
One Line at a Time — Generation and Internal Evaluation of Interactive Poetry

Michele Boggia♡ Sardana Ivanova♠ Simo Linkola♠ Anna Kantosalo♠ Hannu Toivonen♠
♡ Department of Digital Humanities ♠ Department of Computer Science

University of Helsinki, Finland
{first.last}@helsinki.fi

Abstract

We present methods that produce poetry one line at
a time, in a manner that allows simple interaction in
human-computer co-creative poetry writing. The meth-
ods are based on fine-tuning sequence-to-sequence neu-
ral models, in our case mBART. We also consider sev-
eral internal evaluation measures by which an interac-
tive system can assess and filter the lines it suggests
to the user. These measures concern the coherence,
tautology, and diversity of the candidate lines. We
empirically validate two of them and apply three on
the mBART-based poetry generation methods. The re-
sults suggest that fine-tuning a pre-trained sequence-to-
sequence model is a feasible approach, and that the in-
ternal evaluation measures help select suitable models
as well as suitable lines.

Introduction
We propose methods that use sequence-to-sequence neural
models to generate poetry one line at a time. We use them
to implement a simple interaction pattern where the system
iteratively produces a set of line candidates from which the
user picks one, with the aim of making poetry writing easy
and entertaining for novices.1

We also consider four objective evaluation measures to
assess candidate lines especially in interactive poetry gener-
ation. While we suggest these measures elsewhere (Boggia
et al. 2022) we have not evaluated or applied them before.
In this paper, we empirically validate them and show how to
use the measures in practical applications.

Poetry generation is a popular research topic in computa-
tional creativity and numerous methods have been proposed
in the literature (Gonçalo Oliveira 2017). Interactive po-
etry generation where the software acts as an ı̀ntelligent or
creative partner has also been addressed by several schol-
ars (Kantosalo et al. 2014; Kantosalo, Toivanen, and Toivo-
nen 2015; Ghazvininejad et al. 2017; Oliveira et al. 2017;
2019; Clark et al. 2018).

Our poetry generator produces poetry one line at a time,
based on the previous lines of the poem or, in the case of
the first line, based on keywords given by the user. This

1A Python implementation of the system is avail-
able at https://github.com/bmichele/poetry_
generation.

approach supports different user interaction patterns where
suggestions for continuation are requested from the system.
In this paper, we assume the following simple interaction
pattern of Casual Poetry Creation (Boggia et al. 2022).

At any time, the system provides a handful of candidate
lines from which the user chooses one. The system then it-
eratively generates candidates for the next line based on the
user’s previous selections. Candidates for the first line are
generated from keywords inserted by the user. The system
can be easily adapted to allow more complex interaction pat-
terns, such as allowing the user to edit the system outputs.

The generation of candidate lines in such an interac-
tive setting should satisfy three criteria: (1) each candidate
should be related to the previous lines in the poem, or to the
keywords in the case of the first line; (2) each candidate line
should be poetic; and (3) the set of candidates for the nth
line should be diverse. In the next section, we present po-
etry generation methods that address points 1 and 2; in the
following section, we use the internal measures to address
points 1 and 3.

Poetry Generation with mBART
To generate poems line by line we leverage mBART (Liu et
al. 2020), a denoising autoencoder pre-trained on monolin-
gual corpora in several languages. In a nutshell, the model
takes a source sequence (e.g., a partially written poem) and
produces a target sequence (the next line of the poem).

Starting from the same base model, we fine-tune (i) a
model to generate candidates for the first poem line from
the input keywords, and (ii) a model that generates candi-
dates for additional poem lines. We will refer to these neural
models as first-line and next-line model respectively.

The fine-tuning datasets for our models are constructed
from the Gutenberg Poetry Corpus2, a corpus of approxi-
mately 3M poem lines in English language extracted from
Project Gutenberg3.

First-Line Model
In our interaction pattern the first line of a poem is generated
based on a small, unordered set of input keywords provided

2https://github.com/aparrish/
gutenberg-poetry-corpus

3https://gutenberg.org

by the user.
In the fine-tuning step, we use the first lines of stanzas in

the corpus as target texts. Since we do not have keywords
for the poems or stanzas we obtain keyword proxies from
the first lines by selecting two or more random content to-
kens among the nouns, adjectives and verbs on the line. The
source text for each fine-tuning example is obtained by shuf-
fling and concatenating the tokens.

Next-Line Models
At every iteration, after a line is selected by the user, the
system should provide a set of candidates for the next line
of the poem. Since there is no clear prescription on the best
way to generate additional lines for a poem, we consider
several options for fine-tuning mBART. We start by consid-
ering the previous line only, and progressively move towards
more complex strategies. This allows us to compare can-
didate lines generated with different degrees of context. In
general, we expect to obtain more surprising outcomes when
the generation is based on a lower amount of textual input.

The first model we consider, Next-Line Single, is fine-
tuned as follows: we iterate over all the lines in the corpus
and build examples taking a poem line and its subsequent
line as source and target sequence, respectively. We do not
expect this model to produce lines that remain coherent with
the user keywords after the first few iterations.

To get more coherent verses, we train two additional mod-
els: “Next-Line Multi” and “Next-Line Keywords”. The
Next-Line Multi approach fine-tunes mBART by using up to
three consecutive poem lines as source sequence; the target
is the verse following the input lines. The Next-Line Key-
words approach increases coherence by conditioning next-
line generation on the keywords obtained from the user.

The fine-tuning data is similar to the Next-Line Single
model; for the Next-Line Keywords model we additionally
prepend to the source sequence a pair of words related to
the target sequence. To obtain them we first compute the
average word vector of the target sequence tokens using
Word2vec (Mikolov et al. 2013a; 2013b). We then retrieve
the ten closest words in the Word2vec model by cosine sim-
ilarity, and randomly sample two of them.

The fine-tuning strategies described above rely on the as-
sumption that the base model, when fine-tuned over poem
lines, will naturally learn to produce poetic line candidates.
However, there is no control over how this is learned by the
models and it will be influenced by the data that is present
in the original corpus.

In the Next-Line Rhyme case we fine-tune a model that
tries to generate, given a word and a line, a new poem line
rhyming with the given word. Giving the word separately
allows to produce lines rhyming with earlier lines, not just
the previous one.

The fine-tuning data is similar to the data used for the
Next-Line Single model, but we prepend to the source se-
quence a word rhyming with the target sequence; we use the
CMU Pronouncing Dictionary4 to look up rhymes. When

4https://github.com/cmusphinx/cmudict

no rhymes are found, we discard the pair. If multiple rhymes
are available, we randomly sample up to four examples.

We fine-tune all the models for 10 epochs using batches
of 64 examples over 4 GPUs. Due to the different prepro-
cessing steps taken to build the fine-tuning data, the size of
the datasets are slightly different for each model, resulting in
a number of fine-tuning steps that is between 90k and 95k.
We save model checkpoints every 15k steps.

Decoding Strategy
A good set of candidate lines is diverse, offering the user
a real choice. An autoencoder such as mBART produces
output sequences stochastically, so several candidates can
be generated from the same model.

We generate candidates by sampling multiple sequences
from the probabilities predicted by the fine-tuned models. In
this way, the output sequences do not follow a distribution of
high probability next tokens but are less predictable and can
surprise the user (Holtzman et al. 2020). The randomness
— and diversity — of the output can be controlled by the
temperature parameter: values larger than one will increase
the likelihood of low probability tokens.

Internal Evaluation Measures for Poetry
We consider four evaluation measures to assess the lines pro-
duced by the above poetry generation models. These mea-
sures can be utilised both (1) by the designer of the system
during the system development to assess the feasibility of
the generation methods and (2) by the system itself during
its execution time to make informed decisions about which
set of generated line candidates to show to the user.

Measures
We give a brief overview of the measures here. See our par-
allel paper (Boggia et al. 2022) for details.

We define the n-Semantic Coherence of a candidate for
the ith line of the poem as follows. We consider the n pre-
vious lines, i.e., lines i − n to i − 1, transform them to a
vector representation and compute its cosine similarity with
a vector representation of the candidate line. Both vector
representations are obtained computing the centroid of word
vectors from the Word2Vec model. The idea is that the two
vectors encode the semantic of the last lines of the poem and
the candidate, respectively, and that their cosine similarity
captures the degree of semantic similarity.

We define Topic Coherence of a candidate line as the co-
sine similarity between the vector representation of the line
and the average of the word embeddings of the keywords
used to generate the first poem line. The idea is to extend
the concept of semantic coherence defined above and make
it suitable to our interaction pattern in order to control the
topic drift of each candidate from the initial keywords.

For a candidate line, we define Tautology as the num-
ber of tokens that are shared between the candidate and the
previous line of the poem, normalized by the total number
of tokens in the two lines. We consider this metric as our
sequence-to-sequence models are based on mBART, which
is pre-trained on denoising tasks and can be prone to copy

the input sequence if not fine-tuned properly. Semantic co-
herence and tautology are likely to be correlated since both
measure a similarity between consecutive lines. The former
aims, however, at comparing meanings, while the latter com-
pares words. An incoherent poem will display low seman-
tic coherence scores; a high tautology value will indicate a
repetitive poem.

We want our candidate poem lines on each generation step
to be sufficiently different from each other, to give the user
a true choice. We define the diversity of a set of lines as the
average dissimilarity between the lines in the line set, where
dissimilarity between two word sets is the additive inverse
of the normalized word overlap between the sets.

Validation Datasets
We next validate the evaluation measures introduced above,
showing that they do indeed measure what they are sup-
posed to measure. Given the lack of suitable labelled data
that could be used directly for this purpose, we resort to re-
sampling lines from real poems. We can then compare the
values of the measures on original poems against those ob-
tained for random pseudo-poems.

To validate the measures, we use a dataset of poems from
Kaggle, containing 6321 poems.5 While the Poetry Corpus
introduced in the previous section is suitable for training
neural models, it is not optimal to validate the metrics of
this section as it contains noisy data and there is no separa-
tion between poems.

Starting from the original poems, here referred to as Real
Poems, we prepare two additional poem datasets. We ran-
domly shuffle lines within each of the real poems and obtain
the Shuffled Poems dataset. We then build the Mixed Po-
ems dataset by shuffling lines between poems. To ensure
equal poem line counts in the mixed poems we compute the
poem lengths from each real poem and construct poems with
the same number of lines by sampling (without replacement)
from all the available poem verses in the corpus.

Validation of the Measures
The four metrics described above can be divided into two
classes based on their implementation. First, semantic and
topic coherence make use of word vectors to map textual
inputs in a semantic space and compare them by comput-
ing the cosine similarity. Second, tautology and diversity
are based on word overlap and rely solely on token sets. In
this paper we validate the semantic coherence and diversity
measures and argue that topic coherence and tautology will
display a similar behaviour.

To validate the n-semantic coherence we consider the
datasets with real, shuffled and mixed poems. Our hypothe-
sis is that we should observe decreased semantic coherence
scores after shuffling poem lines within a poem, and much
lower values when considering pseudo-poems obtained by
combining lines from random poems.

For each dataset we compute the n-semantic coherence
of all poem lines (excluding first lines) with the n previous

5https://www.kaggle.com/michaelarman/
poemsdataset

Figure 1: n-semantic coherence scores of Real Poems, Shuf-
fled Poems and Mixed Poems as a function of n, the number
of previous lines considered.

Temperature Diversity Diversity
without stopwords

1 0.1406 0.1039
2 0.4014 0.3429
3 0.4788 0.4232
4 0.5174 0.4434
5 0.5377 0.4701

Table 1: Average diversity scores of sets of candidate lines
as a function of temperature, a generation-time parameter
affecting diversity.

lines up to the first one or n = 10. Finally, we average the
semantic coherence values for each order n (Figure 1). The
average values of n-semantic coherence scores are system-
atically smaller when shuffling poem lines, with the lowest
average values obtained when poems are composed of ran-
dom lines.

To inspect how the diversity measure behaves when com-
puted over different sets of poem line candidates, we rely
on synthetic data produced by our first-line model. We con-
struct 100 random keyword pairs by combining nouns and
verbs sampled from a list of common English words. For
each keyword pair, we use different temperature parame-
ter of the model to generate multiple batches of ten candi-
dates each. Candidates generated with higher temperatures
are more diverse by construction.

As expected, the diversity increases as a function of the
temperature (Table 1). This is true for the full lines (mid-
dle column) as well as when stopwords have been removed
before computation of diversity (right column). This vali-
dates that the diversity measure does catch differences in the
generated lines.

Analysis of the mBART-Based Methods
with Internal Evaluation Measures

We now apply the internal evaluation measures on the
mBART-based poetry generation methods. With this brief

Figure 2: n-semantic coherence scores for poems generated
by different Next-Line models, as a function of n, the num-
ber of previous lines considered.

Model Tautology ↓ Diversity ↑
NL-Keywords 0.206 0.184
NL-Single 0.145 0.431
NL-Multi 0.096 0.459
NL-Rhyme 0.046 0.352
Mixed 0.045 0.841

Table 2: Average tautology and diversity scores for line can-
didates generated using different Next-Line models. For tau-
tology, smaller values are better; for diversity, larger.

example we aim to shed light on the specific generation
methods, as well as to illustrate how the evaluation measures
can be used to assess generation methods. In this experi-
ment, we compare the four flavours of the Next-Line model
previously described, using the evaluation measures for se-
mantic coherence, tautology and diversity.

In order to test the generation methods without user in-
teraction, we generate poems automatically by sampling the
first poem line from a dataset of real poems and then se-
lecting a random candidate line at each generation step. We
stop the generation process after ten candidate selections.
To collect data for diversity assessment, we also log the line
candidates proposed by the generator at each iteration. We
use the above procedure to obtain 100 poems and 1000 sets
of candidates with each of the four Next-Line models.

As a baseline, we fine-tune a model over random poem
lines from the Gutenberg Poetry Corpus both as source and
target sequences. This model, called Mixed, gives a lower
bound for the coherence of poems.

We report the n-semantic coherence scores of the result-
ing poems in Figure 2, and their tautology and diversity
scores in Table 2. Based on these results we can make sev-
eral observations about the models, such as the next two.

The NL-Keywords model, introduced to avoid topic drift,
effectively improves the coherence of the poems (Figure 2),
but the price to pay is that poems become repetitive and
have low diversity (Table 2). A qualitative inspection of the

generated poems confirms this finding. For instance, this
poem was obtained with keywords “bury” and “dead”:

And let the dead folk bury their dead,
But let the dead men bury their dead,
Let the dead men bury their dead,
Let the living men bury their living,
Let the dead folk sleep.
. . . .

The NL-Multi model, on the other hand, produced rela-
tively interesting poems even without human interaction:

Which tries, and counter-stands the shock,
Of time and chance;
And, having learn’d to bear the yoke,
To bear the yoke must learn to love,
And follow Truth, and all that’s above.
The ways that lead to Heaven’s high throne,
Are long and hard to tell;
But this way leads to God alone,
And that way leads to Hell.

The success of the ML-Multi model in this respect is no sur-
prise: it obtained both high semantic coherence scores as
well as a high diversity score.

A different but important application for the internal mea-
sures is the optimization of the set of candidates towards a
desired feature. For instance, assume that the system fails to
satisfy the user because of a lack of diversity in the candi-
dates. The sequence-to-sequence models could then be used
to generate a larger number of potential candidates (which
in our setup is computationally inexpensive), and they could
then be narrowed down to a final set of candidates while
maximising their diversity.

Conclusion

We gave several variants of fine-tuned mBART-models for
line-by-line poetry generation. One variant produces open-
ing lines from keywords, while other models produce lines
to continue a partially written poem. The models consider
varying contextual information: one or more previous lines,
user-given keywords, or rhyme. The methods are designed
in a manner that should allow relatively easy adaptations to
different genres, corpora, and even languages.

We empirically validated internal evaluation measures of
lines of poetry. We showed that the proposed measures of
coherence and diversity correlate with ground truth.

Finally, we applied three evaluation measures on gener-
ation methods that continue an incomplete poem. The re-
sults indicate trade-offs between the methods. The NL-Multi
method that uses several lines as a context seems to strike a
good balance.

The choice to work line-by-line, both in generation and
in internal evaluation of poetry, stems from the desire to
support Casual Poetry Creation (Boggia et al. 2022) and
to make co-creative poetry writing as easy as possible. The
next step is an evaluation of the approach with actual users.

Author Contributions
MB, SI and HT conceived the poetry generation methods.
MB, SI, SL and HT selected and defined the internal evalu-
ation measures. MB and SI processed the raw data for the
experiments. SI fine-tuned the first-line model, MB the next-
line models. MB and SL implemented and validated the
metrics. MB was in charge of writing the technical part;
everybody contributed to the writing of the other sections.

Acknowledgments
MB has been partially supported by the ERC Con-
solidator Grant FoTran (agreement № 771113) and
by the grant 825153 (EMBEDDIA) under the Eu-
ropean Union’s Horizon 2020 research and innova-
tion programme.

SI has been funded by the European Union’s Horizon 2020
research and innovation program under grants 825153 (EM-
BEDDIA) and 770299 (NewsEye). SL and AK have been
funded by Academy of Finland (Grant #328729).

References
Boggia, M.; Ivanova, S.; Linkola, S.; Toivonen, H.; and
Kantosalo, A. 2022. Casual Poetry Creators: A design pat-
tern and internal evaluation measures. In Proceedings of the
13th International Conference on Computational Creativity.
ACC.
Clark, E.; Ross, A. S.; Tan, C.; Ji, Y.; and Smith, N. A.
2018. Creative writing with a machine in the loop: Case
studies on slogans and stories. In Proceedings of the 23rd
International Conference on Intelligent User Interfaces, IUI
’18, 329–340. New York, NY, USA: ACM.
Ghazvininejad, M.; Shi, X.; Priyadarshi, J.; and Knight, K.
2017. Hafez: an interactive poetry generation system. In
Proceedings of The 55th Annual Meeting of the Association
for Computational Linguistics, System Demonstrations, 43–
48. ACL.
Gonçalo Oliveira, H. 2017. A survey on intelligent po-
etry generation: Languages, features, techniques, reutilisa-
tion and evaluation. In Proceedings of the 10th International
Conference on Natural Language Generation, 11–20. San-
tiago de Compostela, Spain: ACL.
Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; and Choi, Y.
2020. The curious case of neural text degeneration. In In-
ternational Conference on Learning Representations (Poster
Presentation).
Kantosalo, A.; Toivanen, J. M.; Xiao, P.; and Toivonen,
H. 2014. From isolation to involvement: Adapting ma-
chine creativity software to support human-computer co-
creation. In Proceedings of the Fifth International Confer-
ence on Computational Creativity, 1–7. Jožef Stefan Insti-
tute.
Kantosalo, A.; Toivanen, J. M.; and Toivonen, H. 2015.
Interaction evaluation for human-computer co-creativity: A
case study. In Proceedings of the Sixth International Con-
ference on Computational Creativity, 276–283. Brigham
Young University.

Liu, Y.; Gu, J.; Goyal, N.; Li, X.; Edunov, S.; Ghazvinine-
jad, M.; Lewis, M.; and Zettlemoyer, L. 2020. Multilin-
gual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguis-
tics 8:726–742.
Mikolov, T.; Chen, K.; Corrado, G. S.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
In International Conference on Learning Representations
(Workshop Presentation).
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems 26. NIPS.
Oliveira, H. G.; Hervás, R.; Dı́az, A.; and Gervás, P. 2017.
Multilingual extension and evaluation of a poetry generator.
Natural Language Engineering 23(6):929–967.
Oliveira, H. G.; Mendes, T.; Boavida, A.; Nakamura, A.;
and Ackerman, M. 2019. Co-PoeTryMe: interactive poetry
generation. Cognitive Systems Research 54:199–216.

