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Abstract
This paper, Moneyballer 1 , uses binary integer program-
ming to create optimal sequences of teams in fantasy
sports leagues, particularly cricket. Some of the prop-
erties of team selection in sport are very similar to that
in finance, which make this problem somewhat similar
to the former. We recalibrate our model according to
the distinctions between the two. For example, like the
Black-Litterman model, our technique shows theoretical
guarantees on overall team performance in a league de-
pendent on your predicted return. Like the Markowitz
model, it attempts to optimize on returns, however it does
not penalize for risk and assumes (perhaps incorrectly),
independence between performance of assets (players).
Our model breaks software limits in previous research
by 33x, and produces a team which rates 99.53%ile in a
league of above 430,000 participants. It also introduces
an automated backtesting framework for cricket perfor-
mance measure testing, and supplies a method to fetch
rich cricket statistics automatically.

1 Outlining the Problem

1.1 Cricket - Basic Gameplay
Cricket is a bat and ball game played by two teams of
11 players each. The game is played in several differ-
ent variants. The format of the game we deal with, in
particular, is the T20 format. Regarded as a fairly com-
plicated game, here are some general gameplay rules of
T20 cricket:

• One team goes out and bats, while the other bowls.
This session is called an innings. When the first

1The title is a portmanteau of ”moneyball” - a the book and fol-
lowing movie, Moneyball, which deals with the successful applica-
tion of statistics in baseball to win 19 consecutive games with a
below average financial budget http://en.wikipedia.org/wiki/
Moneyball, and ”baller” - a street ball player who has made it into the
big leagues.

team’s innings is finished, either because all their
11 players got out or because they finished playing
their allotted time, the second team goes out to bat
with the goal of getting as many runs as the first.
Two batsmen bat together at a time. And if there
is only one batsman left to bat, the innings is deter-
mined to be over.

• The time allotted per team in T20 cricket is 20
overs. Each over consists of 6 balls or deliveries.
Each over is bowled by one member of the bowl-
ing team. Consecutive overs cannot be bowled by
the same bowler. Typically, one innings takes one
to one and a half hours.

• Each bowler can bowl 4 overs in one innings. Typ-
ically 5 to 6 bowlers bowl from the bowling team in
one innings to make up the entire 20 over quota.

• Two batsman from the batting team bat together at
a time. They can hit the ball along the ground any-
where and run from one end to the other - a distance
of 22 yards. For each time they run, they accumu-
late that many points.

• If the balls crosses the boundary line, a circle sur-
rounding the batting area usually 60 - 80 meters
away, without bouncing, the batsmen gets 6 points,
and if it does bounce, he gets 4 points.

• There are several ways a batsman can get out.

– He can be caught by any of the 11 people in
the bowling side (including the bowler) with-
out the ball touching the ground. When the
bowler catches the ball of his own delivery, the
dismissal is called caught and bowled.

– He protects three sticks behind him when he
bats. If he misses the ball and the ball hits any
of the three sticks, he is out bowled.



Figure 1: A snapshot of the typical action on a cricket field with some of the important characters labelled.

– He also keeps some part of his foot behind a
line called the crease near the sticks. If, while
trying to play his shot, he moves out beyond
that line, the person standing behind the sticks,
called the wicketkeeper, can hit the sticks with
the ball, to stump him. This is more uncom-
mon than the previous two.

– If he misses a ball which would have hit the
stumps if he hadn’t been there, then he gets
dismissed leg before wicket.

– While running from one end to another after
hitting a ball, if any person from the opposing
side throws the ball to the sticks at each end
and hits it (directly or indirectly) before the
batsman has crossed his line with some form
of his body or his bat, then he is given out run
out.

• If the first team puts up a score and either dismisses
10 players of the other team for a lower score, or
the other team plays out their allotted overs with-
out achieving their target, the first team wins. If the
second team manages to score at least one more run
than the first team, they are declared winners and
the game ends.

1.2 Specific Rules and Restrictions
The specific Fantasy we use for testing is the biggest
T20 tournament of the word, called the Indian Premier
League (IPL). Special rules apply to this tournament,

and even more specifically to this Fantasy league, which
are relevant to our problem:

• Squad Balance - Each player can have one of
the following ”skillets”. There exist 3 ”multi-
ple skillet” combinations as well - Batsman + All
Rounder, Batsman + Wicketkeeper, and Bowler +
All Rounder:

– Batsman (At least 4) A squad must have at
least 4 specialist batsman. Although all 11
players can go bat, specialist batsmen typi-
cally score many more points, or runs, for his
team.

– Bowler (At least 2) A squad must have at least
2 specialist bowlers. Not all 11 players can
bowl.

– All-Rounder (At least 1) A squad must have
at least 1 specialist all-rounder - some-one
skilled at both batting and bowling.

– Wicketkeeper (Exactly 1) A specialist role
called the wicketkeeper has to be be in ev-
ery team - at least one. He is the person who
stands behind the sticks and collects the ball if
the batsman misses, or attempts to catch balls
that deflect off the bat, or stump the batsman
when he steps out of his crease.

– Bowling Criteria (At least 5) The sum of
number of all rounders and bowlers on a par-
ticular team must be 5 or greater. Because
each bowler can bowl 4 overs, and there are
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20 overs in a match, every team needs at least
5 people who can bowl.

• Overseas Limit The Indian Premier League is pri-
marily composed of domestic Indian players, with
an abundance of foreign players from other top
cricket playing nations, including England, Aus-
tralia, South Africa and the West Indies.
The format of the league restricts the number of
overseas players in a playing squad to 4 players.

• Uncapped Quota As one objective of the IPL is to
foster domestic Indian players who have not played
in any international matches before to rise to the oc-
casion. In celebration of this, a squad must have at
least 1 uncapped player

• Franchise Spread There are 8 teams in the IPL (at
least this year). Each of them is based off of a par-
ticular location of the country. The 8 teams are:

– Kolkata Knight Riders (KKR)
– Royal Challengers Bangalore (RCB)
– Kings XI Punjab (KXIP)
– Delhi Daredevils (DD)
– Mumbai Indians (MI)
– Rajasthan Royals (RR)
– Sunrisers Hyderabad (SRH)
– Chennai Super Kings (CSK)

A franchise spread criteria for Fantasy IPL is that
you cannot have more than 6 players from one par-
ticular IPL franchise.

• Financial Strength Criteria Clearly, all the play-
ers available are not of equal strength - their skillets
range from international legends, to upcoming un-
capped 19 year olds. Based on their skill set, each
player is given a price tag - ranging from $600,000
to $1,100,000. The budget that you, as a manager,
have while making your team

Figure 2: The logo of the 2014 Pepsi IPL T20

Figure 3: A distribution of the various roles of players in
the IPL 2014.

• Substitution Constraint In the preliminary series
of the tournament, there are 56 total games played
between the 8 teams. In each, a user receives points
if a player he or she has is playing on that day gets
a certain number of points depending on a scoring
metric discussed later. If, for example, RCB plays
KKR, and you have no RCB or KKR players in your
team that day, you receive 0 points. Each user gets
75 substitutions for the preliminary round.

• Uncapped Player Substitution To promote un-
capped player, the Fantasy rules allow one free un-
capped player substitution in every match, in ad-
dition to the 75.

• Power Player Every match, you get to choose your
”power player”. This player gets his points in the
next match doubled.

• Lock In To prevent trading of players during the
match, a user is only allowed to modify his team
before the start of a match. After the match starts,
his team is locked, and no further substitutions will
count for points in that match.

1.3 Scoring System
The IPL 2014’s preliminary stages consist of 56 games
from April 16 to May 25th. On some days no games
are played, but usually each day has 1-2 games. You
are allowed infinite substitutions before the beginning of
the tournament. Before the beginning of the next day’s
match, you’re allowed to change your team. If a game
X vs. Y occurs tomorrow at time t. At t, your team
selection is locked down. After the game is finished, you
receive points as per the rules above and system below.
Points are only received by players on your fantasy that
belong to teams X and Y if they played that day. All
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Figure 4: A look at the dashboard for exchange of players in the Fantasy IPL.

Figure 5: A graph showing the progression of points for
each of the 178 players in the tournament.

players from other teams receive 0 points if they do not
play on that day. After every day, you’re allowed to make
changes or substations to your side, but you are capped
as per the rules above.
The fantasy league attempts to gauge the performance of
distinct aspects of the game on one linear point scale. It
uses various statistics based on a player’s performance
in a match to derive his points, which may be positive
or negative. Note, the power player gets double his base

points, regardless of whether negative or positive.

• Batting points

– Base Score 1 point per run
The more runs your score, the more points you
get.

– Impact Score 2 points per six, -5 per duck
(getting out on 0 runs)
In the smaller, 20 over format, six runs is a
great boost in the scoring rate, and rewarded.
Getting out without scoring is a disappoint-
ment, and penalized.

– Milestone Score 10 points for every 25 runs
scored
Intuitively, 25, 50, 75 and 100 have been re-
garded as large milestones for runs in crickets
in a given innings, and players are rewarded
for it.

– Pace Bonus Runs scored - balls faced
Intuitively, players who hit more runs off
fewer deliveries are more valuable, and they
are rewarded thus.

• Bowling points

– Base Score 20 points per wicket
A wicket, or getting an opposing batsman out,
is a huge prize. Only 10 can be taken in an
innings, and each is rewarded with 20 points.

4



– Impact Score 1 points per dot ball, 20 points
for a maiden over
A dot ball, or a ball where no run is scored,
is rare and is a desirable by the bowler. A
maiden over, or one segment of 6 consecu-
tive dot balls, is rewarded handsomely with 20
points.

– Milestone Score 10 points for the 2nd wicket,
10 points for each subsequent wicket
Taking more than one wicket in a T20 is an
uncommon feat, and rewarded with bonuses.

– Pace Bonus 1.5x Balls bowled - runs con-
ceded. If positive, it is doubled.
A bowlers goal is to concede as few runs as
possible, also known as maintaining a good
economy rate. For doing this, they are re-
warded with points, even if they fail to dismiss
a batsman.

• Fielding points

– Catches 10 points
For a player who takes a catch to dismiss a
batsman.

– Stumping 15 points
For a wicketkeeper who hits the sticks with the
ball when the batsman is not within his crease,
or his safe line.

– Direct Hit 15 points
When a fielder throws the ball from the dis-
tance and it directly hits the sticks while the
batsmen are running, and they are not in their
safe zone, then they are rewarded points.

– Run Out 10 points for each player involved
Similar to a direct hit, except the throw from
the distance need not directly hit the stumps.
As long as a batsman is dismissed before he
makes his ground, all fielding players involved
in throwing the ball are rewarded.

• Bonus points

– Player of the match 25 points
The most valuable player of every match is re-
warded 25 more points for his performance.

– Victory Bonus 5 points
A player in the victorious side is rewarded
with 5 points.

1.4 The Problem
We broadly separate our problem in to 2 parts - static
prediction, which creates a selection given rules and

Figure 7: A distribution of the prices of all the players in
the IPL. They range from $600k to $1.1m.

constraints on day 1 for the entire fantasy league without
updating expectations after the actual cricket games take
place, and dynamic prediction, which solves the prob-
lem after every day of play, updating its expected player
performance with time.

1.4.1 Static Prediction

In plain words, our problem S is to pick a team of 11
players for every one of the 37 days of play, each of
which should abide by certain cricketing squad balance
and budgeting based team constraints. The total num-
ber of substitutions incurred in the selection of all these
teams should be less than equal to 75. The resultant se-
lection of teams should maximize the expected points
that you, as a ”manager” collect from the entire endeavor.
The point formula is strongly correlated with the general
quality of cricket performances. The initial expectations
of all the players can be given by e, in which case this
problem problem produces a solution S(e). The static
forecast is a solvable problem, with a ”correct” solution
to be found.

1.4.2 Dynamic Prediction

If the Static Prediction problem is called S, then the Dy-
namic Prediction problem solves S after each day of play
with an expectation e. If e were to remain constant from
day to day, then the solution of S1(e), the static predic-
tion given an expectation e on day 1, would be such that
S2(e) 2 S1(e). If it remained constant for all n days,

Sk+1(e) 2 Sk(e) 81  k < n ,k 2 Z
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Figure 6: The 8 teams participating in the IPL 2014.

Therefore, applying each static forecast solution on each
day would be equivalent to applying S1(e).
However, in sport, the odds of all players performing ex-
actly as you expect is negligible. As such, we have a
separate ek for every game. If Sk(e) produces a list of
teams for days k...n, we refer to the ith team that Sk(e)
predicts as Sk(e)[i] The Dynamic Prediction algorithm D
is simply

D = [Sk(ek))[k] | 1  k  n]

This is simply an aggregate of static predictions for up-
dated player performance expectations.

2 Why this is an interesting problem?

Intellectual Merit

• Uniqueness The area of using optimization based
approaches for team selection in sport, especially
cricket, has not been a typically wide area of re-
search. The only previous research on it varies little,
and comes from a Econometrics and Sports Model-
ing research group at Nelson Mandela Metropolitan
University 2, with Gerber and Sharp [2006] being
the seminal work in the field.

• Directly applicable to Operations Research
While typically most of the work in this field is lim-
ited to Sports journals, or Statistical journals, this
particular approach to the problem has been pub-
lished in Journal of the Operational Research Soci-
ety [Sharp et al., 2011].

• The use of an NP-complete 0-1 Integer Linear
Programming Method In computational complex-
ity theory, Karp [1972] reduced 21 combinato-
rial problems, including 0-1 linear integer program-
ming, to SAT, proving it NP-complete. This makes
the problem a superpolynomial in the input size, and
a challenging problem to solve.

2GD Sharp, WJ Brettenny, JW Gonsalves, M Lourens & RJ Stretch

• Using Gurobi to its limits In Meindl and Templ
[2012], we learn that Gurobi ranks 1st in all stan-
dard benchmarks [Dolan and Moré, 2002], Mittel-
mann LP benchmarks, Mittelmann [2003]and 2nd
amongst all other benchmarks set by the paper3 in
performance while solving linear problems. Gurobi
4 is a commercial optimization software used to
solve a wide variety of optimization problems. Most
noticeably, Gurobi has multi-core parallelism fea-
tures and a concise API. One article says ”The
harder the problem, they say, the better their per-
formance and the bigger the gap.” 5.
The cutting edge performance of Gurobi makes it
an ideal solution to a problem which was once pre-
viously bounded by software limits.

• Similarity and applicability to the classic finan-
cial trading models The general framework of the
problem fits in with the algorithms traditionally
used in finance - such as the Markowitz Model
[Markowitz, 1952] and the Model [He, 1999]. We
discuss in further sections.

• Making available fairly inaccessible data Pre-
vious approaches [Brettenny, 2010] use manual
data collection methods using Excel. We auto-
mate data collection and updating using a headless
browser like PhantomJS and certain jQuery selec-
tors to scrape recent data 6.
Our superior data collection method not only lends
itself to a more comprehensive, automated frame-
work, but provides a cohesive set of data for back-
testing as the tournament progresses. This backtest-
ing data could be invaluable for future benchmark-

3The software that ranked first was CPLEX, developed by two of
the three Gurobi founders.

4
http://www.gurobi.com/

5”First Look - Gurobi Optimization” - James
Taylor - http://jtonedm.com/2011/03/02/

first-look-gurobi-optimization/

6We currently have the Javascript for jQuery selectors, but have not
integrated the headless browser into the update framework
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ing of predictive performance metrics, which is the
majority of cricket research, as discussed in the next
section.

Broader Impact

• Predictive Application to Fantasy Sports Se-
lection Fantasy sports leagues has become ex-
tremely popular. The English Premier League Fan-
tasy Sports League has over 2,000,000 participants
[Liantzas et al., 2013] and the IPL Fantasy League,
in 2014, has around 432,000 participants. 7

This paper provides a cohesive framework that can
be used an average Fantasy League player, much
like an investor in finance, using either performance
measures supplied by the algorithm, or their own
instinct, such as in Black-Litterman. Regardless of
what they choose, the framework guarantees an op-
timal set of teams and substitution, leaving the bur-
den of satisfying constraints on the software. The
user merely has to write an algorithm or use instinct
to input his predictions on player performance, or
use one pre-written our system.

• Generalizable Application to Constrained Com-
binatorial Selection Our framework does a lot of
things out of the box - automatic up-to-date data re-
trieval, backtesting, and solves large optimization
problems (using Gurobi) to select teams. The only
things to modify are - schedule to backtest on, data
for players, rules, and the endpoint from which to
update data (or a historical store). It can be used for
many more applications than merely cricket.

• Direct Application to Statistical Cricket Selec-
tion Selection into sports teams is a matter of pride
and competition. Very often, we hear of controver-
sial sports selections, that cause an uproar. We want
to back the intuition behind team formation and se-
lection with a theoretical, statistical framework.
Although, the particular constraints restrict the soft-
ware to the IPL Fantasy League, it can trivially be
modified to asset in statistical based selection for
real world international, or even by teams in the
IPL, to assist in which players to buy in auctions
for how much and how they will perform. With
some modifications to the framework, application
to a real-world cricket scenario is not difficult.

3 Previous Works

There exists a fairly small amount of total papers based
on computational cricket in statistics, many of which are

7Accessed 17th May, 2014. https://fantasy.iplt20.com/

ifl/leaderboard/list/allteams

discussed below. These works can be broadly catego-
rized into several groups, and I discuss how their contri-
butions are relevant yet fall short of solving the problem
at hand:

• Data Aggregation and Performance Indicators
An overwhelming amount of work in the sports
statistics area, particularly cricket, is done purely
on aggregating and visualizing statistics. In
Damodaran [2006], the author aggregates and vi-
sualizes certain data metrics of around 14 players,
without making any key insights. Most papers are
centered solely on finding statistics that are most in-
dicative of success of a particular type of player in
a particular sport.
Saikia et al. [2012] uses a fairly complex machine
learning method using Artificial Neural Networks
for predictive performance of bowlers.
Sharma et al. [2012] attempts to pick the best bats-
men in T20 with an ordered weighted average while
Amin and Sharma [2014] tries a more in-depth ap-
proach two-way regression approach.
Lemmer [2011] attempts to find statistically signif-
icant performance measures for wicketkeepers in
cricket.
Sharma [2013] does a general study of performance
indicators in the sport.
These works are all very useful for the future, and
could all be integrated into my model as a perfor-
mance predictor.

• Singular Team Selection with Little Predictive
Ability There exists a large amount of work that as-
sists in selection of a single team in cricket. They
aren’t meant to be used in the same setting as the
algorithm in this paper. They are not-self updating
and are not built into backtesting frameworks.
For example, in Omkar and Verma [2003], a ge-
netic algorithm was used to create a cricket team.
The study seemed to optimize one team of 11 play-
ers from a set of 23, based on certain ”fitness” pa-
rameter. It does not indicate sufficiently adequately
results regarding team balance. Neither is it suf-
ficiently adaptive from one game to the next. It
does not discuss how useful this ”fitness” parame-
ter is in predicting future performance. In Ahmed
et al. [2011], they use a multi-objective optimiza-
tion function to optimization on bowling averages
and batting averages of players. This approach has
many flaws. For example, it assumes that batting
and bowling averages are the best metrics to opti-
mize on to construct the perfect team. Secondly,
the manner in which the paper tries to construct ap-
propriate teams from the ”knee cap” of the Pareto-
optimal front seems like a add-on sanity check. Fur-
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ther, it only models one team of 11 players , and
chooses from a pool of 129 players.
Similarly, works like Bhattacharjee and Saikia
[2013] and Lemmer [2013] purely deal with rather
arbitrary measures for the far more simple task of
simple selection.
Summers et al. [2007] was a pioneering work in sta-
tistical cricket selection, used in hockey leagues.

• 0-1 Integer Optimization for Modelling Team Se-
lection and Substitution Of all the areas of compu-
tational cricket research, this area strikes me as most
relevant and closest to the work that I present 8.
As stated before, there seems to be only one Econo-
metrics and Sports Modeling research group that
has done all the work in this area - Brettenny
[2010], Lourens [2009], Brettenny et al. [2012],
Sharp et al. [2011] - all talk about the same concept,
similar to my approach. The seminal work in this
subfield is Gerber and Sharp [2006], also from this
research group. However, all these papers have key
setbacks -

– They have a manual and limited data collec-
tion process. They capture data from only one
previous tournament, and only compute ag-
gregate, and not match by math statistics.

– Their software limits them to operating on 50
players for every matches for 4 matches total.

– They do not develop a framework for backtest-
ing the model.

– They cannot be practically used in a Fantasy
League environment.

– They conform to the older Fantasy League
standards, which are riddled with several
overtly lax, or unreasonable constraints on
cricket gameplay. The Indian Premier League
started in 2008, and most of their research
conforms to standards between 2008-2010.
This paper uses the updated rules and scoring
methods of the 7th season, 9. Several of these
newer standards are trickier to integrate into
the integer optimization framework.

4 Relationship to Finance

In many ways, fantasy league player selection and ex-
pected point optimization is similar to well studied fi-
nance theories.

8At the time of writing this paper, I had no clue of the existence of
these works. It turns out that I solve a very similar problem in a similar
way, but in ways discussed throughout the paper, better.

9Official IPL T20 Fantasy League Standards, 2014 - https://

fantasy.iplt20.com/ifl/default/faq#

4.1 Similarities
• We have a portfolio we want to optimize In the fi-

nance analogy, assets are players, and portfolios are
teams we select at different time stamps. We want to
optimize the performance of this changing portfolio
over time (this becomes our objective function).

• We can model an expected return based on
past performance Similar to the Markowitz model
[Markowitz, 1952], we can model performance of
our assets based on past performance. Also, simi-
larly, these models are usually not consistently ac-
curate.

• We have a budget restriction on the assets we
purchase In finance, we have a specific amount
of wealth we can choose to invest in our portfolio.
Similarly, in the fantasy league, we have a specific
budget restriction for selecting our portfolio.

• Integrating (better) Investor beliefs is possible,
and sought In the Black-Litterman model [He,
1999], investor beliefs are used to guide the ex-
pected value of the assets. Similarly, in fantasy
cricket, because the past predictors are fairly week,
expert investor beliefs can trivially be integrated to
model expected return.

Figure 8: The demonstration of risk-return tradeoffs be-
tween 20 top IPL 2014 performers, according to their
role in the team, or analogously, their ”asset class”.

• There exist a risk-return tradeoff between differ-
ent asset classes In finance, for example, you have
2 distinct types of asset classes - bonds and stocks.
Bonds have low risk and low return, while stocks
have high risk and higher return. In cricket, player
roles work in similar ways. Because bowlers always
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bowl regardless of game events, and great bowlers
always return a sizable number of points, they are
like bonds. The way we model bowler returns is
very different from batsmen. Even great batsmen
can get out on a duck (without scoring runs), or al-
ternatively score many runs very quickly, and ac-
quire much more points than bowlers will ever be
able to. They are like stocks.

• We can potentially model riskiness in assets Sim-
ilar to finance, it is not trivial to accurately describe
the riskiness of an asset. Yet with similar standard
deviation metrics, it is possible to describe an as-
set’s riskiness, and this can further be optimized in
the objective function.

Figure 9: The demonstration of how player performances
have stacked up to their price, showing the most over-
priced and under-priced players of the tournament.

4.2 Differences
• We cannot short assets In finance, we can bet

against an asset by short selling it. Unfortunately,
in fantasy sports league, you can only buy assets
(players), not bet against them.

• Changes to the portfolio aren’t charged, they
are restricted Unlike in finance, where typically
changes to the portfolio are priced with a transac-
tion cost, either fixed or variable or both. In fantasy
cricket, the total number of changes you can make
to your portfolio are restricted, not charged.

• More than one ”amount” of an asset can’t be
held In finance, we can hold any amount of a cer-
tain asset. In fantasy sport, we cannot own a player

Figure 10: The demonstration of how player perfor-
mances have stacked up to their popularity amongst IPL
fans and fantasy players, showing the most over-rated
and under-rated players of the tournament.

more than once 10.

• Assets are assumed to be negligibly correlated
Whereas in finance, you have sets of assets who’s
prices are strongly correlated, and the market tends
to trend in one direction, in fantasy cricket, one as-
sumption (debatable) is that the assets move inde-
pendently of one another.

• All Assets do not change price everyday, but we
know which ones do when Whereas in finance,
every asset moves in value every day, in fantasy
cricket, the value of a player changes only if he
plays a match. Otherwise, their scores are guaran-
teed to remain constant.

• Tomorrow’s asset price expectation is not cen-
tered on todays In finance, we express the gain or
loss as a function of yesterday’s asset price. Every-
thing moves in percentages about the center.
In cricket, the batsman or bowler starts from scratch
in every match. While there is a slight correla-
tion between a good performance in the match be-
fore and this match, a consistency element called
”form”, a player scores do not tend to their score in
the last match.

• The returns on our assets are a distinct value
from the spending on them In finance, when you
invest in assets and make a profit, the profit can be

10A point to note is that the IPL T20 Fantasy Cricket League does
have a facility for setting a power player on every game. This power
player gets rewarded with double his or her original score. In some
sense, 2 of the same asset is held.
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reinvested into your portfolio. In fantasy cricket,
your reward and spending are separate entities. No
matter how much your reward, you will always be
restricted to the same budget restrictions as before
throughout the tournament.

• Prices of assets do not change Continuing from
last point, the price of the asset also doesn’t change
in fantasy cricket.

• Negative returns are rare Although small negative
returns are theoretically possible, they are few and
far between.

These key difference force us to adapt our finance model
to fit the criteria.

5 Math & Methodology

5.1 Theory
We attempt to formulate our problem as a mathematical
optimization problem. Most mathematical optimization
problems have 3 key components:

• Decision Variables These variables make the ulti-
mate decision of the optimization problem.

• Constraints These are the restrictions imposed
upon the decision variables.

• Objective Function It defines what must be opti-
mized, in terms of the decision variables.

These 3 components are essential to formulate an opti-
mization problem. Particularly relevant to our approach
is Linear Programming(LP) , Integer Programming (IP)
and Binary Integer Programming(BIP).

Figure 11: The feasible region, or convex polygon satis-
fying all constraints in a Linear Program(LP)

Linear Programming (LP)

A LP method is an optimization method that operates on
linear constraints and objectives.
Geometrically, this can be interpreted in 2D. The set of
constraints on a linear program bounds its decision vari-
ables to a convex polygon in the 2D plane. It then tries to
find the point inside this convex polygon that maximizes
or minimizes the objective function. Typically, for linear
programs, this will lie on the edge of the polygon.
Linear programs are expressed as follows:

maximize cT x

subject to Ax  b

and x � 0

Figure 12: A demonstration of LP-relaxation on an Inte-
ger Program

Integer Programming (IP)

Integer Programming (IP) is a special case of Linear Pro-
gramming(LP) where the decision variables are integral,
i.e, the problem comes with an additional constraint:

x 2 Z

They are typically a harder class of problems than LP be-
cause they are NP-hard and cannot be efficiently solved
in the worst case. Algorithms used to solve IP include
Cutting-Plane Method, Branch and Bound, Branch and
Cut, Branch and Price and Delayed Column Generation.
NP-complete problems such as SAT, Travelling Sales-
man, Vertex Cover and Set Packing can all be solved us-
ing IP methods.

Binary Integer Programming(BIP)

Binary Integer Programming (BIP) is a special case of
Integer Programming (IP) where the decision variables

10



can only be 0 or 1, i.e., the problem has the additional
constraint

x 2 {0,1}

Gurobi typically solves these problems using Branch
and Bound. The algorithm works as follows:

Figure 13: Each node of the branch-and-bound algorithm
is a new IP problem.

• Remove all integrality restrictions. This step is
known as LP-relaxation.

• Proceed to solve the LP-relaxation. If our solution
adheres to the binary integrality constraints, pro-
ceed.

• If not, we pick an arbitrary non-binary variable and
impose the restriction x  0 and x � 1 and branch
out the problem into 2. Eventually we will take the
optimal value from the two to attain optimality.

• We recursively compute LP-relaxations and branch
on our children, picking the optimal amongst our
children until we get the optimal value at the root.
However, simple Branch and Bound on a BIP pro-
gram will usually be exponential. To solve this,
we use the concept of Fathomed and Incumbent
nodes. Essentially,

– If at any node, we find a feasible integral solu-
tion after LP-relaxation, we mark the node as
fathomed and do not branch on it.

– The best solution found so far is called the in-
cumbent. If we have no incumbent, the fath-
omed node becomes incumbent. Otherwise,
no update is made and the search continues.

– Fathomed nodes that yield a higher value than
the incumbent is dismissed, and branching
stops. If the LP-relaxation itself is unsolvable,
the same thing happens

As we continue our branch and bound using our
fathomed and incumbent node signals, our incum-
bent always represents our best bound. As the
branch and bound search continues, the minimum
of all the nodes is also stored and reupdated. When
the difference between the incumbent and the other
bound become 0, optimality is attained.

Optimizing the Optimization

In recent times, high-performance software like Gurobi
uses several techniques to further optimize the speed of
BIP. Some of the biggest optimizations are:

• Presolve This technique attempts to eliminate re-
dundant constraints using simple numerical analy-
sis. For example if x1 + x2 � 3 and x1  2 and
x2  1, we know that x1 = 2 and x2 = 1 and we can
eliminate all these constraints. This really optimizes
the solver’s speed.

• Cutting Planes This technique, as opposed to pre
solve, adds in necessary right constraints on the BIP.
This judicious addition of constraints around the op-
timal value is extremely beneficial to the process.

Figure 14: Demonstration of the cutting planes algorithm
used to solve Integer Programmign problems

• Heuristics Heuristics round results of the LP-
relaxation to find integral solutions that may be
valid incumbents. Finding these helps reduce the
amount of branching that might have happened in
the future and makes BIP faster.

• Parallelism When branching out, the optimization
process is easily parallel-izable. The algorithm
works on each of the nodes in parallel, speeding up
the process, and utilizing more cores.
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Figure 15: How branch-and-bound can be parallelized
across cores in Gurobi’s optimization strategy.

5.2 Formulating the Binary Integer Pro-
gramming Model

Now that we know how our Optimization works, we need
to formulate the problem’s decision variables, constraints
and objective function.
Our BIP decision variables somewhat represent a portfo-
lio distribution - 1 represents possession of the asset and
0 represents its absence. In other words, each decision
variable represents a player, and is 1 if he is selected and
0 otherwise.

5.2.1 Decision Variables

Suppose there are n players and there are q days on which
games are played. We want to select a team for every day
of play, and therefore need nq decision variables. Our
decision vector XXX(nq⇥1) is defined as

XXX = [x11,x12,x13, . . . ,x1n,x21,x22, . . . ,xnq]

where xi j is a binary variable which indicates whether
player i will be chosen on match j. Formally,

xi j =

(
1 if player i is chosen for match j
0 otherwise

5.2.2 Constraints

For our convenience, we define vectors 000(1⇥n),

000 = [0,0, . . . ,0]

and 111(1⇥n),
111 = [1,1, . . . ,1]

• Team Size For each of the q teams we pick, we must
ensure the number of players in the team for a given
day of play is 11. In other words, Â j xi j = 11. We

define the team size vector TTT iii(1⇥nq):

TTT iii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

111|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The constraint is

TTT iiiXXX = 11 81  i  q, i 2 Z

• Budget For each of the q teams, each team must
not be worth more than the cap of $1m. We define a
price vector PPP(1⇥n) defined as:

PPP = [p1, p2, p3, . . . pn]

The price of a player at i is given by pi. We now
introduce FFFiii(1⇥nq):

FFFiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

PPP|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The constraint is

FFFiiiXXX  1,000,000 81  i  q, i 2 Z

11

• Squad Balance In order to maintain squad bal-
ance in terms of distribution of bowlers and batsmen
within a team, we add the following variables:

bi =

(
1 if player i is a batsman
0 otherwise

ci =

(
1 if player i is a bowler
0 otherwise

ai =

(
1 if player i is a all rounder
0 otherwise

wi =

(
1 if player i is a wicketkeeper
0 otherwise

These variables are defined for 1  i  n. We then
define the following vectors of size (1⇥n):

BBB = [b1,b2, . . .bn]

CCC = [c1,c2, . . .cn]

11The strategy used to generate constraints of this sort are reused
throughout this problem. Essentially, you have q consecutive days, and
we generate q vectors of the form [000 . . .000YYY 000 . . .000] in order to apply the
constraint YYY (1⇥n) to every one of the q teams.
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AAA = [a1,a2, . . .an]

WWW = [w1,w2, . . .wn]

We therefore define BBBBBBiii(1 ⇥ nq), CCCCCCiii(1 ⇥ nq),
AAAAAAiii(1⇥nq) and WWWWWW iii(1⇥nq), standard constraints
for the balance of squad in terms of wicket keeper,
all rounder, batsman and fielder representation.

BBBBBBiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

BBB|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The constraint is that we need at least 4 batsmen
(we use negative signs to preserve the ordering of
the inequality):

�BBBBBBiiiXXX �4 81  i  q, i 2 Z

CCCCCCiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

CCC|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The constraint is that we need at least 2 bowlers:

�CCCCCCiiiXXX �2 81  i  q, i 2 Z

AAAAAAiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

AAA|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The constraint is that we need at least 1 all rounder:

�AAAAAAiiiXXX �1 81  i  q, i 2 Z

WWWWWW iii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

WWW|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The constraint is that we need 1 wicketkeeper in our
team at all time (note the inequality):

�WWWWWW iiiXXX =�1 81  i  q, i 2 Z

Finally, we have a bowling requirement that states
that 5 players on the team must be capable of bowl-
ing. We construct a vector DDD(1⇥n)as follows:

DDD = [max(a1,c1),max(a2,c2), . . .max(an,cn)]

The kth element of DDD represents whether the kth

player can bowl or not. We thus introduce a vec-
tor

DDDDDDiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

DDD|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

Then, applying the constraints, we get

�DDDDDDiiiXXX �5 81  i  q, i 2 Z

• Franchise Spread This constraint ensures that no
team we select can have more than 6 members from
the same IPL franchise.
The n players each belong to a franchise. Let there
be k franchises from 1,2, . . . ,k. We introduce a vari-
able:

fi j =

(
1 if player i is a member of franchise j
0 otherwise

There are kn such variables. For each team, we cre-
ate k vectors of the form FFF jjj(1⇥n)

FFF jjj =
⇥

f1 j, f2 j, . . . , fn j
⇤

For each of those k vectors we have a FFFFFFi(k⇥nq)

FFFFFFiii =

2

66666664

000 . . . 000 FFF111 000 . . . 000
000 . . . 000 FFF222 000 . . . 000
000 . . . 000 FFF333 000 . . . 000

...
000|{z}

1st day

. . . 000|{z}
(i�1)thday

FFFkkk|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

77777775

k⇥nq

If a vector 666(1⇥ k) represents a vector of k 6s, then

FFFFFFiiiXXX  6660 81  i  q i 2 Z

• Uncapped Constraint This constraint requires
there to be at least one uncapped player in every
team we create.
We define a uncapped vector UUU(1⇥n) defined as:

UUU = [u1,u2,u3, . . .un]

The binary variable ui decides whether the ith player
is uncapped or not. This can be expressed formally
as:

ui =

(
1 if player i is uncapped
0 otherwise

We now introduce UUUiii(1⇥nq):

UUUiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

UUU|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75
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The resulting constraint is

�UUUiiiXXX �1 81  i  q, i 2 Z

• Overseas Constraint This constraint requires there
to be less than equal to 4 overseas players in the
team you create. We define an ”overseas” vector
OOO(1⇥n) defined as:

OOO = [o1,o2,o3, . . .on]

The binary variable oi decides whether the ith player
is uncapped or not. This can be expressed formally
as:

oi =

(
1 if player i is an overseas player
0 otherwise

We now introduce OOOiii(1⇥nq):

OOOiii =

2

64 000|{z}
1st day

. . . 000|{z}
(i�1)thday

OOO|{z}
ithday

000|{z}
(i+1)thday

. . . 000|{z}
qthday

3

75

The resulting constraint is

OOOiiiXXX  4 81  i  q, i 2 Z

• Substitution Constraint This constraint ensures
that for the series of q teams generated, the num-
ber of total changes between the teams is less than
75. Without this constraint, the currently formu-
lated BIP would be a series of team selection op-
timizations accumulated into one problem with no
change barriers.
Given two binary vectors b1 and b2 of length l, the
number of substitutions incurred by changing one
to the other is

Â |b1 �b2|
2

For example, consider a universal set of size 4
where we must select 3 players. If b1 = [1,1,1,0]
and b2 = [0,1,1,1], clearly 1 substitution has been
made. |b1 � b2| = [1,0,0,1], and summing and di-
viding indeed gives us 1.
We can use this logic is a constraint for substitution
in our q matches. Let cccuuurrr denote the team you ini-
tially enter into the entire optimization with, i.e., the
team at match 0. Recall that XXX is a concatenated bi-
nary array denoting q teams selected from n players.
The term

c = |XXX � concat(cccuuurrr,XXX [000 ::: nnn(((qqq���111)))])|

is analogous to the previous example, and denotes
all changes in our q team transitions. Similarly

Âc
2

thus gives the total number of substitutions that
takes place. The final constraint is

Â |XXX � concat(cccuuurrr,XXX [0 : n(q�1)]
)

|2  75

5.2.3 Objective Function

The goal of the objective function is to somehow model
expected point return on our players.
We define a vector PPP(1⇥nq)

PPP = [p11, p12, p13, . . . , p1n, p21, p22, . . . , pnq]

Where

pi j =

(
gi j the expected points for player i on day j
0 if player i is not playing a game on day j

The ultimate objective function, which we try to minify
is

�PPPXXX

Figure 16: A distribution of predicted performances of
the various players in the IPL based on our algorithm,
interpolating career history averages as well as current
season performances.

5.3 Performance Predictors
Our approach to the problem is theoretically sound from
an optimization perspective. They key differentiator to
how successful it can be is how well it can predict per-
formance. This is similar to the issues we face in finance.

One critical issue to note is that it is extremely difficult
to predict the performance of a player in an upcoming
game. Much like finance, the movements are very ran-
dom. At best, we can say a good player will perform well
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in the long run. Durbach and Thiart [2007] argue that
there isn’t any empirical evidence supporting the percep-
tion of batsman having periods of ”form”. They claim it
impossible to predict future performance based on past
performance.

Like finance, cricket is a statistician’s delight. There
is a plethora of statistics with which we can attempt to
gauge the future. Here we list some performance predic-
tors g we tried and tested and some of some well known
ones in literature:

• Career Statistics A simple career statistics aver-
age projected into the next game. This is the basic
model.

• Exponentially weighted average Similar to
Markowitz, we simply weight statistics for a player
for the last several games. Using this weighted
average, we compute a fantasy league score expec-
tation for the current game.
This, however, has much the same disadvantages as
it does in Markowitz - the assumption of trends in
unclear.

• Lemmer’s Combined Bowling Rate 12 In Lem-
mer [2002], given a bowler with predicted runs
given r, wickets taken w, balls bowled b and maid-
ens m, the paper introduces the measure ”fantasy
combined bowling rate” (FCBR) where

FCBR =
4r

w+ b
6 +

rw
b + rb

6m

• Barr and Kantor Measure 12 In Barr and Kantor
[2004], they introduce a formula to predict a bats-
man’s worth. Given a predicted strike rate of s, with
r runs scored in m matches, they use a variable a ,
an importance weight on strike rate (how fast runs
are scored) to average (how many runs are scored).
Their formulation is

BKbwl = sa(
r
m
)

1�a

They also use a similar formulation for bowlers with
an economy rate e and average a and a preference b
to gauge whether conserving runs or taking wickets
is important. The resultant formulation is

BKbat = eb a1�b

• Saikia, Lemmer and Bhattacharjee’s Artificial
Neural Network Prediction for Bowlers12 In
Saikia et al. [2012], they introduce a neural network

12These methods are theoretically applicable in g approximation, but
were not implemented for this project.

to weigh different statistics by how predictive they
are. Such a method would play nicely with our al-
gorithm if it could give give a bound to how well it
fit historical data.

• Amin and Sharma’s two-stage regression-
ordered weighted average method for Batting
12 In Amin and Sharma [2014], he builds off a
common exponential average method by applying
regression in two stages and yields successful
results.

• Support Vector Machine Prediction Although, it
hasn’t been seen in previous literature, we can use
SVMs as a performance predictor. Much finance
literature has been which adopts the use of SVMs
on the fundamentals of an asset to create a model to
predicts its trajectory. Similarly, we can run such a
model on a plethora of cricket data, agnostic of the
type of player, to see which statistics play a bigger
role in performance prediction.

• Dynamic Exponential Average This somewhat
novel method used here is essentially the use of ex-
ponential averages, updated after every match. In
previous literature, usually the prediction is static.
This dynamic exponential average method has seen
great success and has done a great job in picking up,
and capitalizing on trends in form.

A False Simplifying Assumption

The idea of performance measure in any sport is hard.
One simplifying assumption we make is that the perfor-
mance of a cricketer is independent of another’s. This
assumption is, in fact, not true. If player A bats in
a match, and plays brilliantly without being dismissed,
player B who has been performing consistently may not
even get a chance to bat. There are, in fact, compli-
cated relationships between batting strength and bowling
strength within ones own team and their interactions be-
tween their rival teams. Statistics have shown batsmen
to be weak to certain bowlers, certain types of bowlers
(pace or spin), certain grounds, and score freely in certain
areas. Many of these complex interactions are difficult or
impossible to model without richer data.

6 High Level System Design

One of the primary objectives of this paper is to present a
cohesive framework for actual use in the Fantasy IPL, as
well as for backtesting to optimize your prediction algo-
rithm. We were fairly successful at accomplishing these
objectives.
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Figure 17: A graph showing the comparison between
points scored by our team, and another team, and the
trends of many of the teams in the leaderboard.

6.1 Technologies
The following technologies were used:

• Python We chose Python as it was fairly simple to
model structured objects and save and retrieve them
from disk via pickling. Initially, we wanted to op-
timize on Python itself, but Matlab seemed a much
better option. Python also has nice online scraping
tools.

• Matlab Matlab was an inevitable choice because of
the familiarity with its use in optimization. It played
better with Gurobi than Python did, and was syntac-
tically superior to Python with regard to optimiza-
tion, using CVXR.

• CVXR CVXR is a modeling framework for op-
timization using Matlab which makes it easy to
express constraints and objectives in Matlab syn-
tax and supports the cutting-edge in optimization
solvers.

• Gurobi As discussed before, Gurobi is probably
the fastest solver out there today, and was a great
pick for our optimization needs. It played well with
CVXR and Matlab, and got the job done.

• PyMatBridge Python and Matlab inter-
connectivity support is highly lacking. Py-
MatBridge gets the job done, but is fairly buggy
and lacks developer support. Matlab is run and
interfaced through a local server. Eventually, it
got the job done. One difficulty was halting and
proceeding with extremely long optimization in-
stances. Gurobi only allows a maximum precision

bound of 0.01 and sometimes that takes unto 4-5
minutes or more to reach. In Matlab, halting the
process proceeds with the best values found till that
point, but using pyMatBridge, it’s hard to replicate
this behavior.

• SciPy & NumPy SciPy and NumPy are essential
for Matlab like array and vector transformations. It
also helps python read and save .mat files for data
communication between the two systems.

• Pickle Pickling is a fast useful way Python can store
data to disk. We use it to store and update data stores
when running our simulation.

• Javascript & jQuery Typically, we retrieve current
data regarding the data, the number of substitutions
we have left, the updated player statistics, and our
current team from the IPL Fantasy League interface.

• PhantomJS & Ghost We’ve worked on methods
to completely automate this entire process by using
PhantomJS with Python via the Ghost driver. Phan-
tomJS is a headless browser, which renders website
content, including dynamic content, and can fetch
and parse it. Simple GET and POST requests don’t
let us retrieve dynamic content that we need to up-
date our test after every iteration.

• urllib2 & BeautifulSoup In the initial archived rich
statistical data collection about players, we com-
prehensively used urllib2 to query and retrieve and
BeautifulSoup to parse web pages.

6.2 Functionality
Our system was designed to work in the following stages:

• Parse Past Tournament Stats Aggregate
parsePlayers.py
This was another offline function we wrote to
retrieve aggregate stats of previous tournaments
which was freely available off an endpoint of the
IPL 2014 13. This data wasn’t rich, nor clean, and
had redundancies, so we replaced it with better data,
below.
This also parsed some data associated which
player’s Fantasy League attributes, such as price,
team, and role in the squad.

• Rich Historical Stats Retrieval
cricketstatsrequester.py
This is an offline function which we used to retrieve
rich historical match by match player data in T20

13
http://www.iplt20.com/
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Figure 18: A high level visualization of the feedback loop of the entire framework.

matches from espnCricInfo 14, which is the most
comprehensive and accurate data source for cricket
T20 statistics we could find online.

• Parse and Store Schedule
parseSchedule.py
This offline function queried the IPL T20 2014 site
again to parse and store a schedule as a pickle file
for use in the simulation.

• The Player Class
player.py
This was a class used to store individual player data.
It was convenient to query, and stored all the Fan-
tasy League attributed, including name, team, age,
role, and price as well as detailed past tournament
aggregates and individual match history.

• Live - BIP Formulation
pickTeam.py
This is the first live code, used for the daily updat-
ing of my Fantasy League team. It takes in inputs
- subs left, todays date, current team, schedule, and
player statistical history 15, and formulates the Bi-
nary Integer Programming as described previously.
It uses a g to compute predictions, assembles all the
matrices required, and store all the data to passed
onto Matlab in .mat files.

14
http://www.espncricinfo.com/

15This will soon be replaced by automated calls to the IPL Fantasy
League server using PhantomJS and Ghost

• Live - Optimization Solve
python2matlab.mat, cvx ipl optimization.m
At this point, the Matlab part of the system is run. It
uses the data passed from the BIP formulation, and
modifies it to create all the details of a BIP instance.
It then performances the optimization with minimal
precision (performance is more crucial for us) using
Gurobi and CVXR and saves the results to a .mat
file.

• Live - Result Visualization
showResults.py
Control is passed back into the Python script at this
point. It reads the latest data that the solved opti-
mization has outputted in its .mat files, using SciPy,
and proceeds to interpret the binary numbers, and
outputs a sequence of teams, which subs to make,
the expected objective maximized, number of subs
left, date, matches taking place, and other details
necessary to visualize the result.

• Complete Backtest
backtest.py backtest pickteam.py back-
test results.py
Complete backtest is an integrated version of the
last 3 parts of the software for dynamic backtesting.
It uses pyMatBridge to seamlessly switch control
between Matlab and Python, and it runs multiple
iterations to backtest a model, updating the data,
time, player stats automatically.

17



Figure 19: The result of the full backtest of the algorithm - 99.54%ile

Figure 20: The result of the real algorithm’s performance
on the Fantasy IPL site - 97.23%ile

7 Results

As we discussed in Section 1.4, our algorithm provides
two types of prediction - static and dynamic. Each op-
timization problem takes on average of 5 seconds to
solve, with earlier instances of the time sometimes go-
ing beyond 100 seconds. This sometimes occurs early in
the fantasy time period for dynamic testing, because the
problem size is typically larger. The results for the dy-
namic are discussed in later sections.
In practice, the value of n, the number of players, was
178. The value of q, the number of days on which
matches are played is 37. This gives us a total of nq =

37⇥178 = 6586 binary variables. Our final optimization
was of the form

minimize Qx

subject to Ax = B

and Gx  H

and Â |x� concat(cccuuurrr,x[0 : n(q�1)])|
2

 75

Figure 21: A visualization of the contents of equality
constraints A. Most of the matrix is empty because
these constraints attempt to restrict number of people and
wicketkeepers in a team, and do not constrain relation-
ships between teams at different times.
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Figure 22: A visualization of the contents of A for one
team. The top represents the total team count (11), and
the bottom represents the total wicketkeeper count (1)

Q 1⇥6586 The vector of expected returns in
the objective function

x 6586⇥1 Binary vector of decision variables
to be computed

A 74⇥6586 Matrix of equality constraints - team
size and wicketkeeper presence.

B 74⇥1 Vector of equality constraint
expectations.

G 555⇥6586 Matrix of inequality constraints -
squad balance, budget, etc.

H 555⇥1 Vector of inequality constraint
restrictions.

cur 1⇥178 The binary vector denoting the
current team possessed.

n 178 The size of the player pool

q 37 The number of days on which
matches are played

The details of the variable sizes used is as follows:
Some statistics of a Gurobi solve of a Static Prediction
(from the very beginning of the tournament, with no
changing expectations) are as follows:
Our key results were:

• Functionality The optimization did what it
promised fairly accurately, and we were able to run
and use our algorithm to ”trade” and decide teams
in the IPL T20 Fantasy League.

• Achieved 97.23%ile in the real fantasy league
Our algorithm has been in work ever since the start
of the 2014 IPL on April 16. Therefore, the mod-
ifications to algorithm over time as well as a man-

Figure 23: A visualization of the contents of inequality
constraints G. Most of the matrix is empty because these
constraints attempt to restrict quantities within a team,
and not model inter-team restrictions

Variables 33523
Equality Constraints 13839
Rows 13839
Columns 33523
NonZeros 89296
Quadratic Constraints 13172
Presolved Columns 593
Presolved Rows 0
Presolve Time 0.26
Continuous variables 26344
Binary variables 6586
Time 58.82s
Best Objective 18071.8pts

ual error16, cost us. Nonetheless, as of 5/17, we
accumulated 11979pts and ranked 13,084th out of
431,984, which is a 97.23%ile - fairly successful re-
sults.

• Achieved 99.54%ile in the world on backtest In
our live backtest, to account for the flaw in the real
world fantasy league, we achieved 13285pts up to
5/17, and ranked 2000th17 out of 431,984, which is
a 99.54%ile worldwide.

16On the first day of play, 7 subs were used to prepare the team for
the first game (users have infinite subs available before the tournament).
However, ”lockdown” had happened, and these subs wouldn’t be in
effect for the 4/16 match. This effectively cost us almost 10% of our
subs.

17The IPL leaderboard doesn’t allow you to accurately check - just
estimate.
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Figure 24: A visualization of the contents of G for one
team. It clearly shows the different constraints - the
franchise constraints, batsmen constraints, all rounder
constraints, uncapped player constraints, bowlers, bowl-
ing players, overseas players and finally the budget con-
straint. The dark blue ones are negative values because
we require maximization of them, and the light green are
positive values because we require mini fiction of them.

8 Analysis

We can summarize the major achievements of this paper
and what we’ve learnt as follows:

• 33x better than previous software limits in the
field Previously, the field of team selection in
cricket was bottlenecked by software speed. They
previously could only simulate n = 50 players for
q = 4 stages. With n = 178 and q = 37, our results
eclipsed the former best by 33x.

• Novel study and results Our study was novel in the
sense that we were the first to actually apply opti-
mization based techniques in a real Fantasy League,
automate the entire process, automatically parse and
update data, and create a framework for backtesting.
Our results were fairly groundbreaking. No such re-
sults have been reported previously.

• Created a backtesting framework for IPL cricket
data We were the first ones to create a complete
backtesting framework for IPL cricket data. This is
a huge achievement, because it creates a great way
to test performance predictors in cricket, which is
what most of the research on the field is about.

• Acquired tons of accurate, structured data We
automated the data collection process and acquired
a ton of accurate structured data for future use.
Previously, primarily manual methods were being
used.

Figure 25: The change of the binary variables of the port-
folio from week 1 to the end of the tournament, using the
Static Prediction (constant expectation).

• BIP frameworks are successful in sports fantasy
league prediction We’ve established, by applica-
tion, that BIP frameworks indeed work in fantasy
league selection. Our results were far above base-
lines.

• For Dynamic Prediction, greedy substitution re-
striction One discovery we made was that the dy-
namic prediction framework set up in 1.4 doesn’t
quite function optimally. Although, given some in-
formation, it guarantees local optimality, when the
information changes, that optimality is lost. For ex-
ample, if I have a team n at time t. Given a certain
expectation, the algorithm deems it optimal to make
7 subs between t and t + 1, and claims the number
of subs required later on will be minimal. Simi-
larly, at t +1, with updated expectations, it tends to
predict a high number of initial subs. This quickly
depletes the number of substitutions you, as a man-
ager, has. Consequentially, it is probably better to
penalize a high amount of immediate subs in the
objective function with a parameter lamb. The the-
oretical backing behind this warrants another paper.

• Provide theoretical bounds on optimality For
static prediction, and dynamic prediction, we guar-
antee theoretical bounds on optimality. In other
words, if our expectation g is identical to reality r
for all subsequent matches, we guarantee the opti-
mal output with a precision of our input.

• Independence assumption between player per-
formances may be incorrect As stated before, as-
suming that the performance of 2 players in the
same team or not playing the same game is indepen-
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dent is a simplifying assumption. Let’s take a sim-
ple example. If one team has 8 players who’ve been
performing well and the other has 1, then the op-
timization algorithm tends to return 5 players from
team 1 and none from team 0. This is probably not
optimal, because it’s unlikely that all 5 players from
the same team will perform well that day, even if
they are in form, or expected to. This is discussed
further in future work.

9 Future Work

Our research paves the way for various new work in the
field of sport statistics, operations research and cricket,
in particular:

• Use Gamma distribution to rank cricketers In
Brettenny [2010], the author alludes to a method
of ranking cricketers using a Gamma distribution
which has proven to be more accurate than mere
past statistics.

• Account for variance In our current work, we do
not account for variance (or consistency) in a crick-
eter’s performances, because unlike in Markowitz
[Markowitz, 1952], our asset movement is expected
to be normally distributed. However, a model which
incorporates and tries to maximize consistent crick-
eters is a great future direction for this work.

• Richer Cricket Statistics One bottleneck of ac-
curate complex modeling of inter-player and intra-
team relationships is the lack of more detailed, con-
solidated statistics in cricket, exposed to an API.
Knowing things like which bowlers the batsman is
strong against, and weak against, the nature of the
pitch, average scores on a certain ground and so
forth, would really open up the possibilities when it
comes to prediction in cricket, resulting in a model
which would only be affected by systematic risk -
luck.

• Speed Although we improved drastically over for-
mer works, speed in the dynamic backtest is still an
issue. It can take unto a few minutes, and is un-
bounded in time. If the optimization problem does
not converge to its precision restrictions quickly
enough, it just tends to continue indefinitely.
There are many prospective software modifications,
as well as algorithmic modifications we could make
to potentially allow backtests for multiple years in
different formats of the game - not just one tourna-
ment.

• Exploration in the space of performance mea-
sures Our paper does not focus in the contrasting

uses of different performance measures and which
ones work worse or better. However, it sets up the
perfect benchmark for such comparisons in the fu-
ture.

• Use of Support Vector Machines to predict per-
formances Certain Machine Learning techniques
have been used by Saikia et al. [2012] fairly suc-
cessfully in cricket prediction. Unlike finance, the
use of Support Vector Machines has never been
studied in a cricket setting. It would be an inter-
esting direction to work with. Many financial in-
stitutions have had luck using machine learning ap-
proaches to trading and SVMs based on fundamen-
tals may be successful.

• Aggregation of External Factor Data One of the
biggest drawbacks of this models is the failure to
predict the following unexpected events;

– Players getting injured

– Players being dropped from the side

– Players leaving the tournament to play inter-
national cricket

– The weather forecast for games.

These unexpected events always happen at least
thrice or four times in the space of a tournament,
and lead to unexpected massive point losses. Know-
ing such things would be extremely useful for better
performance.
Currently, this information can only be injected
manually into the model.

• Modelling Inter-Team Interactions in a Black-
Scholes like approach Black-Scholes used options
pricing predictions to hedge their risk in the finan-
cial markets [Black and Scholes, 1973]. There may
be a similar approach to hedge risk in cricket using
inter-team interactions. Picking both a good bowler
from team A and a good batsman from team B, who
are likely to face each other could be a hedged bet,
because one of them will perform. This is just an
idea to explore. It would probably require richer
data, but it would be an interesting direction for sta-
tistical cricket analysis.

.
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