follows:

(7) DKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)

KL-divergence of 0 means that the two series are exactly the same. A KL-divergence value
indicates that the series are quite different. We plot the divergence value for each location on the
globe in Figure 3. The white region shows that these locations are severely affected by our choice
of base. In general last 20 years vs 62 years (second figure) has a light shade of gray indicating that
all the locations on earth would be affected (in their anomaly series) if we make a choice between
last 20 years vs all 62 years.

Figure 3. KL-divergence of the anomaly series the different bases a) first 20 years
vs entire 62 years b) last 20 years vs entire 62 years and c) first 20 years vs last 20
years. The white shaded regions represent regions of maximum divergence.

Also the variance in the anomaly time series changes when we move the 20 year base period across
the entire length of the time-series. Fig. 4 shows the change in variance at two random locations by
picking up different 20 year base periods by varying the starting times from 1948-1988. From the
figure, we see that average variance in the anomalies at different points varies using different start
times for the base periods. This makes the problem complex as different regions show minimum
variance in different windows of the time period.

8

2011 Conference on Intelligent Data Understanding 196

TOSHIBA
Pencil



Figure 4. Change in variance of two random locations on the Earth choosing a 20
year reference period and moving the starting year from 1948-1988.

Figure 5. a) Mean correlation of 100 random points with all the points in the
globe for precipitation using the entire 62 years as the base and only the first 20
years as the base. b) Mean correlation of 100 random points with all the points in
the globe for precipitation using the entire 62 years as the base and only the first
20 years as the base. The difference in correlation (red and blue) is much more
pronounced in Sahel as compared to the random locations.

In order to further analyze the impact of the choice of short reference base on the correlation
of anomaly time-series, we consider two anomaly construction scenarios using the base as: a) first
20 years from 1948-1967 and b) using the entire 62 year time period from 1948-2009. We examine
the changes in the mean correlations of locations with respect to every other location on the Earth
using the two base period. Figure 5 shows the change in mean correlation of 100 random locations
and the locations in Sahel using the two base periods to compute the anomalies. From the figures,
we see that the locations in Sahel are much more impacted by the change in the base period as
compared to the 100 random locations. We also find similar trends in other variables like pressure
and temperature in Sahel but do not report it due to lack of space. These results underline the fact
that a reference interval is crucial in the computation of the anomalies. In the next section, we show
a case study on teleconnections where the actual analysis results and implications are impacted by
the choice of the reference base.
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5.3. Case study of the Sahel dipole. Teleconnections are long distance connections connecting
the climate of two places on the Earth. One such class of teleconnections are the dipoles which consist
of two regions having anomalies in the opposite direction and thus having negative correlation. The
climate in Sahara and Sahel region of Africa has undergone some radical shift in the past century.
The region received heavy rainfall till about 1969 until when it went into a period of severe drought
for about 30 years which brought a regime shift in the region. The drought in the region and its
environmental causes and consequences have been well studied in the past [6].

Figure 6. Sahel and the Gulf of Guinea in Africa.

Figure 7. Raw precipitation time-series at Sahel and the Gulf of Guinea.

The precipitation in the region has recovered slightly but not enough to come back to the same
levels as that before 1969. The severe loss of precipitation at Sahel was accompanied with a heavy
increase in precipitation at the same time in the Gulf of Guinea around Africa, thus forming a dipole
in precipitation [7]. The two regions Sahel and the Gulf of Guinea are marked in the Fig.6. The
raw precipitation time series of the two locations in Sahel (7.5E, 20N) and the Gulf of Guinea (2.5E,
2.5S) are shown in the Fig. 7.
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Figure 8. Correlation of precipitation time series for different places on the Earth
with respect to a single point in Africa using the two base a)1948-1967 and b)1987-
2008 for the 1st network (1948-1967). The figure shows the presence of a dipole
(positive and negative correlations as shown by red and blue regions) in the right
picture and not the left one.

Figure 9. Correlation of precipitation time series for different places on the Earth
with respect to a single point in Africa using the two base a)1948-1967 and b)1987-
2008 for the 2nd network (1968-1987).

Figure 10. Correlation of precipitation time series for different places on the Earth
with respect to a single point in Africa using the two base a)1948-1967 and b)1987-
2008 for the 3rd network (1987-2007). The figure shows the presence of a dipole
(positive and negative correlations as shown by red and blue regions) in the left
picture and not the right one.
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Figure 11. Different regions and different time periods are identified as dipoles
in precipitation using the first 20 years as the base and the last 20 years as the
base. (The red and blue regions represent two ends of the dipole and have negative
correlation in their anomalies.)

From the figure, we can see the dramatic decrease in precipitation in Sahel and an increase in
precipitation in the Gulf of Guinea around the 1970s. Now using the 62 years of NCEP precipitation
data, we choose two base years, the first 20 years (1948-1967) and the last 20 years(1988-2007). We
further construct three networks by taking pairwise correlation between the anomaly time series of
all locations on the Earth for a 20 year time period each (1948-1967, 1968-1987 and 1988-2007).
Consider the point A(7.5E, 20N) in Sahel. Let us examine the correlations of this point with all
the regions on the Earth. Fig. 8, 9 and 10 show the correlation of all the points on the Earth with
respect to a single point in Sahel for the three time periods 1948-1967,1968-1987 and 1988-2007
respectively. From the figures, we see that the if we choose the base period to be the first 20 years,
the Sahel dipole is clearly visible (positive and negative correlations as shown by red and blue regions
in the figures) in the period 1988-2007, however if we choose the last 20 years as the base period
the dipole is seen in the interval 1948-1967. Further we use the dipole detection algorithm on the
complete network as given in [10]. The algorithm begins by picking up the most negative edge on
the Earth and grows the two ends of the negative edge into two regions such that they are negatively
correlated with each other and positively correlated within each other. Using the algorithm, we see
that the Sahel dipole appears in different time periods and also in different regions as also shown
in the Fig.11. Thus the choice of a base period severely impacts the results and subsequently the
interpretations that can be drawn from the results. Hence extra caution needs to be exercised while
constructing anomalies in order to avoid spurious conclusions to be drawn from the results.

6. A Generalized Approach for Anomaly Construction

In the previous section, we saw that there is a bias introduced in the results upon considering
different measures of the base and different durations. So the primary question arises, What is the
right base to choose for anomaly construction?. In this section, we discuss our approach to handle
the problem of the anomaly construction. The intuition behind our approach is to have a weighted
mean to construct the anomalies and use an objective criteria to pick up the right set of weights
using Monte Carlo sampling. The weighted base for anomaly construction for a location i is created
as follows:

(8) bi(t, w) =

t0+k∑
t=t0

wt ∗ fi(t) subject to

t0+k∑
t=t0

wt = 1

where t0 represents the starting time period, k represents the length of the time period. We further
assume that the weights wt are the same for each year and do not depend upon the month in the
year. Further, the anomalies are constructed by removing the weighted base for each month as
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Algorithm 1: A Generalized approach for Anomaly construction.

Let fi(t) be the monthly values of raw time series of location i
Let, N = Length of total time period.
Let, Tbase = Shortest length of reference interval.
Let, NumSimulations = Number of simulations to run.
Initialize GlobalV ariance, OptimalWeights to ∞
repeat

for k ∈ Tbase, ...TN do
for t ∈ T0, ...TN do

for i ∈ 1....NumSimulations do
Compute weight vector w1, w2, ......, wt

subject to the constraint w1 + w2 + .... + wt = 1. using a Dirchlet prior.
Compute the weighted base as bi(t, w) =

∑t0+k
t=t0+1 wt ∗ fi(t)

Compute the Anomalies from the weighted base as f ′
i(t, w) = fi(t)− bi(t, w)

Compute the Variance of all the anomaly time-series across the globe.
if V ariance < GlobalV araince then

Update the GlobalV ariance and OptimalWeight
GlobalMedian = Median
OptimalWeight = w1, w2, ......, wt

end if
end for

end for
end for

until convergence

follows:

(9) f ′i(t, w) = fi(t)− bi(t, w)

We run Monte Carlo simulations to get the right set of the weights wt and define the objective
function as minimizing the variance of the anomaly time series over time and space. By minimizing
the variance, we are trying to enforce uniformity over the data. There can be some other objective
functions like the median of the lowest 10% of the correlations. The intuition behind this objective
function is that for computing dipoles, we need to examine the most negative correlations. Hence
we want to find a weight and a base vector corresponding to our criterion for dipoles. However, we
consider a general objective function that is not dependent upon the problem. The further details
of the algorithm are present in Algorithm 1.

6.1. Results. We use the precipitation data and run our Monte Carlo based simulation algorithm
to get the right reference base period. Figure 12 represents the final converged weights. The other
parameters of the final convergence of the algorithm are as mentioned in Table 4. Using our new
weighted anomaly, we re-construct the correlation plots around the Sahel to get a sense of the dipole
in the Sahel. Fig 13 shows the new results using the dipole in the Sahel using the weighted anomaly.
Using a bias free base gives us confidence about the non-spuriousness of the discovered climate
pattern or climactic phenomena such as a dipole. It implies that a dipole does exist in the region
and that bases chosen which result in the dipole appear vanishing are not good bases. This objective
function thus helps us in observing phenomena which would be more prominent if favorable bases
are assumed but a bias-free base gives us a worst case scenario and more confidence in the results.

7. Discussion and Conclusions

The issue of anomaly construction is a fundamental problem in climate science as most of the
analysis and results are derived after the raw data is transformed into an anomaly series. However
there are no current guidelines available on anomaly construction and climate scientists usually
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Table 4. Final algorithm convergence details.

Parameter Value
Period 55

Starting year 1948

Figure 12. Final converged weight vector.

Figure 13. A correlation map as seen from the Sahel location A(7.5E, 20N).

rely upon computing a moving reference base for anomaly construction. In this paper, we examine
the various issues pertaining to the construction of the anomalies. We assess the four methods of
anomaly construction i.e. mean, median, z-score and jackknife. Our results show that if z-score is
used as a measure for anomaly computation then the correlation values across different locations
come out to be significantly different at 95% confidence interval. The mean, median and the jackknife
measure do not show significant differences. However, due to the skewness in the data, the mean
might not be a good measure and the median might be a good measure in such a case. However,
further investigation is required to understand the right measure should be used.

We further show the bias in results introduced due to a choosing a short reference interval and
show the difference in conclusions and results using a case study of the Sahel dipole. It is important
to handle the bias introduced due to a short base as subsequent conclusions derived from it get
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affected. We further propose a generalized algorithm to handle the the issue of a bias-free base.
Using our algorithm, we get the optimal base period to be 55 years. The algorithm can be modified
to have different objective functions to handle different specific scenarios. As a part of our future
work, we will examine different approaches to learn the weight vector as opposed to using the Monte
Carlo simulations. We will also evaluate different objective measures and their impact on the base
construction.
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MITEXCUBE: MICROTEXTCLUSTER CUBE FOR ONLINE ANALYSIS OF

TEXT CELLS

DUO ZHANG*, CHENGXIANG ZHAI*, AND JIAWEI HAN*

Abstract. A fundamental problem for analysis of multidimensional text databases is efficient
and effective support of various kinds of online applications, such as summarizing the content
of text cells and comparing the contents across multiple text cells. In this paper, we propose
a new infrastructure called MicroTextCluster Cube (or MiTexCube) to support efficient online
text analysis on multidimensional text databases by introducing micro-clusters of text documents
as a compact representation of text content. Experimental results on a real multidimensional
text database show that applications based on the proposed materialized MiTexCube are more
efficient than the baseline method of direct analysis based on document units in each cell, without
sacrificing much quality of analysis, and MiTexCube naturally accommodates flexible tradeoff
between efficiency and quality of analysis.

1. Introduction

As large amount of unstructured text becomes available in multidimensional databases, it is
increasingly important to support efficient online analysis of text data. While a search engine is
useful to satisfy a user’s ad hoc information needs, allowing a user to retrieve relevant documents
through a keyword query, it is inadequate for analysis of bulky text information, which is necessary
in many online applications. For example, while it is easy for a user to find documents discussing
opinions about iPhone in a review database based on a search engine, it is hard to compare opinions
expressed in different time periods or by different user groups. In contrast, if we can manage text data
together with structured data with attributes such as time and user groups in a multidimensional
database, we would be able to flexibly explore text data corresponding to different combinations of
time and user groups and compare opinions across different contexts (e.g., different time periods).

As an example of multidimensional text database, consider the ASRS database, the largest repos-
itory of aviation safety information provided by the frontline personnel [1]. It has both structured
data (e.g., time, airport, and light condition) and text data such as narratives about an anomalous
event written by a pilot or flight attendant as illustrated in Table 1. A text narrative usually contains
hundreds of words.

Table 1. An example of text database in ASRS

ACN Time Airport · · · Light Narrative

101285 199901 MSP · · · Daylight Document 1

101286 199901 CKB · · · Night Document 2

101291 199902 LAX · · · Dawn Document 3

In many applications, we need to analyze the text information in such a multidimensional text
database with consideration of structured data in the standard dimensions. To support such analysis
in a general way, it has been proposed in recent work to construct a Cube for text data [10, 15],
which would enable an analyst to flexibly explore and analyze text cells, which are groups of text
data corresponding to certain constraints on the standard dimensions.

*Department of Computer Science, University of Illinois at Urbana-Champaign
dzhang22@cs.uiuc.edu, czhai@cs.uiuc.edu, hanj@cs.uiuc.edu.
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Many interesting online analysis tasks can be done on top of text cells. For example, an expert
may be interested in the major anomalous events within a specific context. So she forms a query
like (Time=“1999”, Location=“LA”) and tries to digest the content of all the narratives associated
with these specified time and location values. A desirable system would return a summary of
the content in the specific text cell (e.g. clusters of documents with major content words in each
cluster or a small set of representative documents) so that the expert does not need to read all the
documents. In another scenario, the expert may be interested in a particular topic within a text
cell, e.g. the anomalous events related to “altitude deviation” at “LA” during “1999”. In this case,
a set of documents, generated as a summary for a text cell given a query topic, should ideally be
both relevant to the topic and representative in covering most content of the text data in the cell
(many duplicates in selected documents will cause the summary cover only partial content of a text
cell). Furthermore, the expert may also be interested in comparing the content of multiple cells,
e.g. a group of cells with different locations, and it would be desirable for the system to generate a
comparison of the content covered by all these returned cells to reveal some common topics discussed
within these cells and the different coverage of these common topics in each cell. Similar application
scenarios can also be found in many other domains such as product review analysis, IT service ticket
investigation, and disease symptom diagnosis.

Table 2. An Example of a MiTexCube

Cell Doc ID Content Micro-Text-Clusters

(Time=1999, Location=TX)
d1 . . . due to stronger than forecasted winds and

weather going . . . (weather 2.5, wind 1.2, . . . ), 3
d2 . . . I think that the weather, headwinds, shrinking

dewpoint/temperature contributed to the fuel emer-
gency . . .

d3 . . . After an hour, the weather had not much im-
proved. We were in the clear for a bit and then hit
another cloud bank . . .

d4 . . . so that if we saw the ARPT, we could land . . .
(land 2.1, rule 0.9, . . . ), 2

d5 . . . we were in class G and the IFR rules tell us to
land . . .

Since all these analysis tasks need to be done efficiently online, how to develop a general infras-
tructure to support all these tasks efficiently is a very interesting and challenging research question.
Intuitively, we want to do as much offline pre-computing as possible to minimize the cost of online
computation. However, there are two major technical challenges in implementing this general idea:
(1) Many analysis tasks cannot be pre-specified in advance, making it impossible to pre-compute all
the answers or even partial answers. For example, query-specific summarization can only be done
after seeing the query, thus a naive solution of computing and storing summaries of all the cells
offline is simply not feasible. Indeed, it is a significant challenge to factor out the computation that
can be done offline. (2) Different analysis tasks need different computations (e.g., summarization
and topic comparison have different needs). It is unclear how to provide a general support for many
such tasks to enable efficient online processing.

One possible solution to the two challenges is to build a global Clustering Feature (CF) tree as
proposed in [16]. In this approach, all the documents in the multidimensional text database can be
first clustered into a global CF tree offline. Then, online analysis can take advantage of the clusters
stored in the CF tree to reduce the computational cost. However, such a global CF tree is not
suitable for an OLAP scenario, because in an OLAP text analysis task we mainly focus on local
contents of a text cube. When we change the context and do text analysis in different text cells, the
rigid global clustering structure cannot serve well in various local cells, since the clustering results
of documents in a local text cell could be very different from their clustering results in a global CF
tree. For example, if we cluster all the reviews in a commercial text database, the global CF tree
may cluster reviews based on different brands of products. But when we do OLAP analysis in a text
cell of a certain location, the reviews within that text cell may be clustered according to different
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time periods. Similarly, if we do OLAP analysis in a text cell of a certain time period, the reviews
may also be clustered according to different locations. So a global clustering structure based on
brands is not suitable for analysis in different local text cells.

The recent work on Text Cube [10] proposed methods for analyzing a text cube by materializing
each text cell with vectors of documents. This approach can support several different analysis tasks,
but it does not scale up well; indeed even a simple clustering analysis of the documents within one
text cell is still expensive, especially when the number of documents is large.

In this paper, we propose a new general infrastructure called MicroTextCluster Cube to organize
text content in a multi-dimensional text database so as to support a variety of online text analysis
tasks efficiently. To solve the two major challenges above, our key idea is to represent text contents
of each local cell in a “compressed” way which can retain the essential semantic information in
text, so that online operations can be supported efficiently by performing them on the compressed
representation rather than the original representation.

Specifically, we cluster documents in each cell into micro-clusters which serve as a compact,
though coarse, representation of the content in the cell. The set of documents in a micro-cluster
can be regarded as a big “pseudo-document” with a compact representation. Since the number
of micro-clusters in each cell is usually much smaller than the number of individual documents,
it allows us to dynamically analyze any text cell (e.g., clustering documents in a text cell) much
more quickly based on the micro-clusters in the cell. Intuitively, the online computation effort is
reduced substantially by offline micro-clustering of similar documents, as shown in Figure 1, where
we see that online clustering can be done based on micro-clusters instead of the original documents.
Since a common characteristic in many analysis tasks is that they focus more on the characteristics
of groups of documents rather than the concrete content of each individual document, the micro-
cluster model essentially captures and leverages this kind of redundant information to achieve a
concise representation that enables many online analysis tasks to be done efficiently.

(a) Original Docs (b) Micro-clusters (c) Online Analysis

Figure 1. Illustration of micro-clusters and their uses for summarization.

We materialize a MiTexCube with a progressive strategy, which aims at both saving the disk
cost of a MiTexCube and supporting efficient analysis of a large set of documents in a high level or
large text cell with flexible tradeoff between efficiency and quality of analysis. Basically, one cell is
materialized with micro-clusters only when the number of micro-clusters aggregated from its sub cells
is too large to perform efficient online operation. In that case, the cell is materialized by re-clustering
those micro-clusters in its sub cells into a small set of larger micro-clusters. During online analysis,
we can either use the micro-clusters within the target cell or we can use more finer granularity
micro-clusters aggregated from its sub cells if time cost is affordable. In an extreme case, we can
also use single-document micro-clusters as the analysis units. Therefore, our approach makes it
possible to control the efficiency-quality tradeoff through adjusting the resolutions of micro-clusters,
and accommodate the different needs of different analysis tasks.

We represent each micro-cluster by a centroid vector of weighted terms, associated with certain
statistics such as the size of the micro-cluster (i.e., the number of documents inside the micro-
cluster). Note that how to represent micro-clusters and how to form micro-clusters offline is quite

3

2011 Conference on Intelligent Data Understanding 206

TOSHIBA
Pencil



flexible, as long as they can effectively compress the content of text cells in a reasonable way. In our
paper, we use weighted term vectors to represent micro-clusters and use k-means algorithm to form
micro-clusters.

As a general infrastructure for representing text information in text cells in a compressed way, the
micro-cluster text cube can potentially support many online analysis tasks efficiently. As case studies,
in this paper, we propose methods to leverage MiTexCube to support three common analysis tasks:
query-independent summarization, query-dependent summarization, and comparative analysis of
text cells. We evaluate the proposed model and methods with the NASA:ASRS (Aviation Safety
Report System) database. Experimental results show that the proposed cube structure can efficiently
support summarization and comparative analysis of text cells, outperforming baseline methods that
directly work on the documents in each cell without using micro-clusters, and it enables flexible
tradeoff between efficiency and quality of analysis.

In sum, the contributions of this paper include: (1) We proposed a general novel cube structure
that can support a variety of online text analysis tasks efficiently. (2) We proposed a materialization
algorithm for constructing a MiTexCube to support flexible time-quality tradeoff for online appli-
cations and also save the disk cost of the cube. (3) We proposed methods for three applications,
i.e. query-independent summarization, query-dependent summarization, and multi-cell comparison,
which are customized towards leveraging the MiTexCube infrastructure.

2. Related Work

Online Analytical Processing (OLAP) [3, 5, 8] has found widespread applications in multiple
domains [7, 11, 14]. Handling text in OLAP has recently drawn much attention (e.g., [6, 2, 13, 10,
15]). Both [6] and [2] are systems related to text OLAP. They both use classification methods to
classify documents into categories. Then each document is attached with a class label, and such
category labels would allow users to drill down or roll up along the category dimension, achieving
OLAP on text. In [6], the system also uses an optimized variant of k-means algorithm to do online
clustering of documents. The main difference between our work and their work is that we aim at
providing an infrastructure so that not only online clustering but also other analysis can be done
more efficiently.

In [13], the authors try to combine keyword search with OLAP aggregation in order to efficiently
analyze and explore large amounts of content. Their method is to first retrieve relevant documents
from the database according to a query. Then they use both metadata and extracted phrases as
dimensions to construct a data cube online, so that users can explore the results in an OLAP manner.
Our work is different from theirs in that we first construct a text cube based on multidimensional
text databases offline, and then provide an infrastructure for efficient text data analysis when doing
OLAP in such a text cube.

Two new models related with text OLAP have been proposed in [10] and [15]. In [10], a text cube
is partially materialized with two information retrieval-related measures, namely term frequency
and inverted index, and a term hierarchy is also built in order to support OLAP operations. In
their model, when a query arrives, the cube will return a set of relevant keywords in the result cell.
The major difference between our work and their model is that we introduce micro-clusters into
the cube, which materializes a cube with offline computed micro-clusters of documents rather than
a vector of term frequency for each document. By grouping relatively similar documents together,
the micro-cluster based infrastructure substantially reduces the online computation cost. Compared
with text cube, our experimental results show that various kinds of online analysis of text cells
become much more efficient with MiTexCube. In the topic cube proposed in [15], a hierarchical topic
tree is predefined and a cell is materialized with statistics of topics mined from the documents in the
cell. The purpose of a topic cube is to allow users to analyze predefined topics in text with different
granularities. Our work differs from this work in that we are not restricted to predefined topics, and
different analysis based on micro-clusters can adapt to arbitrary cells.
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The materialization strategy used for materializing the MiTexCube is inspired by the BIRCH
algorithm described in [16], but the purpose of using micro-clusters is quite different. In our work,
we build micro-clusters in an OLAP environment, and the micro-clusters are used as coarse repre-
sentations of the content of each local text cell. We do not need to maintain a global Clustering
Feature tree as BIRCH, which is designed for incrementally and dynamically clustering incoming
multi-dimensional metric data points.

3. MicroTextCluster Cube

The main idea of MiTexCube is to speed up online analysis of text cells by doing as much prepro-
cessing as possible during offline stage. Specifically, we preprocess the documents by generating a
good number of micro-clusters to “compress” similar documents. These micro-clusters are materi-
alized and stored in selected text cells. Since these micro-clusters can roughly represent the original
documents, in the online stage, we can mostly work on the micro-clusters to carry out analysis of
text cells quickly.

3.1. Definition of MiTexCube. Conceptually, MiTexCube extends a simple model, Document
Cube. We thus first introduce the concept of document cube defined on a multidimensional text
database.

Definition 3.1. Document Cube: A document cube is a data cube built based on the standard
dimensions of a multidimensional text database. The measure stored in each cell is a document set
which is the union of the documents (records in the database) aggregated from its subcells.

In general, a multidimensional text database is made of two parts: standard fields and a text field.
The standard fields correspond to the attributes in a structured database (e.g., time, location) and
can be viewed as the context of the associated text documents. Thus conceptually, the Document
Cube allows us to naturally partition all the documents in the text field according to the combinations
of values in the standard fields. Unfortunately, it is not feasible to store all the document lists in
cells. For example, in the apex cuboid, we need to store all the documents in its document list, which
would be too expensive space-wise. Thus the measure in a document cube is only a “conceptual
measure”; in practice, when a user inputs a query, a document cube would use the value(s) specified
on the standard fields to fetch all the matching records in the database and return the union of the
corresponding documents as the measure of the cell.

MiTexCube essentially extends Document Cube by storing an additional measure that captures
all the micro-clusters in a cell.

Definition 3.2. MiTexCluster: A micro text cluster (or MiTexCluster) is a coherent cluster of
text documents that serves as a compressed representation of document content. These clusters are
called micro-clusters because compared with the size of the corresponding cell that they represent,
their sizes are relatively small, which ensures that the micro-clusters serve well as an approximation
of the content in a cell for the purpose of analysis.

Definition 3.3. MiTexCube: A MiTexCube is a data model that extends a document cube to
support efficient online analysis of text cells. Two kinds of measures are stored in cells of a MiTex-
Cube. One is a document set aggregated from the base cells, which is the same as in a document
cube. The other is either the statistics of a set of micro-clusters or a set of subcells from which the
documents in the current cell can be efficiently computed based on aggregation.

One important thing to be noted in Definition 3.3 is that information about micro-clusters (i.e.,
“content measures”) is stored in two different ways. We define the MiTexCube in this way in order to
save the disk storage as much as possible. To better explain the idea behind this, we use an example
to show the correspondence between cells and their measures in Table 3. From this table, we can
see that there are mainly two types of cells. One is materialized with concrete micro-clusters, and
we call this type of cells concrete cells (type 1). Examples of concrete cells are C71 and C100. In
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Table 3. An example of the materialization of a MiTexCube

Cell ID Type Measure Size
C1 0 {d1} 1
C2 0 {d2} 1
. . . . . . . . . . . .
C70 0 {C1, C2, . . . , C10} 10
C71 1 {mean1, 20} . . . {mean5, 30} 5
. . . . . . . . . . . .
C99 0 {C70, C71, . . . , C76} 56
C100 1 {mean1, 35} . . . {mean5, 32} 5
. . . . . . . . . . . .

their measures, we store five micro-clusters for each of them. Each micro-cluster contains its mean
vector and the size of the cluster. In our study, each document is represented by a vector of weighted
terms, and the weight for each term is the TF-IDF value of this term within the document [12]:

d⃗ = (cd(w1) ∗ idfw1 , cd(w2) ∗ idfw2 , . . . , cd(wV ) ∗ idfwV )

where cd(wi) is the term frequency of word wi in document d and idfwi is the inverse document
frequency (IDF) of word wi in the whole document set in the database. The mean vector of a
micro-cluster is also a vector of weighted terms, and the weight for each term is the average weight
for this term over all the documents that belong to this micro-cluster:

mean(mci) =
1

|mci|
∑

d∈mci

d⃗.

The other type of cells is materialized with a list of subcells, from which we can easily aggregate
the micro-clusters in these subcells to form a set of micro-clusters for the current cell at the time of
online processing. We call this type of cells non-concrete cells (type 0). For example, C99 is a non-
concrete cell. Its measure contains a set of subcells, i.e., {C70, C71, . . . , C76}. If we need to cluster
the documents in cell C99, we would fetch the micro-clusters contained in {C70, C71, . . . , C76}, and
use them for clustering. In general, in order to save disk space, we would choose to not materialize a
cell such as C99 as long as we can efficiently carry out analysis based on the micro-clusters contained
in its subcells. However, had it been too expensive to do online analysis of the micro-clusters in
{C70, C71, . . . , C76}, we would have further grouped these micro-clusters into larger micro-clusters
and store them in the cell C99, which would make it a concrete cell rather than a non-concrete cell.

In practice, storing the complete cell list in a non-concrete cell is still costly. Thus, we use a
dimension and its level to indicate which set of subcells we should use for aggregation. For example, in
Table 4, a cell (ID=“laptop”, Time=“*”, Location=“*”) can be either aggregated from subcells like
{ID=“laptop”, Time=“1st Quarter”, Location=“*”} or from subcells like {ID=“laptop”, Time=“*”,
Location=“TX”}. So we use “{Time, Quarter Level}” or “{Place, State Level}” as a compact
representation of the corresponding list of subcells. In the next section, we will discuss the criteria
for choosing the dimension for aggregation.

The star schema of a MiTexCube is shown in Figure 2. In the schema, if we ignore Measure 2,
it would become the star schema of a document cube. As we discussed above, Measure 1 in this
schema is just a conceptual measure.

3.2. Progressive Materialization. Materialization of a MiTexCubemeans we need to precompute
the micro-clusters offline and store the micro-clusters in the MiTexCube. A good materialization is
important because (1) with sufficient materialization, the online analysis can be done efficiently; (2)
the overhead of materialization should be reasonable. There are two important parameters to be set
for materializing a MiTexCube. One is the total number of micro-clusters K in each cell. A larger
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Table 4. An example of subcell selection

Cell ID Subcell Set Selection

(laptop, *, *)

(laptop, 1st Quarter, *)

{Time, Quarter Level}(laptop, 2nd Quarter, *)
(laptop, 3rd Quarter, *)
(laptop, 4th Quarter, *)

(laptop, Jan., *)

{Time, Month Level}(laptop, Feb., *)
. . .

(laptop, Dec., *)
(laptop, *, CA)

{Place, State Level}(laptop, *, TX)
. . .

(laptop, *, WA)

Time_key

Location_key

Environment_key

{Doc_id}

{mean
i
size

i
}

or

sub-cell list

Time_key

Day

Month

Year

Location_key

City

State

Country

Time

Location

Environment_key

Light

Environment

Measure 2

Fact table

Measure 1

Figure 2. Star Schema of a MiTexCube

K will result in finer granularity of micro-clusters, so the result of online processing like clustering
will be closer to that of clustering documents directly at the price of slower online processing. On
the other hand, a smaller K will result in larger micro-clusters of documents in each cell, which can
speed up online processing at the price of achieving coarser approximation of the content and not
being able to summarize a cell at a finer granularity level of topics. Thus there is an inherent tradeoff
here between approximation accuracy and time efficiency of online summarization and this tradeoff
is controlled by the parameter K, which can be empirically set according to specific application
needs.

The other important parameter is the total number of micro-clusters M that we can deal with
efficiently for online processing. This parameter controls the tradeoff between time efficiency and
space overhead. If M is small, then the number of cells needed to be materialized will be large, thus
more disk storage would be needed. On the other hand, if M is large, then the online processing will
be more time consuming, but we would be able to save more space since the number of cells to be
materialized would be smaller. Thus M provides a flexible way to control this tradeoff. For example,
we may optimize the value of M based on whether we can efficiently cluster M micro-clusters online.

Once these two parameters are set, our algorithm for materializing a MiTexCube works in a
bottom-up manner to progressively process each cell. The process is illustrated in Figure 3.

Specifically, we would start materializing the cube from the base cells, each of which contains
only one document. As we aggregate a set of base cells into the next level of cube (i.e., cuboid
ABCD, ABDE, etc..), we would test the number of documents in each cell. If the number is larger
than the threshold M , we would group this set of documents into K micro-clusters, and store these
micro-clusters as measures, as illustrated in cell (a1, b1, c1, d1, ∗). Based on these micro-clusters, we
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(a1, b1, c1, d1, e1) (a1, b1, c1, d1, e50)(a1, b1, c1, d2, e1)
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Figure 3. Materialization of a MiTexCube

can further aggregate into the next level of the cube (cuboid ABC, ABD, etc.). If the number of
micro-clusters aggregated into one cell is no larger than the threshold M , we would only need to
store a sub-cell list represented by the aggregation dimension and the level of this dimension, from
which we will be able to aggregate the micro-clusters from the subcells, e.g., cell (a1, b1, c1, ∗, ∗), thus
saving the space needed to store the complete list of subcells. As shown in Table 4 and discussed
in the previous section, there are several possibilities to aggregate subcells into a super cell. In our
algorithm, we choose to store the dimension from which the subcells of the super cell would give the
least number of micro-clusters; the rationale is to delay the need for re-clustering as much as we can,
thus also saving more space. As we reach the next level of cube (i.e., cuboid AB, BC, etc.), we first
calculate the number of micro-clusters in each cell. For example, in cell (a1, b1, ∗, ∗, ∗), the micro-
clusters are aggregated from cell (a1, b1, c1, ∗, ∗), etc.. Since cell (a1, b1, c1, ∗, ∗) is non-concrete, the
micro-clusters aggregated from this cell are actually from its own subcells. Assuming that, at this
time, the number of micro-clusters in cell (a1, b1, ∗, ∗, ∗) is larger than the threshold M , we thus
group these small micro-clusters into K larger micro-clusters, as shown in the figure.

In general, to group micro-clusters from subcells into larger micro-clusters, we may use any
clustering algorithm. In our experiments, we use a k-means based algorithm to group those micro-
clusters based on their means. One advantage of k-means is that we can stop at any iteration to
obtain clustering results, and thus can flexibly trade off time with quality of clusters. For each small
micro-cluster we have the mean and size of it. Therefore, we can use these statistics to calculate the
statistics of the new micro-clusters. For example, suppose we group micro-clusters mc1,mc2, ...,mcl
into a bigger micro-cluster. The mean of the new micro-cluster can be computed as

(1)

∑l
i=1 mean(mci) ∗ size(mci)∑l

i=1 size(mci)
,

and the size of the new micro-cluster is

(2)

l∑
i=1

size(mci)

The pseudo code of the materialization algorithm using k-means clustering is given in Figure 4.
Here, variable minmc is used to store the minimum number of micro-clusters aggregated into the
current cell. Variables mindimension and minlevel are used to store the corresponding dimension and
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level. Variable nummc on line 8 represents the number of micro-clusters aggregated from subcells
in the current dimension and level.

Figure 4. Pseudo Code for Materialization
Input: A multidimensional text database with n standard fields and one text field
Output: Materialized MiTexCube
Algorithm:
1 From base cuboid to Apex cuboid
2 For each cell in current cuboid
3 minmc = ∞;
4 mindimension = null;
5 minlevel = null;
6 For each aggregation dimension in current cell
7 For each level in this dimension
8 Calculate nummc in subcells aggregated from current dimension and level
9 if(nummc < minmc)
10 minmc = nummc;
11 mindimension = current dimension;
12 minlevel = current level;

end of if
end of for

end of for
13 if(minmc > M )
14 regroup these micro-clusters in K larger micro-clusters, and store the mean and size of
each new micro-cluster
15 else
16 store the mindimension and minlevel as measures

4. Online Analysis of Text Cells

After a MiTexCube is materialized, we can carry out various kinds of online analysis based on
this infrastructure. In this section, we discuss three representative online analysis tasks.

4.1. Standard (Neutral) Cell Summarization. Standard (i.e., topic-neutral) cell summarization
means to give analysts an overview of the content in any given text cell by grouping all the documents
in that text cell into P different clusters, where P is the desired number of clusters specified by an
analyst. Based on the MiTexCube model, one can efficiently generate such a standard cell summary
by clustering the already formed micro-clusters instead of clustering all the documents from scratch.
Specifically, assume one cell has in total MC micro-clusters (MC > P ). We can use the mean vector
of each micro-cluster as a data point (as if it were a document vector) and use the k-means algorithm
to partition them into P clusters. When we cluster several micro-clusters into one big cluster, we
can use Eq. (1) and Eq. (2) to update the mean and size of this big cluster. Thus algorithm-wise, our
method for standard cell summarization is similar to re-clustering in the materialization algorithm
except that we now generate fewer macro-clusters for the purpose of online analysis of a text cell’s
content.

Since the k-means method is an iterative method, the time complexity of the baseline method
of clustering all the documents from scratch (which we denote by GS-Base) is O(D ∗ P ∗ n), where
D is the total number of documents to be clustered, n is the total number of iterations. With
MiTexCube, the time complexity of our method (denoted by GS-MC ) is O(MC ∗P ∗m), where MC
is the number of micro-clusters and m is the number of iterations. When MC ≪ D, we can expect
that GS-MC should be much faster than GS-Base (the number of iterations m is comparable with
n). While it is inevitable that GS-MC would be inferior to GS-Base in clustering quality, we can
expect the sacrifice of quality to be insignificant since documents in a micro-cluster are generally
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similar to each other in content. Indeed, since we can adjust the size of a micro-cluster (thus also
the number of micro-clusters), MiTexCube enables flexible efficiency-quality tradeoff.

4.2. Query-Specific Cell Summarization. The purpose of query-specific cell summarization is
to customize a summary based on the topic preference that a user may have. Specifically, given
a set of documents in one text cell as well as a topic keyword query q, the task of query-specific
summarization is to generate a summary with P documents selected from the cell that are both
representative of the cell and relevant to the query, where P is a number specified by a user to
indicate the desired number of documents in the summary. This is different from a traditional
information retrieval task, which only considers the relevance of documents to a query. For a
summarization task, we also want the selected documents cover well the major content in the cell.

With MiTexCube, we can leverage the available micro-clusters to optimize the coverage of the
documents in the cell by forcing the summary to include documents distributed over all the distinct
micro-clusters. Intuitively, micro-clusters tell us where the redundancy is, because documents within
the same micro-cluster are believed to be similar. Specifically, suppose there are K micro-clusters
in a cell, given a topic query q we first rank all the documents into a candidate list based on their
relevance to the query. Then, in the first round, we select documents from the most relevant one,
and if one document is selected, all the documents in the same micro-cluster will be removed from
the candidate list and not be considered for selection. The next document to be considered is the
most relevant document remained in the list. So this ensure that we select relevant documents
distributed over all the micro-clusters. If we need more representative documents (i.e. P > K), we
just get back all those non-selected documents and do another round of selection.

An indirect way to generate a query-specific summary for a text cell is to use a greedy algorithm
called Maximal Marginal Relevance (MMR) [4] to avoid redundancy in the selected documents.
MMR reranks a list of documents by using the following formula to select the next document to
reduce redundancy in the selected documents:

(3) argmaxDi∈R\S
[
λSim1(Di, Q)− (1− λ) max

Dj∈S
Sim2(Di, Dj)

]
Here, R is the candidate document set, S is the current selected document set, Di is a candidate

document to be considered as the next selected document, Q is a user specified query, Sim1 is a
function used to measure the similarity between a query and a document, and Sim2 measures the
similarity between two documents.

Compared with theMiTexCube-based method (denoted as QS-MC ), the MMR approach (denoted
as QS-Base) is less efficient because it requires computation of pair-wise similarity for potentially
many document pairs on the fly; besides, the MMR approach may not achieve representativeness well
because avoiding redundancy does not always lead to representative topics, while the MiTexCube
method achieves representativeness more directly through the structure based on micro-clusters.

4.3. Common Topic Comparison. Another analysis task is to compare multiple text cells to
reveal the difference of their coverage on common topics. The standard cell summarization of the
text cells cannot easily quantify the coverage of a common topic in different cells, because the
result clusters may not be comparable across different cells. A better way to support common topic
comparison is to pool the text documents in all the text cells to be compared and cluster them into
P clusters, which can then be assumed to be P common topics covered in these cells and serve as
a common basis for comparison of different cells. With these P topic clusters as a basis, we can
measure the content of each cell by a vector of weights corresponding to the numbers or percentages
of documents in the cell that belong to each of the P clusters. Intuitively, such a weight vector (in
P -dimensional space) indicates the coverage of each common topic in the corresponding cell, thus
comparing these weight vectors across cells can easily reveal which cell covers which topic more and
generate trends of topic coverage in any standard dimension with ordinal variables (e.g., location or
time).
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Once again, MiTexCube can speed up this clustering process as we only need to cluster all the
micro-clusters in these cells instead of all the documents in them. Without MiTexCube, we would
have to pool all the documents together and then cluster them from scratch into P common topics.
As discussed earlier in the case of standard cell summarization, MiTexCube can be potentially much
faster than this baseline approach and it also naturally allows us to flexibly take a tradeoff between
efficiency and clustering quality.

5. Experimental Results

In this section, we will evaluate how well our MiTexCube model supports multiple representative
analysis tasks.

5.1. Data Sets. We used the ASRS database [1] for our experiments. We downloaded and extracted
two years (1998, 1999) of the data from the database, giving us a total of 4073 records for our
experiments. We selected 7 dimensions from the database to construct our MiTexCube, and the
number of distinct values in each dimension is summarized in Table 5.

Table 5. Number of distinct values in each dimension

State Flight Condition Light Operator FAR Flight Phase Affiliation
3 5 2 8 8 32 10

5.2. Evaluation of Representative Analysis Tasks.

5.2.1. Standard Cell Summarization. We first look at standard cell summarization and compare our
GS-MC method, which is based on MiTexCube, with the baseline method GS-Base, which works
directly on the documents in a cell, in terms of both efficiency and effectiveness. We vary the
parameter K to generate different settings of GS-MC with different numbers of micro-clusters K
in each cell, which will be denoted by a suffix indicating the value of K. For example, GS-MC-100
refers to the setting of K = 100.
Efficiency: In Figure 5(a), we compare the speed of clustering documents or micro-clusters when
we vary the size of a cell from 1,000 to 3,000. The target number of clusters in this experiment is
10, which means that we use 10 clusters to summarize the content of documents in each cell. From
Figure 5, we can see that for all the three different settings (i.e., K=20, 60, and 100), GS-MC is
much faster than the GS-Base method, and for some cells, GS-MC is 100 times faster than GS-Base.
Moreover, as the number of documents increases, the GS-Base method slows down dramatically, but
the time cost of GS-MC does not increase much. In general, the larger the number of micro-clusters
K is, the slower the GS-MC method is; this is the price we pay for obtaining a finer granularity
representation of content, which gives us better approximation of content.

In Figure 5(b), we further compare the two methods by varying the number of targeted clusters.
Here, we also test three different settings for GS-MC, corresponding to setting K to 60, 80, and 100,
respectively. In this experiment, we use a cell which has 2000 documents in it. From the figure, we
can make the same conclusion as in Figure 5(a), i.e. GS-MC is much faster than GS-Base in all the
settings.
Quality of clustering: Since there is always a tradeoff between the efficiency and accuracy, we
expect our method GS-MC to have inferior quality to the baseline method GS-Base, and our main
goal is to see how well GS-MC can support flexible tradeoff between efficiency and quality. (Indeed,
we may view GS-Base as a special case of our GS-MC when we have each document as a micro-
cluster.) Table 6 shows the comparison result in a text cell with 2000 documents, and the number
of target cluster P is set to 10 and 5. For each method, we compute its clustering quality as well as
its time cost, and the numbers are the average result of 10 runs for each method on each test case.
Here, the quality of a clustering result is the sum of cosine similarity between each document vector
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Figure 5. Efficiency Comparison between GS-Base and GS-MC

and its cluster’s mean vector, which intuitively captures the coherence of a cluster, and the larger
the better.

We tried two strategies to improve the quality of the clustering result.
1. Increasing the number of micro-clusters: During online analysis, when we need finer granularity
of micro-clusters to analyze a text cell, we can always go down to its sub cells, which result in a set
of larger number of micro-clusters. In our experiment, we test our method with different number
of micro-clusters (i.e. K80, K500, K1000), and the result in the table shows that as the number of
micro-clusters increase we can get improvement on the quality by sacrificing some time.
2. Additional iterations of document based clustering: After running GS-MC, we may also further
improve the quality of clustering by starting from the results of GS-MC and running additional
iterations of k-means on document vectors, as shown in the last six rows of the table where we show
the results of running one additional iteration and two additional iterations. For example, K80 +
1 means we do one iteration of document-based clustering after clustering all the 80 micro-clusters
into P target clusters, using mean vectors of the result P clusters as the starting point. The result
also shows that by additional iterations of document vector based clustering, the quality of clusters
can be improved.

Overall, although the baseline method gets very high quality of cluster, the time cost of it is also
the highest. With the help of MiTexCube, GS-MC can indeed support flexible tradeoff between
efficiency and quality of clustering.

Table 6. Quality Comparison for Standard Cell Summarization

P= 10 P= 5
Method Quality Time Quality Time
Baseline 491.84 52.36 444.09 47.38

K80 445.59 0.57 408.02 0.50
K500 456.22 6.55 420.82 6.31
K1000 469.87 17.83 430.60 14.86

K80 + 1 463.88 3.53 422.35 2.77
K500 + 1 473.98 9.78 432.84 8.71
K1000 + 1 482.36 21.15 437.90 17.29

K80 + 2 468.11 6.46 427.01 4.98
K500 + 2 477.12 12.97 434.19 11.03
K1000 + 2 484.30 24.42 438.48 19.69
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5.2.2. Query-Specific Cell Summarization. We now look at query-specific cell summarization, and
here we compare our method QS-MC with the MMR baseline method QS-Base again in terms of
both efficiency and quality. We use a query (“flight”, “system”) to test the performance of the two
methods (similar conclusions can be drawn with other queries). To calculate the similarity between
a document and a query, we use the KL-divergency retrieval model [9].
Efficiency: Figure 6(a) and Figure 6(b) show the experimental results for different cell sizes and
different numbers of summary documents, respectively. From these figures, we can see that the time
cost of QS-Base increases linearly as we increase either the total number of documents in a cell or the
number of target summary documents. If we look at Eq. 3, we can find out that in MMR, whenever
a top ranked document is selected, it would need to update the score of all the rest documents, and
this is the reason why the time cost of QS-Base increases linearly as shown in Figure 6.

In contrast, the time cost of QS-MC only increases very little when the total number of documents
increases, as shown in Figure 6(a), or when the number of target summary documents increases,
as shown in Figure 6(b). Moreover, the performance of different settings of the number of micro-
clusters K do not have very much difference, so that their curves overlap with each other. Actually,
from previous section we can know that the time cost of QS-MC mainly depends on the process of
document ranking, and almost independent of the number of target summary documents and the
setting of the number of micro-clusters K. So overall, the QS-MC method is much faster than the
QS-Base method.
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Figure 6. Efficiency Comparison between QS-Base and QS-MC

Quality: Table 7 shows the quality comparison result of one query when we retrieve 20 document
as a summary based on two measures: (1) coverage and (2) relevance. The coverage is calculated
using the following method: for each unselected document, we calculate the highest cosine similarity
of this document with the selected 20 documents as its score, which intuitively captures how well
this document is covered by the selected 20 documents. Then, we sum over the scores of all the
unselected documents as the coverage. Relevance is the total similarity of all the selected document
to a query. The top three rows are results of MMR (i.e., QS-Base), and the bottom three rows are
result of our method (i.e., QS-MC ), where K is the number of micro-clusters in the cell and λ is
the weight parameter used in MMR. The total number of document is 2000. From these results,
we can see that QS-MC consistently outperforms QS-Base in coverage due to better capturing
the representative topics in the cell through micro-clusters, confirming our hypothesis that direct
modeling topics through micro clusters is more effective for selecting documents representing the
cell well than the indirect way through eliminating redundancy used in MMR. However, we also
note that QS-MC has lower relevance than QS-Base, which indicates a tradeoff between relevance
and coverage as well as a tradeoff between relevance and efficiency (as discussed earlier, QS-Base
is much less efficient than QS-MC ). Note that here again MiTexCube allows us to make flexible
tradeoff between relevance and efficiency since as K get larger, we get better relevance.
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Figure 7. Common Topic Comparison

Table 7. Quality Comparison for Topic-biased Cell Summarization

λ 0.2 0.4 0.6 0.8 1
relevance -283.27 -282.278 -282.278 -282.218 -282.21
coverage 258.28 257.919 257.919 259.707 259.707

K 10 20 30 50 100
relevance -284.86 -284.0996 -282.8749 -282.6589 -282.5442
coverage 264.3687 269.9924 271.238 264.84 267.6433

5.2.3. Sample results of comparative analysis of text cells. We use sample results to show the effec-
tiveness of MiTexCubein the Common Topic Comparison task. We use the total 4071 documents
within three cells for the comparison, which have different locations(states), namely CA, TX, and
FL. The number of common topics to be compared is set to 10.

Figure 7(a) shows the comparison result based on document units1. Figure 7(b) is the result
based on micro-clusters in which each cell has 100 micro-clusters inside, and Figure 7(c) is the result
where each cell has 500 micro-clusters. The y-axis is the number of documents that belong to one
topic within a cell. The three topics on the x-axis are the top three major topics within the 10
common topics. The top weighted terms are also listed under each graph. We can see that the
two micro-cluster based methods got similar comparison result to the document unit based method.
When the number of micro-clusters of each cell increases, the comparison results are much closer
to the document unit based approach. For example, for the comparison of topic 3 over different
states, Figure 7(c) is more accurate than Figure 7(b). In addition, compared with the K100 based
approach, the K500 based approach has more similar top weighted terms to the document based
approach. The time cost for these three methods are: 215.77, 18.09, and 62.35 seconds, which shows
the advantage of micro-cluster based methods in terms of efficiency.

6. Conclusions and Future Work

In this paper, we proposed a novel cube called MicroTextCluster Cube (MiTexCube) to enable
efficient online analysis of text cells in several applications. We propose a progressive materialization
algorithm for this novel cube and methods to leverage MiTexCube for three analysis tasks, including
standard cell summarization, query-specific cell summarization, and common topic coverage compar-
ison. Experimental results on a real multidimensional text database show that applications based on
the proposed materialized MiTexCube are more efficient than the baseline methods of direct analysis

1Abbreviations: (ft: Feet), (tcasii: Traffic Alert and Collision Avoidance System), (deg: Degree), (rwy: Runway),

(twr: Tower), (apch: Approach), (eng: Engine), (maint: Maintenance), (tfc: Traffic), (alt: Altitude), (txwy, Taxiway),
(rptr: Reporter)
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based on document units in each cell, without sacrificing much quality of analysis. The proposed
MiTexCube has several parameters to accommodate flexible tradeoffs between time and space as well
as effectiveness and efficiency.

As for our future work, exploring how to leverage MiTexCube for tasks in other domains like
production review analysis is very interesting. Also, the basic idea of using multi-resolution micro-
clusters to achieve a compact semantic representation of data is general and can be used in other
multidimensional text database analysis. We plan to further explore these directions in the future.
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A STOCHASTIC METHODOLOGY FOR PROGNOSTICS UNDER

TIME-VARYING ENVIRONMENTAL FUTURE PROFILES

LINKAN BIAN AND NAGI GEBRAEEL*

Abstract. We present a stochastic model of a sensor-based degradation signal for predicting, in

real time, the residual lifetime of individual components subjected to a time-varying environment.
We consider future environmental profiles that evolve in a deterministic manner. Unique to our

model is the union of historical data with real time sensor-based data to update the degradation

model and the residual life distribution (RLD) of the component within a Bayesian framework.
The performance of our model is evaluated based on degradation signals from both numerical

experiments and a case study using real bearing data. The results show that our approach provides

more accurate estimates of the RLD, compared with benchmark models.

1. Introduction

Sensor technology with condition monitoring techniques has been widely used in monitoring
critical engineering components in complex systems, such as complex wind turbine systems, aircraft
components, smart structures, manufacturing equipment, and so on. The resulting real-time sensory
data, known as degradation signals, are usually correlated with the underlying physical degradation
process, which might be unobservable. The environmental or operating conditions may have a sig-
nificant impact on the remaining lifetime of a component. For example, increasing the load and the
speed of rotating machinery may accelerate the degradation of its components, such as roller bear-
ings. The effects of time-varying environments and the uncertainties associated with components’
degradation processes pose challenges on accurately forecasting the remaining life distributions of
components. Therefore, it is important to develop a prognostic model that can incorporate the effect
of environmental or operating conditions.

In this paper, we propose a stochastic model for the evolution of degradation signals from a
fielded component, which operates in time-varying environments; and predict the residual useful
life of the component in real time. This paper examines the effects of the severity of the current
environment on the rate of degradation. Furthermore, our model is unique because it accounts
for the reality that the transitions in environments may induce upward or downward jumps in the
amplitude of the degradation signal, depending on the nature of the changes. We assume that the
component operates in a time-varying environment that the environmental profile is deterministic
and known (i.e., there is no uncertainty about how the environment transitions in the future). Unlike
the traditional reliability approaches, our approach incorporates historical data of a population of
similar components with real-time sensor data that updates the residual life distribution in real time.

The remainder of the paper is organized as follows. In Section 2, we review the extensive literature
related to lifetime estimation that includes models with and without environmental effects. Section
3 describes the degradation models which assumes the environmental or operating conditions evolve
dynamically, but in a deterministic manner. In Section 4, we describe a simulation study to compare
the results of our model with other existing models in the current literature. In Section 5, we discuss
a case study with the implementation of bearing data. Finally, in Section 6, we provide some
concluding remarks and the future extensions of this paper.
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2. Relevant Literature

Residual life estimation for components operating in static environments has been studied ex-
tensively in the literature. We highlight a number of important contributions here [16, 15, 5]. For
example, in [16], the authors developed Brownian motion models of the degradation process of
testing units and used lifetime data to estimate the lifetime distribution of a population of units.
Besides, [5] considered the utilization of real-time degradation signals for updating the residual life
distributions (RLDs) of partially degraded components. The authors modeled a degradation signal
as a Brownian motion process which leads to a closed-form results for the residual life distribution.
None of the models described here consider the effect of the unit’s operating environment.

The literature related to models for the lifetime distributions of components operating in dynamic
environments can be partitioned into two groups. Papers in the first group utilize Cox’s proportional
hazard model (PHM). Due to its generality and flexibility, the PHM has been widely utilized to
relate the hazard function to the environmental conditions. For example, [9] utilized Cox’s PHM
in optimizing condition-based maintenance. The authors modeled the environmental conditions as
the time-varying covariates of the hazard function. Along this line, [2] considered an environmental
process, which evolved as a Markov process. The authors applied an approximation technique to
assess the distribution of failure time. The resulting expression of the failure time distribution was
represented in a complex integral form. Computational issues associated with this problem were
further investigated in [1] where the authors proposed a general numerical methods to approximate
the failure time distribution. Other extensions and applications of PHMs can be found in [7, 12, 19].

The second group of literature focuses on modeling the degradation process or its manifestations.
These processes are usually characterized by stochastic processes such as Brownian motion, general
Markov processes and others. For example, [4] applied Brownian motion with a stress-dependent
drift to accelerated life test experiments and developed the failure time distribution. [6] considered a
similar problem with deterministic environmental profiles. Furthermore, [10] examined the problem
wherein the state of environmental condition evolved as a Markov process. [11] extended the model
in [10] to consider the addition of Poisson shocks, each of which induces a random amount of damage
to the system. However, [10, 11] did not account for the possibility of shocks that may occur at
environment transition epochs.

In contrast to research described here, this work is concerned with the modeling of the degradation
signal of a component that is monitored in real time. By observing the real-time degradation
signal and the environment, we update the residual life distribution of the component in real time.
Therefore, the predicted residual life distribution depends on the prior information as well as the
future environmental conditions. Furthermore, we explicitly include upward and downward jumps
in the degradation signal stemming from transitions of the environment process, which has not been
considered in previous works. Section 3 presents our degradation signal model for the case when the
environment is time-varying but deterministic.

3. Degradation in a Deterministic and Dynamic Environment

In this section, we present the degradation model and a method for estimating the residual life
distribution (RLD) of the component in real time via Bayesian updating. Here, we assume that the
environment is time-varying but deterministic. We begin with an elucidation of the notation and
a few preliminaries. For each t ≥ 0, let S(t) be the degradation signal at time t, and let S(0) be
the initial signal observation. We assume that a population of identical components begins with the
same initial degradation signal. At any time t ≥ 0, the component’s environment can occupy one of
the states in a set S = {1, 2, . . . ,m},m <∞. Deciding the appropriate number of environment states
m, and a meaningful ordering of the states in S, are important aspects of our modeling framework
discussed in the following subsection. Let ψ : [0,∞)→ S be an S-value deterministic and piecewise
constant function so that ψ(t) is the state of the environment at time t. That is, the environment
visits the states in S in a deterministic way. Besides, we denote by r(ψ(t)) the component’s rate
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of degradation at time t such that whenever ψ(t) = j ∈ S, the component degrades at rate r(j).
Finally, we account for the reality that in typical applications, the degradation signal exhibits jumps
at environment transition epochs. To this end, we denote a mapping J : S → R so that J(ψ(v)) is
a function of the jump (either upward or downward) that occurs at time v. Specifically, for these
models, the jump magnitude is a deterministic quantity that depends on the environment state just
before and after the jump epoch. The mapping J can assume a variety of forms; however, in this
research we assume that the jump magnitude is proportional to the current state of the environment.

With these definitions and notation, the model of the degradation signal is

(1) S(t) = S(0) +

∫ t

0

r(ψ(v))dv +

∫ t

0

J(ψ(v)) + γW (t),

where {W (t) : t ≥ 0} is a standard Brownian motion (BM) process, and γ(γ > 0) is its diffusion
parameter. That is, for each t ≥ 0, γW (t) ∼ N(0, γ2t), where N(a, b) denotes a normal random
variable with mean a and variance b. This term models degradation effects that cannot be attributed
to the environment process. Figure 1 graphs a sample path of the degradation process S(t) and
illustrates the effect of the deterministic environment on its evolution.

)(v

3)( v 2)( v 3)( v

Environmental Conditions

1)( v

Degradation Signal

Time

Figure 1. Simulation Results: Deterministic Environments

The component’s time to failure corresponds to the first time the degradation signal {S(t) : t ≥ 0}
crosses a fixed, deterministic threshold D, i.e., the failure time, TD, is the first passage time,

TD = inf{t > 0 : S(t) ≥ D}.
The primary objective of this paper is to provide a framework for online updating the remaining life
distribution of the component based on discrete observations of the signal process S(t) over time.
Specifically, given a sequence of k + 1 realized signal observations {s(ti) : i = 0, 1, 2, . . . , k}, let Rk
denote the remaining time needed for the signal to first reach the threshold D, given the set of signal
observations up to time tk. Our aim is to estimate the distribution of Rk namely

P(Rk ≤ t− tk|s(t0), . . . , s(tk)), t > tk.

An important distinction needs to be made here regarding the random variable Rk and the
standard residual life distribution. Assume for the moment that the distribution of TD is known in
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advance. Then the residual life distribution is defined by

P(TD > t+ tk|TD > tk).

However, for real applications computing the residual life distribution in this way does not have
much value because (1) the true distribution of TD is not typically known in advance, and (2) it
does not exploit available information about the current condition of the component information
that can drastically affect the estimate of the remaining useful lifetime of the component.

The novelty of our approach is the updating of the residual life distribution using real-time sensor
data to dynamically estimate parameters of the signal model S(t) within a Bayesian framework.
This distinguishes our hybrid stochastic model from other failure models that either do not update
parameter estimates in real time, or do not consider the evolution of the environment and its effects
on the component. Next, we describe an important aspect of the modeling framework, namely
determining the set of environment states and arranging the elements of the set by ordering them
according to their level of severity.

3.1. Determining and Ordering the Environment States. The degradation of fielded compo-
nents are affected by many factors, some of which may result in higher rates of degradation than
others. For example, the degradation of a rotating bearing is affected by the rotational speed of
the bearing and the current load being applied to it, the current ambient temperature as well as
humidity. However, not all of the factors are necessarily significant, and some of these possible
combinations have a similar effect on the degradation rate so that states can be aggregated. Since
an extremely large number of environmental states might raise possible computational issues, we
focus on the scenario, in which the number of environmental factors is reasonably moderate. In
what follows we briefly discuss a means, by which we choose the significant factor and order the
environment states.

Suppose there are initially N factors, X1, . . . , XN . We consider the response of degradation rate
under a variety of settings to determine the impact of factors and/or their combinations. There are
a number of ways to do this, and we use a linear regression model of the form

r = β0 + β1X1 + β2X2 + . . .+ βNXN + ε,

where βi, i = 1, 2, . . . , N are unknown coefficients estimated by real data and ε denotes a zero-mean,
normally distributed error term with homogeneous variance. To determine which factors (or their
interactions) are most significant, one can employ any number of standard techniques (e.g. stepwise
regression, best subset selection, a design-of-experiments approach, etc.).

Next, let us assume that some number of factors, say B < N , has been chosen for inclusion
in the model, and denote these B significant factors by Y1, Y2, . . . , YB . An environment condition
is considered as a specific combination of the levels of the significant factors so that E(l1, . . . , lB)
denotes the environment condition when Y1 assumes level l1, Y2 assumes level l2, and so forth. We
now propose an algorithm to order the environmental conditions E(l1, . . . , lB) with regard to their
impact on the corresponding degradation rate, denoted by r(l1, . . . , lB).

We discuss the sorting algorithm for two cases. First, we can first apply engineering expertise to
sort the severity of environmental factors. For any two vectors, (l1, . . . , lB) and (l′1, . . . , l

′
B), define

the partial order (≥) by

(2) (l1, . . . , lB) ≥ (l′1, . . . , l
′
B)

if lk ≥ l′k, for k = 1, 2, . . . , B. If the factor levels can be ordered in such a way, then it is clear that
r(l1, . . . , lB) ≥ r(l′1, . . . , l

′
B). However, if the partial ordering of (2) cannot be established, then one

can perform a hypothesis test of the form

H0 : r(l1, . . . , lB) ≥ r(l′1, . . . , l′B) against H1 : r(l1, . . . , lB) < r(l′1, . . . , l
′
B)

using a simple experiment or observations obtained from a database of historical observations (if
available). If there is sufficient evidence to reject H0 at the α level of significance, we conclude that
environment condition E(l1, . . . , lB) is less severe than the environmental condition E(l′1, . . . , l

′
B).
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Figure 2. A Bayesian Updating Scheme at Two Observation Times

This comparison procedure can be applied pairwise to all environment conditions that do not satisfy
the partial order of (2). Therefore, we can order all of the critical environment states in S from low to
high by severity so that, for any two i, j ∈ S, i < j implies that state i induces a smaller degradation
rate than state j. The proposed approach investigates the effects of environmental factors on the
rate of degradation. This approach can be naturally generalized in future research to incorporates
the multiplicative interactions of environmental factors. The resulting extension will account for the
possibility that significant environmental factors may vary for different environments. However, in
this paper, we focus on effects of independent environmental factors on the degradation rate.

3.2. Bayesian Updating of the Degradation Model. In this subsection, we describe our Bayesian
approach for updating the degradation model using prior information estimated from historical data
in conjunction with real-time degradation signal observations obtained from a fielded component.
For many applications, a historical database of degradation signals and environmental conditions is
available for the estimation of prior information. However, even identical components can exhibit
significant differences due to variations in the components’ quality, etc. By combining both histor-
ical and real-time data, we are able to account for these inherent differences. Figure 2 shows the
Bayesian updating scheme we propose in the work. The plots on the left and right columns illus-
trate the observed real-time information at two observation times. As we monitor more degradation
signals and environmental information, we update the degradation model as well as the estimate
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of the residual life distribution. The real-time updating of the degradation signal S(t) hinges upon
the updating of the degradation rate function r, the mapping J , and the drift parameter γ. Let us
denote the joint prior distribution of (r, J, γ) by πs(r, J, γ), where we suppress the dependence of
r and J on the environment state ψ(t) for notational convenience. By monitoring in real time the
degradation signal of a fielded component (via sensors), along with the current state of the environ-
ment, we will update the prior distribution πs. Suppose the degradation signal is monitored at times
t0, t1, . . . , tk such that 0 = t0 < t1 < . . . < tk, and let s(ti) denote the observed signal at observation
time ti (the ith observation epoch). We represent the set of observations by a vector sk ∈ Rk+1,
where sk = (s(0), s(t1), . . . , s(tk))′. Additionally, we also observe the magnitude of jumps occurring
at environment transition epochs. Therefore, in addition to the vector sk, we observe the ordered
pairs,

{(vj , ψ(v+j )) : j = 1, 2, . . . , n(tk)},

where vj is the time of the nth environment transition, ψ(v+j ) is the state of the environment just after

the jth environment transition where for some ε > 0, v+j = limε→0 vj +ε, and n(tk) is the cumulative
number of environment transitions up to time tk. Using this convention, the environment maintains
state ui over the interval [vi−1, vi), i = 1, 2, . . . , n(tk).

Next, we denote the likelihood function of the degradation signal by fs(sk|r, J, γ). In the basic
Bayesian framework, the posterior distribution of (r, J, γ) is computed by

(3) νs(r, J, γ|sk) = πs(r, J, γ)fs(sk|r, J, γ).

In the next subsection, we show how to use the signal and environment observations to dynamically
estimate the residual life distribution of the component as it degrades over time.

3.3. Estimating the Residual Life Distribution. When the future environmental profile is de-
terministic, the distribution of the residual life can be obtained using boundary crossing probabilities
for a standard Brownian motion (BM) process. In particular, we consider a boundary that is piece-
wise linear over an interval [0, T ]. We decompose the degradation signal into its deterministic and
stochastic components, respectively so that

S(t) = ζ(t) + γW (t),

where

ζ(t) = s(0) +

∫ t

0

r(ψ(v))dv +

∫ t

0

J(ψ(v))dv

is the deterministic portion of the signal, and γW (t) is the stochastic component. As shown in
Figure 3, the probability that the signal is below the threshold D at time t is given by

P(S(t) < D) = P(γW (t) < D − ζ(t)),

where, by virtue of our modeling framework, the function D − ζ(t) is linear in t. For convenience,
we denote this function by d(t) = D − ζ(t), where the slope of ζ(t) is r(ψ(t)). The probability that
the degradation signal does not exceed D on [0, T ] is equivalent to the complementary probability
that a standard BM process crosses a linear boundary whose slope depends explicitly on the current
environment state. Boundary crossing probabilities for BM processes have been well-studied in the
literature [17, 18]. For instance, if the function d(t) is linear on [0, T ], [17] derived the (conditional)
probability that a BM process crosses the linear boundary in this interval. This result was extended
to piecewise linear functions without jump discontinuities on [0, T ] by [18]. Theorem 1 below ex-
tends Theorem 1 of [18] to consider the case when the function d(t) is piecewise linear with jump
discontinuities at finitely-many deterministic points. To this end, we partition the interval [0, T ] so
that

[0, T ] =
n⋃
j=1

[vj−1, vj),
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where vj denotes the time of the nth jump in the signal process. It is important to note that both
upward and downward jumps can occur. Therefore, to simplify notation in Theorem 1, let mj =
min{dj , d−j } where dj = d(vj) and d−j = d(v−j ), j = 0, 1, . . . , n, and let d = (d1, d

−
1 , d2, d

−
2 , . . . , dn, d

−
n )′.

Theorem 3.1. Let 0 = v0 < v1 < . . . < vn = T denote n fixed jump times, and suppose d(v) is
linear on [vj−1, vj), j = 1, 2, . . . , n with d(0) > 0. Then for each v ∈ [0, T ], the complement of the
crossing probability of a Brownian motion process, γW (v), with diffusion parameter γ is given by

(4) P(γW (v) < d(v)) = E[h(W (v1), . . . ,W (vn);d)],

where

h(x1, x2, . . . , xn;d) =
n∏
j=1

1(xj < mj/γ)∆(vj , vj−1)

with

∆(vj , vj−1) = 1− exp

[
−

2[dj−1/γ − xj−1][d−j /γ − xj ]
vj − vj−1

]
,

and 1(A) is the indicator function for condition A.

Proof. The details of the proof can be referred to [3]. �

Suppose the degradation signal has been sampled at k distinct times, t1, . . . , tk, and the current
time is tk < T . The deterministic process, {ψ(t) : tk < t ≤ T}, is the future environmental profile
from time tk up to some future time T . On the interval (tk, T ], the deterministic component of the
degradation signal is

(5) ζk(t) = s(tk) +

∫ T

tk

r(ψ(v))dv +

∫ T

tk

J(ψ(v))dv.

Define by Rk the residual life of the component at time tk, given that the degradation signal has
not crossed the threshold on the interval [0, tk]. Applying Theorem 1, we estimate the distribution
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of Rk as follows:

(6) P(Rk ≤ T |sk) = 1− E[h(W (v1), . . . ,W (vn);dk)],

where v1, . . . , vn are the transition epochs of the environment process {ψ(t) : tk < t ≤ T},
and dk indicates the dependence of d on the observation time tk. Equation (6), though simple
in form, is not easy to compute due to the multidimensional integration requirement of Equa-
tion (4). To circumvent this integration, we propose a Monte-Carlo simulation approach to estimate
E[h(W (v1), . . . ,W (vn);dk)]. The algorithm is as follows:

Algorithm 1: Monte-Carlo Simulation Approach

Input: A sufficiently large number of realizations M ′, e.g., M ′ = 5000.
Output: The Monti-Carlo estimate of P(Rk ≤ T |sk).
Step 1 (simulation): For each j = 1, . . . ,M ′, generate n independent normal random variables, say
X1, . . . , Xn such that for i = 1, . . . , n, Xi ∼ N(0, γ2(vi − vi−1)) with v0 = 0 and

wj
i =

i∑
k=1

Xk, i = 1, 2, . . . , n.

The vector (wj
1, . . . , w

j
n) is the jth realization of (W (v1), . . . ,W (vn)).

Step 2 (averaging): By applying the strong law of large numbers (SLLN), for sufficiently large M ′,
we can estimate the residual lifetime distribution at time tk by

P(Rk ≤ T |sk) ≈ 1− 1

M ′

M′∑
j=1

h(wj
1, . . . , w

j
n;dk).

3.4. An Illustrative Example. We now illustrate the updating of the residual life distribution
by describing a model with a specific form of the degradation rate function and the environment-
dependent jump process. The rate of degradation, as a function of the environment state, is given
by

r(ψ(v)) = α+ βψ(v),

and the impact of jumps is captured by the function

J(ψ(v)) = ηψ(v),

where α, β, and η are the parameters of the degradation signal model as is γ, the diffusion coefficient.
The prior marginal distributions of these parameters are

α ∼ N(µ1, σ
2
1), β ∼ N(µ2, σ

2
2), η ∼ N(µ3, σ

2
3), γ ∼ N(µ4, σ

2
4).

The parameters are assumed to be mutually independent random variables. To estimate the pos-
terior distribution of (α, β, η, γ), or equivalently of (r, J, γ), we next derive the likelihood function
of degradation model. The likelihood function, conditioned on the parameter vector (α, β, η, γ), is
denoted by

L(sk|α, β, η, γ) =
k∏
i=1

φi[s(ti)− s(ti−1)],

where φi is the probability density function of a normal distribution with mean∫ ti

ti−1

[α+ βψ(v)]dv + η

∫ ti

ti−1

ψ(v)dv

and variance γ2(ti − ti−1). To simplify notation, let Gtk = {ψ(v) : 0 ≤ v ≤ tk}. The posterior
distribution of (α, β, η, γ) is

νs(α, β, η, γ|sk,Gtk) = πs(α, β, η, γ)×
k∏
i=1

φi[s(ti)− s(ti−1)],
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where

πs(α, β, η, γ) = ϕ1(α)ϕ2(β)ϕ3(η)ϕ4(γ),

and

ϕi(x) =
1√

2πσ2
i

exp

[
− (x− µ)2

2σ2
i

]
, i = 1, 2, 3, 4.

The updated residual life distribution at time tk is given by

P(Rk ≤ T |sk,Gtk) =

∫
α,β,η,γ

P(Rk ≤ T |sk, α, β, η, γ)× νs(α, β, η, γ|sk,Gtk)

=

∫
α,β,η,γ

P(Rk ≤ T |sk, α, β, η, γ)πs(α, β, η, γ)×
k∏
i=1

φi[s(ti)− s(ti−1)]

= Eπs

[
P(Rk ≤ T |sk, α, β, η, γ)

k∏
i=1

φi[s(ti)− s(ti−1)]

]
,(7)

where Eπs
is the expectation operator with respect to measure πs. In a manner similar to that de-

scribed for estimating P(Rk ≤ T |sk), Equation (7) can be estimated using Markov chain Monte-Carlo
(MCMC) techniques. Specifically, a sufficiently large number (say M ′) of realizations of (α, β, η, γ)
can be simulated from the joint density πs(α, β, η, γ) in order to estimate the corresponding values
of

P(Rk ≤ T |sk, α, β, η, γ)
k∏
i=1

φi[s(ti)− s(ti−1)].

Applying the SLLN, for sufficiently large M ′, the updated RLD is estimated by

P(Rk ≤ T |sk,Gtk) ≈ 1

M ′

∑
(α,β,η,γ)

[
P(Rk ≤ T |sk, α, β, η, γ)

k∏
i=1

φi[s(ti)− s(ti−1)]

]
.

Numerical examples illustrating the quality of these estimates will be provided in Section 4.

4. Simulation Study

In this section, we will discuss the simulation study for the degradation model under deterministic
environments. We compare our results with two benchmarks: [6] and [4]. In [6], the authors model
degradation signals with time-varying degradation rate and jumps when environmental transition
occurs. The authors assume that future environmental conditions remain the same as current en-
vironment when predicting residual life distributions. In [6], the authors consider a degradation
model in which time-varying environments affect the degradation rate only. The authors develop
an expression for the lifetime distribution under time transformation. However, possible jumps in
degradation signals caused by transitions of environmental conditions are not considered. We will
show that RLD prediction using our proposed method is more accurate than these two benchmark
models. To evaluate performance of our proposed models we compute the prediction error as the
follows:

Prediction Error =
|Actual Lifetime− Estimated Lifetime|

Actual Lifetime
.

We continue with the model in the illustrative example and simulate degradation signals up to
failure using parameters listed in Table 1. Besides, we let the deterministic environmental condition
evolve as the following step-wise function:

ψ(t) =


1, 0 ≤ t < 100
2, 100 ≤ t < 200
1, 200 ≤ t < 300
2, 300 ≤ t

.
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Table 1. Parameter setup for the simulation study.

Prior Distribution of α µ1 0.3 σ2
1 0.03

Prior Distribution of β µ2 0.5 σ2
2 0.05

Prior Distribution of γ µ4 3 σ2
4 0.3

Failure Threshold D 350

To analyze the effects of jumps at the transition times, which distinct our model from most current
research, we conducted simulation studies for µ3 = 0, 10, 20 with σ2

3 = 0.1µ3, where µ3 and σ2
3 are

the prior mean and variance of the jump factor η, respectively. For each setup of parameters, we
simulate 1000 degradation signals, which are divided into two groups. The first group of signals
are used to as training data, from which we estimate prior distributions of model parameters; and
the second group is used as testing data, which we use to test online prediction of residual life
distributions. The degradation signals are simulated via the following procedure:

(1) We simulate samples of α, β, η and γ using parameters listed in Table 1. The resulting
realizations are denoted by αi, βi, ηi and γi.

(2) Using αi, βi, ηi, γi and ψ(t), we simulate degradation signal si(t) with the formula

si(t) =

∫ t

0

(αiψ(v) + βi)dv + ηi

∫ t

0

dψ(v) + γiW (t)

until it hits the failure threshold D.
(3) For each simulated signal si(t), we resample degradation signals at discrete epochs t =

1, 2, 3, . . . , ki, where ki is the actual lifetime of signal si(t).

To estimating the prior distributions of (α, β, η, γ), i.e., (µj , σ
2
j ) for i = 1, 2, 3, 4, we applied an two-

stage method as proposed in [13] to the training data. Based on these estimated prior distributions,
we test online prediction of RLD using the testing data. Residual lifetimes are computed at the 50th

and 90th percentiles of lifetimes; the sample mean and variance of prediction error are computed.
We compare the results of our model with the following two benchmarks [4] and [6]. The result is
presented in Figure 4, where (1) represents results from [4]; (2) represents results from [6]; and (3)
represents results from our proposed method. For each approach, we estimate the RLD in three
cases: the prior mean of the jump factor η equals 0, 10, and 20.

We observed that the prediction accuracy of our proposed approach is higher than that of [6], in
which assume that the future environmental condition remains the same as the current environmental
condition as they predict the RLD. With regard to [4], the authors forecast the lifetime distribution
of components without considering the possible shocks caused by environmental changes. As η = 0,
the transitions of environments do not cause jumps in the amplitude of degradation signals. The
resulting prediction accuracy of our model and that of [4] are very close. However, for larger jumps
(the mean of η equals 10 and 20), our proposed method has the smallest prediction error because
we completely characterize the features of simulated signals and utilize online data.

5. A Case Study

In this subsection, we present a case study that involves ball bearings operating under deter-
ministic environmental profiles. Bearings are a crucial component in nearly all rotating machinery,
such as hot rolling mills, steam and wind turbines, and many other applications. The failure of
bearings has been widely studied in the literature, and vibration monitoring is considered as one of
the most widely used techniques for monitoring bearing degradation ([8]). We use vibration-based
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(a) Prediction Error: 50th Percentile 
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(b) Prediction Error: 90th Percentile 

Figure 4. Simulation Results: Deterministic Environments

degradation signals generated from an experimental test rig that is designed to perform accelerated
degradation tests on ball bearings using different loads and rotational speeds.

We conduct vibration analysis and construct the vibration-based degradation signals based on
the fact that the bearing’s vibration amplitude of defective frequencies is associated with its health
condition. In particular, we compute the average amplitude of the defective frequency and its first
five harmonics. We limit ourselves to the first five harmonics since higher-order harmonics have been
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observed to behave erratically. Furthermore, we define bearing failure based on the root mean square
(RMS) value of the overall vibration of the test rig. According to industrial standards for machinery
vibration, ISO 2372, 2.0–2.2 G (G denotes gravitational acceleration) represents a vibration-based
danger level for applications involving general purpose mid-size machinery. We use this standard to
identify a corresponding failure threshold of 0.025 Vrms (Root Mean Square Volts).

In this study, we examine the effects of two environmental factors: the load applied to the bearing
and the rotational speed of the bearing. In particular, two different loads (400 lbs and 500 lbs) and
two different rotational speeds (2,200 rpm and 2,600 rpm) are considered; therefore, initially there
are four distinct environmental conditions: (2,200 rpm, 400 lbs), (2,200 rpm, 500 lbs), (2,600 rpm,
400 lbs), and (2,600 rpm, 500 lbs). To construct the mapping from the environmental conditions to
the environmental state space, we apply the procedure in Section 3.1 that determines and orders the
environmental states so that state 1 represents the state with the lowest degradation rate and state
4 the highest degradation rate. Let r(s, l) denote the degradation rate when the rotational speed is
s (rpm), and the load is l (lbs). Since higher load or speed accelerates the degradation of bearings
([14]), we obtain the following inequalities of degradation rates in various environment states:

(1) r(2,200 rpm, 400 lbs) < r(2,200 rpm, 500 lbs) < r(2,600 rpm, 500 lbs),
(2) r(2,200 rpm, 400 lbs) < r(2,600 rpm, 400 lbs) < r(2,600 rpm, 500 lbs).

To establish a complete ordering of the degradation rates in all four environmental conditions, we
evaluate r(2,200 rpm, 500 lbs) and r(2,600 rpm, 400 lbs) using the vibration data. Our analy-
sis, which is based on the hypothesis testing procedure presented in Section 3.1, indicates that
r(2,200 rpm, 500 lbs) < r (2,600 rpm, 400 lbs). Therefore, the final ordering of degradation rates
(from least severe to most severe) is r(2200, 400) < r(2200, 500) < r(2600, 400) < r(2600, 500). The
resulting environmental states included in S are summarized in Table 2.

Table 2. Definition of ordered environmental states.

Environmental condition Environmental state
(2,200 rpm, 400 lbs) 1

(2,200 rpm, 500 lbs) 2

(2,600 rpm, 400 lbs) 3

(2,600 rpm, 500 lbs) 4

We conducted two groups of bearing tests. The first set of 12 experiments was used to estimate
prior distribution parameters for the degradation model, and these are designated as ID 1 to 12.
The second set of 3 experiments are used for validation, and these are labeled as ID 13 to 15. The
experimental setups for these two groups are summarized in Table 3. The bearings in validation
tests are run to failure so that we can observe the actual lifetime and compare it with our estimated
results. We estimate the prior distributions of model parameters using the degradation signals from
experiments 1-12 and assess online prediction of the RLD using the degradation signals from exper-
iments 13-15. The RLDs are estimated at the 30th, 60th and 90th percentiles of the components’
lifetimes. The means of the estimated lifetimes and the corresponding prediction errors are presented
in Table 4. We observe that the prediction errors at the 90th percentile of the lifetime are relatively
small. This is, in part, because the environmental condition remains constant for all of the three
online experiments after the 90th percentile of the lifetime.

6. Conclusion

In this paper, we have presented a stochastic degradation modeling framework that computes the
RLD of partially-degraded components operating under time-varying environmental or operating
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Table 3. Experiments for prior information and online validation.

Experiment ID Operating conditions Number of bearings
1 (2,200 rpm, 400 lbs) 4

2 (2,200 rpm, 500 lbs) 4

3 (2,600 rpm, 400 lbs) 4

4 (2,600 rpm, 500 lbs) 4

5 (2,200 rpm, 400 lbs) → (2,200 rpm, 500 lbs) 2

6 (2,200 rpm, 500 lbs) → (2,200 rpm, 400 lbs) 2

7 (2,600 rpm, 400 lbs) → (2,600 rpm, 400 lbs) 2

8 (2,600 rpm, 400 lbs) → (2,600 rpm, 400 lbs) 2

9 (2,200 rpm, 400 lbs) → (2,600 rpm, 400 lbs) 2

10 (2,600 rpm, 400 lbs) → (2,200 rpm, 400 lbs) 2

11 (2,600 rpm, 400 lbs) → (2,200 rpm, 400 lbs) 2

12 (2,200 rpm, 400 lbs) → (2,600 rpm, 400 lbs) 2

13 (2,200 rpm, 400 lbs) → (2,600 rpm, 400 lbs) 1

14 (2,600 rpm, 400 lbs) → (2,200 rpm, 400 lbs) 1

15 (2,200 rpm, 400 lbs) → (2,200 rpm, 500 lbs) 1

Table 4. Prediction of lifetime for validation data.

ID Actual Lifetime 30th Percentile 60th Percentile 90th Percentile
13 283 318.28 (12.5% error) 301.31 (6.5% error) 289.81 (2.4% error)

14 546 489.56 (10.3% error) 575.14 (5.3% error) 563.32 (3.1% error)

15 402 440.24 (9.5% error) 432.21 (7.5% error) 387.86 (3.8% error)

conditions. This framework uses historical and real-time signals related to the environmental condi-
tions, as well as the underlying physical degradation process. In contrast to most existing models,
we compute the components RLD in real time by utilizing the potential profile of future environ-
mental conditions that the component is likely to experience. We develop a degradation model for
the components under deterministic environments, which incorporates information from(1) histori-
cal degradation signals and the corresponding environmental conditions from a population of similar
components, (2) real-time degradation signals and the corresponding environmental conditions from
the components of interest, and (3) knowledge of future environmental conditions.
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Our proposed framework raised a few interesting and important questions that are worthy of
further consideration. First, as stated in Section 3.1, additional developments are needed to inves-
tigate environmental factors along with their interactions when the number of environmental states
is large. Moreover, it is possible that the future environmental profile might not be deterministic in
real world applications. Extensions of this work will include an examination of degradation models
when the future environmental condition is unknown.
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SPARSE INVERSE GAUSSIAN PROCESS REGRESSION WITH APPLICATION

TO CLIMATE NETWORK DISCOVERY

KAMALIKA DAS* AND ASHOK N. SRIVASTAVA**

Abstract. Regression problems on massive data sets are ubiquitous in many application domains
including the Internet, earth and space sciences, and finances. Gaussian Process regression is a
popular technique for modeling the input-output relations of a set of variables under the assumption
that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process
regression to large data sets since prediction based on the learned model requires inversion of an
order n kernel matrix. Approximate solutions for sparse Gaussian Processes have been proposed
for sparse problems. However, in almost all cases, these solution techniques are agnostic to the
input domain and do not preserve the similarity structure in the data. As a result, although

these solutions sometimes provide excellent accuracy, the models do not have interpretability.
Such interpretable sparsity patterns are very important for many applications. We propose a
new technique for sparse Gaussian Process regression that allows us to compute a parsimonious
model while preserving the interpretability of the sparsity structure in the data. We discuss how
the inverse kernel matrix used in Gaussian Process prediction gives valuable domain information
and then adapt the inverse covariance estimation from Gaussian graphical models to estimate the
Gaussian kernel. We solve the optimization problem using the alternating direction method of
multipliers that is amenable to parallel computation. We demonstrate the performance of our
method in terms of accuracy, scalability and interpretability on a climate data set.

1. Introduction

In many application domains, it is important to predict the value of one feature based on certain
other measured features. For example, in the Earth Sciences, predicting the precipitation at one
location given the humidity, sea surface temperature, cloud cover, and other related factors is an
important problem in climate modeling. For such problems, simple linear regression based on mini-
mization of the mean squared error between the true and predicted values can be used for modeling
the relationship between the input and the target features. In decision support systems which use
these predictive algorithms, a prediction with low confidence may be treated differently than if the
same prediction was given with high-confidence. Thus, while the predicted value from the regression
function is clearly important, the confidence in the prediction is equally important. A simple model
such as linear regression does not provide us with that information. Also, models like linear regres-
sion, in spite of being easy to fit and being highly scalable, fail to capture nonlinear relationships
in the data. Gaussian Process regression (GPR) is one regression model that can capture nonlinear
relationships and outputs a distribution of the prediction where the variance of the predicted distri-
bution acts as a measure of confidence in the prediction. Moreover, the inverse kernel (or covariance)
matrix has many interesting properties along the gaussian graphical model perspective, that can be
exploited for better understanding relationships within the training examples. Depending on the
nature of the data, these relationships can indicate dependencies (causalities) for certain models.

However, predictions based on GPR method, requires inversion of a kernel (or covariance) ma-
trix of size n × n, where n is the number of training instances. This kernel inversion becomes a
bottleneck for very large datasets. Most of the existing methods for efficient computation in GPR
involve numerical approximation techniques that exploit data sparsity. While this does speed up

*SGT Inc., NASA Ames Research Center, Kamalika.Das@nasa.gov, **NASA Ames Research Center,
ashok.n.srivastava@nasa.gov
.
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GPR computations, one serious drawback of these approximations is that the resulting GPR model
loses interpretability. Even if we get reasonably accurate predictions, we fail to unearth significant
connections between the training points or identify the most influential training points for a specific
set of test points.

In this paper we propose a sparse GPR algorithm which not only scales to very large datasets
but also allows us to construct a complete yet sparse inverse covariance matrix, thereby facilitating
interpretability. The method proposed in this paper induces sparsity by introducing a regularizer in
a pseudo negative log likelihood objective used for covariance selection. This forces the algorithm
to seek a parsimonious model for GPR prediction having excellent interpretability. One of the
highlights of the solution technique used in this paper is a completely parallelizable framework
for solving the inverse covariance estimation problem using the alternating direction method of
multipliers (ADMM) that allows us to exploit modern parallel and multi-core architectures. This
also addresses the situation where the entire covariance matrix cannot be loaded into memory due
to size limitations.

The rest of the paper is organized as follows. In the next section (Section 2) we present some
background material related to GPR and some existing methods of solving the GPR problems. In
Section 3 we discuss the equivalence between inverse kernel and covariance matrices. Next we present
our new sparse inverse covariance matrix using ADMM technique (Section 4). Experimental results
are discussed in Section 5. We conclude the paper in Section 6.

2. Background: Gaussian Process Regression

Since this paper proposes a technique of model fitting using Gaussian Process regression, we start
with a brief review of it here. Rasmussen and Williams [15] provide an excellent introduction on
this subject. Gaussian Process regression is a generalization of standard linear regression. If X is
the training data set having n multidimensional observations (rows) x1, . . . ,xn, with each xi ∈ R

D

and the corresponding target is represented by a n× 1 vector y, then the standard linear regression
model is:

f(x) = xwT , y = f(x) + ǫ

where w is a D-dimensional weight vector of parameters and ǫ is additive Gaussian noise such
that ǫ ∼ N (0, σ2). Assuming that we choose the prior distribution of the weights to be Gaussian
with mean zero and covariance Σp, the posterior distribution of the weights, following Bayesian
inferencing techniques, can be written as:

p(w|X,y) ∼ N

(

1

σ2
A−1XT y,A−1

)

where A = σ−2XTX+Σ−1

p . Given the posterior and the likelihood, the predictive distribution of a
test input x∗ is obtained by averaging over all possible models (w) to obtain:

p(y∗|x∗,X,y) ∼ N

(

1

σ2
x∗A−1XTy,x∗A−1x∗T

)

Using a kernel (covariance) function k(xi,xj) in place of a mapping from input space to an N -
dimensional space, and applying some algebraic manipulations, we can write the predictive mean
and variance of the posterior distribution as

ŷ∗ = K∗(σ2I +K)−1y(1)

C = K∗∗ −K∗(σ2I +K)−1K∗T(2)

where the ijth entry of K is k(xi,xj) and K∗ and K∗∗ are similarly the cross covariance matrices
involving the test point x∗. Equations 1 and 2 pose significant computational challenge due to the
requirement of inverting the covariance matrix K of size n2. If the number of observations n is large,
the O(n3) operation can be a bottleneck in the process of using Gaussian Process regression.

2
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In the next section, we discuss several techniques that have been proposed in the literature for
approximating the inverse matrix for large datasets.

2.1. Existing methods for efficient GP computation. Approximations are introduced in the
Gaussian Process literature for either finding closed-form expressions for intractable posterior dis-
tributions or for gaining computational advantage for large data sets. Here we are interested in the
second goal and, therefore, briefly discuss the existing research in this area. Smola and Bartlett
[16] describe a sparse greedy method that does not require evaluating the full covariance matrix
K and finds an approximation to the maximum aposteriori estimate by selecting an ‘active’ subset
of columns of K by solving an expensive optimization problem. The running time of the numeri-
cal approximation is reduced from O(n3) to O(nm2) where m (m ≪ n) is the rank of the matrix
approximation.

A related approach of low rank matrix approximation called the subset of regressors method
[21] involves selecting the principal sub-matrix of the unperturbed covariance matrix K by matrix
factorization. Though this method has been found to be numerically unstable, recent research by
Foster et al. [8] has shown that if we use partial Cholesky decomposition to factorize the covariance
matrix and perturb the low rank factor such that independent rows and columns form the principal
sub-matrix, then the approximation we get is numerically stable. The authors report excellent
accuracy using their approximation calculations when the rank of the reduced matrix is a small
factor (5) times the rank of the original data matrix X .

The generalized Bayesian committee machine [20] is another approach for reducing the compu-
tational complexity of any kernel-based regression technique, by dividing the data arbitrarily into
M almost equal sized partitions, training a different estimator on each partition, and combining
the estimates given by the different estimators using the inverse of the variance to ensure that least
certain predictions are given the smallest weights in the final prediction. This method allows us
to choose M to be equal to Kα so that it becomes linear in K in computational complexity. The
Bayesian Committee Machine weights the training data based on the test points using a block diag-
onal approximation and, therefore, the model needs to be retrained every time a new test set comes
in. A related method recently proposed by Das and Srivastava [4] works for multimodal data. It
partitions the input space into multiple clusters, with each one corresponding to one mode of the
data distribution. Then, each cluster is modeled using a normal distribution and all points which are
not modeled by any of the normal distributions are grouped using a separate cluster. Each cluster
learns a separate GP model and a weighted sum based prediction is used for the gating.

A recent development is the ℓ1 penalized GPR method (GPLasso) introduced by Yan and Qi [22]
in which the authors explore sparsity in the output rather than the input. They propose a GPR
technique that minimizes the Kullback-Leibler divergence between the posterior distributions of the
exact and the sparse solutions using a ℓ1 penalty on the optimization. They pose this problem as
a LASSO optimization [19] and solve a rank reduced approximate version of this using the Least
Angle Regression (LARS) method [7]. The authors present this work as a pseudo output analogy of
the work by Snelson et al. [17]. Quiñonero-Candela and Rasmussen [14] provide a unifying view of
all sparse approximation techniques for Gaussian Process regression by analyzing the posterior and
reinterpreting each algorithm as an exact inferencing method using approximate priors.

All the methods discussed in this section apply some form of numerical approximation technique to
reduce the rank of the kernel matrix for efficient matrix inversion. As a result, they often lose model
interpretability — a value at any position of the reduced rank inverted matrix cannot be traced back
to any cell of the original kernel. In many domains, however understanding the sparsity structure is
important. For example, in Earth Sciences, it is not only important to get good predictions from the
GPR model, but it is also important to understand how different geographical regions are connected
and how these locations influence one another. Unfortunately, none of the efficient GPR techniques
allow this. Our proposed technique in the next section not only learns a sparse GP model but also

3
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allows domain scientists to draw conclusions about the sparsity structure by studying the inverse
covariance matrix.

3. SPI-GP:Sparse Gaussian Process using inverse covariance estimation

Let x1,x2, . . . ,xn be a set of multi-dimensional gaussian observations such that

xi ∼ N (µ,Σ) ∈ R
d

where µ ∈ R
d and Σ ∈ R

d×d are the mean and covariance matrices. While the mean µ measures
the center of the distribution, the covariance matrix Σ measures the pairwise (linear) relationship
between the variables. It is well known that a value of 0 at any cell of Σ implies independence of
the observations:

Σi,j = 0 ⇒ P (xixj) = 0

which means xi and xj are independent. In many cases, we may be interested in studying how
two variables influence each other when the information about the other variables are taken into
consideration. One way of doing this is by studying the inverse covariance matrix, also known as
the concentration matrix or precision matrix denoted by Σ−1. Unlike Σ, a value of 0 in any cell
of Σ−1 implies conditional independence among those variables [1]. For example, xi and xj are
conditionally independent, given all the other variables, if Σ−1=0. Mathematically,

Σ−1

i,j = 0 ⇒ P (xixj |x−i,−j) = 0

where x−i,−j denotes all the variables other than xi and xj . Note that independence of elements
implies conditional independence but not vice-versa i.e. a value of 0 at any cell of Σ implies that the
corresponding location of Σ−1 is also 0; but a non-zero value at any cell of Σ matrix does not imply
that the corresponding cell of Σ−1 will also be non-zero. The reason for studying Σ−1 rather than
Σ, is for many gaussian distributed variables, there is more sparsity in the inverse covariance matrix
than in the covariance matrix and this sparsity reveals interesting data relationships. It has been
shown in [9], that inverting a covariance matrix (with the additional assumption that the inverse is
sparse) is equivalent to learning a graphical model, where each node in the model corresponds to a
feature and the absence of an edge between any two signifies that those features are conditionally
independent.

In the case of GPR, the kernel matrix between the observations (see Eqn. 1 and 2) can be
viewed as a covariance matrix among the function outputs. Formally, a gaussian process is defined
as a collection of random variables, any finite number of which is jointly gaussian. Hence, it is a
distribution over functions, completely specified by its mean function and covariance function as,

f(xi) ∼ GP (m(xi), k(xi,xj))

where m(xi) = E[f(xi)] and k(xi,xj) = E[f(xi)−m(xi)][f(xj)−m(xj)] are the mean function and
covariance function of some real process f(xi). Note that f(xi) are random variables and GP fits a
distribution over all possible f(xi). In our case since f(xi)’s are linear functions f(xi) = xiw

T , the
mean and covariance of GP can be stated as,

m(xi) = E[f(xi)] = xiE[wT ] = 0

k(xi,xj) = E[f(xi)f(xj)] = xiE[wTw]xT
i = xiΣpx

T
i

where w ∼ N(0,Σp) denotes the prior distribution of the weights. The covariance function k, also
known as the kernel function specifies the covariance between a pair of random variables

cov(f(xi), f(xj)) = E[f(xi)f(xj)] = k(xi,xj)

Therefore, a kernel function computed over the pairwise input points is equivalent to a covariance
between the outputs. There are several choices of the kernel functions available. In this paper we

4
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have used the widely used gaussian radial basis function (rbf) kernel:

k(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

where σ is known as the bandwidth parameter which is typically learned from the data.
In many GPR applications, it is not only important to get good prediction accuracy, but also

understand the model. For example, in Earth Sciences teleconnections [11] reveal important sym-
metric and sometimes causal relationships among different events observed in geographically distant
locations and can be studied by exploiting sparsity in the inverse kernel in GPR. Another possible
application area is the study of climate networks [18]. Fig. 1 (left) shows the observed precipitation
data of the world overlaid on a 360× 720 grid. Figs. 1 (center and right) show a kernel or similarity
matrix generated from the data and the corresponding inverse covariance matrix. Each cell in the
kernel (except the diagonal) denotes the similarity between the precipitation values of a grid loca-
tion (lower resolution). The highlighted row and column correspond to the location marked in white
on the world map. In this paper we are interested in studying the sparsity pattern of the inverse
covariance matrix, with the information that sparsity patterns in the inverse covariance matrix leads
to conditional independence among the locations of interest.
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Figure 1. Precipitation data of the world map (top figure). Note that the data
is only available for land (the ocean locations have fill values of -9999). The figure
in the center shows a kernel in which similarity is computed between every pair of
locations from the precipitation data. Note the location marked with a circle on
the left figure corresponds to the row and column in blue on the center and right
figure. The right figure shows the inverse kernel matrix.

4. Sparse covariance selection

There exist several techniques in the literature for solving the inverse covariance estimation prob-
lem also known as the covariance selection problem.

Given a dataset containing d features, Meinshausen et al. [13] infers the graphical model (and
therefore the inverse covariance matrix) by taking one variable at a time and then finding all the
connections of that variable with all of the other ones. For each variable di in the dataset, the
method constructs a lasso regression problem by taking all the other variables as inputs and di
as the target with an additional sparsity constraint on the solution weights. The non-zero entries
of the weight vector signifies a connection between that feature and the target di. To deal with
inconsistencies among the connections, the authors have proposed two schemes: (1) in the AND

technique, an edge is established in the graphical model between any two features di and dj iff both
di and dj have non-zero entries in the weight vector when they are each used as target in different
lasso problems, and (2) in the OR scheme, an edge is established if either di or dj has a non-zero
weight when the other is taken as the target. One serious drawback of this method is the number
of independent lasso problems increases linearly with the size of the feature space.

Banerjee et al. [1] propose a different solution to the inverse covariance selection problem. They
show that based on Dempster’s theory [5], estimating the inverse covariance matrix is equivalent to

5
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minimizing the pesudo negative log likelihood. The objective function takes the form:

Tr(KS)− log det(S)

whereK is the empirical covariance (or kernel) matrix and S is the desired inverse ofK i.e. S = K−1,
Tr(·) is the trace of a matrix, and det(·) is the matrix determinant. Solution to the above equation
is stable when an additional sparsity constraint is imposed on the inverse, i.e.

Tr(KS)− log det(S) + λ ‖S‖

where λ controls the degree of sparsity. This is a convex optimization problem and in order to solve
this, the authors propose a block-wise interior point algorithm.

Friedman et al. [9] generalizes both these papers and present a very efficient algorithm based on
the lasso technique. Their objective function is the same as used by Banerjee et al. [1] i.e. they
try to maximize the log likelihood of the model with the additional sparsity constraint. They show
that the solution proposed by Meinshausen [13] is an approximation of the log likelihood estimate
proposed by Banerjee et al. [1]. They propose a new algorithm based on coordinate descent to
solve the same trace minimization problem. This algorithm is based on recursively solving lasso
subproblems for each variable until convergence. The authors note that this new algorithm is at
least 50 to 4000 times faster than existing techniques and therefore scales to much larger data sets.

However, there is one drawback common to all these optimization techniques. All these tech-
niques assume that the data can be loaded in computer memory for the analysis. Unfortunately, in
applications such as Earth Sciences, most datasets are massive — they contain millions of observa-
tions (locations) and therefore constructing a full covariance matrix in memory is itself impossible,
leaving aside the computational power necessary to run these optimization techniques for inverse
estimation. To solve the large scale inverse covariance estimation problems which do not fit into the
memory of one machine, in this paper we propose our SPI-GP method which works by distributing
the workload among a network of machines. The technique we follow is based on the method of
Alternating Direction Method of Multipliers (ADMM) which is a distributable algorithm for solving
very large convex optimization problems. We give a brief overview of ADMM technique in the next
section.

4.1. Alternating Direction Method of Multipliers for convex problems. Alternating Di-
rection Method of Multipliers (ADMM) [10][6][2] is a decomposition algorithm for solving separable
convex optimization problems of the form:

min G1(x) +G2(y) subject to Ax− y = 0, x ∈ R
n, y ∈ R

m

where A ∈ R
m×n and G1 and G2 are convex functions. The algorithm derivation is as follows. First,

the augmented Lagrangian is formed:

Lρ(x, y, z) = G1(x) +G2(y) + zT (Ax − y) + ρ/2 ‖Ax − y‖
2

2

where ρ is a positive constant known as the penalty parameter. ADMM iterations can then be
written as:

xt+1 = min
x

{

G1(x) + ztTAx+ ρ/2
∥

∥Ax − yt
∥

∥

2

2

}

(3)

yt+1 = min
y

{

G2(y)− ztT y + ρ/2
∥

∥Axt+1 − y
∥

∥

2

2

}

(4)

zt+1 = zt + ρ
(

Axt+1 − yt+1
)

(5)

This is an iterative technique where t is the iteration counter, and the initial vectors y0 and z0 can
be chosen arbitrarily. ADMM can be written in a different form (known as the scaled form) by
combining the linear and quadratic terms of the Lagrangian:

zT (Ax− y) + ρ/2 ‖(Ax − y)‖
2

2
= ρ/2 ‖(Ax − y) + (1/ρ)z‖

2

2
− 1/(2ρ) ‖z‖

2

2

6
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Now scaling the dual variable p = (1/ρ)z, the iterations of ADMM become:

xt+1 = min
x

{

G1(x) + ρ/2
∥

∥Ax− yt + pt
∥

∥

2

2

}

(6)

yt+1 = min
y

{

G2(y) + ρ/2
∥

∥Axt+1 − y + pt
∥

∥

2

2

}

(7)

pt+1 = pt + ρ
(

Axt+1 − yt+1
)

(8)

It has been argued [10] that ADMM is very slow to converge especially when high accuracy is
desired. However, ADMM converges within a few iterations when moderate accuracy is desired.
This can be particularly useful for many large scale problems similar to the one we consider in this
paper.

Critical to the working and convergence of the ADMM method is the termination criterion. The
primal and dual residuals are:

rt+1

p = Axt+1 − yt+1 (primal residual)

rt+1

d = ρA(yt+1 − yt) (dual residual)

A reasonable termination criterion is when either the primal or the dual residuals are below some
thresholds i.e.

∥

∥rt+1

p

∥

∥

2
≤ ǫp and

∥

∥rt+1

d

∥

∥

2
≤ ǫd.

where ǫp and ǫd are the primary and dual feasibility tolerances. Using user-defined values for ǫ1 and
ǫ2, these tolerances can be stated as,

ǫp = ǫ1
√
m+ ǫ2 max

(∥

∥Axt+1
∥

∥

2
,
∥

∥yt+1
∥

∥

2

)

ǫd = ǫ1
√
n+ ǫ2

∥

∥AT pt+1
∥

∥

2
.

In the next section we discuss the ADMM update rules for the sparse inverse covariance estimation
problem.

4.2. Alternating Direction Method for sparse inverse kernel estimation. We start with
the prior assumption that the inverse kernel matrix K−1 is sparse. This is a reasonable assumption
when studying climate data, because given a location i.e. any row of the inverse kernel matrix, there
are few major locations which influence this location.

With such an assumption, the ADMM algorithm is as follows. Let K be the observed kernel
matrix between the grid locations. For a moderate sized K, one can search over all sparsity patterns,
since for a fixed sparsity pattern the log likelihood estimate of K is a tractable problem. However,
this becomes very challenging for large K. One technique which has been used earlier for sparse
covariance selection problem [1] is to minimize the negative log likelihood of S = K−1 with respect
to the observed data with a penalty term added to induce sparsity. This resulting objective function
can be written as

min Tr(KS)− log det(S) + λ ‖S‖
1

where ‖·‖
1
is the ℓ1-norm or the sum of the absolute values of the entries of a matrix and λ is a

constant which determines the amount of sparsity. Larger the value of λ, sparser is the solution S.
The ADMM version of this problem can be written as follows:

min Tr(KS)− log det(S) + λ ‖Y ‖
1

subject to S − Y = 0

By constructing the augmented Lagrangian and using the derivations given in Section 4.1 for the
scaled version of the problem, the ADMM updates for the above estimation problem are:

St+1 = min
x

(Tr(KS)− log det(S) + ρ/2
∥

∥S − Y t + P t
∥

∥

F
)(9)

Y t+1 = min
y

(

λ ‖Y ‖
1
+ ρ/2

∥

∥St+1 − Y + P t
∥

∥

F

)

(10)

P t+1 = P t +
(

St+1 − Y t+1
)

(11)
7
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with ‖·‖F denoting the Frobenius norm of a matrix. These updates can be simplified further. Taking
the derivative of Eqn. 9 and setting it to 0 we get,

K − S−1 + ρ(S − Y t + P t) = 0

⇒ ρS − S−1 = ρ(Y t − P t)−K

Now let QΛQT be the eigen decomposition of ρ(Y t − P t) − K. Therefore, continuing from the
previous step,

ρS − S−1 = ρ(Y t − P t)−K

⇒ ρS − S−1 = QΛQT

⇒ ρQTSQ−QTS−1Q = QTQΛQTQ

⇒ ρ̂S − ̂S−1 = Λ [since QTQ = QQT = I](12)

where ̂S = QTSQ. Solution to Eqn. 12 can easily be found noting that the right hand side is a

diagonal matrix of the eigenvalues λi’s. For each diagonal entry of ̂Sii, ∀i = 1 : n, we have

ρ̂Sii − ̂S−1

ii = λi

which, using the formula of finding the roots of a quadratic equation is

̂Sii =
λi +

√

λ2

i + 4ρ

2ρ

Therefore, S = Q̂SQT is the optimal value of the S minimization step.
Eqn. 10 can also be simplified further and can be written as the element-wise soft thresholding

operation:

Y t+1

ij = ℑλ/ρ

(

St+1

ij + P t
ij

)

In the next section we describe the SPI-GP algorithm in details.

4.3. SPI-GP: algorithm description. The SPI-GP algorithm is based on the ADMM technique
described in the earlier section. Alg. 1 presents the pseudo-code of the algorithm. The inputs are
the kernel K, algorithm parameters λ and ρ, number of iterations numIter and the error tolerances
ǫ1 and ǫ2. The output of the algorithm is the estimated inverse of K in S = K−1. The algorithm
proceeds in an iterative fashion. In every iteration, an eigen decomposition is performed of the
matrix

[Q Λ] = ρ(Y t−1 − P t−1)−K.

The eigenvalues Λ and eigenvectors Q are used to update the S variable. The Y -update is a soft
thresholding operation of

(

St + P t−1
)

with threshold λ/ρ. Finally, the P -update is a linear dual
variable update. Also during each iteration, the primal and dual residuals rp and rd are computed
along with the corresponding error thresholds. Whenever the residuals become less than the error
thresholds, the algorithm stops. The result is returned in the matrix S. In our experiments we have
chosen rho = 1

Running time of ADMM: Since the algorithm requires eigen decomposition for every S update,
and the Y and P updates are constant time operations, the runtime complexity is O(mn3), where
m is the number of iterations and n is the size of the dataset (training points).

Convergence of ADMM: In order to ensure convergence of ADMM, two basic assumptions are
necessary: (1) the functions G1 and G2 are closed, proper and convex, and (2) the unaugmented
Lagrangian has a saddle point. Based on these two conditions, it can be shown that [2]:

• primal residual approaches 0 i.e. rt → 0 as t → ∞
• the objective function approaches the optimal value
• dual variable P approaches feasibility

8
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Input: K, ρ, λ, numIter, ǫ1, ǫ2
Output: S = K−1

Initialization: Y 1 = 0, P 1 = 0
begin

for t=2 to numIter do

[Q Λ] = evd[ρ(Y t−1 − P t−1)−K];
for i=1 to n do

̂Sii =
λi+

√
λ2

i
+4ρ

2ρ ;

end

St = Q̂SQT ;
Y t = softThreshold[

(

St + P t−1
)

, λ/ρ];

P t = P t−1 + (St − Y t);
rp = ‖St − Y t‖F ;
rd =

∥

∥−ρ(St − Y t−1)
∥

∥

F
;

ǫp = ǫ1
√
n+ ǫ2 max(||St||F , ||Y

t||F );
ǫd = ǫ1

√
n+ ǫ2||ρP

t||F ;
if (rp < ǫp) AND (rd < ǫd) then

break;
end

end

end
Algorithm 1: SPI-GP: ADMM for Sparse Kernel Inversion

In practice however, ADMM may be slow to converge. This type of algorithms, are therefore,
more useful when moderate accuracy is necessary within a relatively few iterations. Although this
algorithm is slow and sometimes has convergence issues, it is the only method that is amenable to
parallel computing which is essential for many large data sets that do not fit in the main memory
of a single machine.

4.4. SPI-GP: distributed implementation. As we have discussed earlier, ADMM is amenable
to distributed computation in a network of machines. This becomes particularly important when
the data does not fit into the memory of one machine. This form of ADMM is known as consensus
optimization. In this form, the objective function G1 needs to be decomposable across ℓ nodes
M1, . . . ,Mℓ as follows:

min
∑ℓ

i=1
G1(xi) +G2(y) subject to Axi − y = 0, xi ∈ R

n, y ∈ R
m

where xi is the i-th block of data and is stored at machine Mi. The solution to this optimization is
the same as given in Section 4.1. The update rules can be written as,

xt+1

i = min
xi

{

G1(xi) + ztTAxi + ρ/2
∥

∥Axi − yt
∥

∥

2

2

}

yt+1 = min
y

{

G2(y) +
ℓ
∑

i=1

(

−ztTi y + ρ/2
∥

∥Axt+1

i − y
∥

∥

2

2

)

}

zt+1

i = zti + ρ
(

Axt+1

i − yt+1
)

Unfortunately, the above method cannot be applied for the optimization of the inverse covariance
matrix in our case. This is because log det(S) is not a decomposable function.

Therefore, to solve this problem for large kernel matrices, we use the ScaLAPACK routine of
Matlab. It allows the kernel matrix to be distributed across different machines, but still compute
the eigen decomposition correctly. For a Matlab implementation, this is done using the co-distributed
array data structure and an overloaded eig function. It should be noted here that this method does
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not attempt to speed up the GPR process. Instead, it makes GPR possible for extremely large data
sets where the entire kernel matrix cannot be loaded in the main memory due to size limitations.

5. Experimental results

For the performance study of SPI-GP, the experimental results are reported on a synthetic mul-
tivariate Gaussian distribution data and a real life climate domain data set. For generating the
multivariate Gaussian, we fix the number of dimensions and samples. We then generate a sparse
inverse covariance matrix with all zeros and ones along the diagonal. We randomly insert 1 at certain
locations in our inverse covariance. We make this inverse matrix symmetric and positive definite (by
making the min eigenvalue positive). Finally we invert this matrix and draw Gaussian samples with
zero mean which becomes our covariance matrix. Using this data set we demonstrate the scalability
of the distributed SPI-GP method on a cluster of computing nodes.

Our second data set is a historical climate domain data set which consists of NCEP/NCAR
features available at http://www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.html [12]
and cross-matched normalized difference vegetation index (NDVI) data (NDVI) from the National
Oceanic and Atmospheric Administrations Advanced Very High Resolution Radiometer (NOAA/AVHRR).
The climate variables used in this study include pressure (hg1000 and hg500), sea surface temper-
ature (sst), Temperature (temp) and precipitation (pre). We use this data set to demonstrate a
Gaussian Process regression task where our goal is to take as inputs the first five variables and pre-
dict/model precipitation (output) using our SPI-GP method. We have used data from years 1982 -
2002 (21 years). Each variable is observed at a 0.5◦ resolution over the entire grid. The data used
here are composites of observations over a month. Thus there are 360×720=259200 values for each
variable vectorized and stored as a single row corresponding to a time point (a month). Therefore,
each variable has 12× 21 = 252 rows in the data set, each having 259200 columns. Note that some
variables are observed only in land while others only in ocean. For any variable, the locations which
do not contain any meaningful data has a fill value of -9999.0.

If we want to use all five variables (hg1000, hg500, sst, temp, ndvi) for predicting precipitation,
then we have to create a GPR model which takes the five variables as input and precipitation as the
output. Since there are missing values for each variable, the locations where all values are present
are the coastlines of the continents (only approximately 8500 points). This means that if we build
a model based on only these points, the other data points cannot be used in the model. Instead
we use a multiple kernel approach as follows. Let Khg1000, Khg500, Kndvi, Ksst, and Ktemp be the
kernels computed from each of the 5 input variables separately after removing the fill values. We
create a global training kernel as,

Kglobal = Khg1000 +Khg500 +Ksst +Ktemp +Kndvi

Similarly we create the test kernel as,

K∗
global = K∗

hg1000 +K∗
hg500 +K∗

sst +K∗
temp +K∗

ndvi

In both these global kernels, we normalize the values by making their range between 0 and 1. We
then use the following two GPR equations

ŷ∗ = K∗
global(σ

2I +Kglobal)
−1y(13)

C = K∗∗
global −K∗

global(σ
2I +Kglobal)

−1K∗T
global(14)

using the kernels just computed by combining the individual kernels. By construction, Kglobal is a
matrix on the entire set of grid locations (n× n). K∗

global is a test kernel of size m× n, where m is
the number of test locations. y is the training output of size n × 1. As a result ŷ∗ becomes of size
m × 1. One issue is in using the entire y vector. For our prediction problem, this corresponds to
precipitation and hence has only values on land. So when we use the y vector for the entire world’s
data, it contains missing values of -9999.0 (about 40% of the total size of y). To circumvent this
problem, we replace the fill values with an average value of the feature y.
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Figure 2. Scalability study of SPI-GP on synthetic data

5.1. Study 1: Scalability study on synthetic data. In this study we report the scalability of
the SPI-GP algorithm. The metric we use is running time (in seconds). We report results from
two different experiments. In our first experiment we fix the number of cores on which we run
our experiment and vary the size of the training data. Figure 2 (left) shows the result. We used
the Matlab Parallel Computing toolbox and a local scheduler for multicore architecture. For this
experiment we chose 4 processors on a single CPU to simulate the distributed computing environ-
ment. We experimented with five different sizes of the covariance matrix starting from 1000× 10000
to 5000 × 50000 and notice that the growth in the running time is less than cubic in spite of the
eigen decomposition step. This is due to the distributed eig function usage which makes the method
complexity O(nr2) where r is the chunk (rank) of the matrix for the covariance matrix partition in
any one of the processors. Figure 2 (right) reports the results of running SPI-GP on a 1000× 10000
matrix on a varying number of processors starting from 1 to 4. The result is counter-intuitive since
we see that a single processor takes the highest time while there is no clear trend in the time as
we increase the number of processors, keeping the data fixed. This is because there is considerable
overhead in distributing a job over the parallel computing framework and there is an optimal number
of processors for a fixed partitioning of the data. The performance degrades with deviation from
the optimal.

5.2. Study 2: Precipitation prediction in the Indian subcontinent. In the climate study, we
observe which geographical regions are most similar to the precipitation pattern of India. We want
to identify these points and study how these points change over a time period of 20 years. Since all
climatic connections change very slowly with time, we construct the relevant network connections
for Indian precipitation every 5 years. Fig. 4 shows the results. Each plot in Fig. 4 is for the average
of one year’s data. The variable shown in the figures is precipitation. The black markers are the
locations in India. The yellow markers indicate the the top 10 areas which influence India. These are
the points which have the highest values in the estimated inverse kernel matrix corresponding to test
points for India. As Figure 4 shows, there are certain regions which remain similar to our test set
for the entire period of 20 years, while others have a more disparate pattern. Some locations which
show consistent influence pattern include the west coast of South America, west coast of Africa, and
east coast of Australia. Some less consistent locations include areas in China. To illustrate how this
method can be used for studying climate networks, we represent a portion of the precipitation-based
inverse covariance matrix as a network. As can be seen in Figure 3, the true inverse covariance is
difficult to understand or interpret, given the huge amount of network connections for any particular
node in the graph. The reference node in this study is denoted in red in both the left and right
subfigures in Figure 3. The right figure, which a sparse variant of the same graph shows only the
important connections to the colored node, and enhances interpretability of learnt models like in
Gaussian Process regression.

11

2011 Conference on Intelligent Data Understanding 243

TOSHIBA
Pencil



 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Network representing a sub-matrix of the inverse
covariance matrix

 

 

  

 

 

  

 

(b) Network representing a sub-matrix of the sparse
inverse covariance matrix estimated using SPI-GP

Figure 3. Interpretability of sparse inverse covariance matrix

As we will observe in section 5.3, this regression problem performs poorly due to the immense
amount of missing data in the different modalities used to predict precipitation. Therefore, for
demonstrating the fact, that the poor regression results are only due to the nature of data available,
and not due to the technique discussed here, we study a a different regression problem where we
want to predict the precipitation in the Indian subcontinent based on only precipitation data from
four weeks in advance. In this study, we use only precipitation data to predict precipitation for a
delay of 1 month. This study is also performed for over a 20 year period at intervals of every 5 years.
For every year we study the prediction problem quarterly.

5.3. NMSE of SPI-GP. If a set of points are very similar to the points representing rainfall in
the Indian subcontinent, then it is intuitive that those points should be very good predictor of
precipitation in India. Our next study tries to verify this intuition. For this, we choose the top k

locations of the world that are most similar to the precipitation in the Indian subcontinent for each
of the years 1982, 1986, 1990, 1994, and 1998 and build GPR models by taking only this subset as
the training examples. We test on year 2002. As a baseline comparison, we train a separate GPR
on the entire world’s data (Full-GP). For both these methods, we use the same locations of India
as test sets. We build these two GPR’s separately for each of the five years mentioned before. The
first row of Table 5.3 shows the normalized mean squared error (NMSE) values for these two GPR
methods for each of the five years, where NMSE is defined as

NMSE =

∑n
i=1

(ŷ∗i − yi)
2

n× var(ŷ∗)
.

The value of k is chosen to be n/2 where n is kernel dimension. For this study, for each of the five
years, the NMSE value for the GPR model of top k values from SPI-GP is better than the Full-GP.
This happens because the most similar points capture more information and less of noise as has
been verified earlier in [4]. However, as it can be noted the improvement in NMSE observed is not
significant. Not only that, even for the improvement that is observed, the NMSE values are quite
high (approximately 1). Now, a value of 1 for NMSE implies that the prediction is equal to the
mean of the target. This explains the observed NMSE in our experiments. Since approximately 40%
of the target data used in our experiments were actually fill values and were replaced by the mean
of the target. Therefore, the NMSE that we see is largely an artifact of the data preprocessing for
this data set since the mean-based smoothing technique applied here may have failed to capture the
dynamics in the data.

To verify that the high NMSE values are not an artifact of the technique, but the data, we perform
similar experiments for the precipitation based regression study. The second row of Table 5.3 shows
the NMSE values when we predict rainfall for August of 2002 based on rainfall in July for each of
the years 1982, 1986, 1990, 1994, and 1998. We can notice that the NMSE values are much lower
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(a) Climate network for 1982 based on precipitation
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(c) Climate network for 1991 based on precipitation
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(d) Climate network for 1996 based on precipitation
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(e) Climate network for 2001 based on precipitation

Figure 4. Evolution of the climate network over 20 years based on precipitation data.
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1982 1986 1990 1994 1998

Regression using all variables
Full-GP 1.085 1.218 1.115 1.883 1.138
SPI-GP 0.902 0.811 1.05 1.072 0.979

Regression using precipitation
Full-GP 0.695 0.664 0.611 0.651 0.669
SPI-GP 0.6912 0.664 0.605 0.650 0.667

Table 1. NMSE of GPR for 2002 when entire world’s data is used (Full-GP) vs.
top few similar points in SPI-GP. For the first regression scenario, each column
shows the NMSE for that year. For the second scenario, each column shows the
NMSE for prediction of rainfall in August for that year.

Training months
Training years 1 4 7 10

Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP

1982 0.237 0.283 0.454 0.439 0.426 0.426 0.371 0.361
1983 0.258 0.292 0.492 0.492 0.658 0.658 0.374 0.374
1984 0.261 0.273 0.451 0.451 0.818 0.819 0.374 0.368
1985 0.196 0.208 0.475 0.450 0.396 0.396 0.385 0.385

Table 2. NMSE of GPR for 1986 when entire world’s data is used (Full-GP) vs.
top few similar points in SPI-GP.

Training months
Training years 1 4 7 10

Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP

1982 0.311 0.293 0.554 0.563 0.706 0.706 1.23 1.22
1986 0.325 0.295 0.587 0.595 0.81 0.809 1.301 1.3
1991 0.281 0.278 0.564 0.586 0.782 0.781 1.15 1.15

Table 3. NMSE of GPR for 1996 when entire world’s data is used (Full-GP) vs.
top few similar points in SPI-GP.

compared to the first study. However, it should be noted that the precipitation prediction problem
that we are studying is a difficult one since the data does not have reasonably high predictability.
The linear correlations for different data subsets and different test sets can vary from -0.2 (very
poor) to 0.88 (high correlation) accounting for the high variability in the NMSE values for the
different test scenarios. Tables 5.3 and 5.3 document the NMSE values for predicting precipitation
in India for months February, May, August and November for the years 1986 and 1996 respectively.
NMSE values in the table range from as low as .19 to as high as 1.3 indicating the difficulty level
of different prediction scenarios. For example year 1986 has reasonably good predictability and has
lower variation in the NMSE values thatn year 1996. Although February, May and August have
quite low NMSE values for 1996, the month of November does not have that since the prediction is
working as poorly as random for the different training years. The year 2002 is worse than 1986 in
terms of average predictability, but data is more consistent across the different training years.

6. Conclusion

In this paper we discuss a method for sparse inverse Gaussian Process regression that allows us to
compute a parsimonious model while preserving the interpretability of the sparsity structure in the
data. We discuss how the inverse kernel matrix used in Gaussian Process prediction gives valuable
information about the regression model and then adapt the inverse covariance estimation from
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Gaussian graphical models to estimate the Gaussian kernel. We solve the optimization problem
using the alternating direction method of multipliers that is amenable to parallel computation.
This sparsity exploiting GPR technique achieves two goals: (i)it provides valuable insight into the
regression model and (ii)it allows for parallelization so that the entire kernel matrix need not be
loaded into a single main memory, thereby removing the size related constraints plaguing large scale
analysis. We perform experiments on historical climate data of 20 years. The climate network study
shows evolution of the most influential points over time for predicting precipitation in the Indian
subcontinent. The NMSEs reported are relatively high due to the mean-based smoothing adopted
in the preprocessing. For future work, we plan to pursue other spatial smoothing processes such
as the ones proposed by Cressie and Wikle [3]. We also want to pursue teleconnection study using
different climate data for specific climate scenarios.
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Abstract. It is well-known that forests play a vital role in maintaining biodiversity and the

health of ecosystems across the Earth. This important ecological resource is under threat from

both anthropogenic and biogenic pressures, ranging from insect infestations to commercial logging.
Detecting, quantifying and reporting the magnitude of forest degradation are therefore critical to

efforts towards minimizing the loss of one of Earth’s most crucial resources. Traditional approaches

that use image-based comparison for detecting forest degradation are frequently domain- or region-
specific, which require expensive training, and are thus not suited for application at global scale.

More recently, time series based change detection methods applied on remote sensing datasets

have gained much attention because of their scalability, accuracy, and monitoring capability at
frequent regular intervals. In this paper, we propose a novel approach to identify regions where

forest degradation occurs gradually. The proposed approach complements traditional domain- and
region-specific approaches by providing information on where degradation is occurring, and during

what time, at a global scale.

1. Introduction

Forests play a vital role in maintaining biodiversity and the health of ecosystems across the Earth.
However, this important ecological resource is under threat of degradation by both anthropogenic
and biogenic pressures. Forest degradation occurs due to a number of different causes ranging
from insect infestations to logging. Such reduction in forest cover not only has implications on the
global carbon cycle, but also causes adverse effects on the ecosystem which are often realized by
decrease in biodiversity, increase in the frequency of floods, droughts, changes in rainfall patterns,
etc. [15, 10, 16]. Thus, detecting, quantifying and reporting the magnitude of forest degradation is
critical to efforts towards minimizing this loss of one of Earth’s most crucial resources.

Remote sensing offers rich data sets that are very well-suited for monitoring forests around the
globe, in a regular fashion across time. A large variety of techniques and tools have been developed for
detecting changes in forest cover, and more generally land cover [4, 11]. However, detecting gradual
forest degradation (as opposed to abrupt changes caused by fires etc.) is particularly challenging
because the reduction in forest cover occurs very slowly and the amount of reduction observed across
time is small compared to natural variations.

Traditional approaches that use image based comparison for detecting forest degradation are
frequently domain-specific or region-specific [5] which require expensive training, and are thus not
suited for application at global scale. More recently, time series based methods applied on remote
sensing datasets have gained much attention to detect deforestation because of their scalability,
accuracy, and forest monitoring capability at frequent intervals. However, even most of the current
time series based approaches for detecting vegetation loss in forests are aimed at only certain types
of changes (e.g. due to fires), which are characterized by sudden and severe vegetation loss [12].

A number of approaches have been proposed for identifying gradual changes in a time series.
Kucera et al. [9] describe the use of the well-known CUSUM technique for land cover change de-
tection. CUSUM follows a simple approach of determining deviation in the values of a time series

* University of Minnesota, <chamber,ashish,mithal,ivan,mwlau,krishna,sboriah,steinbac,kumar>@cs.umn.edu

**NASA Ames Research Center, chris.potter@nasa.gov, sklooster@gaia.arc.nasa.gov.
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from an expected value, and the change score, giving the magnitude of change, is determined as
the maximum cumulative deviation. Another approach presented recently by Verbesselt et al. [17],
Breaks for Additive Seasonal and Trend (BFAST), decomposes a time series into trend, seasonal
and residual components. The time series is divided into segments such that intra-segment trend is
constant, while inter-segment trends are dissimilar. A trend breakpoint is associated with segment
boundaries. The seasonal component is handled in a similar fashion.

In this paper, we present a novel approach to identify regions where forest degradation is occurring
gradually (either due to biogenic or anthropogenic causes). The approach is robust, scalable and
easy to apply across different regions and vegetation types. The proposed method represents an
adaptation of CUSUM for the problem of gradual change detection. While CUSUM only identifies a
time series as changed or not, the proposed approach also identifies the period of change, in addition
to having a considerable improvement in performance.

We begin by describing the underlying remote sensing data and preprocessing procedure in Section
2. Sections 3 and 4 discusses the concepts behind the development of the new approach. We
formally present our method in Section 5 followed by a discussion in Section 6. We then evaluate
the performance of the proposed approach in Section 7 using independent validation data sets in
two regions of the world where the degradation has entirely different causes. Finally, in section 8, we
comparatively evaluate the proposed approach, CUSUM and BFAST for detecting gradual changes.

2. Data and Preprocessing
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Figure 1. Example of an EVI time series (with
noise in observations).

The time series data set used for this study
is the Enhanced Vegetation Index (EVI), which
is a product based on measurements taken from
MODIS instrument on NASA’s Terra satellite,
and is available for download from the Land
Processes Distributed Active Archive Center
(LPDAAC) [1]. EVI essentially measures the
“greenness” signal as a proxy for the amount of
vegetation at a location. The spatial resolution
of the dataset is 250 meters and the temporal
resolution is 16 days (23 time steps per year),
and covers the time period from from February
2000 to the present. The range of EVI is 0 to
1, where 0 indicates no vegetation and 1 indi-
cates vegetation saturation. Figure 1 shows an
example of an EVI time series.

Remote sensing data sets are frequently sub-
ject to contamination due to clouds, haze, pixel
geometry and other factors. We preprocess the EVI time series data set in order to remove undesired
fluctuations in EVI (such as the sharp increases in Figure 1). This improves the efficiency of iden-
tifying signatures of interest. For smoothing purposes, we have used the Savitzky-Golay smoothing
filter [13], which uses two parameters: polynomial degree desired for smoothing, and frame size. The
smoothing filter fits a polynomial function of the indicated degree over a window equal to the frame
size over each time step, the current time step being at the center of the window; the EVI value of
the current time step is then replaced with the polynomial fit.

3. Detecting forest degradation: problem formulation and a CUSUM approach

A reduction in forest cover is often reflected as a decrease in the EVI value. In fact, many existing
schemes compute difference in EVI (or related indices) between different years to identify changes.
However, the values of vegetation indices such as EVI can have a high degree of variability due to

2
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seasonality (e.g. vegetation is greener in the summer than in the winter in the temperate zones),
as well as due to natural variation in vegetation growth caused by environmental factors such as
temperature and precipitation.

Most existing methods have handled seasonality by comparing vegetation index values at (or
around) the same date in different years. Natural variability is much harder to handle since it can
result in too many false positives. The problem becomes even more acute for many non-forest covers
such as shrubs, since natural variability tends to be much larger in these cases. Although our focus
is on identification of degradation in forests, it is not possible to completely exclude non-forests from
any study due to the unavailability of highly precise forest maps [6].
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Figure 2. Example of a decreasing
time series. Vertical lines enclose a grad-
ually decreasing segment.

Given an EVI time series dataset, we are interested in
identifying time series such as the one shown in Figure 2,
where there is a perceptible decrease in the signal, along
with determining the approximate period of decrease (as
shown by the vertical lines in Figure 2). Identifying a time
series with a gradual decrease in vegetation is challenging
due to a number of reasons: distinguishing vegetation loss
from natural seasonal variations; differentiating between
a spurious decrease due to noise or environmental fac-
tors and a genuine decrease from degradation on ground;
correctly determining the period of decrease (start and
end time steps) especially when there is a high degree of
variability in the time series. There could also be a phe-
nological change during the decrease period or across the
decrease, and the algorithm must be able to handle such
cases and extract the decrease period appropriately.

3.1. Notation. Table 1 defines notation used in this paper.

n The number of time steps in a time series.
S The number of time steps corresponding to one year of data (we also call this

the season length). For biweekly data S = 23, and S = 12 for monthly data.
t1 First time step.
ti ith time step.
vti Data value at the time step ti

vti ...vtj All values between time steps ti and tj .
T A sample time series = v1v2v3...vi...vn

vti...tj mean(vti ...vtj )
∆i vti−S+1...ti − vti+1...ti+S

∆-series ∆S∆S+1∆S+2...∆n−S

Table 1. Notation for time series change detection.

3.2. CUSUM Method for detecting decreasing time series. CUSUM is a well-known change
detection algorithm that was originally developed in the domain of process control. It is one of the
earliest change detection algorithms developed, proposed by Page [14]. One of the defining features
of CUSUM is its ability to detect small and gradual changes in the process. The basic CUSUM
scheme has an expected value µ for the process. It then compares the deviation of every observation
to the expected value, and maintains a running statistic (the cumulative sum) CS of deviations from
the expected value. If there is no change in the process, CS is expected to be approximately 0; if
CS exceeds a user-defined threshold at any time step, the time series is flagged as changed.

There are multiple ways in which a change score can be assigned to a time series, the simplest of
which is to use max{CS1, CS2, . . . , CSn}. However, this score can be sensitive to noise [3]. Kucera
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(a) A sample time series with decreasing period

between time steps 100 and 210.
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(b) Corresponding difference series, D, (blue)

and cumulative sum series, Q, (green).

Figure 3. Measures computed by CUSUM.

et al. [9] developed a CUSUM approach for land cover change detection which uses a more robust
technique to compute the change score. Specifically, a bootstrap procedure is used to determine
the confidence of CS by determining the degree to which such a score can occur by chance. The
bootstrap procedure involves randomly permuting the input time series to obtain a distribution of
change scores R (CUSUM is run on each randomization). The confidence of the drop is determined

by the relative frequency of CS being greater than the randomized distribution, i.e. |CS>R|
|R| .

Kucera et al. [9] take the expected value µ as the mean of the entire time series. Other measures
may also be used to compute µ such as the value of the first time step, or the mean of the first S
values. The advantage of using the mean value across a periodic cycle over a single time step is that
the mean value is independent of the fluctuations in a time period (or seasonal variation in case of
the MODIS EVI time series).

We illustrate some drawbacks of the scoring mechanism of CUSUM described above:
(1) Change point of drop and period of decrease not identified. This method only identifies a score
corresponding to the maximum deviation in cumulative sum time series, and does not give the period
of change. Figure 3 shows the scoring process using CUSUM. It identifies the maximum value in the
cumulative sum series as the score. Thus, no change point of drop or period of drop is identified.
(2) Computed score may not be associated with the decreasing period. Computed score is the max-
imum cumulative deviation from the expected value, which may or may not depict the amount of
EVI lost during the decrease period. This can again be noticed from Figure 3b.

4. Adapting CUSUM for Gradual Degradation

In the original CUSUM approach, the expected value is always fixed in a time series regardless of
the way it is computed. In this paper, we propose a different strategy: If we take the expected value
at any time step ti+1 as the value at time step ti, then the deviation of values at each time step from
its expected value would give the amount of drop or rise from its previous value. However, such a
model would be dependent on the intra-periodic variation and the resulting deviation could be due
to the natural periodicity of the time series. In order to make this process independent of periodicity,
averaging over a periodic cycle can be used. Therefore, instead we take the mean value of the current
periodic cycle as the expected mean value for the next periodic cycle. The deviation between mean
values of successive periodic cycles is also equivalent to the drop in EVI across a time step ti that
marks the boundary between these periodic cycles, i.e. the one that ends at ti, and the other that
begins at ti+1. We refer to this type of differencing (computing drop from previous periodic cycle
in succession) as Successive Differencing (SD), which is different from computing the deviation
from a fixed expected value as done in CUSUM, which we refer to as Fixed Differencing (FD).

4
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If T is a given time series, n is the number of time steps in T , and S is the periodicity of T , we
can define SD and FD methods as:
FD: ∆c

i = vti − µ ∀ i ∈ 1 · · ·n
SD: ∆s

i = ∆i ∀ i ∈ S · · ·n− S (Refer to Table 1 for notation)
For MODIS EVI time series, ∆s

i ’s are computed as difference between the mean values of two
successive years (two consecutive sets of 23 values since S = 23).
FD gives deviation in values relative to the fixed expected value, while SD gives the drop relative

to the previous year. Also, in the first equation, individual data values are used for differencing while
in the second equation, averaged value over a seasonal cycle is being subtracted. Computing drop
from a previous value in succession can provide trend information in a time series, which is what
successive differencing does. Also, subtracting averaged values instead of individual values make the
trend information more robust to seasonal variations and noisy outliers. On the other hand, ∆c

i ’s
fluctuates with the seasonal variations, even when there is no decrease in vegetation. Also, it does
not provide trend information which is vital for identifying decreasing period in a time series.

Using Successive Differencing. As we have seen above, successive differencing using mean value
of annual segments can be used to determine trends in a time series. Therefore, we use SD instead
of FD for our approach. Below, we mention some possibilities in which SD could be used:

Consider a method for detecting gradual decrease that tries to identify the window in a time series
that has the largest drop: given a time series, identify two years, i.e. two sets of 23 consecutive time
steps, y1 and y2, such that the difference between the mean EVI of y1 and y2 is maximum in the time
series. This is similar to identifying the window where the sum of ∆s

i is maximum. This method will
work well for consecutively decreasing time series. However, there are some disadvantages of this
method when applied to a time series with high variation. The primary disadvantage is that this
method loses information about the time steps in between y1 and y2. For example, given the time
series shown in Figure 4, this method would identify the decrease as having occurred between years
2 and 11 even though it is clear that the time series increased significantly after year 7. Specifically,
if the time series rises and falls in between then such a time series is highly variable and it should
not be considered as changed. Another disadvantage is that if there are large spikes in a year due
to noise that distorts the mean EVI for that year in an otherwise stable time series, this time series
will be given a high score (drop from y1 to y2) by this method, even though this change is spurious.

To overcome drawbacks of the above method, yet another method to detect gradual decrease
could be to compute the difference between successive yearly sets (∆s

i ), and determine the longest
continuous window of positive ∆s

i . This method again has a major disadvantage that if there is
a spurious rise in time series due to noise, the drop window will fall short of that false rise and
thus could be determined much smaller than it actually is (e.g. for the time series in Figure 4, this
method would incorrectly detect end of degradation in year 5).

Building on the concepts described in this section, we propose a novel time series change detection
method, Persistent-∆ Approach, or PDELTA. It uses successive differencing as the base to compute
∆i’s. The key property of successive differencing is that as long as there is a decrease in the time
series from one year to the next, ∆i would be positive. If the decrease is at an almost constant
rate, the ∆i would be almost constant. As soon as ∆i becomes zero, it means that there has
been no vegetation change from past year to the present year. But it could be too soon to say
that the change in vegetation has stopped since this could be due to some noisy time steps and
it’s possible that after very few time steps, ∆i’s become positive and stay positive for a couple of
years or more. Thus the change didn’t really stop, but continued after a short time. Therefore,
the primary objective of PDELTA is to determine the window of maximum reliable drop. This
method tolerates natural variation which may cause small increases in individual years during an
extended period of degradation. For example, in Figure 4, the technique correctly identifies the
period between years 2 and 6 when degradation has occurred since it accounts for the perturbations
in the intervening years. However, if this rise in the time series violates a reliability condition, the

5

2011 Conference on Intelligent Data Understanding 252

TOSHIBA
Pencil



approach differentiates it from the natural variation and does not consider this in the changed phase.
The next section describes the PDELTA method in detail.

5. Description of PDELTA

As mentioned in the previous section, the main objective of the PDELTA approach is to identify
the window of maximum reliable drop in a time series. It need not be a continuous drop, and some
amount of intermittent rise can be allowed as long as a decreasing trend is persistent. The amount of
intermittent rise allowed is controlled by a simple, but strong condition (Reliability Condition) which
essentially limits the amount of every intermittent rise during an extended period of degradation.
The remainder of this section describes the approach in detail.

As a first step, we compute ∆i, as described in the previous section, at each time step beginning
at the end of the first year (since we don’t have sufficient information to compute ∆i during the
first year) and terminating before the start of the last year (again due to insufficient information
during the last year). Let the series composed of ∆i’s, S ≤ i ≤ n − S, be ∆-series (Delta-series)
where S are the number of time steps in a year, and n are the number of time steps in the entire
time series. Next, we identify those time steps in the time series that have the characteristic to
become the extremes of the drop window. For this effect, we compute a Γ-series (Gamma-series)
from ∆-series, with each time step represented by γi, using the following transformation:

γi =

{
1 ∆i > 0

−1 ∆i ≤ 0

We say that those ith time steps are candidates for drop start for which γi−1 is -1 and γi is 1
(transition to 1). Similarly, those ith time steps are candidates for drop end for which γi−1 is 1 and
γi is -1 (transition from 1). The bottom plot in Figure 4 show an example of the ∆-series, Γ-series
scaled by a factor of 0.07, and candidate start and end time steps (b1, e1, etc.).

Let there be K candidate start and stop time steps identified in time series T , which are denoted
by bk and ek respectively, ∀k ∈ 1 . . .K. Between every bk and ek there is a decrease in EVI values
(decreasing trend), and between every ek and bk+1 there is an increase in EVI values (increasing
trend). For each bk we are interested in identifying the farthest el (1 ≤ k ≤ l ≤ K) such that
the time series pattern within these limits in general has a decreasing trend, even if there are mild
rises in between. If a drop starts at bk, then an intermediate rise occurs between every el and bl+1

(k ≤ l < K). In order to ensure that the decreasing trend is followed across these intermediate rises,
we test for a drop reliability condition at every el which must be satisfied before allowing the rise
between el and bl+1. This reliability condition is given below.
Reliability Condition (RC): It states that after the commencement of a drop at a time step
bk, the rise occurring at a certain time step el (ek ≤ el < eK) would not be considered as drop
termination if this rise is bounded by a fraction (x%) of the drop that has already occurred, and, if
there is an overall decrease in the EVI values during the time steps in the limited future of el. The
limited future is defined as the time steps following el during which the rise does not exceed x%.
The motivation for this is that if the current drop window has accumulated a large sum of ∆i, a
greater room for rise is allowed as long as the time series in general still has a decreasing trend.

As long as this condition is satisfied, el can be extended. As soon as this condition fails at a
certain candidate stop time step, we stop at that el, and the maximum reliable drop that began at
time step bk is terminated at el. This becomes a candidate drop window (cwp) for time series T .
Since there could be more such windows in the same time series that begin at other candidate start
time steps, bj , j 6= k, we repeat the above process for the remaining candidate start time steps.
Thus, we would have at most K candidate drop windows cwp, ∀p ∈ 1 · · ·K.

To identify the best drop window, we compute a score for each candidate window using one of the
methods described in Section 6. The maximum scoring window is determined as the representative
window of the time series. Currently, we identify a single representative window of a time series
because we are interested in identifying time series that have undergone change at least once. Thus,
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Figure 4. The top plot shows the original time series (line connecting the dots),
smoothened time series, and the identified changed period (between solid vertical
lines). The bottom plot shows the corresponding ∆-series (continuous curved line)
as well as the Γ-series (broken line) scaled by a factor of 0.07.
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Figure 5. A time series in Madagascar showing a spurious rise in EVI.
.

the significance of change in each time series is given by the score computed for their corresponding
representative change window. The higher the value, the more severe the change.

The example time series in Figure 4 captures the effectiveness of this approach. The top plot
shows the EVI time series, the smoothed time series, and the two vertical solid lines identifying the
drop period. It can be noticed that the time series gradually decreased over many years and then
stabilized. The bottom plot shows the corresponding ∆-series in solid curved line and the Γ-series
scaled by a factor of 0.07 by a broken line. Notice that the first drop in ∆-series below zero is
included in the maximum reliable window since the reliability condition is not violated.

Let us also consider a case of a spurious rise as shown in Figure 5. In such cases the drop
window resulting from this rise will be small since the subsequent period will not be able to satisfy
the reliability condition. Furthermore, the score of the identified drop window according to our
methodology (as would be described shortly) would be low. Hence these type of drops would be
easily differentiated from the genuine drops.

6. Scoring Mechanisms and Discussion on Reliability Condition

Scoring Mechanisms. Once the candidate change windows are determined in a time series, the
next step is to quantify the change in each window. Some of the methods used are: (i) Drop in

7

2011 Conference on Intelligent Data Understanding 254

TOSHIBA
Pencil



EVI, which is the difference between the mean annual EVI just before the start of the drop and the
mean annual EVI just after the termination of the drop; (ii) Length of the Drop Window: The
length can be a powerful indicator of the confidence of the change. A decrease of longer duration,
even with a small Drop in EVI, can be of high confidence. Beetle infestation in Colorado (Figure 7)
is a good example of this scenario; (iii) Total Loss in EVI: If we assume that the drop didn’t take
place in an actually changed time series, we can suppose that the EVI pattern, P1, representing the
year before the start of the drop would have continued. In such a scenario, the total loss in EVI
would be the area enclosed between two time series, one that should have been had no vegetation
loss occurred, and the other which is the actual time series in which there is a loss in vegetation.

Here, we also introduce the concept of a third change point (the first being the drop start time
step and the second being the drop end time step). After the drop occurs, if one wants to determine
how long it takes for the time series to have a significant recovery, the third change point can be
used. The third change point is positioned at a time step after the second change point such that
the EVI values have risen a significant percent (say, 50%) of what it has dropped during the drop
window. The position of the third change point can also be an indicator of the confidence of the
drop. If the third change point is realized after many time steps following the drop window, the
drop is trustworthy because the vegetation stays low for a long time. On the other hand, if the third
change point occurs soon after the second change point, it might mean that either the vegetation
indeed recovered very quickly, or the drop was actually spurious and short-lived.

The different scoring schemes could also be incorporated into a single cost function. The new
cost function could be constructed such that it gives a minimum cost to a drop window that receives
a high score from all the above mentioned schemes, as well as high cost to a drop window getting
a low score from each scheme. A single cost threshold could be set which differentiates a genuine
change from a spurious one. This cost function must be designed with care such that it’s applicable
globally, and we leave this for investigation in future work.

Accounting for Variability in a Time Series. Though we have briefly mentioned variability in
a time series before, here we discuss it in the context of quantifying the EVI loss. Natural variability
occurs in EVI values from one year to the other due to changes in environmental conditions such
as temperature, precipitation, cloud cover, etc., or imprecision in measurement. Such a change in
a time series should not be regarded as a loss in vegetation. Furthermore, a true loss in vegetation
would be over and above the natural variability because a loss in vegetation equal to the natural
variability would actually be a common signature of that vegetation. A way to model the natural
variability is to take a mean of pairwise distance between EVI values of annual segments either
during the first few years (before the first change point) or immediate previous few years before
the first change point. The city-block distance measure (L1 norm) works well for computing this
variability. This variability is subtracted from the Drop in EVI in order to reflect a true drop in
vegetation on the ground. Similarly, the EVI values of the pattern P1 should be lowered by this
variability before computing the Total Loss in EVI. For evaluation presented in this paper, we have
used Total Loss in EVI as the scoring scheme with compensation for variability.

Potential Reliability Condition Augmentation. In the previous section, we described a method
to determine the start and end time steps of a candidate drop window. As it would appear, these
change points are dependent on the reliability condition used. We have described a simple reliability
condition that limits the amount of rise in the time series once the drop has begun. If the rise is
greater than a threshold, the drop is terminated by positioning a second change point before this
rise and a new drop window is initiated at the next candidate start time step. Finally, the best drop
window is selected as the representative drop window of the time series.

The advantage of using the above reliability condition is that it is simple, as well as it has only one
parameter. But this condition may handle some time series changes differently from what one might
prefer. For instance, if there is a time series that drops during the third year, stays almost constant
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(a) A snapshot showing locations identified as changed

by the proposed approach (red circles) overlaid on the
validation data polygons.

(b) Snapshot showing a large region in Colorado where

there was a drop in EVI due to Fire in the year 2002.
Most of this region is not covered by the polygons.

Figure 6. Snapshots showing regions in Colorado where vegetation loss was detected.

for the next five years, and then drops again during the eighth and ninth years, then the start and
end change points would be identified around the second year and the ninth year respectively. It
would overlook that the time series is not decreasing at all for many intermittent years. It might be
more desirable to include these two drops in separate drop windows instead of one. But such cases
are not a limitation, as the proposed reliability condition can be adapted to handle these cases. It
can be taken as a base condition over which other conditions are added, which may or may not be
region specific. In the context of the above example problem, one possible adaptation could be to
add a condition that the drop window must have recurrent drops, say every y years or so. This
wouldn’t allow a period of stagnation for more than y years. Note that this modification would
result in the use of another parameter, y, thus deviating further from simplicity.

7. Evaluation

Evaluation of a scheme for detecting changes in forest cover is challenging due to the lack of
high-quality ground truth. The most reliable methods for generating ground truth (e.g. ground
surveys) are very expensive and are thus only available for small regions.

In the absence of such gold standard ground truth, less reliable labels generated by some other
scheme or via aerial surveys can still be used for validation, but care must be taken to check if “false
positives” (i.e. changes found by the scheme but not in the validation data) are indeed false, since
they could have been missed by the scheme used to generate labels. Similarly, one needs to check if
“false negatives” (i.e. changes noted in the validation data but not found by the scheme) are indeed
changes on the ground as they could be incorrectly classified as changed by the other scheme.

We evaluated our approach on two regions; Northern Colorado and Southern Madagascar for
which moderate quality labels are available in the form of polygons covering degraded areas of the
forests. These regions are interesting because they have completely different vegetation types, and
the degradation is caused by different mechanisms; specifically, insect damage in Colorado, and
logging in Madagascar. During analysis in both regions we emphasize the strength of this algorithm
in detecting changes that are difficult to identify, as well as the capability of this approach to capture
many changes that are missed by the validation data.

7.1. Evaluation on Colorado Forests. The first region of analysis is forests in northern Colorado
(the region bounded by 39◦N—41◦N; 108◦W—104.5◦W). The US Forest Service and its partners
[2] maintain data sets which map the regions of forest cover that have degraded between years 2002
and 2008 in northern Colorado. The objective was to detect regions of forest degradation using
our approach and evaluate it against the above validation data (which has been transformed to
polygons). We present our analysis as follows:

True positives are points detected by our approach that also lie in the polygons. As seen in
Figure 6a, there is a very good overlap of the detected points with the validation polygons. The
algorithm is also able to correctly identify the period of degradation. Colorado is a difficult region
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Figure 7. A typical gradual drop in Colorado due to beetle infestation.

(a) This figure shows an example time series in Colorado
that has no perceptible change but which fall inside the

ground truth polygon.

(b) Time series of a region in Madagascar showing grad-
ual decrease in EVI starting from year 2001, which lie

inside the ground truth polygon.

Figure 8. Snapshots of false negatives in Colorado and true positives in Madagascar.

because changes here are often very gradual, sometimes to the extent that there is no visible change
in EVI signal upon manual inspection. Nevertheless, our approach identified a significant number
of points. Figure 7 shows the typical EVI time series in this region.

False positives are points that we detected as change but do not lie in any of the polygons.
There could be several reasons for this: (i) the decrease in vegetation in these areas is caused by
factors other than those considered in constructing the validation data; (ii) it is known that the
polygons can be inaccurate (iii) these points are in fact not changed, but due to noise in EVI appear
as changed and thus given a high score by the proposed approach. Our manual inspection shows
that majority of false positives with high scores are due to (i) and (ii). For example, consider the
region shown in Figure 6b. This region is not part of any polygon even though the change is quite
apparent and is likely due to fire [7].

False Negatives are points that we did not detect as changed but which lie inside the polygons.
Figure 8a, shows an example of such a time series. This time series does not show any change in the
EVI signal. There are numerous time series in this region that show little perceptible change and
are in the polygons. So either the vegetation loss here is too gradual to be detected by our approach,
the change on the ground is not captured by the EVI signal, or the polygons are inaccurate.

7.2. Evaluation on Madagascar Forests. The second region of analysis is southern Madagascar
(the region bounded by 25.6◦S—20◦S). The validation data is obtained from Center for Applied
Biodiversity Science (CABS) at Conservation International (CI), whose analysis is based on bitem-
poral Landsat image comparison between years 2001 and 2005 [8]. Hence, the validation data (or
polygons) cover changes only between these two years.
True Positives and False Negatives: Figure 8b shows an example of a true positive. The image
clearly shows the gradual drop starting in the year 2001. Most points in the validation polygons
show similar behavior, although with varying decay rate and duration. Hence, effectively there are
few false negatives since most points in the validation polygons can be found by our algorithm.
False Positives: Most of the false positives were observed due to the following reasons:
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(a) A snapshot showing a large region in Madagascar
where vegetation loss started to occur in the year 2001.

(b) This figure shows an area where vegetation loss oc-
curred after year 2005.

Figure 9. False Positives in Madagascar having a decreasing EVI signal.

(1) Vegetation degradation occurred during the period of analysis (2000-2005) but the vegetation
recovered during 2005, which causes it to be missed by the technique used in generating the validation
data (Figure 9a). The entire cluster of points to the left in the figure has similar time series signature
but lies outside the validation polygons. This illustrates the limitation of the technique that are based
on the comparison of images taken on two different dates. (2) Significant vegetation degradation is
visible only after 2005 hence was not included in the validation data set. Figure 9b shows an example
of such a region. This type of identification also highlights the capability of our approach to find
changes with high temporal precision in a continuous manner. This is opposed to the image-based
methods where analysis is usually done on snapshots of images generally few years apart.

8. Comparative Evaluation on Synthetic Dataset

In this paper, we compare our proposed technique with two other approaches for gradual change
detection, CUSUM and BFAST [17] using data sets with simulated noise and change characteristics.
The BFAST technique is designed to detect long-term changes in satellite image time series. It
decomposes a time series into trend, seasonal, and residual components, such that the intra-segment
models are constant, while inter-segment models are dissimilar. BFAST identifies the optimal po-
sition of trend and seasonal breakpoints by minimizing the residual sum of squares (RSS), and
the optimal number of breaks can be determined by minimizing an information criterion. Before
estimating the breakpoints, the ordinary least squares residuals-based moving sum test is used to
identify if any breakpoints are occurring in the time series. As output, BFAST provides the trend
breakpoints and associated trends, seasonal breakpoints and associated seasonal models, and logical
values indicating whether the time series is considered changed in the seasonal or trend components.
We do not consider the seasonal component in this paper since we are looking for a decreasing trend.

Evaluating our algorithm against BFAST is not straightforward since BFAST looks not only for
drops, but any type of trend change in a time series. Also, simply consulting the logical vector
values that labels a time series as changed was not feasible for two reasons: (i) BFAST appears
to be sensitive to noise and frequently finds different trends even in a stable time series and labels
them as changed. (ii) BFAST would label a time series as changed if any type of trend change
is present, notwithstanding the absence of a decreasing trend. In addition, BFAST also requires
some parameter settings such as the minimum segment size and maximum number of breakpoints
desired. These parameters are not mandatory, but not setting them makes it quite sensitive to
noise, resulting in breaking even a single trend into multiple segments. Therefore, construction of
the synthetic datasets had to be in consonance with the parameter values of BFAST.

We constructed two types of datasets, DS1 and DS2, the first containing three different trends
(two trend breakpoints), and the other containing four different trends (three trend breakpoints).
The maximum number of breakpoints set in BFAST for these two types of datasets were two and
three respectively, and it was expected that BFAST would correctly identify all the given trends.
Since we are interested in identifying the decreasing trend, our trend of interest among the ones
returned by BFAST is the one which has the largest decrease across it. Its change score (which also
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represents the score of the time series) is computed in the same manner in which we compute the
score for our proposed approach. Below, we describe the creation process of the synthetic dataset.

8.1. Synthetic Data Generation. The datasets, DS1 and DS2 are comprised of 1100 time series
each, in which a gradual decrease phase was inserted in 80 time series for DS1, and 120 time series
for DS2. In DS1, 40 time series also have an increasing trend. The remaining stable time series in
both the datasets are identical (total: 980). Each time series has 322 time steps, with a seasonal
period of 23 time steps (in order to mimic the MODIS EVI time series having 14 years of data).
The seasonality in a time series is created using a function of the form:

F (x) = A ∗ e
−|x−m|

B

where A controls the amplitude, x varies between time steps of a particular year, m controls the
position of the peak in that year, and B controls the curve. The shape of F (x) mimics a typical
seasonal vegetation pattern of a forested region (or farming cycle) as reflected in an EVI time series.

Each time series has different types of noise added to it. We define these below, followed by the
characteristics of the changed and stable time series.

Noise characteristics Two types of noise are introduced in the dataset. w1 is white noise that
is added to each time step in the time series. w2 is outliers, that results in very high (upward spikes)
or very low (downward spikes) values at certain time steps as compared to that of its neighbors.

Characteristics of a changed time series There are three phases in these time series. (1)
beforePhase is the period in the time series before a drop. Here, seasonal cycles (pattern during
one year) are represented by F (x). This phase may have an increasing trend or a stable trend.
Noise w1 and w2 is added to each time step. All introductions in this phase are probabilistic as a
Gaussian distribution within sufficient ranges specified in advance. This includes the values of w1,
w2, duration of this phase, height of the data values during each year, duration of the increasing
trend if any. (2) changePhase starts as soon as beforePhase ends. The majority of these time series
have a decreasing trend. The base level of successive years in this phase is reduced gradually from
starting of this phase till its end. The duration of this phase and the amount of drop introduced are
probabilistic within a certain range. Noise w1 and w2 are added to this phase as well. In a small
fraction of time series, an increasing trend is added during this phase instead of a decreasing trend
to include more variety of time series. However, since these time series do not contain a decreasing
trend, they are considered as false positives if detected by any algorithm. (3) afterPhase starts after
the changePhase ends. Each year in this phase is also represented by F (x) with w1 and w2 added.

Characteristics of a stable (unchanged) time series These time series have one phase with
a constant level whose value is probabilistic within a certain range. Each seasonal cycle in these
time series is also represented by F (x) with noise w1 and w2 added.

8.2. Evaluation Strategy. PDELTA, CUSUM, and BFAST are applied to these datasets after
preprocessing as described in Section 2. We compare the performance of our approach with CUSUM
and BFAST separately. It is because these two approaches return different information about the
drop, and we adjust our evaluation according to this information. For CUSUM, we combine the
samples of time series from datasets DS1 and DS2 into a single dataset DS0.

8.3. Comparison with CUSUM. We evaluated the performance of PDELTA and CUSUM on the
dataset DS0. There are four different types of time series in DS0 that have a decreasing trend (Figure
10). Each pattern has 50 different samples. Overall, this dataset has 200 decreasing time series,
and 1020 stable time series (Total: 1220). The time series patterns included in DS0 are common
in the real world datasets. Pattern one (Figure 10a) is an example of a stable forest that degrades
over many years. Pattern two (Figure 10b) is an example of conversion of forests to farm lands, as
could be noticed from the typical farming cycles during the later part of the time series. Figure 10c
reflects some plantation following a deforestation. Figure 10d could depict a failed reforestation.

The precision-recall curve of the result of the two algorithms is shown in Figure 11a. CUSUM
performed best on the samples of the pattern shown in Figure 10a. Admittedly, CUSUM performs
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(a) Pattern one
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(b) Pattern two
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(c) Pattern three
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(d) Pattern four

Figure 10. Different decreasing patterns in D0 dataset. Each pattern has fifty
samples (total two-hundred). The horizontal line shows the mean of the time series.

well for any gradually decreasing time series that accumulates a large score during the beginning
time steps, which would happen if most of the beginning values are placed above the expected value
µ. However, CUSUM would perform equally poorly on time series having an opposite signature.
This highlights a major drawback of CUSUM. Consider the patterns two and three shown in Figures
10b and 10c, on which CUSUM performed poorly. In these time series, most of the values in the
beginning are below µ, which is taken as the mean of the time series, implying that the majority of
the later values are above µ. Such time series would never be able to accumulate a high cumulative
sum since it incurs a large loss in the beginning due to negative deviations, and therefore would
be given a low score. Many such scenarios could be constructed where there is a decreasing trend
present but the time series never accumulates a high enough score for it to be significant.

We also investigated alternative ways of computing the expected value, but these variations either
repeated some of the above drawbacks, or other drawbacks were discovered in them. For instance, by
taking µ as the mean value of the first year, CUSUM performed poorly on patterns two, three, and
four (Figure 10). Note that if we consider this variation, we are looking for the minimum cumulative
sum (instead of the maximum) since an ideally decreasing time series would have a highly negative
cumulative sum. The main disadvantage of this variation is that the cumulative sum is highly
dependent on the first year values. If the first year values are noisy, it can drastically affect the
algorithmic output. As an example, if µ is even slightly high due to noise, a stable time series could
get a high score. In contrast, if µ is low, decreasing time series can go undetected (Figure 10d).

The precision-recall curve suggests that PDELTA performed considerably better than CUSUM
on this dataset. Additionally, PDELTA also identifies the period of decrease.

8.4. Comparison with BFAST. Our evaluation with BFAST is based on two factors: (1) Precision-
recall curves for PDELTA and BFAST, formed by ranking the time series in decreasing order of
scores, when evaluated on DS1 and DS2 (Figures 11b and 11c). (2) Scatter plots of the deviation of
the change points identified by the two approaches from the actual positions where the breakpoints
were introduced in the synthetic datasets (Figure 12).

The scatter plots show that the distribution of the deviation of the change points identified by
PDELTA is closer to zero than that of BFAST. BFAST segments a time series based on RSS and a
Bayesian Information Criteria (BIC), which has no bias towards identifying decreasing periods. If
identifying the decreasing trend as a separate segment minimizes RSS, BFAST will correctly identify
the decreasing trend. Otherwise, it may combine a part of the decreasing trend with an adjacent
trend. Also, BFAST appears to be sensitive to noise in a time series. It correctly detected the trends
introduced for many time series (Figure 13a), but it segmented stable time series into different trends
as well (Figure 13b). This suggests that BFAST might not be very suitable for highly variable time
series, where noise levels can distort the ideal seasonal pattern enough. Such highly variable time
series are characteristic of the tropical belt such as in Para (Brazil), Peru, Congo, etc.

13

2011 Conference on Intelligent Data Understanding 260

TOSHIBA
Pencil



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0.82

0.61

Number of Time Series

P
re

c
is

io
n
−

R
e
c
a
ll

(a) DS0 - Precision-Recall for

PDELTA (solid - precision: 0.82)
and CUSUM (broken - precision:

0.61). Noise w1 = 200, w2 = 10%.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0.49

0.84

P
re

c
is

io
n
−

R
e
c
a
ll

Number of Time Series

(b) DS1 - PDELTA (0.84). BFAST

(0.49)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

0.88

0.44

P
re

c
is

io
n
−

R
e
c
a
ll

Number of Time Series

(c) DS2 - PDELTA (0.88). BFAST

(0.44)

Figure 11. Precision curves (blue) and recall curves (red) for PDELTA (solid
curves), CUSUM (dashed curves), and BFAST (dashed curves).
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Figure 12. Scatter plots of the deviation of change points detected by PDELTA
and BFAST from actual drop start (x-axis) and drop end (y-axis) time steps.
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(a) Correctly detecting a decreasing trend.
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(b) Many trends identified in stable time series.

Figure 13. Trends using BFAST. Vertical lines identify the period of maximum drop.

9. Conclusion

In this paper, we presented a globally scalable novel approach, PDELTA, for detecting a gradually
decreasing EVI time series that can capture changes caused by a variety of sources. PDELTA can
be considered an adaptation of CUSUM with the added capability of identifying the period of
decrease and quantifying the magnitude of drop in a time series, while being more robust in the
presence of noise and spurious changes. We demonstrated the efficacy of the proposed approach
using independent validation data sets in Colorado and Madagascar. It was also shown that genuine
changes were detected by our technique which were missed by other approaches, as well as points
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identified as changed by other approaches with no perceptible EVI signal were not detected. We
comparatively evaluated our technique with CUSUM, and the state of the art BFAST technique.
BFAST in its present form is computationally very expensive, whereas both PDELTA and CUSUM
are quite fast. PDELTA can also identify reforested areas depicted by increase in vegetation simply
by reversing a time series before applying this algorithm. Future extensions of this work include
adapting PDELTA to detect more general types of changes (e.g. abrupt changes). Also, while this
paper focuses on identifying the single most significant drop in a time series, PDELTA is able to
identify multiple decreasing segments. Thus, other decreasing segments could also be identified as
separate changes if the drop within them is also significant (multiple change detection). This aspect
of PDELTA needs to be further explored and developed.
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ABSTRACT. Current methods of drought assessment utilize drought indices, such as the standardized precipitation index and Palmer 
drought severity index, that rely on subjective thresholds and hence cannot be universally applied across different climatic regions. In 
addition, most of the existing drought indices are not amenable to probabilistic treatment which is essential for quantifying model 
uncertainties in drought classification. This study applies a machine learning tool, the hidden Markov model (HMM), for probabilistic 
drought classification. The HMM-based drought index (HMM-DI) developed in this study, does not require specification of subjective 
thresholds and model parameters are determined from historical data during parameter estimation. The drought classifications 
obtained using HMM-DI are compared with SPI results. The HMM-DI reveals new insights into the frequency and severity of droughts 
and their spatio-temporal variations. The effectiveness of HMM-DI is assessed by its application to monthly precipitation data over 
India. The results suggest that HMM-DI can be a promising alternative to conventional drought indices.  
 

 
 
 
 

1. INTRODUCTION 
Droughts are assessed using drought indices that provide a numerical standard for 

comparing drought characteristics over time and over different regions. According to 

World Meteorological Organization (WMO), a drought index is “an index which is related 

to some of the cumulative effects of prolonged and abnormal moisture deficiency” [1]. 

Numerous drought indices have been proposed in the literature [2]; some of the early 

indices include: Munger’s index [3], Blumenstock’s index [4], Antecedent Precipitation 

Index [5], Palmer Drought Severity Index (PDSI) [6], Crop Moisture Index (CMI) [7] and 

Surface Water Supply Index [8]. Although these indices use different forms of water 

deficits to characterize droughts, the results often do not correspond well among the 

indices owing to the complex physics that involves precipitation, infiltration, 

evapotranspiration, groundwater, base flow and direct runoff. Another popular index - the 

standardized precipitation index (SPI) [9] has gained wide recognition because of its 

computational simplicity and versatility in comparing different hydro-meteorological 

variables at different time scales. In SPI, historical observations are used to compute the 

probability distribution of the monthly and seasonal (2 months, 3-months, etc., up to 48 

months) precipitation totals. The fitted probability distributions are then normalized 

using the standard inverse Gaussian function to calculate the SPI. A negative value of SPI 

indicates precipitation less than median rainfall, and the magnitude of departure from 

zero represents the severity of a drought. McKee et al. [9] suggested a classification scale 

in which (i) extreme drought occurs when SPI value is less than -2.0, (ii) severe drought 

when SPI value is between -1.5 and -2.0, and (iii) moderate drought when SPI value lies 

between -1.5 and -1.0. 
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The SPI has several limitations when applied to precipitation data over India as described 

in Mallya et al. [10] and are briefly given below: 

(a) The SPI cannot identify drought prone areas - in SPI, the precipitation data are 

transformed to a standard normal distribution, and therefore the frequency of 

drought remains same irrespective of the region. Further, the frequency of drought 

remains same irrespective of the duration of the drought. 

(b) For regions where precipitation exhibits small variability, even a small anomaly in 

the precipitation can lead to large negative SPI values. 

(c) In estimating SPI, it is generally assumed that the precipitation values are 

independent. This independence assumption may not hold true when estimating 

longer duration droughts (window size greater than twelve months). 

This study uses hidden Markov model to develop a drought index (HMM-DI) for 

probabilistic classification of drought states.  Unlike SPI, the HMM-DI does not require 

subjective thresholds because they are determined from historical data during parameter 

estimation. The HMM-DI is developed to overcome some of the aforementioned 

limitations of SPI.  

This paper does not provide any new algorithm development or methodological 

innovation. Rather, the goal of the paper is to use an HMM to achieve two important 

aspects that are not reflected in current drought indices, namely (i) representation of 

temporal dependence in drought states, especially for longer duration droughts, and (ii) a 

probabilistic classification of drought status. The focus of this study is on application of 

this method to precipitation data, and to analyze the results for seeking new insights into 

drought patterns over India. The remainder of the paper is structured as follows: the 

mathematical formulation of the new drought index is first outlined. The data used in the 

study are then described. Subsequently, the results obtained are discussed, and a set of 

conclusions are presented. 

  

2. MATHEMATICAL FORMULATION 

 

2.1 Hidden Markov Model 

An HMM is a statistical model in which observations from a system are assumed to be 

conditioned on the state of the system [11]. The state is hidden and satisfies the Markov 

property. The HMM was developed in late 1960s and early 1970s for speech recognition, 

and it has since been used successfully in many applications including hydrology [12]. The 

mathematical formulation of the HMM used in this work is described in detail by Tripathi 

and Govindaraju [13], and is briefly presented in the following paragraphs. 
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Let the rainfall at time t  be denoted by
tx , =1, ,t N  { tx   and T

1= [ , , ] }Nx xx . In a 

HMM, the rainfall tx  is assumed to depend only on the state variable tz  

T
1{ = [ , , ] }NZ z z  that denotes a drought or wet state, is hidden (not observed), and 

follows the first order Markov property. The state variable tz  is a K -dimensional binary 

random variable. If the number of states, K , are known a priori, the standard HMM can be 

parameterized using the following three distributions: 

1. The conditional distribution of rainfall given the drought state, ( | )t tp x z , referred 

to as the emission distribution. 

2. The conditional distribution of the present drought state given the previous state 

i.e. 1( | )t tp z z . Because tz  is a K  dimensional binary variable, the conditional 

distribution is given by a K K  transition matrix A  whose element 

1,= ( =1| =1)jk tk t jA p z z 
. 

3. The marginal distribution of the drought state at the first time step, 1( )p z , given 

by a K  dimensional vector Π  whose element 1= ( =1)k kp z .  

For a drought index, a definition of drought states that remains unaltered irrespective of 

the location or the time of a drought is desirable. To achieve this property, the following 

two steps were taken: 

(a) The rainfall data at any desired time scale (from one month to several years) were 

standardized by subtracting the data from its mean and dividing it by its standard 

deviation. The standardization brings the data from different locations and time 

scales to a common platform. The HMM model was applied to the transformed 

data. 

(b) The emission distribution was selected to be a mixture of Gaussian distributions of 

the form 

2

=1

( | ) = ( | , )
K

z
tk

t t t k k

k

p x x  z  (1) 

where k  and 2
k  are the mean and the variance of a Gaussian distribution, respectively. 

Since the results of the developed drought index are compared with SPI, the number of 

states (components in the Gaussian mixture) K  was set to 7 (3 drought states + 1 normal 

state + 3 wet states). In Mallya et al. [10], the k 's and k ’s were fixed a priori bringing 

subjectivity in HMM-DI. In this study, the k 's and k ’s were considered to be free 

parameters and were estimated along with other parameters of HMM.  
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The parameters of the HMM were estimated by the method of maximum likelihood using 

Baum-Welch algorithm [14]. 

 

3. DATA USED IN THE STUDY 

Daily rainfall data at a spatial resolution of 1  for both latitude and longitude were 

obtained from India Meteorological Department (IMD) and are based on a total of 1384 

stations distributed over India that have at least 70% availability for the period 1901-2004 

[15]. The gridded data consisting of 357 grid points have been obtained by interpolating 

raingage data. This data set is an extension of Rajeevan et al. [16] data set that was 

available for the period 1951-2004.  

 

4. RESULTS AND DISCUSSION 

The HMM based drought index and SPI were estimated at each grid point for 1, 3, 6, 12, 24 

and 36 months windows. For brevity, the results for window ending in September are 

discussed here. 

 

Figure 1 presents the emission distributions for extreme, severe and moderate drought 

states estimated for 3-months window ending in September at Rajasthan (grid 255) and 

the Western Ghats (grid 25). The geographical locations of the grid points are shown in 

Fig. 4. The probability density function (pdf) of the standardized cumulative precipitation 

at the grid-points for 3-months window is determined using non-parametric kernel 

density estimation method and is shown using black thick line.  The pdf at both the grid 

points are positively skewed. The pdf at gird 255 has a steeper rising limb compared to the 

pdf at grid 25 indicating that low rainfall values are relatively rarer in grid 25. The emission 

distribution for the extreme drought state at grid 25 is broad and diffusive compared to 

that at grid 255, and consequently extreme droughts are more likely to occur over grid 255 

than over grid 25. Further, since the emission distributions have smaller variance at grid 

255 there would be less uncertainty in the determination of drought states compared to 

grid 25. The proposed HMM-DI utilizes this information contained in the precipitation 

data. This information could not be engaged in drought classification by SPI with fixed 

thresholds or by HMM-DI with fixed emission distributions as was done in previous 

studies [9, 10]. 
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Figure 1, The emission distributions for extreme, severe and moderate drought 

states estimated for Grids 25 and 255. The emission distributions correspond 

to the 3-month rainfall window ending in September. The black thick line 

represents the probability density function (pdf) of the cumulative 

precipitation in that window. The pdf is determined using non-parametric 

kernel density estimation method.  

Figures 2 and 3 compare the performance of HMM and SPI for grid points 255 and 25, 

respectively. Both the models classify droughts into three categories - moderate, severe, 

and extreme; the HMM provides probabilistic classification while SPI yields a discrete 

classification. 
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Figure 2. Drought states identified by the HMM model (top panel) and SPI 

(bottom panel) for grid 255 located over Rajasthan. The results correspond to 

3-months window ending in September. The cumulative rainfall over the 

window period is shown using a solid blue line. The legends used are shown in 

the bottom panel. 

For Rajasthan, the SPI classifies 1938 and 1939 as moderate and severe drought years, 

respectively, even though the magnitude of precipitation among those years differs by 

only a few centimeters. In contrast, the HMM classifies both the years under severe to 

extreme drought category with certain probabilities. Similarly, the 1986 and 1987 

precipitation over grid 255 differs by just over a centimeter; however, the SPI classifies one 

under normal and the other under moderate drought category. The HMM classifies both 

the years to be in moderate to severe drought categories with certain probabilities. These 

examples highlight that even a small difference in precipitation may lead to two different 

drought categories by the SPI, a problem which the HMM-DI can avoid owing to its 

probabilistic formulation, thus providing a more realistic assessment of drought status.  
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Figure 3. Drought states identified by the HMM model (top panel) and SPI 

(bottom panel) for grid 25 located over the Western Ghats. The results 

correspond to 3-months window ending in September. The cumulative rainfall 

over the window period is shown using a solid blue line. The legends used are 

shown in the bottom panel. 

For the grid 25 located in the Western Ghats, there are a few similarities between the 

results given by the HMM and the SPI. The year 2002 is classified under severe and 2004 

under extreme drought categories by both the models. The cumulative precipitation 

amounts over grid 25 during the selected 3-months window for 1986 and 1987 differ only 

by a few cm, and it is expected that both the years will be under the same category. The 

HMM gives this intuitive result; the SPI, however, classifies 1986 as a moderate drought 

year and 1987 as a severe drought year indicating that the SPI may sometimes lead to 

misleading conclusions.  
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 8 

Figures 4 and 5 show the drought states over India for two extremely dry years, 2002 and 
2004. For 2002, the HMM model suggests that most of the country, except for some parts 
of West Bengal and Northeast India, is under drought. The SPI incorrectly indicates that 
large portions of Central and North India are under normal monsoon conditions. 
Additionally, the drought patterns given by the HMM possess spatial contiguity, a feature 
that is missing from SPI results as a consequence of hard classification. In Fig. 5, the SPI 
suggests that Western Rajasthan had a normal monsoon season in 2004, though it is well 
known that the region had weak monsoon in 2004 [17], which is correctly reflected in the 
HMM result.  
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Figure 4. Moderate to extreme drought states identified by the HMM model 

(left panel) and the SPI (right panel) for 2002. The locations of grid points 25 

(in the Western Ghats) and 255 (in Rajasthan) are also shown in the figure. 

The blue shaded grid points represent normal or above normal precipitation. 

The color shades on the left panel represent probability of drought according 

to the color bar. 

The number of extreme, severe, and total (including moderate, severe and extreme) 

drought years during the available historical records (1901 to 2004) are shown in Figures 6, 

7 and 8, respectively. The SPI transforms precipitation into a standard normal distribution, 

and hence each grid point has equal probability of having extreme or severe drought 

events. This is evident from the right panels of Figures 6, 7 and 8. Thus, SPI, owing to its 

formulation, cannot distinguish drought prone areas. In contrast, the HMM can identify 

drought prone areas - Fig. 6 indicates that Western Rajasthan and the Kutch region of 

Gujarat are more susceptible to extreme droughts, while Fig. 7 suggests that the remaining 

portion of Rajasthan, Gujarat, and north-interior Karnataka are more likely to have severe 

droughts.  
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Figure 5. Moderate to extreme drought states identified by the HMM model (left 

panel) and the SPI (right panel) for 2004. The blue shaded grid points represent 

normal or above normal precipitation. The color shades on the left panel 

represent probability of drought according to the color bar given in Fig. 4. 
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Figure 6. Number of extreme drought years during 1901 to 2004 identified by 

the HMM model (left panel) and SPI (right panel). For the HMM model, the 

years with probability of extreme drought greater than 0.9 are counted. For 

SPI, the years with SPI value less than -2.0 are counted. 
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Figure  7. Number of severe drought years during 1901 to 2004 identified by 

the HMM model (left panel) and SPI (right panel). For the HMM model, the 

years with probability of severe drought greater than 0.9 are counted. For SPI, 

the years with SPI value between -1.5 and -2.0 are counted. 
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Figure 8. Number of total drought years (including moderate, severe and 

extreme droughts) during 1901 to 2004 identified by the HMM model (left 

panel) and SPI (right panel). For the HMM model, the years with sum of 

probability of moderate, severe and extreme droughts greater than 0.9 are 

counted. For SPI, the years with SPI value less than  -1.0 are counted. 
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The number of drought years during 1901 to 2004 identified by SPI and HMM for different 

window sizes (1 to 36 months) all ending in September are shown in Fig. 9. For SPI, the 

years during which SPI value is less than -1.0 are counted at each grid point and for each 

window size. For HMM, the years during which the sum of probability of moderate, severe 

and extreme droughts exceeds 0.9 are counted. It is expected that with increase in window 

size, the number of drought years would increase because the droughts for longer time 

windows naturally exhibit prolonged durations. Since SPI drought classification is based 

on predefined thresholds and under an independence assumption of the data, the number 

of drought years is of the same order irrespective of the time scale. This is evident in Fig. 9 

that shows boxplots of number of drought years for different time scales (1 to 36 months) 

at all grid points over India. The SPI, owing to its independence assumption, cannot 

distinguish between time-scales, while HMM shows an increasing trend in the number of 

severe drought years with increasing window size. 
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Figure 9. Number of drought years (including moderate, severe and extreme 

droughts) during 1901 to 2004 identified by the HMM (red dashed box) and 

SPI (blue bold box) over all 357 grid points for different time scales ( 1 month 

to 36 months). The symbol S-w and H-w demote SPI and HMM-DI for window 

size of w moths, respectively. The number of drought years averaged over all 

grid points identified by HMM-DI and SPI are denoted by green circles and 

blue squares, respectively. 
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5. CONCLUDING REMARKS 

A hidden Markov model (HMM) based directed acyclic graph was used to develop a new 

index for assessing drought characteristics. The parameters of the HMM were estimated 

using the method of maximum-likelihood. The developed drought index (HMM-DI) was 

applied to precipitation data over India and the results were compared with the standard 

precipitation index (SPI). The results suggest that the HMM-based index has some 

advantages over the SPI - (i) the HMM can identify drought prone areas, (ii) the 

probabilistic classification of drought states by the HMM avoids some non-intuitive 

results given by the SPI, and (iii) the HMM relaxes the independence assumption made in 

the SPI, which is particularly useful for assessing longer duration droughts (window size 

greater than twelve months).  

The developed HMM index appears to be a promising alternative to the existing drought 

indices. In addition to the above discussed advantages, the HMM index can assess drought 

characteristics in real-time and can be used to generate data for simulating droughts. 

Additionally, the graphical representation of HMM-DI can be exploited for investigating 

the relationships between droughts based on precipitation, streamflow and soil moisture, 

and for space-time identification of drought triggers. 
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Automated Orbital Mapping of Mars

Brian P. Kent, Alessandro Rinaldo, and David Wettergreen

Abstract: 

The Mars geologic mapping process lags behind the collection of Mars imagery and 
elevation data. We develop and test a statistical system that automatically 
generates geomorphic maps of uncharted Mars regions in order to help close this 
gap. By providing “first draft” maps, we hope to allow geologists to avoid repetitive 
mapping tasks and to focus on areas of high scientific interest.

We view the mapping process as a supervised learning problem. In the most 
general form, our system uses a set of Martian scenes and a statistical classifier to 
learn the relationship between spectral and topographic information on one hand 
and landform classes on the other, then uses the relationship to predict the 
geomorphic map for an uncharted scene. We explore how the predictive accuracy of 
the system varies depending on the choices of training set, classification method, 
included covariates, and scene segmentation.

Previous work by Ghosh, Stepinski, and Vilalta [1, 2] showed that multiple 
classification algorithms could accurately predict the landform type of test 
superpixels—contiguous regions of uniform landform treated as a single data point
—when trained on topographic information from superpixels in the same scene. We 
build on these results by defining a more universal partition of landform classes, by 
training our classifiers on many different scenes and testing on an entirely new 
scene, and by augmenting  topographic information from the Mars Orbiter Laser 
Altimeter (Mars Global Surveyor) with spectral intensity data from the High 
Resolution Stereo Camera (Mars Express). These changes allow our system to 
predict more general scenes.

When our classifiers are trained and tested on superpixels from the same scene and 
only topographic information is used, we achieve slightly less accurate predictions 
than Ghosh, et al., although the results are still considerably better than the naïve 
most common class (MCC) prediction. When we train the classifiers on many scenes 
at once and predict an entirely different scene the accuracy for each classifier drops 
but still exceeds the MCC accuracy for most methods. Furthermore, when we add 
spectral information to the training set, prediction accuracies for the Adaboost, k-
nearest neighbors, and support vector machine methods jump substantially to 
about 80%, compared to 50% accuracy for the baseline MCC method (Figure 1).

Future work will focus on expanding the training set to more than seven scenes 
while maintaining high data quality, using clustering techniques to identify a data-
driven partition of Mars geomorphology into discrete classes, and reincorporating 
previous efforts to use more complex superpixel features and belief propagation to 
share predictive information between neighboring superpixels.
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Figure 1: 5-fold cross-validation prediction accuracy for several classifiers,  
including Adaboost (ada), Gaussian naive Bayes (gnb), histogram naive 
Bayes (hnb), k-nearest neighbors (knn), linear discriminant analysis (lda),  
support vector machine (svm), and decision tree (tree). The baseline method 
is to predict all test superpixels as the most common class in the training set 
(mcc). Color indicates the training and testing scene, except for gray which 
indicates cross-validation runs where each classifier is tested on an entirely  
new scene. The solid lines indicate mean accuracy for each scene.
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A STUDY OF TIME SERIES NOISE REDUCTION TECHNIQUES IN THE

CONTEXT OF LAND COVER CHANGE DETECTION

XI CHEN†*, VARUN MITHAL†*, SRUTHI REDDY VANGALA†*, IVAN BRUGERE†*, SHYAM BORIAH*,
AND VIPIN KUMAR*

The purpose of this study is to introduce concepts relevant to performance of (i) change detection
algorithms within (ii) various regional contexts with differing noise characteristics according to
(iii) differing strategies of noise reduction. The relevant interrelations of these three elements are
presented, and focused analysis is presented from the perspective of varying (i) and (iii) for a
comparative analysis across (ii).

Six smoothing methods has been studied in this work: Savitzky-Golay (SG) method [7], The
Savitzky-Golay method iterated to upper envelope (SG-Itr) [3], Harmonic Analysis of Time Series
(HANTS) [6], Double Logistic function fitting method (DL) [1], Data Assimilation method(DA) [5]and
a naive outlier identification and imputation scheme (SO).

In this work, we enumerate three general data characteristics, especially relevant in the MODIS
EVI data, which a given noise reduction technique may take advantage of: neighborhood coherence,
quality annotation and background model.

For a noise reduction technique we identify the following two questions to be of relevance:

• Which observations in the time series should be imputed?
• How are these observations to be imputed?

Based on the first question, the reviewed methods can then be organized into (1) selective and (2)
non-selective imputation methods. Selective methods identify some observations that they consider
noisy and ought to be imputed. On the other hand, in the non-selective methods every observation
is imputed. We consider the selective methods to be more conservative as they modify fewer obser-
vations as opposed to the non-selective methods which modify every observation and therefore no
processed data value corresponds to the real observation. Intuitively, if an observation is not clearly
anomalous and is annotated as a high quality observation, the value reported by the MODIS is as
trustworthy as can be ascertained. Time series smoothing methods should thus be considered the
most aggressive because generally every observation of the original time series is modified without
identifying trustworthy observations. Note that typically the imputations of selective methods will
modify the observation by large magnitude because large outlier values are imputed in this case.
The non-selective methods are less conservative and modify each value but the total modification in
the value itself is generally of smaller magnitude for most observations.

Imputation is done primarily based on the three characteristics of neighborhood coherence, quality
annotation, and background model. Most of the non-selective methods rely only on neighborhood
coherence and use function fitting on temporal neighbors to eliminate the noise. In contrast, some
of the selective methods such as DA does not account for the temporal coherence. While all three
properties play an important role when removing noise yet there is no method that uses them all.

In our study, we present two noise characteristics in varying degress in different regions. The
effectiveness of noise reduction for change detection methods is closely related to the susceptibility
of these methods to these characteristics. First, unbiased noise of relatively small amplitude exists
as a component of each observation due to variations in atmospheric conditions or instrument im-
precision. This noise causes neighboring observations to be arbitrarily different from each other due

† These authors contributed equally to this work.
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to phenomena other than vegetation growth, where no land cover change has occurred. Second, the
presence of relatively large, positively or negatively biased noise produces anomalous observations
which do not follow the phenological trend of the time series. Often these observations are annotated
with a low quality flag (QA) but sometimes may not be recorded accurately in the QA annotation.

Change Detection methods are impacted by both biased and unbiased noise in the data. A naive
algorithm using observation-wise comparisons between the same months in two years will be severely
impacted by biased noise and raise many false alarms. Therefore, most algorithms, including those
used in this study, consider a more robust statistic like the average over an entire year for change
detection. The Manhattan Delta [4] and Yearly Delta algorithms [2] are impacted by biased noise as
it can increase the distance considerably and give a false appearance of change in EVI. The Yearly
Delta algorithm is robust to unbiased noise in the data as averaging of it tends to be approximately
zero. However, the Manhattan Delta algorithm is additively impacted by the unbiased noise.

In this paper we have shown that the interrelations between noise characteristics endemic to
differing data regions, change detection methods, and noise reduction methods. We have provided
contrasts between selective and non-selective imputation methods and their effects on biased and
unbiased noise characteristics. We conclude that less conservative, non-selective noise reduction
methods generally follow more conservative, selective methods to improve results. Conversely, we
conclude that non-selective methods tend to perform poorly in the presence of positively or negatively
biased noise. Depending on the susceptibility of the change detection method to each of these noise
characteristics, either smoothing or outlier detection may not be necessary.

For an extended version of this study which includes a detailed discussion on noise reduction
algorithms, noise characteristics of vegetation index data, as well as a comprehensive experimental
evaluation, we refer the reader to [4].
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UNDERSTANDING THE SEA SURFACE TEMPERATURE - TROPICAL

CYCLONE RELATIONSHIP: A DATA-DRIVEN APPROACH

JAMES H FAGHMOUS*, STEFAN LIESS**, AUROOP GANGULY***, MICHAEL STEINBACH*,
FRED SEMAZZI****, AND VIPIN KUMAR*

Extended Abstract

Global climate change and its effect on Atlantic tropical cyclone (TC) activity has become one of
the most contested issues in climate science. The difficulty of attributing a change in TC frequency
to global climate change stems from the lack of reliable historical data as well as the large amplitude
fluctuations in present-day storms. Understanding future TC activity is crucial, especially in light
of TC’s potential role in the ocean’s poleward heat transport [10, 2], impact on marine ecosystems
[6], and increasing destructiveness [1, 12].

Currently, a theory of TC formation (cyclogenesis) under climate change is still not fully under-
stood [7, 2], which makes predicting future TC frequency highly uncertain. Existing high-resolution
climate models fail to consistently predict an increase or decrease in the total number of TCs in
a warming environment. Globally, the majority of global circulation models (GCMs) forecast a
decrease in the total number of TCs as the atmosphere continues to warm. At the individual basin
level, however, regional circulation models (RCMs) have been significantly more uncertain with
projected changes of up to +/− 50%.

In this work we attempt to gain a better understanding into Atlantic cyclogenesis by leveraging
the recently available climate and TC data. First, we show that not all regions in the Atlantic are
equally important when it comes to cyclogenesis. Previous work monitoring TC trends employed
basin-wide averaging to study the sea surface temperature (SST)-TC relationship. Webster et al.
[12] conducted a basin-wide analysis of SST and TC trends in all major basins and concluded that
the recent increase in Atlantic TC activity could not be attributed to SST alone.

Our work proposes that instead of analyzing trends across an entire basin, which spans thousands
of miles, it might be more informative to focus on smaller and more meaningful regions in the Atlantic
to better capture SST’s relationship to Atlantic TCs. To accomplish this, we designed a systematic
search across the Atlantic basin to find SST and cyclogenesis regions with the highest seasonal
SST and TC frequency correlation. To identify such regions, we implement a linear optimization
algorithm that searches the Atlantic for pairs of SST-Cyclogenesis regions of any (reasonable) size
that better explain the SST-TC relationship compared to basin-wide averaging.

When we run our algorithm on the SST of months preceding the TC season (May-June), we find
the region off the West African coast near 20◦- 30◦N to have a significant correlation (0.55; p < 0.05)
with TC frequency of the following season (June-October). Similarly, when we apply our algorithm
to seasonal (June-October) SST averages we find the region westward of 10◦ − 20◦N between 18◦

and 60◦W has the highest correlation of seasonal TC counts (0.66; p < 0.05). Both of these regions
correlate better with seasonal TC counts that basin-wide averaging (0.43).

Interestingly, the region westward of 10◦ − 20◦N between 18◦ and 60◦W is part of the Atlantic’s
main development region (MDR), a region from where nearly 60% of all tropical storms and 85%
of major hurricanes originate [4]. The majority of storms within the MDR form from atmospheric
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African easterly waves (AEW). Therefore seasonal TC activity is highly sensitive to the climatology
of the MDR and AEW activity. Although the number of AEWs per year is fairly constant [3], the
percentage of developing AEWs is not [4, 11]. Recently, Sall et al. [8] and Hopsch et al. [5] found
that AEWs are weakened by dry mid-to-upper level air traveling from higher latitudes (Europe
and North Africa). More specifically, AEWs exiting from the African continental landmass tend
to ingest dry air descending from middle latitudes and dissipate without experiencing cyclogenesis.
We propose that the warming of the West African coast near 20◦- 30◦N prior to the TC season
(May-June) provides the additional moisture necessary to counter the higher latitude dry air linked
to suppressing AEWs and therefore increase the chance that AEWs advance deep into the Atlantic
and develop into TCs. In a similar fashion the warming of the region along the AEW path (westward
of 10◦ − 20◦N between 18◦ and 60◦W) provides favorable conditions for cyclogenesis and therefore
can explain the SST-TC relationship better than basin-wide averaging.

These findings suggest that the warming of the Atlantic off the West African coast near 20◦- 30◦N
prior to the TC season, as well as the warming westward of 10◦−20◦N between 18◦ and 60◦W during
the TC season have a pronounced effect on TC formation. Furthermore, abnormal SST averages
in the regions highlighted above could explain (in)active TC seasons. Our approach therefore, can
be used to objectively identify more meaningful regions than mere basin-wide averaging. Finally,
the difference in TC activity between the Atlantic and Pacific highlighted in [12] could be explained
by the difference in AEW and their Pacific counterparts. On the one hand, Pacific easterly waves
(PEWs) are driven primarily by convective heating, which depends on SST. On the other hand, the
barotropic to baroclinic conversion, which is the energy transport from the mean flow toward the
rotational flow component, dominates AEWs. This means that AEWs are strongly associated with
rotation and therefore cyclogenesis, unlike PEWs, which are related to convection (i.e. the vertical
flow) [9].
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INTERACTIONS BETWEEN TELECONNECTIONS

JAYA KAWALE*, STEFAN LIESS**, MICHAEL STEINBACH*, PETER SNYDER**, AND VIPIN KUMAR*

Abstract. Dipoles represent a class of teleconnections or long range spatio-temporal dependencies

in climate data characterized by anomalies of opposite polarity at two locations at the same time.

This dipole phenomenon has been known to occur for more than a century and the dipoles are
crucial as they impact climate changes throughout the globe. For example, the El Niño Southern

Oscillation (ENSO) is responsible for remote climate variations like temperature changes, increased

rainfall, thunderstorms, tropical cyclones and droughts. Despite the importance of these dipole
teleconnections for predicting regional climate anomalies and severe hydro-meteorological events,

they have so far been mainly studied in isolation, and interactions between dipoles have been

considered to be weak. In this paper, we study the interactions between the different pressure
dipoles by examining the dipole activity of four major dipoles during the three phases of the

ENSO namely El Niño , La Niña and neutral. Our results show significantly different dipole
characteristics during the three phases.

1. Introduction

Pressure dipoles represent important long distance teleconnection phenomena characterized by
two locations having pressure anomalies in the opposite direction. Dipoles are often defined by
climate scientists using two fixed locations. For e.g., the El Niño Southern Oscillation is defined
based on two locations: Tahiti and Darwin, Australia. The strength of a dipole is measured by its
index which is computed by taking a difference in the pressure anomaly series of the two locations.
The two phases of the ENSO and are called El Niño, which corresponds to warming in the eastern
equatorial Pacific, and La Niña, which corresponds to the cooling in this region. Understanding
these dipoles and their interplay is crucial to understand the variability of the global climate system.
In this paper, we study the impact of the two phases of ENSO on the four dipoles - North Atlantic
Oscillation (NAO), Arctic Oscillation (AO), Western Pacific (WP) and Pacific North American
pattern (PNA).

2. Experiments and Results

2.1. Methodology. In this paper we use the approach by Kawale et. al [1] to find and study
dipoles. It is a Shared Reciprocal Nearest Neighbor clustering based approach which finds all the
dipole cluster pairs in the data in a single snapshot image and thus overcoming the limitations of
the previous iterative approaches.

2.2. Results. For our dipole analysis, we use pressure climate data from the NCEP/NCAR Reanal-
ysis which has data assimilated from 1948 – present which is available for public download. In order
to find dipoles we focus on sea level pressure. We also use the precipitation and air temperature
data to study the impact of the dipoles on land. In order to study the interactions between the
ENSO and the other dipoles, we first separated the data into the three different phases, namely (1)
El Niño, (2) La Niña and (3) neutral phase. Out of the 62 years of data, El Niño data spans over
16 years, La Niña spans over 14 years and the neutral phase spans around 30 years.
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Figure 1. Dipole connections on the globe during the three periods and the overall
period using a correlation threshold of −0.3

Figure 2. Left figure shows the impact on land temperature and the right figure
shows the impact on precipitation during the 4 periods.

2.2.1. Comparison of Network Characteristics. We constructed complex network consisting of pair-
wise correlation among all the nodes for all the data in the three periods respectively. Next, we find
the dipoles using the Shared Reciprocal Nearest Neighbour(SRNN) based algorithm. Figure 1 shows
the interconnections between the different dipole centers. We observe that the number of connection
is much more in El Niño and La Niña compared to the neutral phase. This indicates that the dipole
activity is much stronger during these two phases.

2.2.2. Impact on land. The most crucial aspect of dipoles is that they may cause regional climate
anomalies and extreme climate events. In order to measure the impact, we consider the area weighted
correlation of the dipole index on temperature and precipitation anomalies of land. Figure 2 shows
the aggregate area weighted impact of the different dipoles on land temperature and precipitation
during different phases using the static dipole index used by climate scientists. Overall this result
shows that the impact of SO, NAO, AO on temperature during the La Niña phase is much higher
as compared to the other phases. Also the impact of PNA, WP on land temperature is strikingly
higher in the El Niño phase. The NAO and AO have a dramatically higher impact on precipitation
during the La Niña phase as compared to the El Niño and neutral phase. Also PNA and WP show
a much higher impact during both El Niño and La Niña phase.

2.3. Acknowledgments. This work was supported by NSF grants IIS-0905581 and IIS-1029771.
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tute.
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MINING AVIATION SAFETY REPORTS USING PREDICTIVE WORD

SEQUENCES

PAUL MELBY*

Abstract. This paper describes a text mining sofware program that has been developed for use by
the Aviation Safety Information Analysis and Sharing (ASIAS) program, an industry-wide effort
to promote aviation safety. The text mining program, called The ASIAS Information Retrieval and
Extraction System (AIRES), implements an algorithm that discovers word sequences from aviation
safety incident reports that are highly predictive of a user-specified safety topic. This algorithm is
similar to an Apriori algorithm, except that it uses predictive power, rather than frequency, as the
pruning criteria. We show that this method reduces the number of word sequences that require
evaluation by up to a factor of 10, while still discovering over 90% of all the highly predictive word

sequences. Additionally, we discuss the software implementation of this algorithm in AIRES, a
tool designed to allow subject matter experts an efficient process for searching through incident
reporting data, as well as recording their own categorization of the reports.

1. Introduction

The Aviation Safety Information Analysis and Sharing (ASIAS) program is an industry-wide
effort to promote commercial aviation safety. The primary objective of ASIAS is to discover com-
mon, systemic safety problems that span multiple airlines, fleets and regions of the national air
transportation system. ASIAS leverages Federal Aviation Administration (FAA) data, de-identified
airline safety data and other government and publicly available data sources. Many of these data
sources are textual. A primary source of these are Aviation Safety Action Program (ASAP) reports
that are shared with ASIAS by participating airlines. ASIAS also utilizes NASA’s Aviation Safety
Reporting System (ASRS) data, Service Difficulty Reports (SDR) filed by the airlines and provided
by the FAA, and other sources of textual data. In many of these data sources, there are extensive
taxonomies that represent the safety issues and incidents in the reports as well as contributing fac-
tors and demographic information. For example, the ASIAS ASAP taxonomy includes well over 400
fields of structured information.

One recurring challenge with any of these data sources is the poor quality of the structured fields.
In many cases, a subject matter expert reading the narrative portions of an ASAP report would
identify several contributing factors or safety incidents that are discussed in the report, but are not
marked as such in the corresponding structured field. These omissions of categorization cause a
challenge for both finding all the reports on a given topic area, as well as performing analysis on the
structured fields, such as finding which contributing factors commonly co-occur with each incident
type.

This abstract describes a software program developed to solve this problem, the ASIAS Infor-
mation Retrieval and Extraction System (AIRES). AIRES makes a comparison of positively and
negatively labeled records and discovers words and word sequences that have predictive power for
selecting positively labeled records. The algorithm discovers word sequences such as (‘crossed’,
‘hold’, ‘short’) which represent a sequence where the word ‘crossed’ is followed by ‘hold’ which is
followed by ‘short’. The sequences may contain extra words, or gaps, in between and still match the
sequence, so a statement such as ‘crossed just over the hold short’ would match the sequence despite
the extra words ‘just over the’ in between ‘crossed’ and ‘hold’. The discovered word sequences
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have a very high precision and can be useful in classifying reports that are positively labeled in
a category. In addition, these sequences extrapolate well to find reports that should be positively
labeled but are not without returning too many reports for the analyst to review. This enables an
active learning approach where a subject matter expert can review only the most relevant reports,
improving the overall efficiency of the search and validation process [?].

There have been many previous approaches to finding highly predictive word sequences in a
document collection. In order to deal with the high dimensionality of word sequences, many of these
focus on finding frequent sequences [?, ?, ?]. Variations include finding maximal frequent word
sequences [?, ?] and closed frequent word sequences [?]. While these approaches are useful, in many
cases in aviation safety reports, there are highly precise word sequences that relatively rare. These
can often be identified by subject matter experts but this requires a lot of manual effort. In this
paper, we describe an alternative approach to finding highly predictive word sequences that grows
patterns based on their predictive power, not their frequency.

2. Discovering Highly Predictive Word Sequences

The underlying algorithm for the discovery of predictive word sequences, or patterns, relies on
the fact that all of the categories in the ASAP archive are relatively rare, which makes comparison
of positively labeled reports and negatively (or unlabeled) reports a fruitful method of finding good
search patterns. In this way, at any point in time, measures of the predictive power of a particular
word or pattern, such as relative information gain or f-measure, while not entirely accurate, should
still be able to find useful features in the data. To illustrate the princple, if labeled positive reports
for a class only constitute 1% of the total reports, then even if there are an additional 1% of reports
that are unlabeled, a term that exists in all 2% of true positive reports still provides a large amount
of information about the classification since it increases the fraction of reports in the positive class
from 1% to 50%. This is a key assumption for this approach and may not apply for data sets that
have balanced classes.

One of the challenges in finding word sequences is the vast number of possible word combinations
that exist when gaps are allowed to exist between the words. Many approaches to finding such word
sequences therefore focus on finding frequent word sequences, using an Apriori algorithm to search
for all sequences of at least a specified frequency within the text. Then, given all frequent word
sequences, a feature selection algorithm can choose those that have the highest predictive power.
While this approach can find very useful features, including those of very long length, it may not be
able to discover highly precise sequences that occur in relatively few reports. In contrast, AIRES
uses the predictive power of each candidate pattern as the pruning criteria and is therefore able to
find highly predictive patterns that do not occur frequently. Algorithm 1 illustrates the workings of
the word sequence discovery algorithm.

2011 Conference on Intelligent Data Understanding 285



Algorithm 1: Word Sequence Discovery.

Input: A list of categorized reports, the mininmum word frequency, N , and the minimum
information gain for a word sequence, IGmin, the maximum number of words in a
sequence, L and the length of the gaps allowed between words, X

Output: A list of gapped word sequences that are highly predictive of the target category
Determine all words that exist within the data;1

Optionally apply synonyms, stopwords, and stemming;2

Words = all words that occur greater than N times;3

Candidate Patterns = words that have a minimum relative information gain of IGmin;4

while The length of the longest Candidate Patterns < L do5

Find larger patterns like 〈word〉 followed by 〈pattern〉 within X words or 〈pattern〉 followed6

by 〈word〉 within X words;
Eliminate the candidate patterns that occur less than N times;7

Eliminate candidate patterns with less than IGmin relative information gain;8

end9

The minimum information gain, IGmin is determined by the user but is typically set at 0.5% of
the entropy of the categorization. Although there is a pruning of infrequent patterns, the threshold
is typically set very low to remove unique patterns that would not have high predictive power. In
a typical analysis, there may be 10-15,000 words that occur more than 3-5 times, but only 200-500
that have greater than 0.5% relative information gain. Because the sequences are pruned based on
predictive power, there is no guarantee that all highly predictive word sequences will be discovered.
Figure 1a shows the effect of varying IGmin on the percentage of all highly predictive word sequences
that are discovered. These percentages found by comparing the number of sequences found with a
specified information gain (in this case, 2% and 5%) with no pruning (IGmin = 0) to the number
of sequences found with pruning at various IGmin’s. The results in the figure are averaged over
3 different test cases with ASRS data. As can be seen, even for a very high level of pruning,
IGmin = 1.5%, over 90% of all the sequences with over 5% information gain are discovered. The
impact on sequences with less predictive power is greater, but still over 90% for IGmin = 0.5%.
Figure 1b shows the corresponding reduction in the number of sequences that require evaluation
during the discovery process. Even at the lowest level of pruning depicted in the figure, there is
a savings of nearly a factor of three over the case with no pruning at all. For the highest level
of pruning, there is an order of magnitude difference in the required number of sequences to be
evaluated, with only 9.8% the number of sequence evaluations being required.

3. Results and Implementation

To implement this approach, a software program was developed that streamlines the process and
allows subject matter experts to search for reports using the discovered word sequences. Figure ??

shows a screenshot of the GUI interface for the tool. Users are presented with patterns that were
discovered to have high predictive power and several statistical measures of that predictive power
(information gain, precision, recall and weighted f-measure). Additionally, there are statistics on the
overall performance of all patterns in the set to find relevant reports. The report viewer shows the
report to the user and highlights the patterns where they occur. The graphical interface allows the
user to select subsets of the data to focus on. The analyst can therefore focus on the “false positives,”
for example, that may be the most likely reports to be positives that were not labeled that way in
the raw data. Each report is given a relevance score by adding up the information gain for each
sequence that is contained in the report. The reports selected to be viewed are then sorted by this
relevance score. In this way, the most relevant reports are viewed by the analyst first. Additionally,
the user can validate the categorization of reports. This allows the discovery algorithm to perform
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Figure 1. a. Average percentage of all highly predictive sequences discovered as
a function of the minimum information gain threshold parameter. Percentages are
shown for sequences with a relative information gain of greater than 5% and 2%.
b. Percent of all sequences of length 3 or less that are evaluated by the algorithm
as a function of the minimum information gain threshold parameter.

better, as it has an improved “best guess” of the categorization for each document. When the user
is satisfied with the overall performance of the search process, the results can be exported for further
review or analysis.

Figure 2 shows the results of performing the search process on three different topics within the
ASIAS ASAP database. The user began each of these with a query based on an existing structured
field, then reviewed the “false positives” for whether they should be included as part of the topic. In
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the figure, Precision is the cumulative precision given all reports read and validated by the user after
having read n reports. Recall is the ratio of the number of positive reports identified in n to the
total number identified in the entire search process. For all three topics, the precision starts out at
1, which indicates that the reports given the highest relevancy ranking tended to be in the topic. As
the user reviewed the reports, fewer and fewer positive reports were found and the precision began
to slip. Overall, the final precision before the user decided that enough positive reports were found
ranged from 0.42 to 0.46. For the three topics, the initial percent of reports labeled as positive were
2.8%, 4.8%, and 4.7%. The search process found an additional 1.7%, 1.8% and 1.2% of the total
reports that matched the corresponding topic.

Figure 2. Precision versus Recall for user-reviewed reports in three different ASAP
topics. Each data point represents a single report reviewed by the user. As the user
reviews reports and adds them to the category, the overall recall gets higher, while
the precision tends to drop over time as fewer and fewer additional positive reports
are found.

4. Summary

In this paper, we described an approach to finding highly predictive word sequences from text that
grows the word sequences based on their predictive power, rather than frequency of occurence. This
approach requires many fewer evaluations than what would be required for finding all sequences of
a specified frequency. The resulting speedup has enabled the development of an interactive software
program that can be used by subject matter experts in order to search for and validate safety incident
reports. In the current implementation, information gain is suggested as the measure of predictive
power, but other measurements of predictive power can be used as well, such as F-measure or lift.

One advantage of using word sequences as features over other methods, such as individual words
or feature-vectors such as from Latent Semantic Analysis is that they are very easily understood
by the subject matter experts who use the tool to search for and validate reports. Many of these
word sequences are actually standard aviation phraseology and resonate with the user. Additionally,
the highlighting of the report text corresponds in a one-to-one fashion with the decision process the
program used which makes it easy for the user to understand why a report is being presented for
review.

In addition to a user-defined safety topic, the user-defined query could select the most recent
reports as “positives.” In this case, the word sequences that are discovered will often times be
related to emerging trends in the data, or new air traffic control procedures. This mode is useful for
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discovering new safety issues that may need to be monitored. A future release of AIRES will include
a more robust interface for searching for emerging safety issues. Additionally, the word sequences
that are discovered can be used as features for classification and clustering algorithms.
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METADATA RETRIEVAL: ANNOTATION OF GEO-REFERENCED MAPS

WITH SOCIAL METADATA IN SUPPORT TO UNMANNED AIRCRAFT

VEHICLES MISSIONS

ROSA MEO*, ELENA ROGLIA**, AND ENRICO PONASSI*

1. Introduction to MetaData Retrieval

The natural disasters and episodes of environment pollution require the territory surveillance by
the agencies of territory protection. SMAT1 is a distributed system for the territory surveillance
by means of missions performed by Unmanned Aircraft Vehicles (UAVs). A UAV is equipped
with different payload sensors that will download streaming video of the target territory to the
ground components of the system. The ground components are constituted by control stations that
are responsible for the UAV tactical control (flight operations, sensor activities) and perform data
gathering and transmission to a central station (Supervision and Coordination Station - SSC).

The SSC gives support to the generation and integration of the mission plan of each single UAV,
controls the mission execution, post-processes the data from the mission and gives support to the final
users from the civil protection force to elaborate the history of the data and plan the next goals. The
operators can provide maps with additional annotations, metadata extracted from external sources.
For these purposes the system performs data storage and near-real-time data fusion and provides
both a geo-spatial and a temporal reference to the stored information.

The software functionality that we describe is MetaData Retrieval (MDR). It is one of the geo-
spatial services provided by the SSC. The main focus is to provide additional information on the
locations included in the cartographic maps. Cartographic maps are often thematic and do not
contain all the information that is needed by any user. Furthermore, the maps need to be kept
up-to-date with fresh information. On the Web there exists a large amount of information on the
geographical areas generated by Volunteered Graphic Information projects (VGI) by the everyday
experience of the users of the Web 2.0 applications through handhelds or mobile phones. These
information on the spatial data are referred to as metadata. They are both spatially and temporally
referenced and are presented by MDR in an interactive map that is useful to the mission operators
for summarizing the information on the mission targets and the route way-points. Metadata can
be essential for monitoring the evolution in time of the spatial objects and help in environmental
emergencies when the retrieval of the past information on a certain spatial area is quickly needed. For
these purposes MDR has a data warehouse that collects the history of annotations on the locations
and allows to query it by a multi-dimensional, spatio-temporal query.

The information on locations is downloaded through web-services in the form of XML-based
files. Web services are provided by open, collaborative projects like OpenStreetMap and GeoNames.
OpenStreetMap has the aim to create a free editable map of the whole world from the contribution
of the open, collaborative network. GeoNames provides the description and definition of over eight
million named locations taken from projects like Wikipedia.

A Service Oriented Architecture (SOA) is the architectural choice for the system. It allows the
integration of different independent systems and respond with a variety of services to different users
needs. Geo-spatial Web services can be called on demand, allow an easy distribution of geo-spatial
data and applications and guarantee interoperability among them.

*University of Torino, Italy, rosa.meo@di.unito.it, enrico.ponassi@educ.di.unito.it
**ITHACA, Torino, Italy, elena.roglia@ithaca.polito.it.
1SMAT project is composed of Universities and Research centres (Univ. Torino, Politecnico Torino, ISMB), three
Industries (Alenia Aeronautica, Selex Galileo and Altec) and eleven Small Medium Enterprises in Piemonte, Italy.
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Any user’s request to MDR searches for the metadata of some spatial objects. The MDR graphical
user interface is a sort of Query By Example that allows the user to specify in a transparent way for
which spatial objects the annotations are requested. The specification is not simple since missions
involve a large quantity of objects and the identification of a spatial object is a multidimensional
problem. For these reasons the user might act in an exploratory way and specify by means of a
combination of dimensions values the spatial objects of interest. As regards the output annotations,
the user specifies the type of the spatial objects and the maximum distance between the spatial
objects and the nearby locations whose annotations will be displayed.

The information on locations is checked by MDR to be well-formed. In addition, MDR provides a
characterization of the map in terms of the concepts corresponding to the users’ annotations. MDR
applies a statistical filter to the tags in order to select the annotations that are valid with a high
degree of certainty. The filter is especially needed when a big number of tags is present, when some
of them are the result of a user mistake with a misleading effect similar to the superimposition
of noise on the valuable information. The filter compares the frequency of occurrence of each
tag encountered in the given area, with the distribution of the frequencies of the same tag in the
surrounding geographical areas. According to the property of spatial auto-correlation of the features,
most of the tag categories are expected to occur in the neighborhood with a similar frequency. Those
tags that confirm the expectations are not surprising and therefore are judged non-particularly
interesting. On the contrary, the frequencies of the tag categories that are outliers of the tag
frequency distribution in the surrounding areas constitute a discontinuity in space and are highlighted
as the map characteristics. The map characterization that is generated by this method discriminates
the map area with the neighborhood and guarantees statistical significance to the annotations and
as such, an increased level of reliability.

In Figure 1 we show an interactive map, annotated by MDR. The example shows the historical
monuments surrounding the target of a mission (a bridge in Torino, Italy). The left-hand side of
the window displays the annotations in a tree-like arrangement that helps the user to browse the
annotations for the spatial objects of the query. Annotations are ordered by location, time and
category. Each annotation on the left is geo-referenced by an icon in the map on the right.

Figure 1. Interactive map with annotations from the historical database

2
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Pattern Analysis in Wind Power Time Series - Early Results

MandoyeNdoye and Chandrika Kamath
Lawrence Livermore National Laboratory, Livermore, CA 94551

I. I NTRODUCTION

Renewable resources, such as wind, are providing an in-
creasing percentage of our energy requirements. However,
integrating wind energy on the power grid is challenging for
several reasons. Control room operators find it difficult to
schedule wind power as it is an intermittent resource. They
typically use 0-6 hour ahead forecasts, along with the actual
generation in the previous hours, to determine the amount of
energy to schedule for the hour ahead. These forecasts are
obtained from numerical weather prediction simulations or
based on estimates of wind speed in the region of the wind
farms. However, the forecasts can be inaccurate, especially
for ramp events where the generation suddenly increases or
decreases by a large amount in a short time.

In our previous work [1], we considered the use of feature
selection techniques to identify important weather conditions
associated with ramp events. We wanted to identify variables
that the control room operators could monitor to see if a ramp
event was imminent. In the current work, we are interested
in the situation where the energy forecasts are inaccurate. In
such cases, the control room operators consider the energy
generation for the previous few days and hours, and based on
their experience and expertise, estimate the energy they should
schedule for the upcoming hour.

In examining wind power time series, we have observed
that there is frequently a diurnal pattern. The generation may
be low and flat on days with little wind, or it may be high
and flat on days when the wind speed is at a sustained high
level for most of the hours in the day. Or, the speed may be
high in the early hours, drop down to near zero by noon, and
rise again in the late evening. It is obvious to ask if there are
a limited number of these patterns for the wind generation at
a site? If so, can we associate these patterns with the weather
conditions for the day? If this is indeed possible, we can then
provide the control room operators additional information they
can use to make better informed decisions on the amount of
wind energy they should schedule on the grid.

II. M ETHODOLOGY

To answer these questions, we analyzed the 2007-2008
wind power generation time series from a Southern California
Edison (SCE) wind farm located in the Tehachapi Pass region.
We refer to these data as the SCE-2007 and SCE-2008
datasets. In both years, measurements were taken at the rate of

LLNL-ABS-491136: This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.

four samples per hour. Figure 1 shows the SCE-2007 dataset,
with the embedded plot providing details for a two-week-long
data segment shown in red in the year-long time series. In
our work, we used the SCE-2007 dataset for exploratory data
analysis and development of the methodology, and the SCE-
2008 dataset for subsequent testing and validation.

Fig. 1. The SCE-2007 data, showing details for a two-week segment inred.

Our analysis of the wind power time series indicated the
presence of features at a range of scales: high frequency
measurement noise, short-term signal variations, and the pre-
viously mentioned diurnal patterns. So, the time series can be
represented by theN -length discrete sequence

Y (n) = T (n) + s(n) + w(n), n = 0, 1, . . . , N

whereT (n) denotes the trend-signal containing the prospec-
tive diurnal patterns,s(n) denotes the short-term variations
that correspond to the small-scale features in the data, and
w(n) denotes high frequency noise contributions.

time series
Wind power generation 

Measurement 
Denoising Estimation

Trend−signal Pattern Identification
and

Assignment

Fig. 2. Data processing steps for pattern identification and assignment.

To identify the patterns in the trend signal,T (n), we use
the three-step process shown in Figure 2. There are several
ways in which each of these steps can be implemented. We
next describe one such approach:
Measurement denoising:We expect the measurement noise
to have a lower energy but higher frequency content than
the actual wind power generation. To remove this noise, we
first obtain a Fourier decomposition of the time series. We
then reconstruct the data using the frequency components
associated with theK largest Fourier coefficients. We choose
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the parameterK to preserve some percentage,θ, of the energy
of the original time series. For our data, a value ofθ in the
range 95-to-99 % worked well.
Trend-signal estimation: Next, we remove the small-scale
variations, which typically last from several minutes to an
hour or two, using Gaussian smoothing, where the scaling
parameter (i.e., the standard deviation,σ) is chosen heuristi-
cally. An alternative is to determine the intrinsic scale of the
data using techniques such as scale-space theory [2] or the
undecimated wavelet transform [3]. The former creates a scale-
space representation of a signal by smoothing it with Gaussian
kernels with increasing values ofσ. The premise is that for
scaling values near the intrinsic scaleσo (to be determined) of
the data, the changes in the smoothed signal are minimal. We
used automatic scale selection concepts [4] to findσo for the
de-noised time series. We then obtained the trend signal by
filtering this time series with a Gaussian kernel withσ = σo.
Figure 3 shows the effects of the data pre-processing steps.
We note that the use of a denoising step, though unnecessary
in light of the subsequent smoothing, allows us to obtain a
more robust estimation of the intrinsic scale.

Fig. 3. Effect of the data processing on the wind power time series.

Pattern identification and assignment: Our analysis of the
estimated trend signal indicated several patterns:flat, with
approximately constant power generation, or concatenations
of up to two periods of upward (up) and downward (down)
generation. To identify these, we first found the start and end
of theupanddowngeneration periods using a threshold-based,
peak-and-valley finder. We chose the threshold so that small
changes in the threshold would lead to minimal changes in
the number of peaks and valleys detected. We then assigned
patterns to each day by first identifying theflat patterns as one
where the generation was constrained to within a certain range
of the minimum. Then, we assigned the remaining patterns
based on the number ofup and down periods contained in a
day-long observation. An observation which was not assigned
any of the five patterns (flat, up,down,up-downanddown-up),
was assigned to the pseudo-patternothers.

III. PRELIMINARY RESULTS AND DISCUSSION

We applied the method described in Section II which was
developed in the context of the 2007 dataset, to both the 2007
and the 2008 datasets. Table I shows the percentage of time
each of the five patterns occurs in the years 2007-2008. The

distribution is somewhat similar for the two years, though this
may not always be the case. We also observe that a small
dictionary of daily patterns could be used to represent the
wind power generation time series at a given wind farm site.

TABLE I
PERCENTAGE OF PATTERNS IN THE2007-2008DATASETS

Pattern SCE-2007 SCE-2008
flat 32.32 % (118 days) 28.14 % (103 days)
up 13.42 % (49 days) 15.57 % (57 days)
down 6.30 % (23 days) 9.83 % (36 days)
up-down 5.20 % (19 days) 5.73 % (21 days)
down-up 29.04 % (106 days) 26.50 % (97 days)
others 13.69 % (50 days) 14.20 % (52 days)

We next considered the monthly distribution for the patterns
to determine if this would provide control room operators
additional information for use in scheduling. We found that
certain patterns occured more frequently during certain sea-
sons, as shown in Figure 4. For example,flat occurs rarely in
the summer, when theup-downpattern is more prevalent.

Fig. 4. Monthly distribution of theflat andup-downpatterns for 2007-2008

(a) (b)

IV. FUTURE WORK

We are currently investigating the use of feature selection
and classification techniques to determine if we can use
weather conditions in the region of the wind farm to predict
days when a particular type of pattern is likely to occur. This
work is challenging as the weather data tend to be noisy, with
missing or incorrect values, and is available at sites which may
be far from the wind farm. Further, as shown in Table I, some
patterns occur quite frequently, while others, such asup-down
are rare. Given this unbalanced training set, it is unlikely we
will be able to obtain a high accuracy for predicting the rarer
pattterns. Our early work in this area is promising; as we apply
our techniques and refine the assignment of patterns, we are
hopeful that we may be able to achieve reasonable prediction
accuracy, at least for the more frequently occuring patterns.
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GLIDER:  Satellite Data Mining Made Easy 
 

Rahul Ramachandran, Sara Graves, Todd Berendes, Manil Maskey 
Information Technology and Systems Center 

University of Alabama Huntsville 
 

The large volume of publicly available satellite imagery has the potential to provide 
a  wealth  of  information  for  both  civilian  and  military  decision  makers.    Often, 
sophisticated  data  mining  analyses  such  as  land‐use  and  land  cover  change 
detection  are  implemented  to  provide  “actionable  intelligence”  at  regional  and 
global scales.   Mining satellite data requires tools that can handle spatial, temporal 
and spectral analyses.   Complex analyses such as  thematic  image classification are 
often performed manually and can be a cumbersome, step‐by‐step process requiring 
extensive user interaction. 
 
UAHuntsville has developed a freely available tool that simplifies mining of satellite 
imagery.   The Globally Leveraged Integrated Data Explorer  for Research (GLIDER) 
provides an integrated plug‐in based software workbench with a set of visualization 
and  analysis  tools  that  facilitate  sophisticated  analysis  of  satellite  imagery.  
Visualization  modes  such  as  three  band  color  composite  and  look‐up  table  color 
display allow easy  interactive  image exploration and aid  in  identification of  image 
features.  Imagery can be displayed in a 2‐D native swath view or overlaid on a 3‐D 
globe  display.    Pixel  level  data  can  be  plotted  using  scatter  plots,  histograms, 
spectral profiles and spatial  transect profiles.   Additionally, pixel  level data can be 
interactively sampled and extracted from the imagery and used to train supervised 
learning classifiers for use in land‐use studies and other analyses.  An entire suite of 
data mining  algorithms  is  integrated within  GLIDER  and  a workflow  composition 
tool  is  provided.    This poster  showcases  some of GLIDER’s  powerful  features  and 
provides some case studies showing practical applications of data mining for land‐
use, cloud and aerosol detection and decision support. 
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SPIKE DETECTION IN FLIGHT QUICK ACCESS RECORDER EVENT RATES

USING CONTROL CHARTS BASED ON THE BETA DISTRIBUTION

ANIL YELUNDUR* AND KEITH CAMPBELL**

1. Introduction

Proportions control charts based on the Beta distribution have produced positive feedback from
operational experts when used to detect spikes in safety-related flight event rates derived from Flight
Quick Access Recorders, which record operational parameters on board an aircraft.

Monitoring of safety-related events to identify emerging aviation safety concerns is one goal of
the Aviation Safety Information and Sharing (ASIAS) program, a collaborative government-aviation
industry program. In this context, a ’spike’ refers to a sudden, relatively large increase in event rates.

Because ASIAS stakeholders wish to monitor many hundreds of time series, for example particular
airports and aircraft types, automated screening is essential. Spikes are reviewed by teams of
operational experts with limited time, so screening needs to produce a small number of alerts that
are likely to be actionable.

2. Control Charts a logical Monitoring Tool

As tools designed for detecting changes in a process, Control Charts are a natural tool for spike
detection. ASIAS flight data is organized by month over a three-year period. Reviews occur quar-
terly, and the review teams prefer to view time series aggregated by quarter. Accordingly, the control
charts use 3-period groupings from months to quarters.

We are interested in detecting sharp changes in the quarterly rate such that they are much higher
than historic trends - we want to detect upward spikes. Monitoring focuses on identifying spikes in
the most recent two quarters, with prior periods being treated as the training period.

Because events are measured in terms of rates, e.g. ground proximity warnings per 100,000
flights, Proportions Control Charts [1] were a logical initial choice. Unfortunately, Proportions
Charts (assumes a Binomial distribution i.e. a constant event rate) performed poorly with our
data. The reason being that the observed event rates are over-dispersed relative to the Binomial
distribution hence resulting in the generation of an excessive number of alerts.

3. Control Chart using Beta Distribution

The Beta distribution models the uncertainty in the proportion p of a Binomial distribution by
taking into account the sample mean and variance. Hence fitting a Beta distribution to the data
addresses the issue of over-dispersion relative to a Binomial distribution.
A Beta distribution is defined by two positive shape parameters : α and β.
The probability density function for the proportion p given the two shape parameters is given by:

P (p|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

*MITRE/CAASD, ayelundur@mitre.org
**MITRE/CAASD, keithc@mitre.org.
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3.1. Parameter Estimation. The two shape parameters i.e. α and β are estimated from the
data corresponding to the training period. The training period consists of adjusted quarterly rates
over the entire time period except the latest two quarters. We are using the Maximum Likelihood
Estimation Method (MLE) to estimate the two shape parameters with initial values set to those
obtained via Method of Moments (MOM).

3.2. Control Limits. Once α and β are determined, the control chart parameters, namely the
mean (i.e. baseline) and variance, are calculated using the corresponding formulas for the Beta
distribution.
For α > 1 and β > 1, the Upper Control Limit (UCL) is calculated using the 99.87th percentile of
the Beta distribution i.e. 3 Standard Deviations (SD) away from the mean of a Normal distribution:

nsd =
(QBeta − baseline)√

variance

UCL = baseline+ nsd
√
variance

where QBeta denotes the 99.87th percentile of the corresponding Beta distribution.
We select the MLE estimates only when α > 1 and β > 1 because the Beta distribution is unimodal
i.e. the minimization algorithm is guaranteed to have converged to a global minimum. Else we
revert back to the MOM estimates and set nsd is set equal to 3. Also note that the Beta distribution
is skewed when α 6= β i.e. it is not symmetric about the mean (right skewed for our data since β >
α). This makes it necessary to specifically estimate the parameter nsd. If α happens to be ≤ 1 then
we set nsd equal to 3. If the minimization algorithm does not converge, then the MOM estimates
are used for α and β and nsd is set equal to 3.

3.3. Example Chart. Figure 1 illustrates an example series that produced an alert. The last two
quarters for the subject airport has event rates that lie between 2 SD and 3 SD relative to the
baseline. Applying the Western Electric rules, two consecutive time series samples that lie between
2 SD and 3 SD from the baseline indicate an alarm i.e. a violation (represented in the figure as a
red circle).

4. Conclusions

4.1. Implementation Experience is Largely Positive. Spike detection using the Beta method
has been applied to the ASIAS quarterly review process since early 2011. The Beta charts are
being used to monitor system-wide and airport-specific rates for three metrics. About two hundred
airports are being tracked, so about 600 series in total are being monitored.

Reaction from operational experts has been largely positive. The initial round of reports produced
twelve alerts, few enough for the review committee to briefly examine each. Alerts consistently
indicated clear spikes, and were considered relevant by domain experts. One alert was selected for
in-depth review. That rate increase was clearly associated with a change in operating procedures at
a major airline, increasing the level of confidence in the alerts.

4.2. Rare Events Issue and Alternate Methodologies. The Beta method is limited in its
ability to cope with rare events. For example, a fourth metric that is part of the quarterly process
is a candidate for monitoring but has a large proportion of airports with zero or one events during
the three-year period, too few to construct meaningful control limits with our current approach.

We are investigating alternate methods that can cope with rare events. Currently Parametric
Empirical Bayes (PEB) method appear to be most promising. We have developed two PEB models
namely, a Poisson-Gamma model and a Beta-Binomial model. Initial results suggest that both mod-
els provide improved performance compared to the Beta charts when events are rare and equivalent
performance for non-rare events.
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Figure 1. Spike Detection (data for major US airport between Q3 2007 and Q2
2010) using Beta Distribution.
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