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Abstract

The “well-made” surprise is a narrative pattern of set-
ting up and executing a surprise in a way that is gen-
erally perceived as enjoyable and rewarding. It lever-
ages biases in human cognition to manipulate the audi-
ence’s state of belief, and is commonly found in west-
ern culture as early as Aristotle’s Poetics. We propose
a novel framework to model the audience’s beliefs of a
narrative world using approximate Bayesian inference
over Markov Logic Networks. We operationalise three
qualitative attributes of the well-made surprise (consis-
tency, divergence and certainty) as quantitative func-
tions of the outputs of inference. This work follows the
paradigm from computational narrative of operational-
ising qualitative concepts from literary theory in order
to model and generate narratives, either autonomously
or cooperatively with a human author. We demonstrate
the proposed framework on ten short narratives, and test
it with a study on 91 participants. We find that for con-
sistency and divergence, a change in the model’s pre-
diction corresponds with a significant change in the par-
ticipants’ rating. Our results suggest that the proposed
framework may have meaningful predictive power and
potential for future applications to narrative generation,
plot analysis, and computer-aided creativity.

Introduction
Computational narrative is a long-standing research field fo-
cusing on modelling the building blocks of a narrative in a
machine-processable structure, most often with the goal of
analysing existing narratives or generating novel ones (Ky-
bartas and Bidarra 2017; Valls-Vargas, Zhu, and Ontanon
2017). A common paradigm in generational narrative is
to apply some existing algorithmic framework to an oper-
ationalisation of a concept from literary theory, such as sus-
pense (Cheong and Young 2008), surprise (Bae and Young
2014) and conflict (Ware 2002). In contrast, other recent ex-
amples in the field build upon natural language processing
advances using neural networks (Radford et al. 2019) to di-
rectly process and generate natural language narratives (Yao
et al. 2019; Fan, Lewis, and Dauphin 2018) and have gained
public popularity, for instance with the indie game AI Dun-
geon (Hua and Raley 2020). These rely on the ready avail-
ability of large datasets rather than human-encoded models,

solving scalability issues but losing transparency and decod-
ability of the model’s internal workings in doing so.

Tobin (2018) describes the well-made surprise as a com-
mon pattern in western narratives, dating as far back as
the well-made tragedy in Aristotle’s Poetics, from which
they borrow the term. It describes a surprise, or an unex-
pected event or occurrence in a narrative, that is accompa-
nied by an experience of insight, also called an “Aha” expe-
rience (Topolinski and Reber 2010; Skaar and Reber 2020).
In this particular scenario, it is the formation of a new under-
standing of the narrative, associated with suddenness, ease
and fluency of processing, certainty in the new understand-
ing and positive affect, which lead to overall enjoyment of
the surprise.

Tobin’s theory of the well-made surprise deals primarily
with literature and film, but it’s a construct extensible to any
storytelling medium. Thus, for the remainder of this paper
we will not assume any particular medium when referring to
an author (the person or people crafting the narrative and the
surprise), an audience (the person or people experiencing the
narrative) and a text (the artifact through which the narrative
is conveyed from the author to the audience).

Tobin also details a variety of techniques by which an
author may construct a well-made surprise, largely lever-
aging common biases in human cognition (Evans 1989) to
deliberately construct misunderstandings or misinterpreta-
tions about the narrative leading up to the surprise, while
still enabling the “correct” meaning of the text to be recog-
nised and accepted in retrospect. Tobin argues that it is
especially because well-made surprises exploit these biases
that they produce an experience of insight. Examples in-
clude minimising the audience’s attention towards certain
information (Emmott and Alexander 2014) and shifting the
frame of reference from an objective telling of the events
to a character’s impression of them using presupposition
clauses to mask falsehood as truth (Loftus and Zanni 1975;
Bredart and Modolo 1988). Many of these details of the
techniques are specific to a medium, but in general, their in-
tended effect is to manipulate how the audience processes in-
formation and builds a mental model of the narrative, steer-
ing them towards a state in which later events can best de-
liver a satisfying, insightful surprise.

In this work, we investigate the applicability of Tobin’s
theory as a modelling tool in the field of computational cre-



ativity. We identify three main areas of applications for such
a model:
• Narrative analysis: Improving the understanding of exist-

ing narratives by providing a new analytical lens through
which to model surprises (Valls-Vargas, Zhu, and On-
tanon 2017).

• Computer-aided creativity: Aiding authors in the process
of writing a satisfying plot by identifying features such as
plot holes and well-made surprises (Kapadia et al. 2015),
similarly to how formal methods in software modelling
can aid software developers verify their abstractions (Gut-
tag and Horning 1980).

• Generative narrative evaluation: Evaluating the output of
other narrative generation tools, for example as a search
heuristic or as a validation metric. Tobin (2018, pp. 54-
55) highlights that the pattern of the well-made surprise
is often pleasant to experience even when familiar with
it, which is a very attractive property for narrative gener-
ation, which often struggles with overcoming repetitive-
ness (Alabdulkarim, Li, and Peng 2021).
We believe that there is unexplored potential in the com-

putational modelling of the theory of the well-made surprise.
There exists significant work in modelling surprise and other
related concepts in computational narrative (Bae and Young
2014; Cheong and Young 2008), as well extensive study into
the properties of the “Aha” experience in cognitive psychol-
ogy and neuroscience (Skaar 2019; Skaar and Reber 2020;
Chu and MacGregor 2011), and the theory of the well-made
surprise points out an important link between surprise and
insight. However, no previous work that we are aware of
has attempted to bring all of the above together.

Tobin’s work bridges the disciplines of narrative theory
and cognitive psychology, and in addition doesn’t require
deep familiarity with either field to understand. We com-
bine this with the approach from computational narrative to
operationalise literary theory and cognitive psychology con-
cepts in an effort to bring computer science into the mix and
take the first step towards a novel cross-disciplinary compu-
tational model of surprise.

We study the mental model that the audience builds of the
narrative through the theory of Bayesian probability (Cox
1946; Jaynes, Jaynes, and Bretthorst 2003), focusing on
their knowledge or beliefs about the story world and the
inferences they perform throughout the narrative (McKoon
and Ratcliff 1992; Graesser, Singer, and Trabasso 1994).
From such a model, we aim to operationalise key qualities
of the well-made surprise by expressing them as functions of
the model, based on related ideas from logic and information
theory. We implement a probabilistic framework of the well-
made surprise and implement three such operationalisations,
which we evaluate on a study with 91 participants. We find
that the model’s predictions agree with participant ratings
for two of the three operationalisations, and identify several
strengths and weaknesses of the proposed framework.

Background
The Bayesian theory of probability (Cox 1946; Jaynes,
Jaynes, and Bretthorst 2003) has seen extensive use in com-

puter science as the theoretical basis for probabilistic mod-
els (Russell and Norvig 2010, pp. 510-546), as well as ap-
plications in both cognitive sciences (Griffiths, Kemp, and
Tenenbaum 2008, pp. 85-138) and literary theory (Kukko-
nen 2014). Under the Bayesian framework, probabilities
represent a degree of belief in a hypothesis, with P (x) = 1
representing a certain fact, and P (x) = 0 an impossibil-
ity. As new data is acquired, existing beliefs are updated
using Bayes’ theorem. In the context of experiencing a nar-
rative, new beliefs are added to the model as needed in order
to make sense of the narrative (McKoon and Ratcliff 1992;
Graesser, Singer, and Trabasso 1994), and the resulting
model is a combination of information that the narrative has
provided and of the audience’s own background knowledge.

A Markov Logic Network or MLN (Richardson and
Domingos 2006) is a probabilistic model that encodes a joint
probability distribution over the truth value of all ground
atoms in its domain. Like other Bayesian models it al-
lows for inference, or computing the probability P (A|B)
for some A to be true given some known prior B, both be-
ing logic formulas. While exact inference is intractable in
the general case, efficient approximate inference algorithms
have been developed (Riedel 2005; Geier and Biundo 2011;
Niu et al. 2012; Van den Broeck 2013).

A MLN is defined as a set of weighted first-order logic
statements defined over a finite domain. MLNs afford the
expressive power of first-order logic alongside the ability to
model uncertainty, both in the sense of information that is
varying degrees of plausible rather than absolutely true or
false, and in the sense of contradictory information. We find
these to be valuable properties in the modelling of the well-
made surprise. Partial, uncertain and contradictory informa-
tion is extremely common in surprising narratives, and the
ability to reason about such imperfect information is an im-
portant part of understanding well-made surprises, where an
initially unexpected outcome is made sense of and obvious
in hindsight. In addition, MLNs’ expressive power proves
especially useful due to the exploratory nature of this work,
allowing a wide range of concepts to be modelled.

MLNs can be seen as a template from which a ground
Markov Random Field or MRF (Murphy 2012) can be built.
The ground MRF is a bipartite graph of all ground atoms and
all groundings of all rules, where an edge exists between an
atom and a rule if the atom appears in the rule. This in-
terpretation is especially useful for visualising the structure
of a MLN and the flow of information during inference, as
shown later in this paper.

Literature review
In the field of computational narrative, there are many exam-
ples of systems designed to generate stories guided by some
operationalised narrative concept. Bae and Young (2014)
use AI planning to model flashbacks and foreshadowing
in order to construct surprising narratives with explain-
able causes, and present a methodology to adapt their
model to narrative analysis of surprises. Arinbjarnar (2005;
2008) propose an interactive murder mystery plot genera-
tion engine based on Bayesian networks which combines



ideas from Propp’s (1968) morphology of the Russian folk-
tale with accepted genre conventions from mystery writers.
Riedl and Bulitko (2012) and Arinbjarnar, Barber, and Ku-
denko (2009) survey a large body of work on interactive nar-
ratives.

Bayesian methods and especially Bayesian networks have
seen extensive use in the modelling of uncertainty and
knowledge, on both real and fictional narratives and on
a very wide variety of topics. These include evidence
in legal cases (Vlek et al. 2013), workplace injury nar-
rative coding (Lehto, Marucci-Wellman, and Corns 2009;
Measure 2014; Taylor et al. 2014), the visual percep-
tion of surprising events while watching television (Itti and
Baldi 2009) and how emotion appraisals are transmitted
across retellings of a story (Breithaupt, Li, and Kruschke
2022). There are many more examples, see Canaj, Biba, and
Kote (2018) for a more thorough survey. Skaar (2019) stud-
ies in detail several aspects of the “Aha” experience using
Bayesian statistics.

While Markov Logic Networks are less prominent in the
literature than Bayesian networks, they have seen several
successful applications. Singla and Mooney (2011) train a
MLN of a plan from observed actions, Ohwatari et al. (2014)
model interpersonal relationships between characters and
Patil et al. (2018) use MLNs to identify characters with mul-
tiple referring aliases.

Applications to interactive narratives are especially rele-
vant to our research, as the algorithmic infrastructure driv-
ing the telling of an interactive narrative can naturally start
closer to the world of logic and Bayesian modelling than
more traditional media, potentially allowing for a smoother
and more direct modelling process. Rowe and Lester (2010)
modelled user knowledge in an interactive narrative using
dynamic Bayesian networks, while Ha et al. (2012) apply
MLN structure learning to their user’s goals based on the
actions they take in a narrative world.

Qualities of the well-made surprise
Tobin (2018, Chapter 5) identifies several qualities that
define the “Aha” experience, and by extension the well-
made surprise, which we elaborate on and adapt to our ap-
proach in the following sections. Their work focuses on
four qualities that are required for an experience of reali-
sation to be the basis of a well-made surprise (suddenness,
certainty/confidence, ease/fluency and pleasure/enjoyment).
We specify and formalise an additional three which are
based on our interpretation of concepts Tobin alludes to
throughout their work (coherence, consistency, and diver-
gence).

Coherence
Coherence is a measure of the logical flow in the surprise.
An incoherent surprise is unrelated to the rest of the narra-
tive and is confusing even in hindsight. “Cheap” twist end-
ings (Marie-Laure Ryan 2009) often fall into this category,
failing to justify their existence in the story world beyond
resolving a plot element or dismissing a contradiction (e.g.
“it was all a dream”, so it doesn’t have to make sense).

Consistency
Consistency is the degree to which to which the surprise is
compatible with the rest of the story leading up to it. A
consistent surprise is plausible given all of the information
presented by the story thus far, and the audience is able to
integrate it into their understanding of the story world with-
out any unexplainable contradictions emerging. Stories of-
ten uphold this by masking contradictions behind a charac-
ter’s subjective impression of events, reframing what origi-
nally appeared as factual to be misguided, misunderstood or
fabricated.

Divergence
Divergence is the magnitude of the knowledge revision
caused by the reveal. A divergent surprise will have deeper,
further reaching implications in the plot, and force the au-
dience to revise their understanding of earlier events. This
extends the notion of how surprising any single event is (i.e.
its probability) with the outcome of the inferences that the
new information triggers in the audience.

Suddenness
Suddenness is the speed at which the audience arrives at a
new understanding after their previous one is revised. A
sudden surprise will cause the audience to revise their un-
derstanding and adopt a new one within a short span of time.

Inevitability
Inevitability is the degree to which the final understanding
is intuitive, satisfying and (in hindsight) obvious, compared
to the initial understanding. This can take on a variety of
shapes, such as a character’s actions being reframed to be
more in line with their motivations, or a previously unimpor-
tant detail (a “Chekhov’s gun”) gaining new meaning. This
is closely related to Tobin’s ease/fluency concept, but we
adopt the term “inevitability” from other parts of their work.
We chose this name to focus on the knowledge and reason-
ing side of the concept (a surprise that can be explained and
reasoned about into a likely occurrence in hindsight), rather
than the psychological idea of cognitive fluency (the quality
of thoughts that are easy to mentally process), although the
latter would be an interesting avenue for future research (Op-
penheimer 2008).

Certainty
Certainty is the degree to which the new understanding ap-
pears as certain and undoubtable, naturally fitting into the
story world in such a way that it answers questions and fills
gaps in knowledge besides the subject of the surprise.

Enjoyment
When the other qualities hold, we expect the surprise to be
enjoyable. Due to the highly subjective nature of the ex-
perience, there is a fine line between accepting the surprise
as insightful and rejecting it as a cheap writing trick. This
becomes more evident the more ambitious the surprise is
at unravelling the audience’s previous understanding. For



Sentence Encoding

1 Katie just had a very long week at
work.

WorkHard(Katie,Weekdays)

2 One cannot work hard without
working.

¬DoWork(x, t) → ¬WorkHard(x, t)

3 One is working if they are working
hard.

WorkHard(x, t) → DoWork(x, t)

4 She couldn’t wait for the weekend,
she had made plans to relax and
watch her favorite tv series.

WantToWatchShows(Katie,Saturday)

5 Being denied a wish can make
someone unhappy

WantToWatchShows(x, t) ∧ ¬WatchShows(x, t) → Unhappy(x, t)

6 As Saturday morning rolled around,
she woke up to a call from her boss.

Call(Boss,Katie,Saturday)

7 He asked her if she could come over
to work.

AskToAtWork(Boss,Katie,Saturday)

8 One wouldn’t go to work on a Sat-
urday unless their boss asked.

¬AskToAtWork(Boss, y,Saturday) → ¬AtWork(y,Saturday)

9 If one goes to work, it’s to do work. AtWork(x, t) → DoWork(x, t)
10 Katie couldn’t work and watch her

shows at the same time.
¬ (DoWork(Katie, t) ∧WatchShows(Katie, t))

11 One cannot be happy and unhappy. ¬ (Happy(x, t) ∧Unhappy(x, t))
12 She happily agreed and had a

great time.
AtWork(Katie,Saturday) ∧Happy(Katie,Saturday)

13 Her boss had noticed how hard ev-
eryone worked last week, and threw
a party at the office.

(WorkHard(x,Weekdays) ∧AtWork(x,Saturday)) → Party(x,Saturday)

14 One doesn’t party and do work. ¬ (Party(x, y) ∧DoWork(x, y))
15 Surprise parties make people happy Party(x, t) → Happy(x, t)

Table 1: Example encoding of a story. The reveal is in bold. Background rules are in italics.

instance, surprises relying on unreliable narrators that com-
pletely change the perspective of the story from a factual
retelling of events to the fallible perception and interpreta-
tion of a character can have a polarising effect on their audi-
ence.

Proposed model
We view a well-made surprise as composed of three phases:
setup, reveal and explanation. During the setup, the audi-
ence forms an understanding of the story world, which we
call the flawed understanding. Then, the reveal is a sudden,
surprising event which prompts the audience to question the
flawed understanding, and begin forming a new one. The ex-
planation is a final, optional phase in which the story guides
the audience towards an improved understanding of the story
world, which we call the truth understanding.

We model each story as a pair of MLNs, corresponding
to the flawed and truth understandings. To demonstrate our
modelling process, we wrote ten short stories of four to six
sentences each, each story focusing on one of the modelled
qualities. For each story, we wrote two variants, one being
high in the associated quality, and one low. We wrote the
stories such that the difference between the two variants is
as minimal as possible to produce the desired difference in
the associated quality, while also producing as small a differ-

ence as possible in all the other qualities. During the writing
process, we categorised stories as high or low in each quality
using our subjective judgement.

For each story, we identify one sentence as the reveal, ev-
ery sentence preceding it as the setup, and every sentence
(if any) following it as the explanation. We then encoded
each sentence as one or more rules, which are either encod-
ing information stated explicitly in the story, or background
knowledge that we assume the audience will draw from in
order to make sense of the sentence. Rules and atoms are
shared by both the flawed and truth models where possible,
as we will later define functions over shared atoms.

See Table 1 for an example encoding of a story written to
have high certainty. In the story, Katie is hoping to have a
relaxing weekend (4) but is suddenly asked to come to work
(7). The audience might expect her to either not abide the
request (¬AtWork(Katie,Saturday)), or to begrudgingly
do so and be unhappy with the result (due to 5, 9 and 10).
The reveal (12) is unexpected because neither holds (due to
11), and is then explained by referring back to the fact that
Katie worked hard during the week (1).

We run approximate inference over both the truth and
flawed models, using the Alchemy 2 implementation
of MLNs (Kok and Domingos 2005) with the default
MaxWalkSat and Gibbs sampling approximate inference al-
gorithm described by Richardson and Domingos (2006).



Atoms

1 DoWork(Katie,Weekdays) 7 AtWork(Katie,Saturday)
2 WorkHard(Katie,Weekdays) 8 Happy(Katie,Saturday)
3 AskToGoToWork(Boss,Katie,Saturday) 9 Unhappy(Katie,Saturday)
4 WatchShows(Katie,Saturday) 10 WorkHard(Katie,Saturday)
5 WantToWatchShows(Katie,Saturday) 11 Party(Katie,Saturday)
6 DoWork(Katie,Saturday)

Figure 1: Partial example ground network with reveal (R), divergence blanket (D) and certainty blanket (C) highlighted.
Circles are atoms, squares are rules.

This process approximates sampling from the joint proba-
bility of all possible worlds defined by the model, and for
each ground atom and rule it keeps track of the number of
sampled worlds in which they are true. P (x) is then the out-
put probability of x, defined as the proportion of worlds in
which x is true among all sampled worlds. We define Pf (x)
and Pt(x) to be P (x) in the flawed and truth model respec-
tively.

Operationalisations
From the qualities described earlier in the paper, we opera-
tionalise three: consistency, divergence and certainty. Partial
work for the operationalisation of coherence was completed,
but was not included in the final model. Similarly, inevitabil-
ity and suddenness are out of the scope of the current model
and analysis. Enjoyment involves many subjective factors
to the point that it cannot be expressed simply in terms of
knowledge and belief, and is not modelled in this work.

Consistency
For the scope of this work, we limit our analysis to instances
in which facts directly stated by the narrative contradict each
other, and we operationalise this quality as a satisfiability

check of the conjunction of all the hard rules in the truth
model.

Divergence
We follow an approach similar to Itti and Baldi’s (2009)
“wow” unit of surprise to quantify the total amount of sur-
prise generated by the reveal.

1

|D|
∑
x∈D

KL(Pt(x)∥Pf (x)) (1)

Where KL is the Kullback-Leibler divergence (Kullback and
Leibler 1951). We define the divergence blanket D as the set
of atoms in common to the flawed and truth ground networks
and that are conditionally dependent on the reveal, condi-
tioned on all atoms with known value. In other words, D is
the set of all ground atoms that can be reached starting from
the reveal, traversing any ground rule edge, and stopping at
any atom with known value. D captures the notion of the
chain of reasoning that the audience performs to predict the
reveal. It aims to capture not only how surprising the reveal
is, but also how much this surprise flows backwards through
logical links and prompts revision of previously believed in-
formation.



Statement Value

Divergence

The story is surprising Positive
The story is not surprising Negative
The story is not predictable Positive
The story is predictable Negative

Consistency

The story doesn’t contradict itself Positive
The story contradicts itself Negative
The story made sense Positive
The story didn’t make sense Negative

Certainty

The ending is satisfying Positive
The ending is not satisfying Negative
The surprise doesn’t feel cheap Positive
The surprise feels cheap Negative

Table 2: Evaluation statements

Answer Positive Negative

Strongly disagree -1.0 1.0
Somewhat disagree -0.5 0.5
Neither agree nor disagree 0.0 0.0
Somewhat agree 0.5 -0.5
Strongly agree 1.0 -1.0

Table 3: Likert scale conversion key

It should be noted that KL(P (x)∥Q(x)) is not defined
when P (x) = 0 and Q(x) ̸= 0, but since we encode hard
rules as an arbitrarily large weight rather than an actually
infinite weight for computation reasons, output probabilities
are never exactly 0 or 1. This has a similar effect to adding
a small prior to all probabilities.

Certainty
Shannon entropy (Shannon 1948) is a commonly used mea-
sure of uncertainty, and we track its overall change across all
modelled information when transitioning from the flawed to
the truth model.

1

|C|
∑
x∈C

H(Pf (x))−H(Pt(x)) (2)

Where H is the Shannon entropy. We define the certainty
blanket C as the set of atoms in common to the flawed and
truth ground networks and that are conditionally dependent
on the reveal in either the flawed or truth ground network,
conditioned on all atoms with known value. This is defined
similarly to D, but note that C ⊆ D, as it includes new in-
formation that the flawed interpretation had no knowledge
of (the audience hadn’t thought of it), but that is still rel-
evant to reasoning about the reveal in retrospect. In Fig-
ure 1, WorkHard(Katie,Weekdays) is not in D since be-
fore knowing about the surprise party, Katie’s hard work
during the week only relates with her desire for a restful

weekend. The same atom is in C since it’s used in the ex-
planation. DoWork(Katie,Weekdays) is in neither, as any
rules leading from it to the reveal first go through known
atoms.

Evaluation
We evaluate our framework with an exploratory study on a
small set of stories, with a total of 91 undergraduate partici-
pants recruited through the Australian National University’s
School of Psychology’s Research Participation Scheme.

In this evaluation, we used a fully within-subjects design,
focusing on factors that made it into the final framework.
We had a 3 (quality: consistency, divergence, certainty) by
2 (variant level: low, high) design. While participants read
a total of 10 stories, we focused our analysis on only 7 of
them, as 3 stories focused on an operationalisation of co-
herence that was not included in the final framework. For
each quality we operationalised, we used multiple stories to
eliminate item specific effects—that is, participants read 3
different stories varying in consistency (low, high). For each
of the 7 stories, participants read a version that was high or
low on a target quality. For example, for consistency, par-
ticipants saw a total of 3 stories, in a high and low level
of consistency. See supplemental materials for how consis-
tency, divergence and certainty were manipulated as high or
low across each story. Each participant was shown all 14
story variants in random order, subject to the restriction that
the two variants (low, high) of the same story were always
presented one after the other, again in random order. After
reading each of the 14 total story versions, participants were
asked to evaluate each story across ratings presented in Ta-
ble 2, as well as rating comprehension of each story. All
ratings were answered on a 5-point Likert scale, which were
converted according to the key in Table 3 and averaged for
each quality. Relatively more positive values as displayed
in Table 4 indicate higher ratings of the key dependant vari-
able (e.g. consistency). Answers associated with low com-
prehension scores (< 0.25) were filtered out as outliers, but
the same significant pattern of results is found with those
outliers included. Note that in Table 4, we limit our analysis
to the key dependant variable of interest—for stories where
we varied consistency, we focus our analysis on consistency
as per Table 4. Note that other values may be of interest for
further analysis, such as interactions between qualities.

Results
For consistency and divergence, a paired-samples two-tailed
t-test showed significant change in the mean of participant
answers between the two variants of a story (p < 0.001), in
the same direction as predicted by the model. For certainty,
the answers showed less marked change in one of the stories
(p = 0.077).

Discussion
The results suggest that the framework has meaningful pre-
dictive power for the modelled qualities, and in general the
approach of using information theoretical functions to model
the well-made surprise shows promise.



Title Variant Predicted Mean Std dev t-value p-value

Consistency

The Macaroni Low 0 −0.5443 0.3968 −7.859 < 0.001
High 1 −0.0016 0.5449

Sarah’s Walk Low 0 −0.6094 0.4857 −13.762 < 0.001
High 1 0.5688 0.522

Catherine at the Beach Low 0 0.0111 0.5935 −4.902 < 0.001
High 1 0.3436 0.4554

Divergence

Emma’s Move Low 0.0083 −0.4253 0.3502 −12.389 < 0.001
High 1.7592 0.3287 0.3804

Jimmy and the Candy Low 0.1484 −0.3657 0.3831 −14.297 < 0.001
High 0.9032 0.4645 0.3101

Certainty

Katie’s Weekend Low 0.0985 −0.3224 0.3669 −6.347 < 0.001
High 0.1094 −0.0015 0.4052

Peter Plays Pool Low 0 −0.2214 0.3241 −1.792 0.077
High 0.1425 −0.1296 0.3244

Table 4: Results of model evaluation. Note that the predicted values are not in the same units as the collected data.

The lack of a common unit of measure between model
output and collected data makes it difficult to quantify its
precision, and a methodology for normalising model outputs
to an accepted scale would greatly improve its verifiability.

The result for the last story under certainty (“Peter Plays
Pool”) may be partially explained by the questions for cer-
tainty being very vague statements about the quality of the
surprise and of the insight experience, so more specific ques-
tions might yield more useful results. This result still high-
lights how subjective the overall quality of a surprise can be,
even for a very short narrative.

Future Work
Future studies should explore further generalisation of the
current findings to more general categories of narratives, es-
pecially longer narratives and existing corpora of real-world
narratives containing well-made surprises. Tobin (2018)
touches upon many literary examples throughout their work
which future research should strive towards being able to
model. The design of future studies should also take into
account the ability to generalise across items. Our study’s
design manipulated each story in an unique way, largely lim-
iting analysis to individual story variation pairs. These ques-
tions could also be examined in a between-subjects design,
where people do not have the relative comparison across
story versions. These are fruitful avenues for future re-
search.

The weakest part of the current framework is match-
ing a model to a narrative. Due to the high flexibility of
MLNs, any narrative (even very short ones) can have a wide
range of subjective encodings, and two very similar models
may produce different outputs. This is a general criticism
often raised towards Bayesian modelling in cognitive sci-
ences (Marcus and Davis 2013; Tauber et al. 2017), and is

a consequence of the combination of model flexibility, sub-
jective human modelling, and outputs that are sensitive to
model formulation. Model consensus procedures such as
those used by Trabasso and Sperry (1985) should be used by
future research using hand-written models. Another option
is to pursue model extraction from questionnaires (Graesser,
Robertson, and Anderson 1981). The approach is still inher-
ently not scalable in the context of open narrative generation,
and is likely better suited to aid in narrative analysis or as a
computer-aided writing tool.

As an alternative to hand-written models, this flexibility
also means that MLNs’ modelling language subsume many
existing structured representations of narratives, and we sug-
gest the development of conversion procedures from existing
narrative models to the proposed framework. In particular,
the operationalised qualities may find use as heuristics to
evaluate the output of generative models which learn their
domain representation from existing data (Li et al. 2013) or
publicly available corpora (Guan, Wang, and Huang 2019;
Swanson and Gordon 2012). Conversely, existing genera-
tive frameworks could be adapted to produce narrative vari-
ations suitable for use in future studies (Porteous et al. 2010;
Piacenza et al. 2011).

It may be possible to extend consistency to a continuous
quantity by adapting a MLN weight learning algorithm, such
as the voted perceptron (Richardson and Domingos 2006) or
the scaled conjugate gradient (Lowd and Domingos 2007).
Since MLN weight training is based around computing the
optimal weights for each rule given a dataset, we may be
able to learn new weights on the samples obtained from in-
ference. Intuitively, conflicting information will cause the
respective rules to be false more often than their original
weights would imply, and thus result a lower trained weight.

Divergence and certainty are defined over a subset of the



marginals, which varies in size depending on model for-
mulation and verbosity. Furthermore, atoms are included
in the respective blankets if any rule links to them, with
no regard for how important each atom is in the inference
process. Future work could draw from research into re-
call and importance of events (Trabasso and Sperry 1985;
Trabasso and van den Broek 1985) to improve them.

The other qualities that haven’t been operationalised yet
(coherence, suddenness) should also be investigated and
modelled in future work. Some, like inevitability, may ben-
efit from being further decomposed into constituent parts in
order to be more easily modelled.

Conclusions
We presented a novel cross-disciplinary modelling frame-
work for the well-made surprise. The proposed framework
takes the first step in a cross-disciplinary effort to bring the
literary theory of the well-made surprise into the world of
computer science, drawing from the field of cognitive sci-
ence along the way to inform the design of the models and
research direction. We believe the framework to have po-
tential in the field of computational narrative and creativity,
and identify three main areas of promising application as
narrative analysis, computer-aided creativity and generative
narrative evaluation. We supported our claims with a pilot
study, and examined ways in which the framework may be
improved and further developed.

Author Contributions
Patrick Chieppe was responsible for writing the manuscript
and all other research work not otherwise attributed to the
other authors below.

Penny Sweetser advised on the overall course of research
and writing, provided frequent feedback and considerably
helped shape the direction of this work.

Eryn Newman contributed to the evaluation design and
provided initial feedback on the manuscript.

Acknowledgements
This research is supported by an Australian Government Re-
search Training Program (RTP) Scholarship.

Supplementary material
Supplementary material including the stories, models, sur-
vey and dataset are available at:
https://github.com/Palladinium/iccc22

References
Alabdulkarim, A.; Li, S.; and Peng, X. 2021. Automatic
Story Generation: Challenges and Attempts. In Proceedings
of the Third Workshop on Narrative Understanding, 72–83.
Stroudsburg, PA, USA: Association for Computational Lin-
guistics.
Arinbjarnar, M.; Barber, H.; and Kudenko, D. 2009. A
critical review of interactive drama systems. In AISB 2009
Symposium. AI and Games.

Arinbjarnar, M. 2005. Murder She Programmed: Dynamic
Plot Generating Engine for Murder Mystery Games. Ph.D.
Dissertation, Reykjavı́k University.
Arinbjarnar, M. 2008. Dynamic Plot Generating Engine.
Proceedings of the Workshop on Integrating Technologies
for Interactive Stories (INTETAIN 2008).
Bae, B. C., and Young, R. M. 2014. A computational model
of narrative generation for surprise arousal. IEEE Trans-
actions on Computational Intelligence and AI in Games
6(2):131–143.
Bredart, S., and Modolo, K. 1988. Moses strikes again: Fo-
calization effect on a semantic illusion. Acta Psychologica
67(2):135–144.
Breithaupt, F.; Li, B.; and Kruschke, J. K. 2022. Serial
reproduction of narratives preserves emotional appraisals.
Cognition and Emotion 1–21.
Canaj, E.; Biba, M.; and Kote, N. 2018. Bayesian Networks:
A State-Of-The-Art Survey. CEUR Workshop Proceedings
2280:31–40.
Cheong, Y. G., and Young, R. M. 2008. Narrative generation
for suspense: Modeling and evaluation. Lecture Notes in
Computer Science 5334 LNCS:144–155.
Chu, Y., and MacGregor, J. N. 2011. Human Performance
on Insight Problem Solving: A Review. The Journal of
Problem Solving 3(2):119–150.
Cox, R. T. 1946. Probability, Frequency and Reasonable
Expectation. American Journal of Physics 14(1):1–13.
Emmott, C., and Alexander, M. 2014. Foregrounding, bury-
ing and plot construction. In Stockwell, P., and Whiteley,
S., eds., The Cambridge Handbook of Stylistics. Cambridge:
Cambridge University Press. 329–343.
Evans, J. S. B. T. 1989. Bias in human reasoning: Causes
and consequences. Essays in cognitive psychology. Hills-
dale, NJ, US: Lawrence Erlbaum Associates, Inc.
Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hi-
erarchical Neural Story Generation. arXiv preprint
arXiv:1805.048331.
Geier, T., and Biundo, S. 2011. Approximate online infer-
ence for dynamic Markov logic networks. Proceedings - In-
ternational Conference on Tools with Artificial Intelligence,
ICTAI 764–768.
Graesser, A. C.; Robertson, S. P.; and Anderson, P. A.
1981. Incorporating inferences in narrative representations:
A study of how and why. Cognitive Psychology 13(1):1–26.
Graesser, A. C.; Singer, M.; and Trabasso, T. 1994. Con-
structing inferences during narrative text comprehension.
Psychological Review 101(3):371–395.
Griffiths, T. L.; Kemp, C.; and Tenenbaum, J. B. 2008.
Bayesian models of cognition. Wiley Interdisciplinary Re-
views: Cognitive Science 1(6):811–823.
Guan, J.; Wang, Y.; and Huang, M. 2019. Story end-
ing generation with incremental encoding and commonsense
knowledge. Proceedings of the AAAI Conference on Artifi-
cial Intelligence1 33(1):6473–6480.



Guttag, J., and Horning, J. J. 1980. Formal specifica-
tion as a design tool. In Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages - POPL ’80, 251–261. New York, New
York, USA: ACM Press.
Ha, E. Y.; Rowe, J. P.; Mott, B. W.; and Lester, J. C. 2012.
Goal Recognition with Markov Logic Networks for Player-
Adaptive Games. Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence 2113–2119.
Hua, M., and Raley, R. 2020. Playing with unicorns: AI
dungeon and citizen NLP. Digital Humanities Quarterly
14(4):1–27.
Itti, L., and Baldi, P. 2009. Bayesian surprise attracts human
attention. Vision Research 49(10):1295–1306.
Jaynes, E. T.; Jaynes, E. T. J.; and Bretthorst, G. L. 2003.
Probability Theory: The Logic of Science. Cambridge Uni-
versity Press.
Kapadia, M.; Falk, J.; Zünd, F.; Marti, M.; Sumner, R. W.;
and Gross, M. 2015. Computer-assisted authoring of in-
teractive narratives. Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, i3D 2015 85–92.
Kok, S., and Domingos, P. 2005. Learning the Structure of
Markov Logic Networks. In Proceedings of the 22nd Inter-
national Conference on Machine Learning, 441–448.
Kukkonen, K. 2014. Bayesian narrative: Probability, plot
and the shape of the fictional world. Anglia 132(4):720–739.
Kullback, S., and Leibler, R. A. 1951. On Information
and Sufficiency. The Annals of Mathematical Statistics
22(1):79–86.
Kybartas, B., and Bidarra, R. 2017. A Survey on Story Gen-
eration Techniques for Authoring Computational Narratives.
IEEE Transactions on Computational Intelligence and AI in
Games 9(3):239–253.
Lehto, M.; Marucci-Wellman, H.; and Corns, H. 2009.
Bayesian methods: A useful tool for classifying injury nar-
ratives into cause groups. Injury Prevention 15(4):259–265.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story generation with crowdsourced plot graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 27, 598–604.
Loftus, E. F., and Zanni, G. 1975. Eyewitness testimony:
The influence of the wording of a question. Bulletin of the
Psychonomic Society 5(1):86–88.
Lowd, D., and Domingos, P. 2007. Efficient weight learn-
ing for Markov logic networks. Proceedings of the Eleventh
European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2007) 200–211.
Marcus, G. F., and Davis, E. 2013. How Robust Are Prob-
abilistic Models of Higher-Level Cognition? Psychological
Science 24(12):2351–2360.
Marie-Laure Ryan. 2009. Cheap Plot Tricks, Plot Holes,
and Narrative Design. Narrative 17(1):56–75.
McKoon, G., and Ratcliff, R. 1992. Inference during read-
ing. Psychological Review 99(3):440–466.

Measure, A. 2014. Automated Coding of Worker Injury
Narratives. Joint Statistical Meetings 2124–2133.
Murphy, K. P. 2012. Undirected Graphical Models (Markov
Random Fields). In Machine Learning: A Probabilistic Per-
spective. MIT Press. chapter 19, 661–705.
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