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ABSTRACT
Inference attacks on property-preserving encrypted databases
(e.g., CryptDB) have been previously studied. These demon-
strate how in certain scenarios one can recover plain text
from databases that provide columnar encryption by using
auxiliary information such as column statistics. Newer gen-
eration of encrypted databases are now being built using
secure enclave technology. In this paper, we first show how
the current generation of encrypted databases are robust
against these previously published attacks. However, we
identify two broad patterns that we identify as query in-
tegrity attacks and data integrity attacks that can be used
to construct attacks that are similar in scope for a variety
of encrypted databases built using enclaves. We believe this
paper initiates an important discussion about the need for
integrity protection for future encrypted databases.

1. INTRODUCTION
Encrypted Database Systems (EDBs) are becoming a ne-

cessity for cloud database offerings. There is an obvious need
to protect PII (personally identifiable information) using en-
cryption in the cloud where cloud administrators can freely
access the database. In order to support querying on PII in-
formation, EDBs need to support the ability to run queries
(such as equality, LIKE predicates) directly on encrypted
data.

EDBs were first built using property preserving encryp-
tion (PPE) schemes [17, 18, 15] which are cryptographic
schemes that support computation directly on encrypted
data. They offered a simple security model – no encryp-
tion keys are required to be kept in the cloud. Research
prototypes like CryptDB [15] supported operations such as
equality and range predicates. However, these offerings were
incomplete since customers needed to run more complex
queries (such as LIKE predicates) on encrypted PII data
and complex operations such as pattern matching are not
supported by property preserving encryption schemes.

In order to expand the class of supported queries, new
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EDB architectures were explored using trusted hardware(e.g.,
Cipherbase [1], TrustedDB [4]). Trusted hardware [8] is used
to store the keys securely in the cloud and perform com-
putations on them. Enclaves provide the important guar-
antee that the encryption keys and any plaintext data are
not accessible outside the trusted hardware. Using trusted
hardware, EDBs can now fully address the workload require-
ments of PII.

EDBs have now started gaining commercial traction. Re-
cently, SAP has prototyped SEEED [12] using HANA and
SQL Server has shipped the Always Encrypted feature [10]
using secure enclaves that supports advanced features in-
cluding indexing (i.e., encrypted B-Trees) and LIKE pred-
icates. This underscores the point that EDBs significantly
improve the security bar for handling PII data and this tech-
nology has truly arrived.

However, there is an inherent tradeoff between perfor-
mance and security and all forms of EDBs have some in-
formation leakage. As queries are executed on encrypted
data, there is some information leakage about the computa-
tion performed. Given enough background information, an
adversary can exploit this leakage to deduce plaintext. Such
inference attacks have been studied in the context of PPE
EDBs [14] such as CryptDB. These studies show that plain-
text can be recovered if an adversary has sufficient back-
ground information such as single column statistics. How-
ever, prior work has not analyzed the applicability of these
inference attacks to encrypted EDBs built using enclaves.
In this paper we examine the following questions:
(1) Are the PPE attacks still applicable in their original form
to enclave-enabled EDBs?
(2) If not, are there other attacks that are equivalent in
scope?

We first present basic preliminaries on different EDBs
and their leakage functions and discuss the adversary model
(Section 2). We then recap PPE attacks and discuss why
these attacks which only leverage the static database con-
tents do not directly translate (Section 3) to enclave-enabled
EDBs. In Section 4, we present two new form of attack vec-
tors which enable inferences that are equivalent in scope
to the original PPE attacks. Interestingly, these attacks
mainly exploit the fact that the current generation of com-
mercial EDBs do not provide any integrity guarantees on the
database — as a result, an adversary can hence modify any
queries (e.g., by rewriting any installed stored procedures) as
well as tamper with the plaintext database by adding some
fake data in order to infer correlations on the encrypted
database. We believe this paper makes the key contribu-



tion of highlighting the importance of integrity protection
in EDBs. While current EDBs (in both commercial offer-
ings and in the research literature) do not consistently adopt
integrity protection as a design goal, this paper illustrates
conceptual attacks that can result due to this omission —
we wish to underscore the point that that integrity-based
attacks form a broad attack vector for a variety of EDBs
built using enclaves.

Given EDBs are here to stay, the design of future gener-
ations of these systems will be largely influenced by under-
standing any new attack vectors and building safeguards for
them — this paper highlights the importance of integrity
protection for future commercial offerings of EDBs.

2. PRELIMINARIES: EDBS
At a high level, all EDBs support the following API. EDBs

support columnar encryption — i.e., each individual tuple in
a column is encrypted with a column encryption key (CEK)
created by the user. Any plaintext SQL query that needs
to evaluate a predicate on the encrypted column will be
re-written to run on the encrypted column. For instance,
if the original query has a plaintext constant, this would
be encrypted by using the corresponding CEK of the col-
umn. This is done by the SQL client driver(e.g., ADO.net
or JDBC) [10] or a custom middleware layer [15].

We note that current EDBs do not support the full gen-
erality of SQL. The class of queries supported include:
(1) Equality queries with constants encrypted.
(2) Range queries with constants encrypted.
(3) LIKE predicates with the LIKE predicate encrypted.

Different versions of EDBs support different subset of this
workloads. For instance, EDBs based on property preserv-
ing encryption do not support LIKE predicates. Inference
attacks previously studied in the context of PPE EDBs [14]
focus on equality and range queries. We focus on those work-
loads but also include LIKE predicates since this has been
recently shipped in a commercial offering [10].

We provide a brief overview of property-preserving EDBs
and enclave-based EDBs and focus on the information leak-
age profile of both the static database contents and query
execution.

2.1 Property-Preserving EDBs
Property preserving encryption (PPE) schemes [17, 18,

15] allow computation directly on encrypted data. They
support columnar encryption where a user can choose to en-
crypt a particular column with an appropriate property pre-
serving encryption schemes. Once data is encrypted, there
is a middleware layer that can suitably rewrite SQL queries
to run directly on the encrypted data (see CryptDB [15] for
more details). The encryption schemes used include:
(1) DET - deterministic encryption that supports equality
operations.
(2) OPE - Order preserving encryption that supports range
predicates.

Information Leakage Profile: An important point to note
is that PPE schemes do not store the individual tuples us-
ing ”strong”encryption that provides indistinguishability for
the plaintext value (such as AES-CBC). For instance, both
DET and OPE schemes discussed in [15] will use the same
ciphertext value for the same plaintext value. Thus, the in-
formation leakage for PPE based schemes are as follows:

(1) DET encryption: The static database leaks distinct val-
ues in the tuples.
(2) OPE encryption: The static database leaks distinct val-
ues and ordering among the tuples.

Example 1: Static DB Leakage: Figure 1 shows a Table
with eight tuples in plaintext as well as the corresponding
table when the attribute is encrypted using DET. The ci-
phertext leaks distinct values and the frequency distribution
of these values. However, it does not leak ordering, i.e., it
is not possible to infer if the ciphertext xffb2 is greater or
less than x22a5. However, if the table is stored using OPE,
the database would maintain an additional index (e.g.,a bal-
anced search tree in [15]) that encodes the ordering between
the ciphertexts. Thus, in this example if the table were
stored in OPE, the database would additionally leak the
fact that the ciphertexts are ordered as: x22a5 <= xffb2
<= xbb33.

20  20  10  20  10  20  50  10

xffb2  xffb2  x22a5  xffb2  x22a5  xffb2  xbb33   x22a5

T(int a):  plaintext

T(int a):  DET encryption

Figure 1: Static Leakage in PPE EDBs (ciphertexts are not
full-length).
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Figure 2: Fine-grained Enclave-based EDBs.

Enclaves [7] are hardware based solutions that support
secure computation even when all the privileged software
(kernel, hypervisor, etc) is potentially malicious. Cloud
providers have started offering servers with enclaves in or-
der to support secure computation in the cloud. There have
been a variety of EDBs developed using enclaves (e.g., [1, 4,
10, 16]) — they typically support a larger class of queries on
encrypted data (when compared to PPE based approaches).
In certain cases, EDBs with enclaves can also provide the
same functionality as PPE (e.g., OPE) with better perfor-
mance.



There have been many designs explored in this space based
on what components of the query engine actually run in the
enclave. In this paper we focus on fine-grained architectures
that use the enclave to store data encryption keys (DEKs)
and run only select computations like predicate evaluation
as in the Cipherbase project [1]. We focus on this architec-
ture primarily because these have now gained commercial
traction and is now shipping as part of the commercial SQL
Always Encrypted [10] product.

At a high level, the workflow is as follows: SQL stored
procedures are invoked with encrypted constants which are
transparently encrypted by the client driver. Query process-
ing works as usual using the iterator model. Any operator
(e.g., a filter with a LIKE predicate) which needs to do any
computation such as predicate evaluation on encrypted data
would route the tuple to the enclave where the data is de-
crypted and the predicate is evaluated and the boolean result
is returned in plaintext. The workflow is shown in Figure 2.
A key feature of fine-grained architectures is the fact that
the rest of query evaluation (including buffer management,
query iterators, query parsing etc.) is mostly unmodified
since they do not need access to plaintext values.

We note there are other approaches that use a“coarse-
grained” architecture where larger chunks of the database
including query operators, parts of the query engine (e.g., [4,
9, 16]) are run in the enclave. While we primarily focus
on fine-grained architectures, we also comment in Section 5
where the discussed attacks are applicable to other EDBs
built using enclaves. A thorough survey of all attacks possi-
ble for EDBs built using enclaves is beyond the scope of this
paper — we primarily wish to underscore the broad pattern
of integrity-based attacks that are applicable for a variety of
EDBs built using enclaves.
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x76aa  x113e  x54ff  x32d3  x876b  x39bc  xfff5   xb73b

T(int a): heap storage
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T(int a):  clustered index on a

Figure 3: Static Leakage in Enclave-enabled EDBs (cipher-
texts are not full-length).

Information Leakage Profile: A key difference from PPE
based EDBs is that data is stored encrypted at a cell level us-
ing encryption schemes that are IND-CPA secure (e.g., AES-
CBC mode)1. IND-CPA secure schemes guarantee that the
same plaintext value will map to different ciphertext values.
Thus, the system ensures that distinct values are not leaked
by the static database. However, the static database can
leak ordering information between ciphertexts in case there
is an index on that column as the following example illus-
trates.

1Enclave-based EDBs also support PPE schemes like DET.
We ignore this feature while constrasting them from PPE
based EDBs.

Example 2: Static DB Leakage: Figure 3 shows the same
Table illustrated in Figure 1 for enclave-enabled EDBs. We
distinguish two cases — one where the table is stored as a
heap and another where there is a clustered index on the col-
umn a. In the first case, each tuple being encrypted with a
IND-CPA secure scheme ensures that even the same plain-
text values map to different ciphertext values — distinct
value information is not leaked as in Example 1. Since the
data is stored in a heap, in addition, no ordering information
can be inferred. Thus, in this case, the system provides in-
distinguishability for the data at rest. However, in the case
when there are indexes (e.g., a clustered index in Figure 3),
the ordering of tuples leaks the ordering between ciphertexts
i.e., an adversary can infer that x54ff <= x876b and x876b
<= xb73b and so on.

(1.1)       (1.2)      (1.3)       (1.4)        (1.5)        (1.6)      (1.7)       (1.8)

T(int a): heap storage. Tuples with RIDs

Q1: select * from  T
where a = x57ad

(1.1) x76aa

(1.2) x113e

(1.4) x32de

(1.6) x39bc

(1.3) x54ff

(1.5) x876b

(1.8) xbb33

x76aa  x113e  x54ff  x32d3  x876b  x39bc  xfff5   xbb33

Q2: select * from  T
where a < x57ad

Figure 4: Query Execution based Leakage in EDBs (cipher-
texts are not full-length).

In addition to the static database contents, an adversary
can use the leakage profile of query execution which is as
follows:
(1) Equality queries: leaks the fact that the output tuples
are equal to each other.
(2) Range queries: leaks the fact that the output tuples are
in some predicate range (which is encrypted).
(3) LIKE queries: leaks the fact that the output tuples all
satisfy some encrypted regex predicate.

Example 3: Query execution based Leakage: Consider the
case where the table is stored as a heap in Figure 3. As
we mentioned earlier, in this case, the system guarantees in-
distinguishability for the data at rest. Figure 4 illustrates
how an adversary can learn additional relationships between
ciphertexts (that is not revealed by the static database) by
monitoring query execution. For instance, Query 1 selects all
tuples that are equal to x57ad and Query 2 selects all tuples
that are less than x57ad. By running both queries, an admin
can now infer all ciphertexts in Table T that are equal to
the value x76aa in the database and those that are less than
x76aa. We note that this information can be tracked even
if the output tuples are re-encrypted in the enclave. This
is because most query execution proceeds using the iterator
model [11] and as long as an admin can track which input
tuples passed the filter predicate (e.g., by tracking RIDs of
rows), he can derive the same relationships. Figure 4 illus-
trates this by making explicit the RIDs of the tuples in the
database as well as the results.



2.3 Adversary Model
We now describe the adversary model for a database ad-

ministrator used in this paper. First, we note that an admin
does not have access to encryption keys. Thus, only database
owners who own the encryption keys have the ability to run
arbitrary plain-text queries by encrypting the query con-
stants. Of course, the lack of ability to run arbitrary queries
does not interfere with several regular tasks of an adminis-
trator (e.g., data backup, capacity planning).

We assume an adversary is a database administrator who
has complete access to the database modulo the encryption
keys. Unlike a passive adversary who only monitors query
execution, we assume an active adversary can obtain infor-
mation by trying to expand the information leakage profile
of the set of queries that are actually run by legitimate users.
He can do this in a variety of ways:
1) He can execute modified versions of a client’s query (e.g.,
change the predicate in a query from equality to a compar-
ison predicate or drop a predicate in the query).
2) While he cannot create any new encrypted constants (for
a plaintext of his choice), he can modify any encrypted
constant in a query by re-using encrypted constants from
previous queries or by using constants from the encrypted
database. For instance in Figure 4, if a legitimate user ran
Query 1, an admin can run Query 2 and figure out ordering
information which was not leaked by Query 1.
3) In the case when he has access to the plaintext database
before encryption, he can potentially modify the plaintext
database before encryption (e.g., by adding some fake rows).

In addition, we assume than an adversary has some back-
ground information on the database — we use the same as-
sumptions in [14] which outlined inference attacks for PPE
based EDBs. We assume single-column statistics on columns
from the plaintext database (i.e., the adversary has no infor-
mation on any joint distributions of the columns). Finally,
we assume an adversary has mounted a successful attack if
he can decode the plaintext completely for any fraction of
rows for any encrypted column in the static database (as
in [14]).

We first consider the special attack vector of static database
attacks (Section 3) where an admin has access to no infor-
mation except the static database (i.e., no ability to run
any queries). We discuss this case because: (1) This is
an interesting attack vector where an adversary has poten-
tially stolen the database file on disk and tries to mount
an offline attack. (2) Previously published attacks on PPE
database [14] focus on this attack vector.

3. STATIC DB ATTACKS

3.1 Overview
We briefly review the attacks proposed in [14] for property-

preserving encryption based EDBs. Previously proposed at-
tacks for PPE based EDBs [5, 14] are static database at-
tacks that only need access to the database2. This essen-
tially models a “disk-stealing” adversary who steals the disk
contents of the database and mounts an offline attack. The
attacks assume the following single column statistics:
(1) Frequency histogram of plaintext values
(2) Rank of value in domain of column values.

2if the disk is encrypted then the admin needs to run a select
* query that selects all rows and run the attack on the results

The key insight in the paper is that both OPE, DET
implementations leak distinct values in the static database
from which it is easy to compute frequency histograms and
ranks on ciphertext. The key technical challenge remaining
is how to match the ciphertexts with the plaintext values.
We refer the reader to [14] for more details.
The following simple example illustrates an attack for a DET
column. Assume a hospital scenario with a table storing Pa-
tient information with the following schema:
Patients(id, name, disease, riskfactor, age). Assume all the
attributes are encrypted and the encryption scheme is: (1)
DET for id, name and diseasename (2) OPE for riskfactor
and age.

Example 4: DET Encryption: Assume the adversary has
access to statistics in the disease column which has the fol-
lowing distribution: 50% have Flu, 30% have Pneumonia,
20% have COVID. The disease name is stored using DET
encryption which preserves equality. By simply aggregating
the rows in the database that have the same ciphertext and
matching the ranks in the distributions, the adversary can
figure out the corresponding disease for each ciphertext.

3.2 Applicability to Enclave-based EDBs
Claim: PPE attacks that rely on the static DB [14] are

not applicable to enclave-enabled EDBs which store data
strongly-encrypted.

An enclave-based EDB which stores data strongly en-
crypted only leaks ordering (in case there is an index on
the column) but does not leak any duplicate information
(as explained in Figure 3). Any frequency based attacks
needs information about duplicate values as input— since
enclave-enabled EDBs use non-deterministic encryption, du-
plicates cannot be detected from the static database. Thus,
the static database based attacks (where an admin has ac-
cess to no information except the static database) in [14] do
not work for the case of enclave-based EDBs.

4. ATTACK VECTORS BEYOND STATIC DB
While the static database attacks in [14] are not directly

applicable to enclave-enabled EDBs, the key question that
arises is are there other attacks that are equivalent in scope?

In this section, we examine other potential attack vectors.
First, we look at exploiting query results in Section 4.1. The
act of query execution leaks information — if an adversary
can monitor the results of queries, can he construct attacks
similar in scope to the PPE attacks on the static database?

In addition, we examine some new attack vectors that are
specific to enclave enabled databases — current commercial
EDBs that use enclaves do not provide any integrity guaran-
tees on queries and the plaintext database. Thus, DBAs can
modify any installed stored procedures or even tamper with
the plaintext database before encryption. These lead to po-
tentially new attack vectors that we examine in Sections 4.2
and 4.3. We also address the question if these attack vec-
tors are strictly equivalent or more powerful than attacks
that only exploit query results. For the rest of the paper,
we assume the same example schema as in Example 4 but
all the columns are now stored using strong encryption (e.g.,
AES-CBC mode).



4.1 Exploiting Query Results
In the last section, we showed that the attacks illustrated

in [14] are not applicable to the newer generation of EDBs
based on enclaves. This is primarily because distinct values
cannot be distinguished by examining the static database
tuples. In this section, we illustrate how this limitation can
be addressed by exploiting query results.

Example 5: (DET Encryption): Assume the adversary has
access to a plaintext histogram (as in Example 1) in the dis-
ease column which has the following distribution: 50% have
Flu, 30% have Pneumonia, 20% have Covid. Assume the
application uses the following stored procedure to retrieve
patient information:
select * from patients where disease = @param

Assume the adversary can log the results of all queries
to get a [queryid, outputtuples] mapping. He now knows
all output tuples with the same qid have the same disease.
By comparing the fraction of the tuples returned with the
plaintext statistics, he can deduce the disease for these ci-
phertexts. Since the results simply filter the original tuples
(as in Figure 4), the adversary can figure out the original
tuples in the database with this particular disease.

Example 6: (OPE Encryption): Assume the application
uses the following stored proc:
select * from patients
where riskfactor > @param1
and riskfactor < = @param2

By logging the output of the queries, the admin can do
the following:
(1) By examining the subset of results of different queries,
he can figure out containment relationships among the query
results. (2) By using the cardinality, the admin can compute
the ranks and the CDF (which are used in [14]). Thus, the
OPE attacks in [14] can be replicated in this scenario by
analyzing query results.

However, query result based attacks are not equivalent in
scope to the PPE attacks [14] as the following example il-
lustrates.

Example 7: (Problem Case): Consider the case where
the application uses queries that do not match the admin’s
statistics profiles. For instance, consider a query workload
that queries diseases in a particular age interval with a par-
ticular risk factor. By logging the output of the queries, the
admin only gets to sample the joint distribution of
(disease, age, riskfactor).
While the results of a single equality query can be sufficient
to obtain statistics on the domain value selected, in this
case, since we only get to sample the joint distribution, the
workload may not provide sufficient information to permit
any inferences. For instance, assume the application only
issues the following queries which are completely disjoint in
all dimensions:
Q1(disease=”Pnemonia”, age <50, riskfactor=3)
Q2(disease=”Covid”, age > 50, riskfactor=5)
Given only the single column statistics of the disease column
(as in Example 6), an adversary cannot draw any conclusions
by examining the output of these queries.

In Section 4.2, we examine how an adversary can modify
query execution to generate appropriate statistics in order
to avoid this problem.

Client encrypts DB 
and 

installs
stored procs

Adversary modifies 
and  executes  

stored proc

Adversary collects
statistics from

query execution

Figure 5: Workflow for query integrity attack

4.2 Query Integrity based Attacks
While query results provide crucial information for an ad-

versary, it does not provide a general purpose solution for
inference attacks. As Example 5 illustrates, the key reason
is that an adversary can only sample the joint distribution of
columns using certain query results which is insufficient to
reconstruct the PPE attacks. However, an active adversary
can obtain any missing information by actively modifying
the stored procedures that are installed. The current gener-
ation of EDBs focus on protecting keys and the data from
disclosure and do not provide any integrity guarantees on
the queries/stored procedures that are installed in the sys-
tem. An admin can actively modify these queries to extract
more information to enable inference attacks. The high level
workflow is illustrated in Figure 5. The following example
illustrates a specific case:

Example 8:(Addressing Example 7) Consider the case of
Example 7 where the application uses a stored procedure
that does not match the admin’s statistics profiles. In order
to generate statistics on the disease column alone (and not
statistics corresponding to the joint distribution of
disease, age, riskfactor), an admin can modify query exe-
cution to run an additional query as follows:

// run new query
select * from patients where disease = @param1
Log [qid, output tuples]
// run original query

The modified query execution first executes a query that
generates statistics on only the disease column (which is
useful in running attacks on that column). It then runs the
original query so a client that executes the stored procedure
will see the same result.
Assume the application only issues the following queries:
Q1(disease=”Pneumonia”, age <50, riskfactor=3)
Q2(disease=”Covid”, age > 50, riskfactor=5)
The admin modifies query execution to run additional queries
Q3(disease=”Pneumonia”) and Q4(disease=”Covid”).

By comparing the cardinality output with the statistics
on the disease column, an admin can now easily identify the
patients with each disease (as in Example 6) which was not
feasible by only monitoring the results of the original query
in Example 7.

This attack is feasible in practice since the query string
with any encrypted constants are stored in untrusted mem-



ory and can in principle be overwritten with the new set
of queries by an admin. We note that the additional query
need not be limited to use the original encrypted constant
in the query, an admin can also use encrypted data values
from the table in order to fully sample the domain of the col-
umn. We label such attacks as query integrity based attacks
— with such attacks, an admin can always generate statis-
tics that correspond to any single-column statistics that are
available (as long as that column is queried in the original
query) and as a result, he can replicate the attacks for PPE
based databases [14].

Claim: (informal) Using query integrity based attacks,
inference attacks equivalent to known attacks for DET and
OPE [14] can be constructed for enclave-enabled EDBs.

4.2.1 LIKE predicates
We now examine LIKE predicates. Note that LIKE predi-

cates while not supported in property-preserving EDBs, are
fully supported in enclave-enabled EDBs. A key problem
for constructing a successful attack for LIKE predicates is
the fact that the LIKE predicate is encrypted and an admin
cannot generate an encrypted constant corresponding to a
new regex pattern. This is unlike the case of equality and
range queries where the admin can modify the query and
change query constants by randomly sampling values in the
encrypted table. With only single column statistics, it is in
general not possible to decipher the plaintext values as the
following example illustrates.

Example 9: (LIKE predicates) Consider the following sce-
nario: Assume there are 100 patients. Assume the statistics
on the disease column is as follows:
Cardinality[disease=”Pneumonia”] = 30
Cardinality[disease=”Covid”] = 20
Cardinality[disease=”Diabetes”] = 15
Cardinality[disease=”Bronchitis”] = 15
Cardinality[disease=”Flu”] = 10
Cardinality[disease=”Fever”] = 5
Cardinality[disease=”Cold”] = 5

If an attacker sees an equality query on the disease col-
umn with output cardinality of 30, he can immediately con-
clude that these tuples all have the disease ”Pneumonia”.
However, if a LIKE predicate query on the disease column
returned 30 tuples, it is not possible to make any inferences.
It could be the case that the LIKE predicate queried only
pneumonia patients or covered a regex pattern that included
multiple diseases whose combination lead to 30 results such
as: ((”Covid”, ”Flu”), (”Diabetes”,”Flu”,”Cold”), (”Bronchi-
tis”,”Flu”,”Cold”),(”Covid”, ”Fever”, ”Cold”)) Thus, without
knowledge of the LIKE pattern it is not possible to con-
struct a general purpose attack for LIKE predicates using
query integrity based attacks.

In Section 4.3, we adopt an attack proposed in [6] against
searchable encryption in order to infer information about
the encrypted LIKE predicate. The key idea is for the ad-
versary to tamper the plaintext database before encryption
by introducing some fake tuples and monitor their usage by
different queries in order to obtain information about the
encrypted LIKE predicate.

Adversary adds 
fake tuples to 
the plaintext DB

Client encrypts DB 
and 

installs stored procs

Adversary tracks
correlations with
fake tuples during
query execution

Figure 6: Workflow for data integrity attack

4.3 Database Integrity based Attacks
Another important attack vector for an admin is to tam-

per with the plaintext database before the data is encrypted.
For large databases, it is not efficient to insert the database
records one at a time while encrypting them — it is more
efficient to bulk-load the plaintext database to the cloud and
then encrypt it using the enclave. In fact, this is one of the
key features enabled in [10]. Moreover, many databases al-
ready reside in the cloud in plaintext before encryption is
enabled. An admin can easily tamper with the database at
this point in order to gain more information while executing
queries on the encrypted database.

Similar attacks (where the plaintext data is tampered be-
fore encryption) have been studied in the context of search-
able encryption [6]. Here, an adversary augments a docu-
ment corpus with fake documents. By correlating the hashes
of the words in the fake documents with other documents in
the corpus, he can construct attacks [6].

The adversary first augments the database with fake tu-
ples, the client then encrypts the database. While queries
are executed, the adversary tracks the fake tuples to discover
relationships between encrypted tuples and to infer the se-
mantics of the encrypted LIKE predicate. Note that this
gives the adversary the important ability to track correla-
tions with any new encrypted tuples that have been inserted
since the database was encrypted (and not just the tuples
that were present in the original plaintext database). The
high level workflow is illustrated in Figure 6 and the fol-
lowing example illustrates a specific case. In this paper, we
assume an adversary explicitly adds fake tuples to the plain-
text database — it is also possible that an adversary uses the
RIDs of tuples that were already in the plaintext database
to track correlations.

Example 10: LIKE predicates. Consider the example in
Example 9 where we illustrated that query results provide
incomplete information to construct a successful attack for
LIKE predicates. We now illustrate how an adversary can
use the workflow in Figure 6 to construct a successful attack.

That scenario had 100 patients and 7 distinct diseases.
Assume the adversary has already inserted 7 fake tuples,
one for each distinct disease in the database. For simplicity,
assume the original database was empty modulo the fake tu-
ples and a new whole new set of encrypted patient data (now
totaling 100 tuples) has now been inserted. The question is
can the adversary retrieve the plain-text corresponding to
any of the new encrypted data?
Assume the adversary gets two LIKE predicate queries: Q1



with cardinality 30 and Q2 with cardinality 10. The adver-
sary can now track if his fake tuples are part of each result
set (e.g., by tracking the ROWIDs() of those tuples as part
of query execution).

For instance, if Q1 includes the fake tuples for “Covid”
and “Flu” and Q2 includes only the fake tuple for “Flu”, the
adversary can infer that the first encrypted regex predicate
is essentially equivalent to a (“Covid” OR “Flu”) query and
the second regex predicate is equivalent to a (“Flu”) query.
From this information, he can now deduce that all the second
query output tuples have the disease “Flu” and all the first
query tuples excluding the output of the second query (i.e.,
the output of the query difference Q1 - Q2) have the disease
“Covid”. Thus, he can construct a successful attack since
he can now guess the equivalent semantics of the encrypted
LIKE predicate. This is something an adversary could not
have accomplished (e.g., in Example 9) without tampering
the data to introduce fake tuples. We note that an adversary
does not need access to any background statistics to carry
out a successful attack using this approach.

In general, the set of fake tuples included in a query result
set provides a unique signature for that query (e.g., “Covid”
OR “Flu” for Q1 in Example 11). By analyzing the signa-
tures of a workload of queries, an adversary can try to obtain
subsets of rows that have a signature that corresponds to an
unique domain value (e.g., just “Flu” or “Covid” in Example
10) — then, he has uniquely decoded all ciphertexts in the
table with that value. At a high level, an algorithm to carry
out the attack is as follows: Compute differences in signa-
tures between each pair of queries in the workload and then
compute the transitive closure of such differences — any sig-
nature that is present in the transitive closure and identifies
a unique domain value results in a successful attack for that
domain value. We defer algorithmic details and an experi-
mental evaluation that demonstrates the effectiveness of this
attack for real workloads to future work. As far as we are
aware, this is the first published attack vector for encrypted
LIKE predicates.

However, there are important caveats— First, this attack
requires the admin to insert fake tuples for every value in the
domain in order to understand the semantics of the regex
predicate. So this attack is ideally suited for low entropy
”string” columns (e.g., performance rating in a company) or
even numeric columns (e.g., salary column with a small num-
ber of distinct values). In general, the signatures obtained
using the fake tuples can also be used for constructing at-
tacks for OPE and equality queries. Second, we note that
this is not necessarily a general purpose technique since it
is possible that in spite of “guessing” equivalent regex ex-
pressions, the set of queries run could provide incomplete
information for deciphering ciphertext.

Example 11: LIKE predicates and incomplete information.
Assume the query workload in Example 8 executed two
LIKE predicate queries, Q1 which includes the fake tuples
for (”Diabetes”, ”Flu”) and Q2 which includes the fake tu-
ples for (“Fever”, “Cold”). An adversary can now guess that
a particular output tuple is one among the output two dis-
eases but lacks sufficient information to uniquely identify the
disease. In general, applications could issue a query work-
load where unique inferences are not possible.

In Examples 10 and 11, we assume the application used a
single LIKE predicate. In case, the application used a more

complex query that ran a conjunction of predicates including
the LIKE predicate, the admin would modify the query (as
in Section 4.2) to run the LIKE predicate in isolation in order
to carry out the attacks. Thus, we label this technique as
a database integrity based attack since it can tamper with
both the database and query contents.

5. DISCUSSION
We first summarize the attacks discussed in this paper and

discuss the key implications. First, we wish to underscore
the point that current EDBs already provide a significant
security bar for PII data particularly when compared to the
prior alternative of storing PII in plaintext. The attacks
suggested in this paper are conceptual and need high so-
phistication on the part of an admin3 to pull off in practice.

Given that EDBs are here to stay, the design of future
generations of these systems will be largely influenced by un-
derstanding any new attack vectors and building safeguards
for them. This paper emphasizes a broad attack vector of
integrity-based attacks that can result when an adversary
can tamper with either the query or the database contents.
In particular, we also discuss how these attacks translate
to other EDBs built using coarse grained architectures [4,
16] in Section 5.1.1 as well EDBs that use oblivious query
operators [3, 9] in Section 5.2.

5.1 Summary of Attacks
Table 1 presents a high-level summary of the attacks dis-

cussed in the paper. The key takeaways are as follows. (1)
Previously published static database attacks for PPE based
EDBs [14] are not directly applicable. Thus, enclave-enabled
databases do significantly improve security where an adver-
sary steals the database file or where the adversary runs a
select * query to select all the rows of a table to get a copy
of the database.
(2) Query result based attacks are not a general purpose
technique but can work in cases where the application is-
sues queries that generate results that are consistent with
any background statistics available. Hence, these entries are
qualified with an asterix. In addition, such attacks do not
provide enough information to construct successful attacks
for LIKE predicate queries.
(3) All the previously published attacks proposed [14] for
equality and range queries in PPE based EDBs directly
translate to enclave-enabled database when we use query in-
tegrity based attacks where an adversary can modify a query
to collect any appropriate statistics. However, this approach
cannot work for LIKE predicates because the LIKE predi-
cate is encrypted and cannot be modified.
(4) Finally, database integrity based attacks (where an ad-
versary can tamper with both the query and the database
contents) can be used by an adversary to successfully work
with equality, range and LIKE queries. LIKE predicates are
qualified with an asterix since in some cases there might be
insufficient information in the query workload to decipher
plaintext.

5.1.1 Applicability of Attacks to other EDBs
While we have centered the discussion on a particular ar-

chitecture of EDBs (see Figure 2), we now comment on the

3For instance, there are orthogonal safeguards such as au-
diting an admin’s actions.



Attack Type Equality Range Like
Static DB No No No
Query Result Yes* Yes* No
Query Integrity Yes Yes No
Data Integrity Yes Yes Yes*

Table 1: Attacks on fine-grained enclave-enabled EDBs

applicability of these attacks to other EDBs developed us-
ing coarse grained architectures (e.g., TrustedDB [4], En-
claveDB [16], ObliDB [9]). We postpone the discussion of
ObliDB [9] to section 5.2.3 after we discuss oblivious oper-
ators in Section 5.2.2 and focus on TrustedDB [4] and En-
claveDB [16] in this section.

Recall that EDBs using a fine-grained architecture [1, 10]
only run expression/predicate evaluation in the enclave (see
Figure 2) in which any predicates on encrypted data are eval-
uated securely in the enclave and the results are returned in
plaintext and used by a traditional query engine. EDBs us-
ing a coarse grained architecture run entire query execution
engines in the enclave (e.g., TrustedDB runs a version of
SQLite in the enclave). The “non-enclave” components are
primarily used for data storage and data shipping to the
query engine running in the enclave. In such EDBs, queries
are encrypted and signed by the client and submitted di-
rectly to the query engine in the enclave. This provides the
key property that any query string cannot be modified and
executed by the administrator who cannot access the mem-
ory contents of the enclave.

Query encryption also provides the additional benefit that
the SQL string skeleton is encrypted and hidden from the
admin — however, this is not a guarantee for the following
reason: An admin can guess the SQL query skeleton using
a variety of background information: If only the data pages
corresponding to a single column from a table is accessed
by the query engine in the enclave, he can guess that it is a
single table query that has some predicate on that column.
In addition, he can guess the SQL from the application —
for instance, if a hospital search interface with support for
regular expression matching is typically used for searching
patients by name or by disease – this can only translate
to LIKE predicate queries on the name column or disease
column in the database.

We note that both EDBs use the iterator model of execu-
tion and do not aim to decorrelate the database tuples from
the output result (e.g., by using oblivious operators or buffer-
ing the results). The enclave typically uses a paging model
where pages of encrypted data are read into the enclave one
page at-a-time and the results are stored in host memory
(e.g., [16]) as soon as they are generated. In this scenario,
an adversary can figure out the correlation between input
and output tuples as follows. Consider a simple example
of a Table T having a single page that has ten tuples that
is encrypted and read into the enclave using a scan oper-
ator. Assume that the enclave processes a filter tuple and
immediately writes out the output to the host memory. An
adversary can track correlations using one of the following
methods:
(1) He can simply use a timing attack to figure out which
tuple (among the ten) passed the filter predicate based on
how long it takes to produce an output tuple.
(2) Both EDBs do not support data integrity on the plain-

text database — thus an adversary can create a version of
the plaintext database with ten pages and store only one
original tuple in each page. Now by monitoring which page
was read into the enclave when the result was generated, he
can obtain the correlation.

Given these properties, we can derive the following con-
clusions:
(1) Since both TrustedDB and EnclaveDB use signed queries,
query integrity based attacks (Section 4.2) which rely on
modifying the query to get additional statistics are not fea-
sible in such systems — this is a clear difference from EDBs
that use a fine-grained architecture.
(2) Both EDBs do not aim to decorrelate the database tuples
from the output result. Thus, query result based inferences
are feasible in both systems.
(3) TrustedDB [4] does not provide any integrity guarantees
and EnclaveDB [16] provides integrity guarantees for only
the encrypted database and not the plaintext DB before
encryption. The attacks in Section 4.3 work by correlat-
ing any fake tuples inserted by the admin before encryption
with the actual query results — they do not rely on the need
to tamper with the input queries. For instance, consider a
database application that issues only LIKE predicates on a
single column for the EDB— for this specific scenario, the
attack discussed in Section 4.3 applies to both TrustedDB
and EnclaveDB.

We defer a more thorough examination of how the attacks
discussed in this paper can be ported to [4, 16] to future
work.

5.2 Alternative Approaches
All EDBs that use the iterator model of execution [11]

permit some form of query result based information leak-
age. We first examine query result based attacks (e.g., the
leakage profile of query execution as shown in Figure 4) and
ask the question: Can we build EDBs that can alter this
information leakage profile in order to reduce query result
based information leakage?

5.2.1 Query Result Indistinguishability
First, can we stop query result based attacks completely?

Any EDB that uses cell level encryption and runs queries
will leak this information. Only EDBs that leverage dif-
ferent architectures that provide some form of query-result
indistinguishability [13] can offer protection against query
result based leakage. For a query workload of filter queries,
query result indistinguishability implies independent of the
selectivity of the query, the query result sizes should be vir-
tually indistinguishable. Thus, a query with 0.1% selectivity
or 99.9% selectivity should return the ”same” result size —
which is virtually the entire table. If every filter query re-
turns the entire table, then this workload effectively leaks
no information. However, this has significant performance
implications — for instance, any form of indexing is incom-
patible with this property and the filtering of the actual
results has to be done at the client. Thus, the EDB is vir-
tually reduced to a storage system — as a result, conceding
query result leakage seems inherent given that EDBs need
to support efficient query processing.

5.2.2 Leveraging Oblivious Operators
While some form of query result leakage seems unavoid-

able for EDBs, a key property that enabled the attacks in
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Figure 8: Data Integrity Attack for Oblivious Filter Operator

Section 4 is the ability to track correlations between tuples
in the database and tuples in the query result. We first note
a simple re-encryption of the tuple in the enclave is usually
insufficient as traditional query engines process tuples us-
ing the iterator model and correlations between input and
output tuples can easily be tracked by an active adversary
(as discussed in Example 3). However, a complete redesign
of the query engine centered around oblivious operators can
remove such correlations. Can we stop the attacks in Table
1 by simply integrating oblivious operators in fine-grained
EDBs [1, 10]? Oblivious operators [3, 9] provide the im-
portant property that they leak only the cardinality of the
query result — thus, an adversary cannot figure out the
source database tuples that belong in the query result. The
following example illustrates an oblivious filter operator.

Example 12: Oblivious Filter Operator: Assume a Table
T with three tuples (as shown in Figure 7). Assume two of
these have the same plaintext value. Consider the problem
if an admin can decode which two tuples are identical after a
user runs an equality query. As shown in Table 1, this is fea-
sible using query integrity Attacks. However, an oblivious
filter operation can decorrelate the source tuples from the
output and potentially stop this attack. A naive implemen-
tation of an oblivious filter [3] operator would scan the entire
table into the secure enclave, evaluate the filter operator, re-
encrypt the tuples and output them after buffering all the
results in the enclave memory (in practice, implementations
can handle limited enclave memory with the same guaran-
tees). Note that this pattern of query execution breaks the
classic iterator model [11] where an output tuple is gener-
ated immediately if an input tuple satisfies the filter and as

a result this breaks the ability to correlate input and output
tuples. Figure 7 shows why an admin who only has access to
the query results cannot directly correlate the output tuples
with the corresponding tuples in the database and figure out
which of the two tuples are equal. Thus, an oblivious op-
erator only leaks the cardinality of the result and not the
source database tuples that belong to the output.

Example 13: Attack for Oblivious Filter: While an obliv-
ious operator leaks only the cardinality, an admin with un-
restricted ability to tamper with the data and queries can
still construct an attack for this example. For instance,
for the simple database in Figure 7, an admin can create
two different databases with different subset of the tuples
in the original EDB: Database 1 with (x76ee, x113e) and
Database 2 with (x76ee, x54ff) and then run the query on
both databases. While the admin still does not have the
ability to correlate input and output tuples, the very fact
that the query on Database 1 returned two results implies
that the two source tuples in Database 1 are equal. In gen-
eral, for a table with n rows, an admin can create n such
databases with each database containing one tuple from the
original database and by running the query on each of these
databases can now compute all source database tuples are
equal to the constant specified in the query. This is some-
thing that he could not have done in Example 12 by only
examining query results.

Thus, even if we use oblivious operators in EDBs [3], an
active adversary can still construct attacks that a passive
adversary cannot by leveraging data integrity based attacks.
This underscores the point that integrity-based attacks form
a broad attack vector for a variety of EDBs built using en-
claves.

5.3 Integrity Guarantees for EDBs
Given the fact that integrity based attacks are conceptu-

ally feasible for a variety of EDBs built using enclaves, can
current systems that leverage traditional query processing
architectures [10] be augmented to protect against the at-
tacks discussed in this paper? We believe EDBs need to
invest more in integrity protection of queries and data. We
abstract two important properties that are necessary to pro-
tect against such attacks. We define an authorized user to
be a user who has access to the data encryption keys —
hence, a DBA is not considered an authorized user of the
database.

Property 1: Any SQL query (read/update) that is executed
is digitally signed by an authorized user and is run unmod-
ified and executed exactly once by the DBMS.

Property 2: The state of the database system reflects a se-
rialized order of all signed SQL updates that were issued by
authorized users.

Any system that guarantees Property 1 for the encrypted
database ensures that an admin cannot alter queries or run
any other queries and hence protects against query integrity
attacks. As we have shown in this paper, an admin should
not be allowed to run arbitrary queries or modify existing
queries — we note that this does not interfere with the reg-
ular tasks of an administrator (e.g., backups, capacity plan-
ning). In order to prevent against data integrity based at-



tacks, we need to guarantee Property 1 and Property 2 for
even the plaintext database before encryption and the en-
crypted database. Property 2 in particular prevents an ad-
min from tampering the database in any form. As far as we
are aware, this are no commercial query execution engines
that provide the above guarantees. It is interesting future
work to extend current commercial systems [10] to provide
these guarantees.

One possibility is to re-examine coarse-grained architec-
tures(e.g., TrustedDB [4], EnclaveDB [16]). Such systems
guarantee Property 1 because they use signed queries and
run parts of the query engine in the enclave — they can thus
prevent the attacks discussed in Section 4.2. However, they
do not provide Property 2 for the plaintext database before
encryption. A large number of databases already reside in
plaintext form in the cloud before encryption is enabled —
if these systems can be extended to support Property 2 for
the plaintext database before encryption then this attack
vector can be prevented. In addition, these systems largely
rely on the iterator model of query execution [11] (i.e., no
oblivious operators) and thus cannot prevent an admin from
correlating output tuples in a query with the corresponding
tuples in the source database which can lead to the attacks
discussed in Section 4.1.

ObliDB [9] proposes an EDB architecture that combines
oblivious operators and data integrity protection. Opaque [19]
is another system that combines oblivious operators and
data integrity protection in a map reduce setting. How-
ever, since Opaque is not designed for traditional OLTP
databases, we restrict our discussion to ObliDB. Despite
the fact that ObliDB does not provide integrity guarantees
for the plaintext database, it does not permit any of the
attacks discussed in Section 4. This is because oblivious
operators removes any correlations between the output and
the database tuples. In addition, the attack for the oblivi-
ous filter operator discussed in Example 13 is not permitted
because of integrity guarantees in the EDB. However, the
redesign of the engine poses non-trivial performance con-
straints. For instance, a table scan query needs multiple
scans of the table in order to buffer tuples in the enclave and
database staples such as parallelism and concurrency control
are not yet supported. As a result, these techniques are yet
to be incorporated in commercial query engines which use
highly-optimized traditional query processing architectures.
Examining if we can extend ObliDB to efficiently support
the full SQL API (including concurrency control) is an in-
teresting area of future work.

In addition, there is recent work on building verified plain-
text key-value stores (e.g., Concerto [2]) using trusted hard-
ware that provides Property1 and Property2 for a (non-
encrypted) key-value store. Concerto provides high through-
put by using cryptographic primitives (such as Blum hashes)
that can be optimized for concurrency. While these tech-
niques provide high performance (supporting millions of trans-
actions per second), they currently only cover a key-value
store API. It is interesting to examine if these techniques
can be generalized to build EDBs that cover the full SQL
API. Finally, we note that any EDB that provides Prop-
erty1 and Property 2 will provide an important guarantee
that an active adversary can only learn as much from the
system as a passive adversary. We believe that this is an
interesting north star goal for next generation commercial
EDBs to pursue.
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