
Adopting Internet Protocols to Sensor Internetworking

Murad Kamalov
Helsinki University of Technology

mkamalov@cc.hut.fi

Abstract

Recent research in the area of the Wireless Sensor Networks
(WSN) has shown that protocols most commonly used to-
day in the Internet can be implemented within energy and
memory constraints of the WSNs. This paper surveys recent
research performed in the area of making IP protocols viable
for WSNs. Lightweight implementations of IP and IPv6 pro-
tocols, uIP and uIPv6 will be covered, as well as viability of
running TCP in WSNs will be discussed. Adoption of the
Internet protocols for the WSN results in a need for adop-
tion of security mechanisms used in the Internet for WSNs.
Thus, we will also cover some symmetric and asymmetric
cryptography based, security solutions for WSNs, existing
today.

KEYWORDS: Wireless Sensor Networks, Internet Proto-
cols, Security, Symmetric and Assymetric cryptography

1 Introduction

Wireless Sensor Networks (WSN) and the Internet of
Things, Internet where every important device (sensors, do-
mestic appliances, etc.) is connected to the Interenet, have
became increasingly hot topics in the last couple of years.
Many new protocols and security solutions were proposed
for WSNs and until recently it was widely assumed that pro-
tocols used in todays Internet could not be used in WSNs,
because of their high memory, CPU and communication re-
quirements. Nevertheless recent research and actual imple-
mentations have shown that it is possible to implement a
TCP/IP protocol stack on constrained devices used in WSNs
[4, 6, 13, 5, 8, 3].

There are three ways to connect the WSN to TCP/IP based
networks. First is a proxy based approach, where WSN in-
ternally uses its own non-TCP/IP protocol and connection
with TCP/IP network is performed through proxy, which re-
lays data between WSN and the TCP/IP network. Second
approach is using overlay networks, where the overlay net-
work is build on top of both TCP/IP network and the WSN
network. Applications in this case are built on top of the
overlay layer. For example, Dunkels et al. proposed using
Delay Tolerant Networks (DTN) bundle protocol [5], as an
overlay network. Finally, the third approach is implementing
TCP/IP protocol stack directly in the WSN. In this case, ev-
ery sensor node has its own IP address and can directly com-
municate to any host in the Internet. In this paper we will
consider third approach, implementing TCP/IP in WSNs.

Implementing the TCP/IP stack in WSNs has many ad-

vantages. Firstly, it makes different WSNs compatible with
each other, allowing them to communicate easily. To date
the trend in WSNs has been to use different, incompatible
solutions for different problems. Secondly, TCP/IP solves
problem of connecting WSNs with the Internet and setting
up secure end-to-end connections with endpoints in the In-
ternet, which in turn enables the fully functional Internetof
Things. Direct connection of the WSN to the Internet is cer-
tainly an advantage, because gateways, which translate pro-
tocols used internally in WSN to TCP/IP, used in the Inter-
net, increase complexity of the systems and break end-to-end
security. And thirdly, TCP/IP allows to reuse many exist-
ing and proven solutions used in the todays Internet for the
WSNs. This is especially important in the area of security,
where time-proven solutions are usually preferred.

Further in this paper we will survey uIP [3], lightweight
implementation of TCP/IP stack for WSNs and its IPv6
equivalent, uIPv6 [6]. Those implementations have broken
the common assumption that Internet protocols are initially
unsuitable for WSNs. Plain usage of TCP/IP stack in WSNs
does not imply that all security solutions used today in the
Internet can be used in WSNs. They also have to be adopted
and optimized, in order to make them usable in the WSNs.
Thus, we will also cover some security aspects of WSNs, re-
lated to todays Internet. Specifically, symmetric and asym-
metric cryptography will be compared. Asymmetric cryp-
tography was analogically to TCP/IP, considered too heavy
for WSNs. But thanks to recent research in Elliptic Curve
Cryptography (ECC) [14], its usage also becomes viable in
WSNs [11], making adaptation of existing Internet security
protocols for WSNs possible.

The rest of this paper is organized as follows. In Section
2 of this paper, we will survey uIP and uIPv6. In Section
3, we will concentrate on security, usage of both symmet-
ric and asymmetric approaches in WSNs, will be described.
In subsection 3.3 quick analysis of viability of TLS security
protocol in WSNs will be presented. In Section 4, we will
analyze, how well does security protocols, used currently in
the Internet satisfy needs of WSNs. Section 5 concludes this
paper.

2 TCP/IP in Wireless Sensor Net-
works

TCP/IP is considered quite heavyweight protocol, especially
for memory and CPU constrained devices. There were many
attempts made to implement TCP/IP stack for WSNs, but
majority of them ether allowed establishing very limited



TKK T-110.5190 Seminar on Internetworking 2009-04-27

number of connections or were initially intended only for
one particular application (e.g web server) and were not
generic, as TCP/IP stack should be. Adam Dunkels first
time described a fully functional implementation of TCP/IP
for WSNs in 2003 [3]. There are two TCP/IP implemen-
tations described in by Dunkels: uIP (micro IP) and lwIP
(lightweight IP). lwIP is initially intended for more power-
ful devices and implements majority of TCP/IP features. In
contrast, uIP is more lightweight implementation, hence it
omits some of the less important and most resource consum-
ing features of the TCP/IP. Only the features unimportant for
interoperability with full TCP/IP implementation are omitted
from uIP.

Recently the IPv6 enabled implementation of micro IP,
called uIPv6 [6], was introduced. Both uIP and uIPv6 are
open-sourced and are part of the Contiki operating system
[2]. Main goal of the Contiki operationg system is to pro-
vide IP connectivity for battery powered, memory and CPU
constrained devices.

2.1 Common problems of TCP/IP in WSNs

Independent from the particular implementation all of the
TCP/IP implementations for WSNs face following four
problems:

1. Addressing and routing in TCP/IP is host-centric (not
data-centric)

2. Header overhead in TCP/IP

3. TCP performance over wireless links

4. TCP end-to-end retransmissions [5]

Solutions for some of those problems were proposed, by
Dunkels et al. [4]. Some of those solutions are quite inter-
esting. Next, we will discuss some of them in greater detail.

Addressing and routing in TCP/IP is host-centric. The
solution for host-centric routing vs. data-centric routing, is to
employ techniques of spatial IP address assignment and ap-
plication overlay routing. In spatial IP address assignment,
each node calculates its own IP address based on its posi-
tion. This technique works quite well in more or less static
networks, but will fail in case if node is mobile in WSN.
Another part of the solution, application overlay routing,
is needed in order to enable data aggregation and attribute
based routing, specific to data-centric networks. Although
overlay networks can often be quite inefficient, Dunkels et
al. [5] argue, that overlay network can be implemented effi-
ciently, if its design corresponds to the underlying physical
nature of the sensor network.

TCP end-to-end retransmission. As a solution for the
problem of TCP end-to-end retransmission, Dunkels et al.
[5] propose mechanism for distributed caching of the TCP
segments, which assumes symmetric and relatively stable
routes. Proposed technique enables TCP to perform retrans-
missions from nodes located closer to the segment destina-
tion, thus reducing energy consumption (caused by the TCP

retransmissions) of the nodes closer to the sink node. Tech-
nique seems to be feasible, especially taking into account
its backwards compatibility with existing TCP implementa-
tions. Its only minus is assumption of symmetric and stable
routes, which in case of WSNs might not always be easy to
fulfill. In addition, transmission of the data over the same
routes over and over again, can cause certain nodes in the
WSN to drain battery faster.

TCP performance over the wireless links. This, is not a
problem of WSNs alone, but problem of any TCP implemen-
tation deployed in the wireless environment. The reason is
that TCP was originally designed for wired infrastructures,
where main cause of packet loss is congestion. Hence, nor-
mal TCP implementation interprets packet loss, as a network
congestion and as a result reduces sending rate of IP packets.
In contrast, in wireless networks, the main cause of packet
loss are bit errors, which results in lowering the sending rate
of IP packets, in wireless networks, in situations when net-
work is not actually congested.

2.2 uIP

As mentioned above, uIP is the first fully interoperable im-
plementation of TCP/IP for WSNs. When compiled for 8-bit
system, uIP code takes approximately 5KB and amount of
RAM used by the implementation can be configured to be
as low as 200 bytes. The interesting property of uIP imple-
mentation is tight coupling of TCP and IP layers, which is
done in order to minimize code size and memory usage of the
stack. Another property of uIP, that makes it different from
the traditional implementations of TCP/IP, is usage of the
event-driven (asynchronous) paradigm, in contrast to stop-
and-wait semantics used in POSTFIX Socket and Windows
WinSock APIs. Event-driven semantics makes uIP consider-
ably more lightweight, even on the low-end systems because
application gains control over the data, as soon as TCP/IP
stack receives the packet. In addition, event-driven approach
does not cause overhead of the task management and context
switching, which is an issue in stop-and-wait semantics.

Nowadays uIP provides two APIs to the application pro-
grammer. First is event-based API, where application is in-
voked, by the stack, at the moment when application data
has been received. Second is Protosockets API, which is
POSTFIX-like API based on lightweight protothreads. Pro-
tosockets API allows to implement applications in classical,
sequential way without resorting to event-driven program-
ming. Nevertheless event-driven API is considered lower
level, than Protosockets API, hence it uses less memory.

The basic principle of the uIP operation is based on a sin-
gle threaded main loop depicted in Figure 1. Loop checks re-
peatedly for new packets and timeouts, processes them, calls
the application callbacks, outputs packets to the network de-
vice, if needed, and returs back to the main loop. Timeouts,
which main loop checks every iteration, are used to trigger
the timer based events, such as TCP retransmissions, delayed
acknowledgements and round-trip time estimations.

uIP uses single table to hold state of the connections and
single global buffer, which is large enough, to hold one
packet at a time. It means that uIP can process only one



TKK T-110.5190 Seminar on Internetworking 2009-04-27

Figure 1: uIP main Loop [3]

packet at a time. The same global buffer is used for all the
TCP connections of a sensor node and for both, incoming
and outgoing packets. In case of incoming packets, when
packet arrives it is placed to the global buffer, after that it is
processed and if it contains any application data, the data is
passed to the corresponding application. If application needs
the data, for later use, it should copy it to the separate buffer.
In case of outgoing packet, application should give a pointer
to the data being sent, to a stack. Stack generates a header
for the data and writes it to the global buffer, then network
device reads the data and header from the global buffer and
sends it out. Important thing about outgoing packets is that
TCP/IP stack does not handle retransmissions internally, but
calls application in case if retransmission is needed. This
happens, because, in order to save the memory and CPU
cycles, uIP TCP/IP stack does not queue every transmitted
packet, but assumes that in case if retransmission is needed
it will notify the application and application will reproduce
the data and repeat the sending.

One of the important TCP features that is not implemented
in the uIP is sliding TCP window. Sliding TCP window al-
lows to send multiple TCP segments simultaneously, with-
out waiting for acknowledgments of the previous segments.
The reason why authors of uIP decided to omit this func-
tionality from implementation is that it requires many 32-
bit operations, which on 8-bit processor will create a lot of
computational overhead and will significantly increase the
amount of code and RAM usage. In addition to sliding TCP
window, TCP congestion control is not implemented in uIP,
because there is no need for that without sliding TCP win-
dow. Stack already sends only one TCP segment at a time,
so sending rate cannot be further decreased. The absence of
a sliding TCP window functionality significantly decreases
TCP throughput, especially taking into account that major-
ity of TCP receivers implement delayed segment acknowl-
edgment algorithm in order to decrease amount of pure ac-
knowledgments being sent. Typically acknowledgment de-
lay is between 200-500ms. Assuming that average acknowl-
edgment timeout is 200ms, maximum throughput of uIP will
be 4166 bytes/s. With delayed acknowledgment algorithm

disabled, maximum throughput will be around 25000 bytes/s
[3]. Authors of uIP consider throughput provided by uIP ap-
propriate because usually small sensor nodes do not gener-
ate so much data, that provided throughput could become a
problem. Otherwise sliding TCP window does not affect uIP
TCP/IP stacks interoperability with other implementations in
any way.

2.3 uIPv6

The availability of the uIPv6, IPv6 enabled TCP/IP stack im-
plementation for WSNs, was announced in second half of the
2008. Code size of uIPv6 is 11.5 kilobytes and it requires
around 2 kilobytes of RAM. The main motivator behind cre-
ating the IPv6 ready implementation of TCP/IP is support
for the Internet of Things, where every important device can
be connected to the Internet and can have its own IP address.
Of course, it requires large IP address space and auto config-
uration capabilities, which IPv6 can provide. Architecturally
implementation of uIPv6 is very similar to the implementa-
tion of uIP. Both, UDP and TCP modules, are tightly cou-
pled with implementation of IP module and the similar (to
uIP) event-driven interface is provided to the applicationde-
veloper. Also, global buffer based memory management of
uIPv6 is very similar to the memory management of uIP.

3 Security

Security is one of the most critical issues, which should be
taken into consideration while implementing TCP/IP stacks
for the WSNs and connecting sensor networks directly to the
Internet. Although, security challenges in the WSNs have
been largely covered by the previous work, there was no
evaluation made yet, what kind of security challenges will be
experienced in the WSNs, with large deployments of TCP/IP
stacks in WSNs.

One of the main challenges of designing security proto-
cols for WSNs, is coping with specifics of WSNs. The main
difference of the WSNs from wired networks, is battery pow-
ered nodes operating in wireless environment, which means
that the main requirement for sensor nodes is to be energy
efficient. Hence, in order to ensure energy efficiency, sensor
nodes use data aggregation techniques, in order to reduce
size of the messages being forwarded. Unfortunately, data
aggregation also means that use of end-to-end security pro-
tocols is a challenge. With end-to-end security, intermediary
nodes will be unable to read the content of the forwarded
messages and aggregate them. This is the main reason why
link layer security protocols are more popular in WSNs, at
the moment, than end-to-end security solutions. In case of
link layer security, each node can decrypt the data and use
the data aggregation techniques to reduce the size of the for-
warded messages.

In addition to data aggregation, DoS attacks have much
more serious consequences in WSNs, when compared to or-
dinary IP networks. DoS attacks are really dangerous for
WSNs, because they drain batteries of the sensor nodes and
take the WSN out of work really fast (replacing the batteries
might not be an option for remote an physically inaccessible
deployments). In case of the end-to-end security, malicious



TKK T-110.5190 Seminar on Internetworking 2009-04-27

DoS request will travel through the network without being
authenticated, between source and destination, thus draining
batteries of the nodes on the route. Link layer security mech-
anisms can perform request authentication immediately after
request has entered the network, thus blocking malicious re-
quests from spreading into the network. Unfortunately, ma-
jority of the most popular security protocols used in the IP
networks nowadays, such as TLS, SSH and IPsec are with
end-to-end architecture, which means that they might not be
viable in all of the WSN deployments.

In addition to problems discussed above, IP network se-
curity solutions might not be reasonable choice for deploy-
ment in WSNs, because of the computational resources they
require. So in order to deploy existing Internet security solu-
tions in the WSNs they should be optimized.

3.1 Symmetric

The situation with cryptography in WSNs is very similar to
TCP/IP stack versus specific WSN protocols. Symmetric
cryptography was considered as an only option for WSNs
for a long time, mostly because of its computation speed.
Asymmetric cryptography, in contrast, was considered too
resource consuming for WSNs. Nevertheless there are mul-
tiple problems with symmetric cryptography based key dis-
tribution mechanisms in WSNs. The major problem is that
symmetric cryptography based key distribution mechanisms
are too communicationally intensive. And another problem
is use of centralized servers to distribute the keys (like Ker-
beros). Which means that in order to operate correctly wire-
less nodes should always have connectivity to the centralized
key distribution server, which is often impossible due to con-
ditions in which WSNs operate.

There are multiple symmetric cryptography based secu-
rity solutions proposed for use in WSNs. One of the most
popular is TinySec [9], security suite developed in Berkley
and used by TinyOS. TinySec has three major security goals:
provide access control, message integrity and message con-
fidentiality. To provide access control and message integrity
TinySec uses MACs (Message Authentication Code) based
on CBC (Cipher-Block Chaining) mode block cipher. And in
order to provide confidentiality services TinySec uses Skip-
jack block cipher in CBC mode with carefully chosen IV
(Initialization Vector) structure. Overall TinySec does not
use any new symmetric cryptography methods, but relies on
old and time-proven cryptography methods, which prove to
be lightweight enought for WSNs. Nevertheless, TinySec
does not address the most important problem of symmet-
ric cryptography, key distribution mechanisms. Basically
any key distribution mechanism can be used with TinySec,
but authors describe three very trivial distribution protocols:
single network-wide key, per-link keys between neighbor
nodes and group keys (similar to single network-wide key,
but within limited groups of nodes). Those “key exchange
protocols” are really basic and in order to provide better se-
curity more advanced key distribution protocols should be
employed. But as was already mentioned, more advanced
symmetric key distribution protocols cause communicational
overhead which is not acceptable by the majority of WSN
deployments.

3.2 Asymmetric

Recent developments in ECC (Elliptic Curve Cryptography)
have made usage of asymmetric cryptography in WSNs vi-
able. ECC is asymmetric encryption method, based on alge-
braic structure of elliptic curves over finite fields. Its main
advantage, is its ability to provide the same level of security,
as RSA, with significantly smaller keys and faster computa-
tion time. For example, 160-bit key in ECC provides equiv-
alent security to 1024-bit RSA. There were multiple papers
published evaluating energy-efficiency and performance of
ECC in WSNs [15, 14, 1]. So far, research in this area con-
cludes that ECC is, on average, much more energy and time
efficient when compared to RSA.

The main advantage of asymmetric cryptography over
symmetric one, is that key distribution mechanisms, based
on asymmetric cryptography, are much more suitable for
WSNs and also less communication intensive when com-
pared to symmetric key distribution mechanisms. For ex-
ample, distribution of public/private keys and certificates for
nodes can be performed off band, by preloading them to the
nodes before node deployment. When asymmetric keys are
deployed to the wireless nodes, authenticated ECDH (Ellip-
tic Curve Diffie-Hellman) can be used, in order to set up
symmetric session keys, which will be used for actual bulk
data encryption. Analogically to wired networks, both asym-
metric and symmetric methods are usually used together (hy-
brid encryption) in WSNs. In hybrid encryption, asymmetric
mechanisms are used to establish symmetric keys and au-
thenticate parties, and symmetric mechanisms are used for
bulk data encryption (confidentiality) and integrity. For ex-
ample, asymmetric cryptography can be used in conjunction
with TinySec, providing public-key based key distribution
mechanism for TinySec.

3.2.1 Neighbor endorsement mechanism

Wang et al. proposed method for remote access control
[15]. The interesting thing about their approach is that it al-
lows wireless nodes to authenticate to remote (multiple hops
away) nodes using end-to-end authentication mechanism and
simultaneously prevent DoS attacks by using neighbor en-
dorsement mechanism. This means that if node A wants to
communicate to node B, which is 10 hops away from node
A, it should be endorsed by N neighbor nodes, before it can
send the remote request. The technique is based on Shamirs
secret sharing, where secret is divided into shares and shares
are pre-distributed among the sensor nodes, at any moment
N shares of the secret are needed in order to discover the
whole secret. The technique works as follows, node A which
wants to communicate to node B, authenticates himself to N
neighbor nodes using his asymmetric keys, then he acquires
secret shares from those neighbors, sums them and gets the
secret (S). Now secret S is used, as pairwise key, to commu-
nicate with remote node B, which also calculates S, based on
his own secret share and access list of node A (describes ac-
cess permissions). Thus, endorsement mechanism proposed
by Wang et al. also allows to setup pairwise key between
communicating entities, without using any additional key ex-
change protocol.

Currently, use of described endorsement mechanism, in



TKK T-110.5190 Seminar on Internetworking 2009-04-27

combination with existing end-to-end security protocols for
IP networks, does not seem to be viable (at least without
breaking interoperability), but future research in neighbor
endorsement mechanisms in WSNs, could provide protec-
tion against DoS attacks in WSNs and simultaneously allow
usage of existing end-to-end security protocols in IP based
WSNs. Data aggregation in this case still would be impos-
sible (because of end-to-end security), but protection against
DoS could be sufficient, for some of the WSN deployments.

3.2.2 Packet Level Authentication and Host Identity
Protocol

Another interesting, asymmetric cryptography based, hop-
by-hop protocol which is currently in research stage, is
Packet Level Authentication (PLA) [10]. PLA is being de-
signed as an Internet protocol, but authors also encourage its
usage in sensor networks. The basic idea of PLA is to protect
network itself, by authenticating packets on every hop from
source to destination. Thus DoS attacks, for example, can
be stopped long before malicious packet will reach its des-
tination. Every packet sent to the network should be signed
by senders private key and should include senders certificate
signed by a trusted third party, so that each node on a path
from source to destination can validate identity of a packets
sender and integrity of a packet data.

Disadvantage of current implementation of PLA, is its de-
pendency on centralized entity (trusted third party), which
can cause big delays in revoking certificates of compromised
nodes in WSNs. A lot of effort in PLA research is being put
on improving performance of asynchronous cryptographic
algorithms used nowadays. Also, the goal of a project, from
the beginning, was to design security system similar to a
modern money, where each node could validate authenticity
of a packet locally, without resorting to centralized authority
(similar to money, everybody is able to validate). Thus even-
tually research in PLA can lead to some interesting security
solutions for WSNs and the Internet in general.

Good property of PLA is that it can be used in conjunc-
tion with higher level security solutions, such as HIP (Host
Identity Protocol) [12, 7], without breaking interoperabil-
ity. HIP is end-to-end protocol, which separates identifier
(public key) of a node from its locator (IP address), thus en-
abling authentication, mobility and multihoming for nodes
in a network. In nowadays Internet IP address is used as
both, identifier and locator of a node. Architecturally HIP
is a new layer between Network and Transport layers of
OSI model. Thus applications on top of Transport layer use
Host Identity (HI) instead of IP address and HI is resolved
to actual IP address of the receiver internally by a potocol
stack. HIP might be too heavy for some of the deployments
of the sensor networks. Firstly, Diffie-Helman based hand-
shake (two round trips), used in HIP to authenticate commu-
nicating parties, can be too communicationally intensive for
some WSNs. Secondly, puzzle used in handshake, can be
computationally too complicated for sensor nodes to solve.
And finally FQDN (Fully Qualified Domain Name) to HI
and HI to IP address resolution, using DNS or similar sys-
tem, can also be communicationally too intensive for some
of the WSN deployments. Nevertheless real tests on phys-

ical sensor nodes should be performed, in order to identify
computational/communicational requirements, of Future In-
ternet protocols, such as HIP, and their suitability for actual
WSN deployments.

3.3 TLS in Wireless Sensor Networks

TLS (Transport Layer Security) is the most popular security
protocols in the Internet nowadays. It provides end-to-end
security, between communicating parties, on the transport
layer. Certainly TLS is too heavy for internal use by WSNs
(usage of TLS in mobile phones confirms that), but it can be
used for communication with hosts in the Internet, in order
to send some security critical data once in a while. As TLS is
very well supported in the Internet, it might be the only op-
tion for WSN node, in order to set up a secure session with a
host in the Internet.

The major challenge in using TLS in the WSNs,
is preserving its interoperability with existing TLS im-
plementations in the Internet and simultaneously mak-
ing it more lightweight. In order to make TLS
more lightweight, new cipher suites (based on ECC
cryptography) should be developed. Currently the
two most popular TLS cipher suites in the Internet
are TLS_RSA_WITH_3DES_EDE_CBC_SHA (TLS 1.1)
and TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA (TLS
1.0), which are too heavy for WSNs. Good thing about TLS
is that it is independent from the cipher suite in use, so new
cipher suites can be developed for TLS.

The main property that could be optimized in TLS proto-
col, is the number of cipher suites supported by client and
server and sent in Client Hello and Server Hello messages.
In WSNs, support for only one cipher suite could be enough,
so cipher suites list could contain only one entry. Also Wan-
der et al. claim [14], that ECC based public key certificates
can be reduced in size to 86 bytes. The only problem with re-
ducing certificate sizes is that it could break interoperability
with other TLS implementations.

Overall TLS protocol is quite difficult to optimize for
WSNs, because interoperability with other TLS implemen-
tations can be easily broken. TLS can be used in WSNs,
in rare cases when security critical data needs to be sent to
hosts in the Internet, otherwise for internal use in WSNs, it
is more feasible to use more lightweight secure session es-
tablishment protocols designed specifically for WSNs.

4 Analysis

Although implementing lightweight and functional TCP/IP
stack on WSN nodes is possible, using security protocols
designed for the IP networks is not always feasible for the
following reasons.

Firstly, security protocols used in the todays Internet are
not architecturally suitable for WSNs. WSNs are usually
data-centric networks, which means that nodes on the route
from A to B manipulate the data being routed in the packets,
usually by performing data aggregation, decreasing amount
of duplicated data being forwarded. Data-centrism in WSNs,
means that end-to-end security is not suitable for WSNs and
as majority of security protocols in todays Internet are based



TKK T-110.5190 Seminar on Internetworking 2009-04-27

on end-to-end architecture, it makes them unsuitable for all
of the WSN deployments. For this reason link-layer security
solutions are popular in WSNs, where security is provided
from hop-to-hop, so every hop can decrypt the data and ma-
nipulate it. Link-layer security is also not ideal solution, as
it has problem of compromised nodes. Compromised nodes
are in control of malicious users, which can get access to the
data being routed by the nodes.

Secondly, security protocols used today in the Internet
were initially designed for nodes with high computational
capabilities and permanent power supply. Protocols, such as
TLS, are not efficient in mobile devices, thus their perfor-
mance in WSN nodes will be even worse. Nevertheless, if
nodes have TCP/IP connectivity and they are able to commu-
nicate with hosts in the global Internet, usage of modern se-
curity solutions deployed in the Internet might be useful for
them. One of the user cases, when WSN node could commu-
nicate with the host in the Internet, using for example TLS
protocol, is when WSN node has security critical data which
has to be sent to the machine in the Internet. In this case stan-
dard security solutions may be the only option for the WSN
node. It is hard to estimate how much will new cryptographic
algorithms, such as ECC, improve the performance of Inter-
nets security protocols in WSNs. In order to estimate that,
actual implementations of those protocols should be made
and tested in sensor networks.

Thirdly, end-to-end security protocols are vulnerable to
DoS attacks and because of the fact, that DoS attacks in
WSNs can quickly take WSN out of operation, there should
be some mechanism for preventing DoS attacks in almost ev-
ery WSN. Unfortunately majority of security protocols used
in the Internet cannot provide protection against DoS.

It is clear that WSNs connected to the Internet should be
able to communicate with hosts in the Internet over secure
channels. Taking into account, that it is very difficult to
make radical changes in the Internet, such as introducing
new protocols, the only viable option for sensor networks
is to adopt already existing security solutions. But the big
question is how to make them efficient in the Wireless Sen-
sor Networks, without breaking the interoperability with ex-
isting implementations.

5 Conclusions

We have surveyed the state of the art research in adopting In-
ternet Protocols for Wireless Internetworking. Such TCP/IP
stack implementations for WSNs, as uIP and uIPv6, have
shown that IP technologies are viable in Wireless Sensor
Networks and that it is possible to connect WSNs to the
global Internet, without usage of proxies and overlay net-
works.

Security is extremely important in the Internet nowadays
and to fully connect WSNs to the Internet TCP/IP is not
enough, security should also be there. The next stage for
research in sensor internetworking is to adopt Internets se-
curity solutions for WSNs. In this paper we have reviewed,
some of the recent research in the area of cryptography, re-
lated to WSNs, and have shown that implementing Internets
security protocols in the WSNs is maybe event more difficult
task, than implementing TCP/IP in WSNs. But eventually, in

order for WSNs to be fully functional in the Internet, some
support for Internets security protocols should be on every
sensor node connected to the Internet.

References

[1] F. Amin, A. H. Jahangir, and H. Rasifard. Analysis
of Public-Key Cryptography for Wireless Sensor Net-
works Security. InProceedings of World Academy of
Science, Engineering and Technology, 2008.

[2] A. Dunkels. Home Page of Contiki OS.http:
//www.sics.se/contiki/. Referenced at
14.04.2009.

[3] A. Dunkels. Full TCP/IP for 8-bit architectures. InPro-
ceedings of the 1st international conference on Mobile
systems, applications and services, pages 85–98, San
Francisco, California, USA, May 2003. ACM.

[4] A. Dunkels, T. Voigt, and J. Alonso. Making TCP/IP
Viable for Wireless Sensor Networks. InProceedings
of the First European Workshop on Wireless Sensor
Networks (EWSN 2004), Berlin, Germany, Jan. 2004.

[5] A. Dunkels, T. Voigt, J. Alonso, H. Ritter, and
J. Schiller. Connecting Wireless Sensornets with
TCP/IP Networks. InProceedings of the Second Inter-
national Conference on Wired/Wireless Internet Com-
munications (WWIC2004), Frankfurt (Oder), Germany,
Feb. 2004.

[6] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn,
B. Leverett, E. Gnoske, M. Vidales, G. Mulligan,
N. Tsiftes, N. Finne, and A. Dunkels. Making Sen-
sor Networks IPv6 Ready. InProceedings of the Sixth
ACM Conference on Networked Embedded Sensor Sys-
tems (ACM SenSys 2008), Raleigh, North Carolina,
USA, Nov. 2008.

[7] A. Gurtov. Host Identity Protocol (HIP): Towards the
Secure Mobile Internet. John Wiley & Sons, June 2008.

[8] J. W. Hui and D. E. Culler. IP is dead, long live
IP for wireless sensor networks. InProceedings of
the 6th ACM conference on Embedded network sensor
systems, pages 15–28, Raleigh, North Carolina, USA,
2008. ACM.

[9] C. Karlof, N. Sastry, and D. Wagner. TinySec: a
link layer security architecture for wireless sensor net-
works. In Proceedings of the 2nd international con-
ference on Embedded networked sensor systems, pages
162–175, Baltimore, MD, USA, 2004. ACM.

[10] D. Lagutin. Redesigning Internet - The Packet Level
Authentication architecture. Master’s thesis, Helsinki
University of Technology, 2008.

[11] A. Liu and P. Ning. TinyECC: A Configurable Li-
brary for Elliptic Curve Cryptography in Wireless Sen-
sor Networks. InProceedings of the 7th international
conference on Information processing in sensor net-
works, pages 245–256. IEEE Computer Society, 2008.



TKK T-110.5190 Seminar on Internetworking 2009-04-27

[12] R. Moskowitz, P. Nikander, P. Jokela, and T. Hender-
son. RFC 5120, Host Identity Protocol.http://
tools.ietf.org/html/rfc5201, April 2008.

[13] G. Mulligan, C. O’Flynn, M. Durvy, J. Abeillé, P. Wet-
terwald, B. Leverett, E. Gnoske, M. Vidales, N. Tsiftes,
N. Finne, and A. Dunkels. Seamless Sensor Network
IP Connectivity. InProceedings of the 6th European
Conference on Wireless Sensor Networks, EWSN 2009,
Cork, Ireland, Feb. 2009.

[14] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C.
Shantz. Energy Analysis of Public-Key Cryptogra-
phy for Wireless Sensor Networks. InProceedings
of the Third IEEE International Conference on Perva-
sive Computing and Communications, pages 324–328.
IEEE Computer Society, 2005.

[15] H. Wang, B. Sheng, C. C. Tan, and Q. Li. Com-
paring Symmetric-key and Public-key Based Security
Schemes in Sensor Networks: A Case Study of User
Access Control. InProceedings of the 2008 The 28th
International Conference on Distributed Computing
Systems, volume 00, pages 11–18. IEEE Computer So-
ciety, 2008.


