On the Inherent Creativity of Self-Adaptive Systems

Simo Linkola, Niko Makitalo and Tomi Méannisto
Department of Computer Science
University of Helsinki
Helsinki, Finland
{simo.linkola, niko.makitalo, tomi.mannisto}@helsinki.fi

Abstract

We argue that frameworks employed in architecting
self-adaptive systems allow the system to exhibit cre-
ative behaviour, and that many of the existing self-
adaptive systems operating in domains which are typi-
cally not associated with creativity are inherently cre-
ative. However, even the current state-of-the-art solu-
tions do not fully exploit stronger forms of creative be-
haviour, which are required in complex environments,
where the system constantly encounters fundamentally
novel situations. To this end, software development ne-
cessitates a paradigm shift parallel to moving from pro-
cedural design methodology toward self-aware systems
where the system adapts to its context at run time.

Introduction

Self-adaptive systems are software systems where a base
system is monitored and adapted during runtime by an-
other component, called a manager, so that the base
system’s operation is maintained towards its goals in
changing situations (see e.g. Salehie and Tahvildari,
2009). The self-adaptive systems have been studied
extensively in the software engineering and architec-
tures (see e.g. Kephart and Chess, 2003; Garlan et al.,
2004; Kounev et al., 2017).

We interconnect the existing work on self-adaptive
systems and computational creativity (cf. Colton and
Wiggins (2012)). Particularly, we consider a host of
models where a system may explore new and/or assess
old (and new) adaptations at run time. We separate
different types of creative adaptations and argue that a
self-adaptive system must be self-aware (Kounev et al.,
2017) for stronger forms of creativity. For implementing
creative self-adaptivity, we illustrate an example control
flow which extends MAPE-K loop (Kephart and Chess,
2003). The early results using an example self-adaptive
system support the usefulness of explicitly considering
the self-adaptive system’s creativity.

Creativity in Self-Adaptive Systems

Assessing a system’s creativity depends on the adopted
definition of creativity (Jordanous, 2012) and the as-
sessment perspective (Jordanous, 2016). We adopt the
standard definition: creativity is the ability to produce

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

362

novel and wvaluable ideas or artefacts (Boden, 1992;
Runco and Jaeger, 2012), in our case adaptations!. We
extend the definition with the notion of intentional-
ity (Ventura, 2017) as the creative process of a system
should not be fully random (cf. creative autonomy (Jen-
nings, 2010)).

Definition. Creative self-adaptivity is the ability of the
system to intentionally adapt in ways which are valuable
and novel.

To this end, the designer needs to provide the self-
adaptive system means to appear creative by relaxing
the soft constraints on the adaptive behaviour, increas-
ing flexibility. Critically, the relaxed adaptive freedom
should not result in erratic behaviour. The system
should seek creative adaptations only when it reasons
that it does not know of an acceptable solution to the
current (or expected future) situation.

Prominently, to support creative behaviour in com-
plex environments, we need to engineer on-going learn-
ing capabilities to the system, i.e. the system needs to be
self-aware (Agarwal et al., 2009; Kounev et al., 2017).

In this paper, novelty, value and intentionality are in-
spected and argued through the system’s internal rea-
soning processes. However, as the system’s behaviour
should reflect its higher-level design goals, our presump-
tion is that strengthening system’s own understanding
of its creative and adaptive process will reflect in its
designer granting more creativity to it.

Intentionality of the system’s adaptation process is
typically well justified in a self-adaptive system as the
system adapts only when it perceives a clear reason to
do so. However, if the system adapts only reactively,
the situation may change before the adaptation com-
pletes, ultimately requiring different adaptation strat-
egy (cf. Moreno et al. (2015)). For stronger intention-
ality, the system needs to be able to adapt proactively
and verify candidate adaptations at run time.

Value of an adaptation corresponds to the evaluation

!By ’adaptation’ we refer to all of the following: a con-
figuration of the (base) system, behaviour the configuration
causes in a situation, and the act of deploying the config-
uration in a particular situation. Ambiguities are pointed
out where appropriate.



Analyse
situation

Novel strategy
search

Novel configuration

—>|
search

Search existing
adaptations

Novel &
Valuable
adaptation
found?

Novel &
Valuable
adaptation
found?

i
1 transformation -
! search

Matching
adaptation
found?

Too

many
attempts
?

Too

many

attempts
2

Apply the
adaptation on
base system

Figure 1: Example search flow for novel and valuable
adaptations realised within the manager component.

of the system’s behaviour in a particular situation, e.g.
with respect to reliability and performance (Muccini
et al., 2016). Naturally, value depends on the system’s
operational domain and it translates to, e.g. adhering
to the hard configuration constraints of the base system
(e.g. by using constraint evaluator as in Rainbow archi-
tecture (Garlan et al., 2004)), and/or adapting in a way
which maximises the expected utility of the system’s be-
haviour to some finite time horizon (e.g. Moreno et al.,
2015).

Novelty of an adaptation is not commonly scruti-
nised in self-adaptive systems. The need for novel adap-
tations rises from novel situations the system encoun-
ters. The system may also explore new adaptations (or
try existing ones in new situations) when it has free re-
sources, e.g. using simulations which capture relevant
aspects of the world w.r.t. its operational goals.

We separate three conceptually different senses of
how an adaptation may be novel: novel strategy, novel
configuration and novel transformation. Figure 1 shows
an example of how a MAPE-K loop (Kephart and
Chess, 2003) can be expanded to include separate pro-
cesses for all novelty types in a sequence. In an actual
system, however, they may be mixed within the same
generic process or run in parallel.

Nowel strategy means that an existing adaptation is
deployed in a novel situation, which resembles combi-
national creativity (Boden, 1992). Novel strategies are
pervasive in existing systems, as the systems are com-
monly engineered to analyse any encountered situation
and select the most fitting adaptation for it (Salehie
and Tahvildari, 2009).

Novel configuration is generated by a search-based
method during the system’s execution, which is anal-
ogous to exploratory creativity (Boden, 1992). The
system may aim to find novel and valuable configu-
rations for particular situations or generally well per-
forming ones. Existing systems utilise such methods,
e.g. by combining composite adaptations from elemen-
tary adaptation tactics (Moreno et al., 2015) or using
AT search methods to find novel adaptations (Haday-
tullah et al., 2012).

Novel transformation alters the whole system in new

Proceedings of the 11th International
Conference on Computational Creativity (ICCC20)
ISBN: 978-989-54160-2-8

363

way, requiring same kind of mechanisms as transfor-
mational creativity (Boden, 1992; Linkola et al., 2017).
In general, the transformation can be adjusting goals or
any other part of the system, hence, flexible system vali-
dation and verification at run-time becomes paramount.
For apt transformations, the system needs to have sig-
nificant and timely understanding of its own operation
and its relation to the environment, e.g. through self-
modelling (Kounev et al., 2017, Chapter 9) and simu-
lated behaviour.

Self-awareness (Kounev et al., 2017; Linkola et al.,
2017) is a major enabler of creative behaviour, aiding
the system to reason about value, intentionality and
novelty, and act based on its reasoning. It is essential
especially for novelty for inferring how and where two
adaptations differ from each other, by their configura-
tion and their behaviour (in particular situations), al-
lowing to estimate how configuration changes affect the
behaviour. Ultimately, new situations can be compared
to previously encountered ones, and new configurations
and transformations can be compared to previously de-
ployed ones with an understanding of how reliable the
comparison is. For example, when a robot is deployed
in a new location, the system can compare its previ-
ous locations to the new one and rapidly orient itself
to the new environment by selectively adapting parts
of its configuration.

Particularly, transformational creativity becomes a
requirement when shifting self-adaptive systems to-
wards general Al paradigm as the system needs to be
able to change its goals and be flexible in its reason-
ing based on its own experiences. To this end, we
need rigorous software engineering practices to guide
the development, e.g. to ensure safer (and ethical) be-
haviour (Winfield, 2014). Next, we distinguish some
aspects of self-awareness which have direct influence on
creative behaviour.

Self-Awareness Components

In computer systems, self-awareness can be considered
as an umbrella term, enclosing a variety of different
but partially overlapping aspects, many described in
detail in Kounev et al. (2017). In computational cre-
ativity, these aspects have been considered with respect
to metacreative systems (Linkola et al., 2017). We in-
clude three distinct awarenesses, and explicate how they
contribute to the goals of creative self-adaption: nov-
elty, value, and intentionality:

Goal-awareness ensures that the goals are coherent
after their alteration to support intentional and valu-
able adaptations. The task is challenging since no com-
ponent may have a direct knowledge of every goal. For
this reason, the system can maintain a goal model which
has an immediate influence on the evaluation function
guiding the adaptation search. Thus, the goal changes
reflected in the evaluation function bias the subsystems’
behaviour towards adaptations conforming to the mod-
ified goals. Understanding the novelty of new goals al-
lows the system to find the most similar previous goals



Plant heights S1: Lux & Lamps ON

+H F o + o+
. F+ #t
++ FE et FE A+t
+ + +
+

F+H++++++
+

e . S

!E+ L P PR

+ 4+ +++ +o®
B+ b e

+
i T+ i

1.0

0.8

0.6

o+

0.4 +
+

F++ +
++ o+
+

44

++
F
+ + +

+ 4
HEE
4+
4

g
i

S2: Lux & Lamps ON S3: Lux & Lamps ON
+ 4+ o+ o+ HEE + 4+ 4+ +++H++ 10000
+ 4+ + B+ T b PR 7500
+ 4+ + +F ++ +4+ 4+ +++++ 4+

S i o 5000
++ ++ + ++++++++ 4+

+ o+ + + = 2" 2500
+H B ST E EOE b W T
B e + 4+ 4+t HHE + o
+ 4+ 4+t +oE + 4+ 4+ + o+ o -2500

+I+$+ +

+ 4+ 4+ +++F A+ + 4+ 4+ 4+ + 4+ + -5000
+4+++++ B+ +4+ 4+ F ~7500
+ o+, o+ F + 4+ 4+ + o+ 4+
+ 4+ ++ + —10000

Figure 2: An example situation on the left and its adaptations on the right. Turned on lamps are marked with 4.
The colors indicate difference to the target light level per patch (in lux).

and use their deployed adaptations from its memory as
a starting point for, e.g., novel configuration search (see
Figure 1).

Context-awareness ensures that the system has
the ability to understand the novelty of the system’s
current context to support intentional adaptations. For
this purpose, context-awareness uses the input data
provided by the base system, which then influences
evaluation function. It can also motivate adaptations
by enabling the base system to switch among exter-
nal services with different behavioural or quality pro-
files. Context-awareness can also directly influence
novel adaptation search, supporting context relevance
and reducing search complexity.

Resource-awareness maintains the base system’s
current input and output mechanisms (e.g., sensors,
actuators) as well as the data and control connection
among the resources. Additionally, for making an adap-
tation intentional, a resource-centric sub-evaluation can
be used to further filter out the adapted systems with
excessive resource demands.

Example: A Light Control System

We use a community greenhouse light control system as
an example Base System to demonstrate the usefulness
of creative self-adaptation, focusing on how deliberate
reasoning of the novelty (of the context, etc.) enhances
the self-adaptive system’s operation.

A community greenhouse is a shared space where
people may rent patches to grow their own plants. Each
patch is square shaped with its own lamp. For the sake
of the example, we assume that plants in each individ-
ual patch are approximately of the same height, but
the height varies from patch to patch. The goal of the
system is to produce certain amount of light (lux) to
the top of the plants in each patch. The system can
adapt to different situations (ambient light level and
plant height per patch) by turning lamps on and off.

The system has a set of base adaptations which are
given by the system’s designer, and it searches for novel
configurations (lamp settings) in novel situations using
the (11 + A) evolutionary algorithm (Back et al., 1997).
When the system deploys a novel configuration, it stores
it to its memory with information about its deployment

Proceedings of the 11th International
Conference on Computational Creativity (ICCC20)
ISBN: 978-989-54160-2-8

364

situation. Awarenesses are used to gauge which of the
already deployed adaptations are used to induce the
search in a new situation and how the adaptations are
evaluated.

We consider the following systems, with their exam-
ple adaptations shown in Figure 2:

S1: A goal-aware system perceives the ambient light
level across the greenhouse and knows the target light
level. The system assumes that the plant tops are al-
ways on the same level and that the height does not
alternate from patch to patch.

S2: A goal- and context-aware system knows the tar-
get light level and uses sensors to measure the height of
the plants in each patch.

S3: A goal- and context- and resource-aware system,
in addition to S2, aims to minimise the number of lamps
that are on.

We run each system 10 times through 2000 situa-
tions with varying plant heights and ambient light lev-
els, reporting the averages for the first 1000 (fh) and the
last 1000 (lh) situations in Table 1. The implemented
awarenesses benefit the system by keeping it closer to
its target light level (Lux Avg, marked as difference
from the target) with decreased variance in the light
level (Lux Std)).

In addition, S2 and S3 are able to efficiently utilise
the previous contexts. Lux Avg of S2 approaches the
target light level when comparing the last half to the
first half, and both S2 and S3 are able to decrease Lux
Std. Thus, the later adaptations of S2 and S3 are more
apt because of the learned models, whereas S1 struggles
to learn anything valuable from the ambient light level
alone. Further, S3 is able to keep closer to the system’s
goal (Lux Avg, Lux Std) than S2 or S1, and does it
by using less electricity (Lamps), saving both resources
and money. Notably, the time used to adapt (Time, in
seconds) does not increase with the added complexity
of the implemented awarenesses (S2, S3). The detailed
novelty assessment enables the system to filter out pre-
vious adaptations based on their perceived distance to
the current situation, decreasing time used to process
adaptation’s in memory.



Table 1: Each system’s statistics.

System Lux Avg Lux Std Lamps Time
S1 (fh) +494 2701 191 0.486
S1 (1h) +499 2704 192 0.506
S2 (fh) +405 2708 192 0.468
S2 (1h) +309 2610 192 0.475
S3 (th) +29 2616 181 0.491
S3 (1h) =27 2530 182 0.492
Conclusions

We have argued that creativity is inherent in self-
adaptive systems. Using an example system, we have
shown that even simple mechanisms for novelty assess-
ment can help, e.g., to improve value and decrease
resource usage. However, especially for transforma-
tional novelty, we need to change our approach to soft-
ware development, beginning from specifying the sys-
tem requirements to allow more pronounced creative
behaviour. This, in turn, places substantial demands
on the system verification and validation at run time.

Acknowledgments

This work has been funded by Academy of Finland
grants 313973 (CACS) and 328729 (CACDAR). We
thank Hadaytullah Kundi, Ph.D. for his contributions
towards this work.

References

Anant Agarwal, Jason Miller, Jonathan Eastep, David
Wentziaff, and Harshad Kasture. 2009. Self-aware
computing. Technical Report AFRL-RI-RS-TR-2009-
161. MIT.

Thomas Back, David B. Fogel, and Zbigniew
Michalewicz (Eds.). 1997. Handbook of Evolution-
ary Computation. IOP Publishing Ltd., Bristol, UK,
UK.

Margaret Boden. 1992. The Creative Mind. Abacus,
London.

Simon Colton and Geraint A. Wiggins. 2012. Computa-
tional Creativity: The Final Frontier?. In Proceedings
of the 20th FEuropean Conference on Artificial Intelli-
gence. 10S Press, Amsterdam, The Netherlands, 21—
26.

David Garlan, Shang-Wen Cheng, An-Cheng Huang,
Bradley Schmerl, and Peter Steenkiste. 2004.
Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure. Computer 37, 10 (Oct.
2004), 46-54.

Hadaytullah, S. Vathsavayi, O. R&ihd, K. Koskimies,
and A. Gregersen. 2012. Applying genetic self-
architecting for distributed systems. In 2012 Fourth
World Congress on Nature and Biologically Inspired
Computing (NaBIC). IEEE, Mexico City, Mexico,
44-52.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

365

Kyle E. Jennings. 2010. Developing Creativity: Arti-
ficial Barriers in Artificial Intelligence. Minds and
Machines 20, 4 (2010), 489-501.

Anna Jordanous. 2012. A Standardised Procedure for
Evaluating Creative Systems: Computational Cre-
ativity Evaluation Based on What it is to be Creative.
Cognitive Computation 4, 3 (01 Sep 2012), 246-279.

Anna Jordanous. 2016. Four PPPPerspectives on com-
putational creativity in theory and in practice. Con-
nection Science 28, 2 (2016), 194-216.

Jeffrey O. Kephart and David M. Chess. 2003. The
Vision of Autonomic Computing. Computer 36, 1
(Jan. 2003), 41-50.

Samuel Kounev, Jeffrey O. Kephart,
Milenkoski, and Xiaoyun Zhu. 2017.
Computing Systems. Springer.

Aleksandar
Self-Aware

Simo Linkola, Anna Kantosalo, Tomi Ménnistd, and
Hannu Toivonen. 2017. Aspects of Self-awareness:
An Anatomy of Metacreative Systems. In Proceed-
ings of the Fight International Conference on Com-
putational Creativity. Georgia Institute of Technol-
ogy, Atlanta, Georgia, USA, 189-196.

Gabriel A. Moreno, Javier Camara, David Garlan, and
Bradley Schmerl. 2015. Proactive Self-adaptation
Under Uncertainty: A Probabilistic Model Checking
Approach. In Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering. ACM, New
York, NY, USA, 1-12.

Henry Muccini, Mohammad Sharaf, and Danny Weyns.
2016. Self-adaptation for Cyber-physical Systems: A
Systematic Literature Review. In Proceedings of the
11th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems. ACM,
New York, NY, USA, 75-81.

Mark A. Runco and Garrett J. Jaeger. 2012. The Stan-
dard Definition of Creativity. Creativity Research
Journal 24, 1 (2012), 92-96.

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-
adaptive Software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and
Adaptive Systems 4, 2, Article 14 (May 2009),
42 pages.

Dan Ventura. 2017. How to Build a CC system. In
Proceedings of the Figth International Conference on
Computational Creativity. Georgia Institute of Tech-
nology, Atlanta, Georgia, USA, 253-260.

Alan Frank T. Winfield. 2014. Robots with internal
models: A route to self-aware and hence safer robots.
In The Computer After Me. Imperial College Press,
237—-252.



