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ABSTRACT 

This paper presents several feature extraction and normal-
ization methods implemented for the DCASE 2018 Bird 
Audio Detection challenge, a binary audio classification 
task, to identify whether a ten second audio segment from 
a specified dataset contains one or more bird vocaliza-
tions. Our baseline system is adapted from the Convolu-
tional Neural Network system of last year’s challenge 
winner bulbul [1]. We introduce one feature modification, 
an increase in temporal resolution of the Mel-spectrogram 
feature matrix, tailored to the fast-changing temporal 
structure of many song-bird vocalizations. Additionally, 
we introduce two feature normalization approaches, a 
front-end signal enhancement method to reduce differ-
ences in dataset noise characteristics and an explicit do-
main adaptation method based on covariance normaliza-
tion. Results show that none of these approaches gave 
significant benefit individually, but that combining the 
methods lead to overall improvement. Despite the modest 
improvement, this system won the award for “Highest-
scoring open-source/reproducible method” for this task. 

Index Terms— audio classification, convolutional 
neural network, bioacoustic vocalization analysis, domain 
adaptation 

1. INTRODUCTION 

The DCASE 2018 Bird Audio Detection Challenge 
(BADC, DCASE 2018 Challenge Task 3) [2] is a binary 
audio classification task to determine whether a fixed-
length ten second audio segment contains one or more bird 
vocalizations across a wide variety of bird species and 
background noise environments.  This focuses on the chal-
lenging problem of domain adaptation, with the evaluation 
audio segments to be classified identified as coming from 
one of three different evaluation datasets, one of which is 
represented in the training data and two of which are not. 
This problem of dataset adaptation, also referred to as do-
main adaptation, domain shift, domain transfer, or dataset 
bias, is of great interest in a number of domains such as 
image and audio classification. Recently, the success of 
deep-learning based approaches requiring large amounts of 

training data have led to an interest in how to adapt exist-
ing well-trained models to new, smaller datasets. 

The particular domain of the BADC is that of bioa-
coustics signal processing and analysis. Currently bioa-
coustics research often requires extensive amounts of 
manual labor for segmentation, detection and labeling of 
voice activity from hours of field recordings [3], and be-
cause of this automated analysis of bioacoustics data can 
be a powerful noninvasive and economical tool for moni-
toring the diversity, migration patterns [4] and ecosystem 
health [5] of vocally active animal species.  In recent 
years, speech processing and machine learning techniques 
for human speech have begun to be used to study animal 
communication for detection and classification, with ap-
plications to censusing [6], understanding the effect of 
noise on animal communication [7], and other areas of 
acoustic ecology and ethology. The emphasis of the 
BADC is to develop a highly generalizable and robust bird 
classification task that is robust across species and acoustic 
environments. Although it is presented as a detection prob-
lem, it is not “detection” in the sense of typical bioacous-
tics terminology because it does not involve locating the 
start and end points of the individual vocalizations. 

Our team’s submission for the BADC is based on a 
Convolutional Neural Network (CNN) structure adapted 
from the baseline architecture of last year’s challenge bul-
bul [1]. Nearly all of the top performers of last year’s chal-
lenge were based on a similar structure, using time-
frequency features such as Mel-frequency spectrogram or 
cepstral features as input to a CNN architecture. Using this 
baseline, we have introduced three specific modifications 
to the front-end feature processing methods.  

The first of these is adjustment of the time and fre-
quency resolution, which was fairly consistent across 
many of last year’s challenge submissions.  The idea be-
hind this change, described in more detail in Section 4.1, is 
that the variations in the vocalizations of many bird spe-
cies, especially passerines (songbirds), have a much finer 
spectral and/or temporal structure than human speech. 

The second modification, described in Section 4.2, is 
the introduction of acoustic signal enhancement, specifi-
cally Log-Spectral Amplitude (LSA) estimation combined 
with Iterative Minimal Controlled Recursive Averaging 
(IMCRA). The idea behind this is not simply for signal 
enhancement, which does not typically give improvement 

Sidrah Liaqat, Narjes Bozorg, Neenu Jose, Patrick Conrey, Antony Tamasi and Michael T. Johnson 

University of Kentucky Speech and Signal Processing Lab 
Electrical Engineering Dept.  

Lexington, KY 40506 
mike.johnson@uky.edu 



Detection and Classification of Acoustic Scenes and Events 2018  19-20 November 2018, Surrey, UK   

to neural-network based speech or audio classification 
systems, but instead as a type of dataset normalization 
intended to decrease the differences between the back-
ground noise characteristics of the different datasets. 

The third modification, described in Section 4.3, is an 
explicit domain adaptation technique that applies a source-
target covariance transform to the underlying features for 
an input vocalization based on which dataset it is from. 

This paper is organized as follows: in the next section 
a brief description of data used for training and testing the 
neural network is provided. Section 3 gives an overview of 
the baseline system, and section 4 introduces each of the 
improvements that were implemented to the baseline sys-
tem in further detail. Section 5 gives results and discussion 
followed by conclusion in Section 6. 

2. DATA 

The data provided for the challenge consists of audio re-
cordings from three development datasets and three evalu-
ation datasets which are normalized in amplitude, saved as 
a 16-bit single channel PCM at a 44.1kHz sampling fre-
quency [2]. Each development dataset has a metadata file 
associated with it, with a binary label to mark bird pres-
ence or absence. The labels are manually annotated by 
visual analysis of the spectrograms and listening to the 
audio clips, resulting in a small number of mislabeled files.  

The development datasets include Birdvox-DCASE-
20k, Warblr10k and Freefield1010. The Birdvox-DCASE-
20k dataset was recorded during autumn 2015 in Ithaca, 
NY, USA as part of a bioacoustics monitoring project. 
About half of the 20000 files contain at least one bird vo-
calization [8]. The Birdvox-DCASE-20k dataset was orig-
inally recorded at a 24kHz sampling rate and was 
resampled to 44.1kHz to match the other challenge da-
tasets, and therefore contains no content above 12kHz.  

The Warblr10k dataset consists of 8000 audio clips 
recorded using smartphones, crowdsourced by users of 
Warblr app in the United Kingdom, with 75.6% of the 
recordings labeled for bird presence. The Freefield1010 
dataset [9] consists of 7690 audio segments derived from 
files with the field-recording tag in the Freesound 
crowdsourced global audio archive, with about 25% of 
dataset labeled as having one or more birds present.  

The evaluation data includes 2000 files from 
Warblr10k, 6620 files from Chernobyl, and 4000 files 
from PolandNFC.  The Chernobyl dataset was collected 
from the Chernobyl Exclusion Zone as a part of the Trans-
fer Exposure Effects (TREE) project to study the long-
term effects of the Chernobyl accident on ecology. The 
PolandNFC dataset was collected along the Baltic coast of 
Poland during autumn of 2016. In addition, there was a 
randomly selected smaller subset of the Warblr10k and 
Chernobyl (but not PolandNFC) evaluation datasets con-
sisting of approximately 1000 files used for posting ongo-

ing results on the challenge leaderboard.  We refer to this 
as the Leaderboard Evaluation dataset and all testing re-
sults in this paper are on this dataset unless otherwise 
specified. Results are given as Area under the Curve 
(AUC) of the Receiver Operating Characteristic curve of 
the submitted prediction probabilities. 

Each dataset has unique characteristics in terms of 
ambient background noise, species present in the record-
ings, and variety of non-avian interfering sound sources. 
Warblr, the only dataset present in both training and eval-
uation sets, and Freefield are crowd-sourced and therefore 
represent a much wider range of background sound 
sources, but both the datasets are from UK and therefore 
have similar species. All three other datasets are remote 
monitoring data with internal consistency across species 
and conditions, but vary widely in location and habitat. 

It should also be noted that all five of these datasets 
contain a large number and wide range of bird species that 
includes both passerine and non-passerine species.  Passer-
ine vocalizations tend to have distinct song-like patterns 
moving around a single or dual frequency (due to the dual-
frequency action of the syrinx sound production mecha-
nism), while non-passerine vocalizations are often broad-
band with unique spectral characteristics.  The binary task 
of classifying whether one or more bird calls is present or 
non-present inherently represents recognition and classifi-
cation of many different sound event characteristics. 

3. BASELINE SYSTEM 

The baseline CNN system was modeled after the baseline 
architecture of last year’s challenge bulbul [1] architecture 
as distributed by the challenge organizers. This is a feed 
forward network with four 2D CNN layers followed by 
three dense layers, as shown in detail in Figure 1. The neu-
ral network was trained using the log Mel filter bank ener-
gy features extracted from small frames of each audio sig-
nal. Vocalizations are resampled to a 22.05kHz sampling 
frequency and divided into 46ms frames using a Hamming 
window function, with a step size of 14ms, yielding an 
overlap of 70% across frames. A Fast Fourier Transform is 
computed, and then Mel filter banks with 80 bands are 
calculated across a frequency range from 50Hz to 12kHz. 
The logarithm of the normalized sum magnitude of the 
filter bank energies is computed for each window. These 
features were normalized to range between 0 and 1 before 
feeding to the network input. 

Batch normalization layers along with dropout layers 
were employed in the neural network for improved regu-
larization. The dropout layer has a dropout rate of 0.5. The 
network also uses L2 layer at the end of CNN layers with a 
regularization parameter of 0.01. For training, ADAM 
optimizer is used with an initial learning rate of 0.001. The 
learning rate was reduced by a factor of 0.2 if there was no 
improvement in validation accuracy over five consecutive 
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epochs. The network is trained on binary cross entropy 
loss using accuracy as a metric. Intermediate activation 
layers were leaky RELU with a final prediction probability 
output computed using a sigmoid activation function. 
Training was done on batches of 16 audio samples over 30 
to 40 epochs. Optional data augmentation was built into 
the system, using a simple cyclic pitch and time shifting 
approach. For this, the pitch shift was limited to 5% but 
cyclic time shift could be as much as 90%. 

 
Figure 1: Baseline network architecture 

 
Experiments were conducted both within individual 

datasets and across datasets using the developmental da-
tasets. Since the number of positive examples varies within 
each dataset, the selection of positive and negative exam-
ples was equalized using class weights to avoid a mis-
match in class representations. The dataset organization 
used for the experiments is given in Table 1 and Table 2. 

For testing on the final evaluation dataset, the network 
was trained on all three development datasets, Birdvox-
DCASE-20k, Warblr10k and Freefiled1010, combined. 
The datasets were shuffled to keep the training of the net-
work impervious to the sequence in which examples are 
presented to it. Since the number of examples in 
Freefield1010 and Warblr10k datasets is almost equal, the 
class imbalance evens out, so equal weights were assigned 
to positive and negative examples. The development da-
taset was split into 33905 training examples (95%) and 
1784 validation examples (0.05%). The test dataset con-
sisted of the complete evaluation dataset having 12620 
examples; 6620 from Chernobyl, 2000 from warblr10k-
eval and 4000 from PolandNFC dataset. 

 

Table 1: Within dataset experiments 

Dataset Train 
(80%) 

Test 
(0.15%) 

Validation 
(.05%) 

Birdvox_20k 16000 3000 1000 
Freefiled1010 6152 1153 385 
Warblr10k 6400 1200 400 

Table 2: Cross dataset experiments 

Training datasets 
(84% training and 
16% validation) 

Test dataset Class weights 
 
   -ve          +ve 

BirdVox+ freefield Warblr   43%         57% 
Freefield + warblr BirdVox   50%         50% 
BirdVox + Warblr Freefield   57%         43% 

4. PROPOSED IMPROVEMENTS AND RESULTS 

4.1. Temporal and frequency resolution  

Most bioacoustics signals are nonstationary, like human 
speech, with changing frequency content over time. 
Choosing the frame length is a tradeoff between spectral 
and temporal resolution, with a long frame yielding better 
spectral resolution but poorer temporal resolution, and vice 
versa. Bird vocalizations, especially passerine songs, typi-
cally have higher frequencies and very fast temporal pat-
terns compared to human speech, with modulations as fast 
as a few milliseconds [10]. Most of the previous challenge 
systems, including the baseline bulbul system, have a win-
dow size that is relatively long for typical song-bird vocal-
izations, which would prevent feature representation of 
small time-scale modulations and transients. Prior work 
for the BirdClef2017 challenge has also considered resolu-
tion issues for bird call recognition [11]. 

To investigate this, we experimented with changing 
both the temporal resolution by varying the step and win-
dow sizes, as well as changing the frequency resolution by 
varying the number of filter banks. The high temporal res-
olution condition used a window size of 12ms with 80 
Mel-spaced filter banks (dimension 1669x80), while the 
high spectral resolution condition used a window size of 
32ms along with 160 Mel-spaced filter banks (dimension 
624x160). Leaderboard Evaluation results, shown in Table 
3 below, indicate that the increased temporal resolution 
has little impact while the increased spectral resolution has 
a negative impact. 

Table 3: Temporal and spectral resolution results 

 AUC Acc Val acc 
Baseline (B) 86.83 0.89 0.88 
High-res temporal (HT) 86.43 0.90 0.89 
High-res frequency (HF) 83.54 0.89 0.87 

Input - 700x80x1 
Convolution (3x3) - 698x78x16 

Pool (3x3) - 232x26x16 
Convolution (3x3) - 230x24x16 

Pool (3x3) - 76x8x16 
Convolution (3x3) - 74x6x16 

Pool (3x1) - 24x6x16 
Convolution (3x3) - 22x4x16 

Pool (3x1)- 7x4x16 
Dense (256) - 256 

Dense (32) - 32 
Dense (1) - 1 

 

Decision 
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4.2. Signal enhancement 

In noisy environments, anthropogenic noise and adverse 
causes may mask bird song, especially the notes occurring 
at lower frequencies. In urban environments, birds may 
modify their songs to low frequency regions to minimize 
masking effect by anthropogenic noise [12]. Each of the 
datasets in the BADC has a unique set of background 
noise characteristics.  Our hypothesis for the cross-dataset 
conditions of the BADC is that applying a front-end signal 
enhancement may increase similarity across datasets and 
allow the network to generalize to new noise conditions. 

To investigate this, we used the Improved Controlled 
Recursive Algorithm (IMCRA) noise tracking approach 
with a log-spectral amplitude estimation technique as pro-
posed by Cohen [13], to implement signal enhancement on 
all datasets.  Noise estimation is updated by averaging the 
past spectral power values using smoothing parameters 
that are adjusted with the probability of target signal pres-
ence within sub bands. IMCRA includes two iterations of 
smoothing and minimum tracking. During the first itera-
tion the signal presence probability is detected in each 
frequency band, and in the second iteration the minimum 
tracking will be updated by smoothing parameter both in 
time and frequency domains. This was used with High 
Temporal features. Results, shown in Table 4 below, show 
a small degradation to the results from this approach. 

Table 4: IMCRA-LSA Signal enhancement results 

 AUC Acc 
HT 86.43 0.90 
HT enhanced (HTE) 84.47 0.88 

4.3. Domain adaptation 

One of the primary issues with this challenge problem is 
the training/test mismatch. There have been a number of 
different methods suggested for domain adaptation in the 
image processing literature, to allow well-trained models 
to be quickly used on new smaller datasets. 

In this work we have implemented the CORAL do-
main adaptation method described in [14] which aligns the 
second order statistics of source dataset to the target da-
taset before training the network. This amounts to whiten-
ing the training input and then re-coloring it with the co-
variance characteristic of a chosen target dataset. For this 
task, we do normalization frame-wise based on the 80 di-
mensional frequency features. For a baseline 700x80 fea-
ture matrix, the normalized feature matrix is 

( ) ( )
11
22

source target
−ʹ = × + × +A A C I C I  

where A is the original feature matrix, Csource and Ctarget are 
the 80x80 source and target covariance matrices, and I is 
an identity matrix added for regularization. 

Although the choice of a target is arbitrary, since the 
Warblr10k dataset was present in both development and 
evaluation dataset, we selected it as the target.  In the do-
main adaptation experiments, feature matrices from all 
other datasets were transformed to the covariance charac-
teristic of the Warblr10k dataset before being applied to 
the network. Results, shown in Table 5 below, again show 
little change due to the domain adaptation method. 

Table 5: Covariance normalizations results 

 AUC Acc Val acc 
Baseline (B) 86.83 0.89 0.88 
Covariance normalized (CN) 86.61 0.87 0.88 

4.4. Combined systems 

In addition to the individual modifications, several com-
bined systems were implemented.  This includes combin-
ing high-temporal resolution features with enhancement 
and covariance normalization, a score fusion system that 
consisted of a fully connected three-layer neural net using 
the second from the last layer of each of three individual 
networks (concatenated 3 32x1 outputs) followed by two 
dense layers, and several different combinations of simple 
averaging. Results are shown in Table 6, and indicate that 
both direct and weighted score fusion methods lead to sig-
nificant improvement. 

Table 6: Composite system results 

 AUC 
Baseline (B) 86.83 
Sequence HT→SE→CV 70.05 
Score fusion –Parallel B/HT/HF → 3 FC layers 89.54 
Boosting (prediction averaging) 
(B, HT, HTE, CN, HF) 

89.94 

Boosting (weighted prediction averaging) 
(Score Fusion, B, HT, HF) 

90.25 

5. DISCUSSION AND CONCLUSION 

This paper has presented CNN-based methods for the 
DCASE 2018 Bird Audio Detection challenge, including 
experiments adjusting the temporal and frequency resolu-
tion, signal enhancement for the purpose of dataset nor-
malization, and a method for explicit domain adaptation 
based on covariance normalizations. Overall results on the 
leaderboard evaluation dataset show that although none of 
these approaches gave significant improvements on overall 
AUC or accuracy metrics, but that combining them togeth-
er using score fusion approaches were beneficial, improv-
ing AUC from a baseline of 86.83 to 90.25 on the leader-
board dataset. The system scored 83.9% on the challenge 
evaluation dataset, winning the award for Highest-scoring 
open-source/reproducible method on this challenge task. 
  



Detection and Classification of Acoustic Scenes and Events 2018  19-20 November 2018, Surrey, UK   

6. REFERENCES 

[1] Grill, T. and J. Schlüter. Two convolutional neural networks 
for bird detection in audio signals. in 2017 25th European 
Signal Processing Conference (EUSIPCO). 2017. 

[2] Stowell, D., et al., Automatic acoustic detection of birds 
through deep learning: the first Bird Audio Detection 
challenge. 2018. 

[3] Christine Erbe, M.L.D., Animal Bioacoustics. 2017. 
[4] Stepanian, P.M., et al., Extending bioacoustic monitoring of 

birds aloft through flight call localization with a three-
dimensional microphone array. Ecol Evol, 2016. 6(19): p. 
7039-7046. 

[5] Ross, S.R.P.J., et al., Listening to ecosystems: data-rich 
acoustic monitoring through landscape-scale sensor 
networks. Ecological Research, 2018. 33(1): p. 135-147. 

[6] Adi, K., M.T. Johnson, and T.S. Osiejuk, Acoustic 
censusing using automatic vocalization classification and 
identity recognition. J Acoust Soc Am, 2010. 127(2): p. 
874-83. 

[7] Catherine, P.O., Chapter 2: Effects of noise pollution on 
birds: A brief review of our knowledge. Ornithological 
Monographs, 2012. 74(1): p. 6-22. 

[8] Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S., & 
Bello, J.P., Birdvox-full-night : a Dataset and Benchmark 
for Avian Flight Call Detection. 2018. 

[9] Stowell, D. and M.D. Plumbley, An open dataset for 
research on audio field recording archives: freefield1010. 
2013. 

[10] Clemins, M.T.J.a.P.J., Hidden Markov Model Signal 
Classification, in Comparative Bioacoustics: An Overview. 
2017, Bentham Science. p. 358-414. 

[11] Sevilla, A. and H. Glotin. Audio Bird Classification with 
Inception-v4 extended with Time and Time-Frequency 
Attention Mechanisms. in CLEF. 2017. 

[12] Wood, W.E. and S.M. Yezerinac, Song Sparrow (Melospiza 
melodia) Song Varies with Urban Noise (Le Chant de 
Melospiza melodia Varie avec le Bruit Urbain). The Auk, 
2006. 123(3): p. 650-659. 

[13] Cohen, I., Noise spectrum estimation in adverse 
environments: improved minima controlled recursive 
averaging. IEEE Transactions on Speech and Audio 
Processing, 2003. 11(5): p. 466-475. 

[14] Sun, B., J. Feng, and K. Saenko, Return of Frustratingly 
Easy Domain Adaptation. 2015. 

 


