
CCCG 2009, Vancouver, BC, August 17–19, 2009

New Algorithms for Computing Maximum Perimeter and Maximum Area of
the Convex Hull of Imprecise Inputs Based On the Parallel Line Segment

Model

Wenqi Ju∗ Jun Luo†

Abstract

In this paper, we present new algorithms for computing
maximum perimeter and maximum area of the convex
hull of imprecise inputs based on the parallel line seg-
ment model. The running time of our algorithms for
maximum perimeter problem is O(n4) which improve
over the previous results of O(n5) in [12]. For maxi-
mum are problem with different size of parallel line seg-
ments [12] gives O(n3) algorithms. We give O(n log n)
algorithms with the assumption that all parallel line seg-
ments have the same size.

1 Introduction

The problem of computing the convex hull has been
studied for several decades because it is the fundamental
problem in computational geometry. Computing convex
hull covers many other application domains such as pat-
tern recognition [1], data mining [3], stock cutting and
allocation [5], image processing [4] and so on.

All the classic algorithms for computing convex hull
are based on the assumption that the locations of the
input points are known exactly. But, in practice, that is
not the case. We can, more often than not, only obtain
the data varying within some range. For example, the
locations of a moving object have the uncertain prop-
erty [8]. Moreover the location data obtained from phys-
ical devices are inherently imprecise due to measure-
ment error, sampling error and network latency [9], [7].
Location privacy protection is another issue may lead
to imprecise data [2], [10], [11].

We could attack the problems with imprecise data
by using the model of parallel line segment, circle and
square etc. In this paper, the model of parallel line
segment is studied. In [12] the problems of the largest
area and perimeter of convex hull based on the paral-
lel segment model are studied and their running time
areO(n3) and O(n5) respectively.

In this paper, we present a new algorithm to compute
the largest area based on the same size parallel line seg-

∗Institute of Computing Technology, Chinese Academy of Sci-
ences, China, wq.ju@sub.siat.ac.cn

†Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, China, jun.luo@sub.siat.ac.cn

ment model and the running time is O(n log n). Then
we also present an algorithm to compute the largest
perimeter of convex hull and its running time is O(n4).

2 Problem Definition

The problems we discuss in this paper are as follows:
Problem A Given a set of parallel line segments,

choose a point on each line segment such that the area
of the convex hull of the resulting point set is as large
as possible.

In practice, the imprecise inputs often have the same
error range. Thus we can also define the alternative
version of Problem A as follows:

Problem B Given a set of parallel line segments of
the same size, choose a point on each line segment such
that the area of the convex hull of the resulting point
set is as large as possible.

Problem C Given a set of parallel line segments,
choose a point on each line segment such that the
perimeter of the convex hull of the resulting point set is
as large as possible.

3 Introduction to the Algorithms by Löffler and van
Kreveld [12]

In this section we give brief introduction of the algo-
rithms by Löffler and van Kreveld [12] for Problem A
and Problem C since several interesting properties of
[12] are used in this paper. Let L=l1, l2, ..., ln be a set
of n vertical line segments, where li lies to the left of lj
if i < j. Let l+i denote the upper endpoint of li, and
l−i denote the lower endpoint of li. In [12], the authors
prove the following lemma:

Lemma 1 There is an optimal solution to Problem A
and Problem C such that all points are chosen at end-
points of the line segments.

3.1 The Algorithm for Maximum Area Convex Hull

In order to solve Problem A, Löffler and van Kreveld
consider the polygon Pij for i 6= j which starts at l+i
and ends at l−j , and optimally solves the subproblem to
the left of these points, that is, contains only vertices l+k

21st Canadian Conference on Computational Geometry, 2009

with k < i or l−k with k < j, but not both for the same
k, such that the area of the polygon is maximal.

The authors [12] solve Problem A by using dynamic
programming and the solution to it is either of the form
Pkn or Pnk for some 0 < k < n, and can thus be com-
puted in linear time once all Pij are known. When
1 < i < j, then

Pij = max
k<j;k 6=i

(Pik +4l+i l−j l−k) (1)

Analogously, when 1 < j < i, then

Pij = max
k<i;k 6=j

(Pkj +4l+i l−j l+k) (2)

The algorithm runs in O(n3) time.

3.2 The Algorithm for Maximum Perimeter of The
Convex Hull

In order to solve Problem C, the authors of [12] define
Pij∼km to be the chain that starts at l+i , then goes to the
left to l+j , then via a number of other upper endpoints
to the leftmost point, then back to the right via l−k ,
and finally to l−m, such that it is convex and of maximal
length. They also use Pij∼km to denote its length.

if i < m, then

Pij∼km = max
h<k

(Pij∼hk + l−k l−m|∠l−h l−k l−m is convex) (3)

if m < i, then

Pij∼km = max
h<j

(Phj∼km + l+j l+i |∠l+h l+j l+i is convex) (4)

Because every Pij∼km has to be solved by using the
solution of Pij∼hk in equation (3) and Pij∼hk in equation
(4), the complexity of the algorithm is O(n5).

4 Our Algorithm for the Largest Area with the Same
Size Parallel Line Segments

According to [12], the vertices on the optimal convex
hull must be endpoints of the segments; vertices on the
upper chain must be upper endpoints, and vertices on
the lower chain must be lower endpoints. Also, the left-
most and rightmost vertices on the optimal hull must
be endpoints of the leftmost and rightmost segments.

We illustrate our algorithm as follows:

1. If the mid-points of all the segments lie on the same
line, then the maximum area convex hull only de-
pends on the endpoints of l1, l2, ln−1, ln and has
nothing to do with the endpoints of other line seg-
ments. Therefore we could get the maximum area
convex hull in O(1) time.

2. If the mid-points of all the segments don’t lie on
the same line. We construct the convex hull of l+1
and l+n with all endpoints of l2 to ln−1 and denote
it as CH1. Similarly, CH2 is the convex hull of l−1
and l+n with all endpoints of l2 to l+n−1 and CH3 is
the convex hull of l+1 and l−n with all endpoints of
l2 to ln−1 and CH4 is the convex hull of l−1 and l−n
with all endpoints of l2 to ln−1.

We denote the upper and lower convex convex chain
of CHj (1 ≤ j ≤ 4) as UCCj and LCCj respectively
and denote the leftmost vertex and the rightmost vertex
of CHj as P j

left and P j
right respectively. Note that the

vertices of UCCj (LCCj) can only be the vertices of
upper (lower) endpoints of l2 to ln−1 with P j

left and
P j

right.
For the remaining part of this paper, we assume that

the mid-points of all the segments don’t lie on the same
line. We also assume that n ≥ 4.

Lemma 2 The area of convex hull CHj (1 ≤ j ≤ 4) is
no less than the area of all the convex hulls formed by
choosing a point on each line segment of l2 to ln−1 plus
P j

left and P j
right.

Proof. We denote the convex hull, of which the left-
most vertex is P j

left and the rightmost vertex is P j
right

but not CHj(1 ≤ j ≤ 4), as CH∗
j and their upper chain

as UCC∗j and their lower chain as LCC∗j . For a vertical
line l, let the y coordinates of the four intersection points
of l with UCCj , UCC∗j , LCCj , LCC∗j be yU , y∗U , yL, y∗L
respectively. Now we prove yU ≥ y∗U and the proof of
yL ≤ y∗L is analogous. Suppose yU < y∗U , let the line
segment of UCC∗j intersecting with l be l+i l+k , where
1 ≤ i < k ≤ n. Therefore we know at least one of
the endpoints of l+i l+k is above UCCj which contradicts
with the construction of UCCj . Thus according to the
theory of area integral, the area of CHj must be max-
imum among all the convex hulls formed by choosing a
point on each line segment of l2 to ln−1 plus P j

left and
P j

right. ¤

From lemma 2, it seems that we only need to compute
the areas of CHj (1 ≤ j ≤ 4) and the maximum one
is the answer to Problem B. However note that some of
CHj is not valid solution to our problem since it may
use two endpoints of the same line segment as vertices
of CHj . Nevertheless, we can prove there are at most
two such kind of line segments.

Lemma 3 If there is a line segment lk (2 ≤ k ≤ n− 1)
whose upper endpoint lies on UCCj and whose lower
endpoint lies on LCCj (1 ≤ j ≤ 4), then it must be l2
or ln−1.

Proof. According to the construction of CHj (1 ≤
j ≤ 4), we know that the parallelogram l+2 l+n−1l

−
n−1l

−
2

CCCG 2009, Vancouver, BC, August 17–19, 2009

is included in CHj . Suppose there is a line segment
lk(3 ≤ k ≤ n − 2) whose upper endpoint lies on UCCj

and whose lower endpoint lies on LCCj (1 ≤ j ≤ 4).
Since lk is between l2 and ln−1, it must go through the
parallelogram l+2 l+n−1l

−
n−1l

−
2 which means the length of

lk is greater than the length of l2 and ln−1. It contra-
dicts the fact that all the line segments have the same
size. ¤

Lemma 4 There is at least one CHj (1 ≤ j ≤ 4) such
that all vertices of CHj are the end points of different
line segments.

Proof. According to lemma 3, if there is a line seg-
ment whose upper and lower endpoint are the vertices
of CHj , it must be l2 or ln−1. Without loss of gener-
ality, we assume it is l2 and CHj is CH2 which means
the leftmost vertex is l−1 and the rightmost vertex is
l+n . We substitute the vertices l−1 with l+1 (actually the
newly formed convex hull is CH1) and construct the
new upper convex chain UCC1 and new lower convex
chain LCC1 which start at l+1 and end at l+n . If l+2 is
not on UCC1, it must be below UCC1 which means it
is inside CH1. Moreover, because l+1 is higher than l−1 ,
the vertices of LCC1 remain the same as the vertices
of LCC2 except the leftmost vertex and no new vertex
except the most left vertex will be added into the upper
convex chain. Therefore l2 is no longer the one whose
upper endpoint and lower endpoint are the vertices of
the new convex hull and no other line segment becomes
such kind of segment.

If l+2 is the vertex of UCC1, all the upper endpoints
of the line segments lk (3 ≤ k ≤ n) must be on or below
the line l+1 l+2 and the lower endpoint of the line segments
lk (3 ≤ k ≤ n) must be on or above l−1 l−2 according to
the property of convex hull. Since all the line segments
are the same size, l+1 l+2 and l−1 l−2 are two parallel lines
and all upper endpoints of l1 to ln are on l+1 l+2 and all
lower endpoints of l1 to ln are on l−1 l−2 . Thus the mid-
points of l1 to ln are in the same line which contradicts
our assumption that the mid-points of all the segments
of l2 to ln−1 don’t lie on the same line. Therefore l+2
could not be the vertex of UCC1. ¤

Lemma 5 If there is a line segment l2 or/and ln−1

whose upper endpoint lie on UCCj and whose lower
endpoint lie on LCCj(1 ≤ j ≤ 4), then P j

left or/and
P j

right must not be the vertices of the optimal convex
hull.

Proof. Without loss of generality, we assume the two
endpoints of l2 are the vertices of CH2. According to
lemma 4, there is no line segment whose upper endpoint
and lower endpoint are the vertices of CH1. Now we
prove area(CH1) ≥ area(CH2).

l
+

1

l
+

2

l
+
n

l
−

1

l
−

2

l
−

n

a

Figure 1: Illustration of lemma 5.

We extend the line segment l2 and let it intersect
with UCC1 at point a (see Figure 1). The line seg-
ments al−2 separate CH1 into left and right parts CHL

1

and CHR
1 and separate CH2 into left and right parts

CHL
2 and CHR

2 . We can see CHR
2 is inside CHR

1 which
means area(CHR

2) ≤ area(CHR
1). Actually CHL

1 is
the triangle 4l+1 l−2 a and CHL

2 is the triangle 4l−1 l−2 l+2 .
area(4l+1 l−2 a) ≥ area(4l−1 l−2 l+2) since they have the
same height (the horizontal distance between l1 and l2)
but |l−2 a| ≥ |l−2 l+2 |. ¤

According to the lemma 4, there is at least one valid
convex hull among CHj (1 ≤ j ≤ 4). The invalid con-
vex hull is not the optimal solution according to lemma
5. Therefore we only need to compare the area of four
convex hulls CHj in order to find out the optimal con-
vex hull. The running time is O(n log n) since n line
segments have to be sorted. If n line segments are pre-
sorted, then the running time is O(n) since UCCj and
LCCj (1 ≤ j ≤ 4) can be computed in linear time.

Theorem 6 There is an O(n) algorithm for Problem B
provided that the input is sorted. Otherwise the running
time is O(n log n).

5 O(n4) Algorithm for Maximum Perimeter Problem

In this section, we will illustrate our O(n4) algorithm for
Problem C in detail. The improvement of linear factor
for the running time comes from that we can solve the
recursive equations 3 and 4 in constant time instead of
linear time. Now we show how to achieve this. We only
focus on equation 4 since the other one is symmetric.

First of all, for each line segment li, we calculate an-
gles α+ between the line segment l+f l+i and li where
1 ≤ f < i ≤ n (see Figure 2). Denote the set of the
above angles as A+

i . Then we sort the A+
i in ascent or-

der which needs O(n log n) for every i. We also need to
calculate every angle β+ between the line segment l+r l+i
and li where 1 ≤ i < r ≤ n. Denote the set of the above
angles as B+

i . Then we sort them in descent order.

21st Canadian Conference on Computational Geometry, 2009

lf

li

α+
β+

lr

Figure 2: the angle α+ and the angle β+.

Let A+
i [g] and B+

i [g] denote the g-th element in A+
i

and B+
i respectively. For each B+

i [g], we can find A+
i [g′]

such that A+
i [g′] ≤ B+

i [g] ≤ A+
i [g′+1] in O(log n) time.

If B+
i [g] corresponds the angle ∠l−i l+i l+r and A+

i [g′] cor-
responds the angle ∠l−i l+i l+f , let L+[ri] = f . Obviously,
the total running time for this preprocessing step is
O(n2 log n).

Suppose j, k, m are fixed and h could be any num-
ber less than j and not equal to k, m. We compute
Pjh∼km in the order as the corresponding α+

j appears
in A+

j . After compute each Pjh∼km, we not only store
the value of Pjh∼km but also keep the largest value of
Pj1∼km, Pj2∼km, ..., Pjh∼km in a four dimension array
C with index j, h, k, m. Now the recursive equation 4
becomes

Pij∼km = C[j,L+[ij], k,m] + l+j l+i if m < i (5)

We can compute this recursive equation in constant
time. Thus in total the running time is O(n4).

Theorem 7 Given a set of n arbitrary sized, parallel
line segments, the problem of choosing a point on each
segment such that the perimeter of the convex hull of the
resulting point set is as large as possible can be solved
in O(n4) time.

6 Conclusions

In this paper, we present an algorithm for computing the
largest area convex hull with the model of the same size
parallel line segments. The running time is O(n log n).
Then we also present an algorithm for computing the
maximum perimeter convex hull of different size parallel
line segments and the running time of our algorithm is
O(n4). In the future, we want to extend our results
for maximum area convex hull problem to more general
situation such as the parallel line segments have m < n
different sizes and to unit square model.

References

[1] S. G. Akl and G. T.Toussaint. Efficient convex
hull algorithms for pattern recognition applica-

tions. Int. Joint Conf. on Pattern Recognition, Ky-
oto, Japan, 483-487, 1978.

[2] A. R. Beresford and F. Stajano. Location Privacy
in pervasive Computing. IEEE Pervasive Comput-
ing, 2(1), 2003.

[3] C. Bőhm and H. Kriegel. Determing the convex hull
in large multidimensional databases. Proceedings of
the Third International Conference on Data Ware-
housing and Knowledge Discovery, Lecture Notes
in Computer Science 2114, 294-306, 2001.

[4] D. Taubman, High Performance Scalable Image
Compression. IEEE Transactions on Image Pro-
cessing, 9:1158-1170, 2000.

[5] H. Freeman and R. Shapira. Determining the
minimum-area encasing rectangle for an arbitrary
closed curve, Comm. ACM, 18(7):409-413, 1975.

[6] O. Wolfson, P. A. Sistla, S. Chamberlain, and Y.
Yesha. Updating and querying databases that track
mobile units. Distributed and Parallel Databases,
7(3):257-287,1999.

[7] D. Pfoser and C. S. Jensen. Capturing the uncer-
tainty of moving-objects representations, SSD ’99:
Proceedings of the 6th International Symposium on
Advances in Spatial Databases, 111-132, 1999.

[8] R. Cheng, D. V. Kalashnikov and S. Prabhakar.
Querying Imprecise Data in Moving Object Envi-
ronments. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1112-1127, 2004.

[9] P. A. Sistla, O. Wolfson, S. Chamberlain and
S.Dao. Querying the uncertain position of mov-
ing objects, In Temporal Databases: Research and
Practice. 310-337, 1998.

[10] R. Cheng, Y. Zhang, E. Bertino and S. Prabhakar,
Preserving user location privacy in mobile data
management infrastrutures. Proc. of the 6th Work-
shop on Privacy Enhancing Technologies, 2006.

[11] B. Gedik and L. Liu. A customizable k-anonymity
model for protecting location privacy. In ICDCS,
620-629, 2004.

[12] M. Löffler, M. van Kreveld. Largest and Smallest
Convex Hulls for Imprecise Points. Algorithmica,
2008.

