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Abstract. We demonstrate the use of the Unified Transform Method or Method of

Fokas for boundary value problems for systems of constant-coefficient linear partial dif-

ferential equations. We discuss how the apparent branch singularities typically appearing

in the global relation are removable, as they arise symmetrically in the global relations.

This allows the method to proceed, in essence, as for scalar problems. We illustrate the

use of the method with boundary value problems for the Klein-Gordon equation and

the linearized Fitzhugh-Nagumo system. Wave equations are treated separately in an

appendix.

1. Introduction. The Unified Transform Method (UTM) or Method of Fokas pre-

sents a new approach to the solution of boundary value problems (BVPs) for integrable

nonlinear equations [6,8], or even more successfully for linear, constant coefficients partial

differential equations (PDEs) [5, 8]. In this latter context, the method has resulted in

new results for one-dimensional problems involving more than two spatial derivatives

[7,8], for elliptic problems [3,8], and for interface problems [4,11], to name but a few. A

more complete picture can be obtained from the online repository at [1].

Fewer studies exist of how the method applies to linear systems of equations or to

higher-order scalar evolution equations that may be rewritten as such. In fact, to our

knowledge, the application of the UTM to the standard wave equation presented in

the appendix here is new, albeit not surprising. Systems of equations are examined in
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[9,13–15] and [16]. In [16], a problem from thermoelastic deformation is examined, while

in [9] two water wave-related systems are treated. In [15], the UTM is applied to the

wave equation in a moving domain, while in [13, 14] the free Klein-Gordon equation is

examined. The treatment in these papers is non-generic in the sense that the different

branches of the dispersion relations of the systems considered are either polynomial or

rational in the wave number (as in [9, 15]) or are conveniently parameterized to avoid

radicals, as in [13, 14, 16]. In addition, all five papers start from a Lax pair and con-

struct a Riemann-Hilbert problem almost exclusively, with almost no hints as to how

to generalize the more accessible UTM for scalar systems based on the use of Green’s

Theorem. Generically, the different branches of the dispersion relations for a first-order

evolution system of dimension N depend on radicals as they are the roots of an N -th

order polynomial. Below we investigate the general case of an N -dimensional first-order

linear system, using two examples.

The first example is the (free: no potential) Klein-Gordon (KG) equation [10, 13, 15]

utt − uxx + αu = 0, (1)

where α is a constant parameter and indices denote partial derivatives. For our purposes,

the KG equation is rewritten as a two-dimensional first-order system:

qt = p, (2a)

pt = qxx − αq, (2b)

where q = u, p = ut. Our approach to the KG equation differs from [13, 15] in that

all our considerations are based on so-called local relations, to which Green’s Theorem

is applied. No parameterization of the dispersion relation branches is used. Rather we

use the branches of the dispersion relation in their original form. Lastly, in [13, 14] only

α > 0 is considered.

The second example is the linearized Fitzhugh-Nagumo (FN) system of partial differ-

ential equations [12]

vt = vxx − v − w, (3a)

wt = βv, (3b)

where β is a constant parameter. In general, we consider systems of the form

Qt + Λ(−i∂x)Q = 0, (3)

where Q is an N -dimensional vector and Λ is a matrix-valued polynomial of size N ×N

and of order n.

Example 1. For the KG equation, we have

∂t

(
q

p

)
+

(
0 −1

−∂2
x + α 0

)(
q

p

)
= 0, (4)

so that n = 2, and

Λ(−i∂x) =

(
0 −1

(−i∂x)
2 + α 0

)
. (5)
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Example 2. Similarly, for the FN system,

∂t

(
v

w

)
+

(
−∂2

x + 1 1

−β 0

)(
v

w

)
= 0, (6)

allowing us to read off Λ(−i∂x) and n = 2 as well.

Throughout, we contrast the general systems case with the general scalar case, where

the equation can be written in the form

ut + λ(−i∂x)u = 0, (7)

for a scalar-valued function u(x, t).

Although different non-local systems can be considered by allowing Λ to depend ra-

tionally on its argument (see e.g. [17] for the scalar setting), in this paper we restrict

to the case where Λ (and λ) depends polynomially on its argument. As a consequence,

the dispersion relation for the scalar case, easily found by equating u = exp(ikx − ωt),

is given by ω = λ(k), and ω depends polynomially on k. It should be remarked that in

the above calculation of the dispersion relation, we have followed the convention in the

literature on the UTM for the dispersion relation. Thus the dispersion relation as used

here differs by a factor of i from the standard use. For instance, in the UTM dispersive

equations are characterized by a purely imaginary dispersion relation for k ∈ R.

Similarly, for the systems case (3), we let

Q =

⎛
⎜⎝

Q1

...

QN

⎞
⎟⎠ eikx−ωt, (8)

so that ω satisfies

det(Λ(k)− ωI) = 0, (9)

where I is the N × N identity matrix. Thus the different branches Ω1, . . . , ΩN of the

dispersion relation are roots of an N -th order polynomial. Generically, they depend on

radicals of order up to N (N -th roots) whose arguments are polynomials in k. It follows

that these dispersion branches are sheets of an N -valued function and they have branch

point singularities in the complex k plane. This is not always the case, as is illustrated

in the appendix for the wave equation and in the examples treated in [9]. Throughout

this paper, we assume that all branches Ωj(k) are distinct, except at isolated values of

k ∈ C.

Example 1. For the KG equation,

Ω1,2 = ±i
√

α+ k2, (10)

which has branch points at the square roots of −α. We choose the branch cut that

connects these branch points. As is detailed in what follows, this choice is inessential

and does not affect the results obtained.

Example 2. For the FN system,

Ω1,2 =
1 + k2 ±

√
(1 + k2)2 − 4β

2
, (11)

which has 4 branch points.
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One of the main advantages of the UTM is its ability to characterize the number

and the type of boundary conditions required to ensure wellposedness of a given initial-

boundary value problem [8]. We wish to see to what extent the same can be done for

systems of PDEs. To this end, we do not specify boundary conditions for our examples

at this point. Rather, this is done at a later stage in this paper. We will see how the

application of Fokas’s UTM determines the information that should be provided on the

boundary of our domain. We limit ourselves to problems posed on the half line x > 0. It

is anticipated that extending our results to problems on the finite interval x ∈ (0, L) is

comparable to extending the UTM for scalar problems on the half line to scalar problems

on the finite interval. Of course, in all cases, we specify initial conditions Q(x, 0) = Q0(x).

In the next sections, we go through the extension of Fokas’s UTM, as applied to

systems of linear, constant-coefficient evolution PDEs. Each section deals with a different

step of the method, so as to present the method in an algorithmic way.

2. The local relation. The first step for the application of the UTM is to rewrite

the system of equations in divergence form. We refer to this form as the local relation.

Following the appendix of [9], we rewrite (3) as

(
e−ikxI+Λ(k)tQ

)
t
−
(
e−ikxI+Λ(k)tX(x, t, k)Q

)
x
= 0 (12)

⇒
(
e−ikxI+Ω(k)tA(k)Q

)
t
−
(
e−ikxI+Ω(k)tA(k)X(x, t, k)Q

)
x
= 0, (13)

where Ω(k) = diag(Ω1, . . . ,ΩN ), the diagonal matrix with the different branches of the

dispersion relation as diagonal elements. The matrix A(k) diagonalizes the matrix Λ(k):

Λ(k) = A−1(k)Ω(k)A(k). (14)

Lastly, the vector X(x, t, k) is a differential matrix operator of degree at most n − 1,

polynomial in k, defined by

X(x, t, k) = i
Λ(k)− Λ(l)

k − l

∣∣∣∣
l=−i∂x

=

n−1∑
j=0

cj(k)∂
j
x, (15)

and the last equality defines the matrix-valued polynomials cj(k). Equation (12) is

verified by working out the product rules of both terms. For the scalar case, both

equations are identical. For the case of systems, an important difference between (12) and

(13) is that (13) contains Ω(k) and A(k), which are typically branched in the complex k

plane. On the other hand, the left-hand side of (12) depends only on Λ(k) and X(x, t, k),

which are not branched as functions of k. In practice, (13) is more useful, as (12)

requires the calculation of a matrix exponential with non-diagonal exponent. Even in

specific examples where the matrix exponential is easily calculated, it is useful to have

the local relation in terms of the branches of the dispersion relation.
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Example 1. For the KG equation, exp(Λ(k)t) is easily computed directly:

eΛ(k)t = I cos(
√
α+ k2t) + Λ(k) sinc(

√
α+ k2t), (16)

which is not branched since all functions above with square root arguments are even.

With

A =

(
−Ω2(k) −1

Ω1(k) 1

)
, X

(
q

p

)
=

(
0

ikq + qx

)
, (17)

the local relations (13) are(
e−ikx+Ωj(k)t(−Ωj(k)q + p)

)
t
−
(
e−ikx+Ωj(k)t(ikq + qx)

)
x
= 0, j = 1, 2. (18)

Example 2. For the FN equation,

A =

(
−β −Ω2(k)

β Ω1(k)

)
, X

(
v

w

)
=

(
ikv + vx

0

)
, (19)

and the local relations (13) are(
e−ikx+Ωj(k)t(Ωj(k)v + w)

)
t
−
(
e−ikx+Ωj(k)t(ikΩj(k)v +Ωj(k)vx)

)
x
= 0, j = 1, 2,

(20)

after multiplication by Ωj(k), and using that Ω1(k)Ω2(k) = β.

Remarks.

• For the scalar case, there is no difference between the two forms (12) and (13).

The local relation is easily obtained by multiplying the PDE (7) by exp(−ikx+ωt)

and using integration by parts to get to the divergence form. The dispersion

relation is found during this process [5] as well. The same process can be used

for systems of PDEs, but additional linear algebra is required to get to the

divergence form, as only specific linear combinations of the equations allow for

this form.

• In practice, it may not always be possible to write the set of local relations as

compactly as above, using index notation: the first local relation may depend on

Ω2(k) and so on. In fact, this is the case in the second example, but the use of

the dispersion relation for the FN system allows the further simplification.

• In [16] and to a lesser extent in [9], the Lax pair formalism for the UTM is used.

For constant-coefficient systems linear PDEs this is not necessary, and we stay

within the framework of using the local relation and Green’s Theorem (in the

next step).

3. The global relation. For the next step, we integrate each local relation over

an infinite strip in the (x, t) plane, cornered at the origin; see Fig. 1. Using Green’s

Theorem, we convert the area integrals to integrals along the boundary of the domain.

We obtain

Q̂0(k)− eΛ(k)tQ̂(k, t)−G(k, t) = 0, (21)

using (12), and

A(k)Q̂0(k)− eΩ(k)tA(k)Q̂(k, t)− G̃(k, t) = 0, (22)
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Fig. 1. The region of integration in the (x, t) plane for boundary-
value problems posed on the positive half line.

using (13). Here

Q̂0(k) =

∫ ∞

0

e−ikxQ0(x)dx, Q̂(k, t) =

∫ ∞

0

e−ikxQ(x, t)dx, (23a)

G(k, t) =

∫ t

0

eΛsX(0, s, k)Q(0, s)ds, G̃(k, t) =

∫ t

0

eΩsA(k)X(0, s, k)Q(0, s)ds. (23b)

Note that we have replaced the upper limit T (see Fig. 1) of the temporal variable

by t. The relations (21) and (22) are referred to as the Global Relations. The same

comments can be made as for the local relations: (21) is written entirely in terms of

quantities without branch points, while (22) contains branched quantities throughout,

but is easier to write down in practice. For specific examples, it is more convenient to

start directly from the derived local relations.

Example 1. For the KG equation,

−Ωj q̂0 + p̂0 − eΩjt(−Ωj q̂ + p̂)− ikg0(Ωj , t)− g1(Ωj , t) = 0, j = 1, 2, (24)

where

f̂0(k) =

∫ ∞

0

e−ikxf0(x)dx, f̂(k, t) =

∫ ∞

0

e−ikxf(x, t)dx, gκ(Ωj , t) =

∫ t

0

eΩjsqκx(0, s)ds,

(25)

for f = q, p, κ = 0, 1 and the index κx denotes κ derivatives with respect to x.

Example 2. For the FN system,

Ωj v̂0 + ŵ0 − eΩjt(Ωj v̂ + ŵ)− ikΩjg0(Ωj , t)− Ωjg1(Ωj , t) = 0, j = 1, 2, (26)

where the hat denotes the half line Fourier transform, as above, and

gκ(Ωj , t) =

∫ t

0

eΩjsvκx(0, s)ds, κ = 0, 1. (27)
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As in the case of constant-coefficient scalar evolution equations posed on the half line,

the global relation is valid in the lower half of the complex plane, Im k ≤ 0. Indeed,

the half line Fourier transforms in (23a) are defined only if the exponential does not

grow, assuming integrable or square-integrable initial conditions and solutions. The other

quantities are defined by proper integrals and do not impose any further restriction.

4. A “solution” formula. The global relations contain the Fourier transform of the

quantities we wish to solve. At this point, we solve these transforms and invert using a

regular Fourier inversion, interpreting the half line transforms as whole line transforms

of functions that are zero for x < 0. Thus

Q(x, t) =
1

2π

∫ ∞

−∞
eikxI−Λ(k)tQ̂0(k)dk − 1

2π

∫ ∞

−∞
eikxI−Λ(k)tG(k, t)dk, (28)

using (21), and, clearly equivalent,

Q(x, t) =
1

2π

∫ ∞

−∞
A−1(k)eikxI−Ω(k)tA(k)Q̂0(k)dk−

1

2π

∫ ∞

−∞
A−1(k)eikxI−Ω(k)tG̃(k, t)dk.

(29)

These equations do not provide expressions for the solutions of (3). Although the first

term contains only known quantities, the second term depends on mj − 1 derivatives of

Qj evaluated at the boundary x = 0. Here Qj is the j-th component of Q, j = 1, . . . , N

and mj is the maximal degree as a function of k occurring in the j-th column of Λ(k). If

mj = 0, neither the function Qj nor any of its x derivatives appear in the second term

and no boundary data involving Qj should be prescribed. We know from experience with

scalar problems [5,8] that it is unlikely that all these unknown boundary functions need

to be specified. In fact, specifying them freely is likely to result in inconsistencies: e.g.,

it is not possible to prescribe the Dirichlet and Neumann data for the heat equation on

the half line independently.

Example 1. For the KG equation,

q(x, t) =
1

2π

∫ ∞

−∞

eikx

Ω1 − Ω2

(
e−Ω1t(Ω1q̂0 − p̂0)− e−Ω2t(Ω2q̂0 − p̂0)

)
dk

− 1

2π

∫ ∞

−∞

eikx

Ω1 − Ω2

(
e−Ω1t(−ikg

(1)
0 − g

(1)
1 )− e−Ω2t(−ikg

(2)
0 − g

(2)
1

)
dk, (30a)

p(x, t) =
1

2π

∫ ∞

−∞

eikx

Ω1 − Ω2

(
Ω2e

−Ω1t(Ω1q̂0 − p̂0)− Ω1e
−Ω2t(Ω2q̂0 − p̂0)

)
dk

− 1

2π

∫ ∞

−∞

eikx

Ω1 − Ω2

(
Ω2e

−Ω1t(−ikg
(1)
0 − g

(1)
1 )− Ω1e

−Ω2t(−ikg
(2)
0 − g

(2)
1

)
dk,

(30b)

where g
(j)
κ = gκ(Ωj , t), κ = 0, 1, j = 1, 2.
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Example 2. For the FN system,

v(x, t) =
1

2πβ

∫ ∞

−∞

eikx

Ω2 − Ω1

(
Ω2e

−Ω2t(βv̂0 +Ω1ŵ0)− Ω1e
−Ω1t(βv̂0 +Ω2ŵ0)

)
dk

− 1

2π

∫ ∞

−∞

eikx

Ω2 − Ω1

(
Ω2e

−Ω2t(ikg
(2)
0 + g

(2)
1 )− Ω1e

−Ω1t(ikg
(1)
0 + g

(1)
1 )

)
dk,

(31a)

w(x, t) =
1

2π

∫ ∞

−∞

eikx

Ω2 − Ω1

(
e−Ω1t(βv̂0 +Ω2ŵ0)− e−Ω2t(βv̂0 +Ω1ŵ0)

)
dk

− β

2π

∫ ∞

−∞

eikx

Ω2 − Ω1

(
e−Ω1t(ikg

(1)
0 + g

(1)
1 )− e−Ω2t(ikg

(2)
0 + g

(2)
1 )

)
dk, (31b)

using the same notation as above.

In the following sections, we aim to turn (28) and (29) into genuine solution formulas,

depending on the correct number of boundary functions.

5. Deformation of the integration path. Following the approach to solve con-

stant-coefficient scalar equations, we wish to deform the integration path in the expres-

sions (28) and (29) as far away from the real line as possible as k → ∞ [5, 8]. In some

cases all or part of the real line will remain in place, and other curves in the upper-half

plane resulting in zero contributions might be added to the integration path, as in the

scalar case. As in that case, we have no intent to deform the path of integration of

the first term: the integrand of this term is known explicitly and it requires no further

manipulation.

Thus we focus on the second term. Specifically, we wish to elucidate the role of the

branch points in the systems case. Since (28) is written in terms of quantities that are

not branched, it is clear that the branch points of A(k) and Ω(k) that are apparent

in (29) are all removable. This is also immediately clear from the expressions (30a-

b) and (31a-b). Encircling any of the branch points results in an interchange of the

two sheets, effectively switching the indices on Ω1 and Ω2. This permutation leaves the

integrands invariant, confirming the removability of their branch points. As stated above,

this is true in general, due to the non-branched nature of the integrands in (28). For

any given example, the “solution formula” is conveniently written using (29), resulting

in integrands that are symmetric functions of the different branches of the dispersion

relation. Encircling a branch point amounts to a permutation of the indices of these

branches, producing no change due to the symmetry of the integrands. It follows that

the process of deforming the path of integration proceeds very much as in the scalar case,

with minor modifications due to the vector structure as discussed below.

We examine the k dependence of the integrand in the second term of (28). Since

x and t are independent variables, both defined on their respective half lines, different

restrictions on k ∈ C are imposed by the need to control the x and t dependence of the

integrand separately. Since the x dependence is confined to the exponential, it follows

that necessarily k ∈ C
+ = {C : Im k ≥ 0} for the integral to be defined. Similarly, using

(23b) and following the reasoning from the scalar case [5, 8], we need ReΩ(k) ≥ 0, i.e.,
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the matrix Ω(k) is positive definite. Thus, we define the inaccessible region D+ in the

upper-half plane:

D+ =
N⋃
j=1

{k ∈ C : Im k > 0, ReΩj(k) < 0}. (32)

Further, for k ∈ C
+\D+, the integrand decays exponentially as k → ∞, away from the

boundary. Thus the contribution to the second term of any path that tends to infinity

in C+\D+ vanishes, by Jordan’s Lemma [2]. It follows from Cauchy’s Theorem [2] that

we may write

Q(x, t) =
1

2π

∫ ∞

−∞
eikxI−Λ(k)tQ̂0(k)dk − 1

2π

∫
∂D+

eikxI−Λ(k)tG(k, t)dk, (33)

using (21), and, clearly equivalent,

Q(x, t) =
1

2π

∫ ∞

−∞
A−1(k)eikxI−Ω(k)tA(k)Q̂0(k)dk−

1

2π

∫
∂D+

A−1(k)eikxI−Ω(k)tG̃(k, t)dk.

(34)

The integrand of the second term is a linear combination of different exponentials

exp (ikx− Ωjt). One may consider splitting the integral into different parts, each de-

pending on one of these exponentials only. If this is done, the different integrands are

not symmetric functions of the branched quantities, and the branch points are not re-

movable. As a consequence, much greater care is required for the deformation of the

integration path away from the real line. To facilitate this, it is convenient to deform

the integration path above all finite and possibly infinite branch points of Ω(k); see

Fig. 2. The deformation above the finite (removable) branch points is trivially allowed

by Cauchy’s Theorem. Deforming around branch points at infinity should be considered

on a case-by-case basis, as convergence issues come into play. We will not consider this

case further.

After the initial finite deformation, further deformations into the region not containing

the branch points can be made without these points playing any role at all. Once the

branch points are below the path of integration, it may be possible and desirable that

different integration paths ∂D+
j are used for different componentsQj , if these components

do not depend on all Ωj .

Example 1. For the KG equation q and p depend on both Ω1 and Ω2. In general,

D+ is conveniently found by first determining its boundary, followed by examining the

different regions it defines. For the KG equation, (9) reads

ω2 + α+ k2 = 0. (35)

Splitting this expression in its real and imaginary parts and imposing that Reω = 0

determines the boundary of D+. This boundary is shown in red in Fig. 3 (color is

available online). This boundary does not separate the upper-half plane in different

regions. Since Ω1 = −Ω2, there is no subset of the upper-half plane where the real part

of both Ω1 and Ω2 is positive. Thus D+ consists of the whole upper-half plane and no

deformation from the integration along the real line to the upper-half plane in (30a)-(30b)

is done.
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kR

kI

0

C

Fig. 2. Deforming away from the real line, above all finite branch
points in C+, with k = kR + ikI .

√
α

kI

kR

0

D+

√
−α

kI

kR

0

D+

−
√
−α

Fig. 3. The region D+, with boundary shown in red, covering the
whole upper-half plane, for α > 0 (left) and α < 0 (right).

Remark. Alternatively, one may deform the integration to go above the branch point

at i
√
α (α > 0) or those at ±

√
−α (α < 0). After doing so, the integral on the second

term may be distributed, resulting in one integral where the whole upper-half plane

is accessible. By Cauchy’s Theorem, the contribution from this integral vanishes. In

other words, the net contribution from this branch of the dispersion relation is hiding in

the other integral as the contribution from the branch point(s) as the other integral is

deformed back to the real line.

Example 2. For the FN equation the situation is more straightforward.

D+ = {k = kR + ikI ∈ C : kI > 0 and k2I > 1 + k2R}, (36)

which is illustrated in Fig. 4. Depending on the value of β, some of the different branch

points of Ω1 and Ω2 may lie between the real line and ∂D+. As long as the integrals are
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kR

kI

D+ : k2I > 1 + k2R

0

k2I < 1 + k2R

1

Fig. 4. The region D+ for the FN equation and the deformed path
of integration along its boundary in red.

not distributed over their integrands, this is not a concern. Thus

v(x, t) =
1

2πβ

∫ ∞

−∞

eikx

Ω2 − Ω1

(
Ω2e

−Ω2t(βv̂0 + Ω1ŵ0)− Ω1e
−Ω1t(βv̂0 +Ω2ŵ0)

)
dk

− 1

2π

∫
∂D+

eikx

Ω2 − Ω1

(
Ω2e

−Ω2t(ikg
(2)
0 + g

(2)
1 )− Ω1e

−Ω1t(ikg
(1)
0 + g

(1)
1 )

)
dk,

(37a)

w(x, t) =
1

2π

∫ ∞

−∞

eikx

Ω2 − Ω1

(
e−Ω1t(βv̂0 +Ω2ŵ0)− e−Ω2t(βv̂0 +Ω1ŵ0)

)
dk

− β

2π

∫
∂D+

eikx

Ω2 − Ω1

(
e−Ω1t(ikg

(1)
0 + g

(1)
1 )− e−Ω2t(ikg

(2)
0 + g

(2)
1 )

)
dk. (37b)

6. Symmetries of the dispersion relation. In order to eliminate the superflu-

ous dependence on unknown boundary conditions, we need the symmetry group of the

dispersion relation. This is the collection of transformations k → ν(k) that leave the

dispersion relation invariant. Applying these transformations allows us to transform one

branch of the dispersion relation into another one. The symmetries are found by solving

each one of the N equations

det(Λ(ν)− Ωj(k)I) = 0, j ∈ {1, . . . , N}, (38)

individually for ν(k). This determines ν as a function of k, since Ωj depends on k through

(9). It is clear that the identity transformation ν1 = k is a solution of (38). Below we

show that for both the KG and FN system, the only non-trivial symmetry is ν2 : k → −k.

The appendix contains an example of a different symmetry.
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Example 1. For the KG equation, (38) is

ν2 + α+Ω2
j = 0

⇒ ν2 − k2 = 0

⇒ ν1 = k, ν2 = −k, (39)

for j = 1, 2.

Example 2. For the FN equation, for j = 1, 2,

Ω2
j − (1 + ν2)Ωj + β = 0

⇒ (1 + k2)Ωj − β − (1 + ν2)Ωj + β = 0

⇒ (k2 − ν2)Ωj = 0

⇒ ν1 = k, ν2 = −k, (40)

where we have used that Ω2
j = (1 + k2)Ωj − β.

7. The elimination of unknown boundary functions. The deformed solution

formula (34) depends on the quantities

g
(m)
j,l = gj,l(Ωm, t) =

∫ t

0

e−ΩmsQj,lx(0, s)ds, (41)

where Qj,lx denotes l derivatives with respect to x of Qj(x, t). Through these quanti-

ties, the solution formula exhibits dependence on a number of boundary functions Qj,lx.

In order to eliminate such unnecessary boundary functions from the deformed solution

formulae (34), new global relations (22) are obtained by using the symmetries from the

previous section.

Since the matrix exp(Ωs) is diagonal, the m-th component of (22) contains only g
(m)
j,k ,

for varying j and k. In other words, Ωm is the only branch of the dispersion relation

appearing in the m-th component. If Ωm(νl(k)) = Ωn(k) ∈ {Ωj , j = 1, . . . , N}, the new

global relation below is considered:∑
j=1N

Amj(νl(k))Q̂0,j(νl(k))− eΩn(k)t
∑
j=1N

Amj(νl(k))Q̂j(νl(k))− G̃m(νl(k)) = 0, (42)

with

G̃m(νl(k)) =

∫ t

0

eΩn(k)s (A(νl(k))X(0, s, νl(k))Q(0, s))m ds, (43)

where the subindex m indicates the m-th component is taken. It follows that these new

global relations depend on the same quantities g
(m)
j,l as does the deformed solution formula

(34). The new global relation is valid for all k for which νl(k) ∈ {k ∈ C : Imk ≤ 0}.
In other words, k is in the closed lower-half plane transformed under ν−1

l . This process

results in a number of new global relations. If these global relations are valid in regions

of C where all or a part of ∂D+ lies, they can be used to eliminate unwanted boundary

functions by solving the new global relations for these unwanted boundary conditions, as

in the scalar case [5,8]. The above procedure determines the exact number of boundary

conditions that needs to be prescribed in order for the boundary value problem to be
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wellposed: this number is
∑N

j=1(mj + 1) minus the number of boundary functions that

can be eliminated.

Example 1. For the KG equation, there is only the non-trivial symmetry ν2(k) = −k.

Both Ω1(k) and Ω2(k) are invariant under k → −k, thus we obtain two additional global

relations, both valid in the closed upper-half plane. Importantly, both are valid on the

real line, thus both can be used in (30a). The two new global relations are

−Ωj q̂0(−k) + p̂0(−k)− eΩjt(−Ωj q̂(−k) + p̂(−k)) + ikg
(j)
0 = g

(j)
1 , j = 1, 2. (44)

The solution formula (30a) depends on g
(1)
0 , g

(2)
0 , g

(1)
1 , and g

(2)
1 . Using the two new global

relations above, we expect to eliminate two of these. Assuming that Dirichlet boundary

conditions are specified, we wish to eliminate the dependence in (30a) on g
(1)
1 and g

(2)
1 ,

which encode the Neumann data. Note that no boundary-value dependence on p(x, t)

arises. Using the expressions above, (30a) becomes

q(x, t) =
1

2π

∫ ∞

−∞
eikx(q̂0(k)− q̂0(−k))

Ω1e
−Ω1t − Ω2e

−Ω2t

Ω1 − Ω2
dk

− 1

2π

∫ ∞

−∞
eikx(p̂0(k)− p̂0(−k))

e−Ω1t − e−Ω2t

Ω1 − Ω2
dk

+
i

π

∫ ∞

−∞
keikx

g
(1)
0 e−Ω1t − g

(2)
0 e−Ω2t

Ω1 − Ω2
dk +R1, (45a)

p(x, t) =
1

2π

∫ ∞

−∞
eikx(q̂0(k)− q̂0(−k))

Ω1Ω2(e
−Ω1t − e−Ω2t)

Ω1 − Ω2
dk

− 1

2π

∫ ∞

−∞
eikx(p̂0(k)− p̂0(−k))

Ω2e
−Ω1t − Ω1e

−Ω2t

Ω1 − Ω2
dk

+
i

π

∫ ∞

−∞
keikx

g
(1)
0 Ω2e

−Ω1t − Ω1g
(2)
0 e−Ω2t

Ω1 − Ω2
dk +R2. (45b)

Here

R1 =
1

2π

∫ ∞

−∞
eikxq̂(−k, t)dk, R2 = − 1

π

∫ ∞

−∞
eikxp̂(−k, t)dk, (46)

the contributions in the right-hand side of (45a) that exhibit dependence on the left-hand

side. We have not used that Ω1 = −Ω2 or that Ω2
1 = Ω2

2 = −(α + k2), so as to exhibit

the symmetry of the solution. It is a straightforward check from the above formulae that

qt = p.

Example 2. As above, the FN equation only has the non-trivial symmetry

ν2(k) = −k. Both Ω1(k) and Ω2(k) are invariant under k → −k, thus two additional

global relations are obtained, both valid in the closed upper-half plane, which is where

∂D+ is. Thus both can be used in (37a). The two new global relations, solved for g
(j)
0

are

−v̂0(−k)− ŵ0(−k)

Ωj
+ eΩjt

(
v̂(−k) +

ŵ(−k)

Ωj

)
+ g

(j)
1 = ikg

(j)
0 , j = 1, 2. (47)

The solution formula (31a) depends on g
(1)
0 , g

(2)
0 , g

(1)
1 , and g

(2)
1 . Using the two new global

relations above, we expect to eliminate two of these. Assuming that Neumann boundary
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conditions are specified, we wish to eliminate the dependence in (30a) on g
(1)
0 and g

(2)
0 ,

which encode the Dirichlet data. No boundary value dependence on w(x, t) arises. Using

the expressions above, (37a) becomes

v(x, t) =
1

2π

∫ ∞

−∞
eikx(v̂0(k) + v̂0(−k))

Ω2e
−Ω2t − Ω1e

−Ω1t

Ω2 − Ω1
dk

+
1

2π

∫ ∞

−∞
eikx(ŵ0(k) + ŵ0(−k))

e−Ω2t − e−Ω1t

Ω2 − Ω1
dk

− 1

π

∫
∂D+

eikx
Ω2e

−Ω2tg
(2)
1 − Ω1e

−Ω1tg
(1)
1

Ω2 − Ω1
dk + S1, (48a)

w(x, t) =
β

2π

∫ ∞

−∞
eikx(v̂0(k) + v̂0(−k))

e−Ω1t − e−Ω2t

Ω2 − Ω1
dk

+
1

2π

∫ ∞

−∞
eikx(ŵ0(k) + ŵ0(−k))

Ω2e
−Ω1t − Ω1e

−Ω2t

Ω2 − Ω1
dk

− β

π

∫
∂D+

eikx
g
(1)
1 e−Ω1t − g

(2)
1 e−Ω2t

Ω1 − Ω2
dk − S2, (48b)

where

S1 = − 1

2π

∫
∂D+

eikxv̂(−k, t)dk, S2 = − 1

2π

∫
∂D+

eikxŵ(−k, t)dk. (49)

In (48a), the path of integration along ∂D+ for the terms involving initial conditions has

been deformed back to the real line, to allow their combination with the initial-condition

terms already present in (37a).

In the above examples R1, R2, S1 and S2 represent the right-hand terms depending

on the solution we wish to obtain. In the next section, we show these terms are zero.

8. A solution formula. The new global relations (42) depend on the solution

through Q̂j(νl(k)). Thus solving these relations for boundary functions and substitu-

tion in the solution formula (34) introduces Q̂j(νl(k)) in the right-hand side of (34). It

appears no effective solution formula has been obtained yet. At this point, we single

out the right-hand terms depending on the solution, and we wish to show that their

contribution is zero, as in the examples below. In general, in these culprit terms the

time-dependent part of the exponential cancels, allowing the deformation of the contour

into the previously inaccessible region. Further, for all examples we have examined, the

right-hand side terms involving Q̂j(νl(k)) are symmetric under a permutation of the in-

dices of the different branches Ωj of the dispersion relation; see Examples 1 and 2, above.

As a consequence, the integral over ∂D+ may be distributed to separate off these terms

without introducing branching. This is to be expected: the solution of the original bound-

ary value problem should be independent of the choice of indices on {Ωj , j = 1, . . . , N}:
switching our labels on Ω1 and Ω2, for instance, should not affect the solution. If the

solution is to be symmetric under these permutations, we should expect the same for the

terms containing Q̂j(νl(k)).
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Example 1. We show that R1 = 0 = R2 in (45a). Recall that the original solution

formulae (30a) could not be deformed in the upper-half plane due to the presence of

either e−Ω1t or e−Ω2t. These exponentials canceled, and they are absent in (46). On the

other hand, the factor eikx decays in the upper-half plane and it follows from Jordan’s

Lemma that both R1 and R2 are zero. Thus (45a) with R1 = 0 = R2 represent the final

form of the solution of the KG equation posed on the positive half line with Dirichlet

boundary data. The solution formula shows that no boundary information on p(x, t) is

required.

Example 2. The fact that S1 = 0 = S2 follows in exactly the same way: the region

D+ was previously inaccessible, but because the time-dependent exponential is absent, we

may apply Cauchy’s Theorem around D+, with the integral contribution from the path

at infinity vanishing, due to Jordan’s Lemma. Thus S1 = 0 = S2 since no singularities

are present in D+.

Remarks.

• For these particular examples, one can observe that R1 = 0 = R2, S1 = 0 = S2

in another way. Consider R1. Replacing k → −k in the integral, we get

R1 =
1

2π

∫ ∞

−∞
eikxq̂(−k, t)dk

= − 1

2π

∫ −∞

∞
e−ikxq̂(k, t)dk

=
1

2π

∫ ∞

−∞
eik(−x)q̂(k, t)dk,

which is the inverse Fourier transform of the Fourier transform of q(x, t), but

evaluated at −x. Since x is positive, it follows that R1 = 0. A similar argument

works for R2, demonstrating that R1 = 0 = R2 without contour deformation.

For S1 and S2, we deform back to the real line, after which the above argument

can be repeated. This method works for these examples because the lone non-

trivial symmetry ν2(k) = −k indicates the presence of a mirror symmetry in (1)

and (3a)-(3b): the substitution x → −x leaves both equations invariant and one

expects that the half line boundary value problems for these equations may be

solved using the method of images.

• In the first example, we eliminated g
(1)
1 and g

(2)
1 , the time transforms of the

Neumann data. Similarly, in the second example we eliminated g
(1)
0 and g

(2)
0 .

One may solve the first new global relations for g
(1)
0 and the second one for g

(2)
1 ,

for instance. When one does so, the terms depending on the Fourier transforms

Q̂j(νl(k)) of the solution evaluated at −k are not symmetric under permutation

of the indices, as we expect. Nonetheless, as the reader easily verifies for the KG

equation with g
(1)
0 and g

(2)
0 eliminated (i.e., g

(2)
0 and g

(1)
0 are assumed known),

the contributions from the term containing q̂(−k, t) still vanish, due to Jordan’s

Lemma. Thus the resulting solution formula for q(x, t) and p(x, t) is not symmet-

ric under a permutation of the dispersion branch indices. This may be explained

by noting that specifying boundary conditions by supplying g
(2)
0 and g

(1)
0 breaks



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

478 BERNARD DECONINCK, QI GUO, ELI SHLIZERMAN, AND VISHAL VASAN

the symmetry at the level of the problem statement already: when one specifies

g
(2)
0 = g0(Ω2, t) =

∫ t

0
eΩ2sq(0, s)ds, one needs to include the information whether

this function of t originates from integration involving Ω1 or Ω2.

9. A three-dimensional example due to Fokas and Treharne. In [16], Treharne

and Fokas study a three-dimensional linear system on the half line, originating from a

problem in elasticity. We discuss how their systems fit within the algorithm outlined

in this paper. Although [16] is a seminal paper, as the first work where the UTM is

considered for a system, the arguments presented there are specific to that system (the

same can be said for the considerations in [9]) and do not highlight generic features

of the UTM as applied to systems. In particular, we have emphasized the role played

by expressions involving symmetric functions of the roots of the dispersion relations,

allowing us to bypass the need for any branch cuts. Doing so, all expressions involved in

the formal manipulations are analytic and much of the flavor of the scalar case is retained.

Indeed the solution itself should be invariant under a relabeling of the branches of the

dispersion relation, assuming the boundary conditions preserve this indifference.

The Treharne-Fokas system has the dispersion relation

(iλk2 + ω)(ω2 − k2)− αβωk2 = 0.

Here α, β and λ are real parameters. This dispersion relation is cubic in ω and quartic

in k with a branch point at infinity in the k variable. Other than by using Cardano’s

formulae, it is not possible to obtain the branches Ωj(k) explicitly. The use of Car-

dano’s formulae results, as expected, in horrendous expressions whose manipulation is

not helpful. However, by a straightforward asymptotic analysis of the dispersion rela-

tion, one can identify the regions in the complex k plane for ω with simple asymptotic

behavior as k → ∞, allowing us to label the different branches Ω1,Ω2,Ω3. From the

knowledge of the branches one readily obtains the associated eigenvectors (in terms of

Ωj , j = 1, 2, 3) that diagonalize the relevant operator. Much of the analysis presented

above follows immediately and is not presented. Note that knowledge of the asymptotic

behavior of Ωj , j = 1, 2, 3 is sufficient to deform the paths of integration. At the next

step one requires the symmetries that transmute one branch of the dispersion relation

into another. Perhaps surprisingly, these symmetries are easily obtained in terms of ω

from the dispersion relation: since the dispersion relation is a bi-quadratic in k, there

are four symmetries: ν1(k) = k, ν2(k) = −k, ν3(k) = f(ω) ,ν4(k) = −f(ω), where

f(ω) = − 1√
λ
(λω2+ i(αβ+1)ω). With the symmetries in hand, the arguments presented

earlier follow and a solution expression is obtained. Of course, one does not require every

combination of ωj and νj and a judicious choice should be made to eliminate as many

boundary values as possible. It is here that the peculiarities of the PDE problem at hand

come into play.

The solution formula obtained as described above depends on the expressions for Ω1,

Ω2 and Ω3: in effect we have reduced the solution of a PDE boundary value problem to

that of solving a third-order polynomial. For a general system, the solution expression

depends on the roots Ωj(k) and on the symmetries νj(k). Neither one can be written
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down explicitly for general dispersion relations. The complexity of solving boundary

value problems for linear systems of constant-coefficient PDEs is thus reduced to that

of solving one additional polynomial problem compared to the scalar case. For scalar

problems, Ω(k) is given explicitly, but the determination of the symmetries requires the

solution of a polynomial of degree one less than the order of the problem (after the trivial

symmetry ν1(k) = k has been divided out). For systems, one faces the additional task

of obtaining the branches of the dispersion relation Ωj(k).

The analysis in [16] differs from ours in that the authors of [16] parameterize the dis-

persion relation, thereby diagonalizing the operator and eliminating any need to analyze

expressions which may be branched. In our work, by employing symmetric functions

of the branches of the dispersion relation, one yet again avoids the detailed analysis of

branched expressions. The benefit of parametrization is that expressions are obtained

that are more explicit. Of course, the fact that this problem may be suitably parametrized

is not generic. Only dispersion relations given by an algebraic curve of genus zero can be

parameterized. The genus of the dispersion relation and its corresponding parametriza-

tion may be readily obtained using the symbolic algebra package Maple and its package

algcurves.

10. Conclusions. We have demonstrated how Fokas’s Unified Transform Method

can be generalized from scalar evolution PDEs with constant coefficients to systems

of such equations. Our main goal has been to show that the method continues its

applicability much as in the scalar case, with added complexity relative to the system

under consideration. It is difficult to make general statements for such a large class of

problems, but some trends are clear. Although the different branches of the dispersion

relation typically contain radicals, the different stages of the solution process can be

executed without the need for branch cuts to be introduced, as the functions that arise

are symmetric functions of the dispersion relation branches. Further, as in the scalar

case, the symmetries of the dispersion relation give rise to new global relations, allowing

for the elimination of unknown boundary data. Alternatively, this process allows one

to determine the amount of boundary information that needs to be supplied to have a

wellposed problem.

Appendix. In this appendix, we show how to apply the UTM to the wave equation

and equations like it, posed on the half line x > 0. It is surprising that of the different

PDEs typically dealt with in a first PDE course, the treatment of the wave equation

using the UTM is not found in the literature. The closest to it is the solution of the

wave equation in a moving domain in [15], but the approach there requires knowledge

of Lax pairs and Riemann-Hilbert problems. We show below that the use of the UTM

leads to solution formulae that are valid in the whole quarter plane x > 0, t > 0.

This is in contrast to the use of d’Alembert’s formula, which leads to different solution

representations in different regions of the quarter plane. Fourier transform methods may

be used as well, but those methods run into difficulties if the boundary conditions are

not homogeneous or if Robin boundary conditions are specified, for instance. We do not
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claim that the use of the UTM is the most convenient way to solve these wave equation-

like problems, but it is instructional to see how the solution of such equations fits within

the UTM framework.

We discuss these wave equations in an appendix rather than the body of the paper

as the two solutions of the dispersion relation are not branched, and thus their solution

method is not the typical application of the UTM outlined in the main sections. We

examine the problem on x > 0 for the wave-like equation

utt − auxt − uxx = 0. (50)

Here a ∈ R. Note that the wave equation is recovered if a = 0. We follow the algorithm

for the UTM for systems and we rewrite this equation as

ut = v, (51a)

vt = avx + uxx. (51b)

This leads to

Λ(k) =

(
0 −1

k2 −iak

)
, (52)

and

Ω1,2 = ikα1,2 = ik
−a±

√
4 + a2

2
. (53)

Note that α1 > 0, α2 < 0. For the wave equation, α1,2 = ±1. Since this implies that one

of the characteristic speeds is positive (information is carried away from the boundary),

and one is negative (information is carried towards the boundary), we expect that one

boundary condition needs to be prescribed.

With

X =

(
0 0

ik + ∂x a

)
, (54)

the local relations are(
e−ikx+Ωjt ((Ωj + iak)u− v)

)
t
+
(
e−ikx+Ωjt (iku+ ux + av)

)
x
= 0, j = 1, 2. (55)

This leads to the global relations

(Ωj+iak)û0(k)−v̂0(k)−eΩjt(Ωj+iak)û(k, t)+eΩjtv̂(k, t)+ah
(j)
0 +g

(j)
1 +ikg

(j)
0 = 0, (56)

for j = 1, 2, valid in Im k ≤ 0. Here

û0(k) =

∫ ∞

0

e−ikxu(x, 0)dx, v̂0(k) =

∫ ∞

0

e−ikxv(x, 0)dx,

û(k, t) =

∫ ∞

0

e−ikxu(x, t)dx, v̂(k, t) =

∫ ∞

0

e−ikxv(x, t)dx, (57)

g
(j)
0 (t) =

∫ t

0

eΩjsu(0, s)ds, g
(j)
1 (t) =

∫ t

0

eΩjsux(0, s)ds,

h
(j)
0 =

∫ t

0

eΩjsv(0, s)ds =

∫ t

0

eΩjsut(0, s)ds.
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It should be noted that specifying the Dirichlet boundary condition u(0, t) results in both

g
(j)
0 and h

(j)
0 being known, since ut(0, t) is obtained by taking a time derivative of u(0, t).

From the Global Relations (56), we obtain the solution formula

u(x, t) = I1(x, t) + I2(x, t), (58)

with

I1(x, t)

=
1

2π

∫ ∞

−∞
eikx

e−Ω2t ((Ω2 + iak)û0(k)− v̂0(k))− e−Ω1t ((Ω1 + iak)û0(k)− v̂0(k))

Ω2 − Ω1
dk,

(59a)

I2(x, t) =
1

2π

∫ ∞

−∞
eikx

e−Ω2t
(
ah

(2)
0 + g

(2)
1 + ikg

(2)
0

)
− e−Ω1t

(
ah

(1)
0 + g

(1)
1 + ikg

(1)
0

)
Ω2 − Ω1

dk.

(59b)

We do not write down a solution formula for v(x, t) = ut(x, t). The first term in (58) is

known and no manipulation of it is necessary. The second term brings in dependence from

both the Dirichlet and Neumann boundary data and we expect to be able to eliminate

one of these.

We wish to deform the path of integration used for I2 as far as possible from the

real line in the k plane. As for the KG equation, D+ = {k ∈ C : Im k > 0}, thus no

deformation away from the real line is allowed.

Next, we examine the symmetries of the dispersion relation. We solve

det(Λ(ν(k))− ω(k)I) = 0, (60)

where ω = Ω1 or ω = Ω2. We obtain

ν1(k) = k (2×), ν2(k) =
α1

α2
k, ν3(k) =

α2

α1
k. (61)

These symmetries are the reason we proceed with Example (50) instead of the regular

wave equation: these symmetries are reminiscent of those used to solve scalar interface

problems; see [4], for instance. More importantly, they go beyond k → −k, which is used

in the main sections of the paper.

Since Ω1(ν3(k)) = Ω2(k) and Ω2(ν2(k)) = Ω1(k), we obtain two new global relations,

both valid on the real line: the first one is obtained by substituting k → ν3(k) in (56)

with j = 1, while the second is obtained by letting k → ν2(k) in (56) with j = 2. These
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new global relations are

(
Ω2 + ia

α2

α1
k

)
û0

(
α2

α1
k

)
− v̂0

(
α2

α1
k

)
− eΩ2t

(
Ω2 + ia

α2

α1
k

)
û

(
α2

α1
k, t

)

+eΩ2tv̂

(
α2

α1
k, t

)
+ ah

(2)
0 + g

(2)
1 + i

α2

α1
kg

(2)
0 = 0, (62a)

(
Ω1 + ia

α1

α2
k

)
û0

(
α1

α2
k

)
− v̂0

(
α1

α2
k

)
− eΩ1t

(
Ω1 + ia

α1

α2
k

)
û

(
α1

α2
k, t

)

+eΩ1tv̂

(
α1

α2
k, t

)
+ ah

(1)
0 + g

(1)
1 + i

α1

α2
kg

(1)
0 = 0, (62b)

and both are valid for Im k ≥ 0, since α1/α2 < 0.

Next, we wish to eliminate either the Dirichlet or Neumann data from (59b). If Dirich-

let data is given, we wish to use (62a)-(62b) to eliminate the Neumann data functions

g
(j)
1 , j = 1, 2. On the other hand, if Neumann boundary conditions are provided, we use

(62a)-(62b) to eliminate g
(j)
0 , j = 1, 2. As in the scalar case [5, 8], if a Robin boundary

condition is given, all of g
(j)
m , j = 1, 2, m = 0, 1 are eliminated using (62a)-(62b) and the

two time transforms of the Robin condition. For exposition sake, let us assume Dirichlet

data is given. We substitute g
(j)
1 , j = 1, 2 obtained from (62a)-(62b) in (59b). This

results in

I2(x, t) = T1(x, t) + T2(x, t) + T3(x, t), (63)

where

T1(x, t) =
1

2π

∫ ∞

−∞

eikx

Ω2 − Ω1

(
e−Ω2t

(
v̂0

(
α2

α1
k

)
−
(
Ω2 + ia

α2

α1
k

)
û0

(
α2

α1
k

))

−e−Ω1t

(
v̂0

(
α1

α2
k

)
−
(
Ω1 + ia

α1

α2
k

)
û0

(
α1

α2
k

)))
dk, (64a)

T2(x, t) =
1

2π

∫ ∞

−∞

ikeikx

Ω2 − Ω1

(
e−Ω2t

(
1− α2

α1

)
g
(2)
0 − e−Ω1t

(
1− α1

α2

)
g
(1)
0

)
dk, (64b)

T3(x, t) =
1

2π

∫ ∞

−∞

eikx

Ω2 − Ω1

((
Ω2 + ia

α2

α1
k

)
û

(
α2

α1
k, t

)
− v̂

(
α2

α1
k, t

)

−
(
Ω2 + ia

α2

α1
k

)
û

(
α2

α1
k, t

)
+ v̂

(
α2

α1
k, t

))
dk. (64c)

Note that T1(x, t) is determined by the initial data. It can be combined with I1(x, t).

The function T2(x, t) depends only on the Dirichlet data, assumed known. Lastly, T3(x, t)

exhibits dependence on the solution, but we show below that T3(x, t) ≡ 0. Thus

u(x, t) = I1(x, t) + T1(x, t) + T2(x, t), (65)

is a solution of (50), posed on x > 0 with Dirichlet data specified at x = 0. This solution

is valid for all x and t in the quarter plane x > 0, t > 0.

To show that T3(x, t) ≡ 0, it suffices to note that due to the absence of the exponential,

deformation of the path of integration into D+ (the upper-half plane) is allowed, and

the conclusion follows from Jordan’s Lemma and Cauchy’s Theorem. Observe that the

singularity at k = 0 is removable.
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x

t

0

Fig. 5. In the blue region, the solution depends only on initial data.
Above this region, the solution depends on both initial and boundary

data.

Lastly, we restrict to the case of the wave equation (a = 0, Ω1,2 = ±ik) and we

illustrate how the solution obtained here can be reduced to d’Alembert form. We examine

the Dirichlet, Neumann, and Robin problem. The characteristics for the wave equation

are drawn in Fig. 5. One family of characteristics moves initial data away from the

line t = 0, to the left. The second family takes information to the right, either initial

data coming from t = 0 or else boundary data from x = 0. It follows that points in

the blue region in Fig. 5 depend on initial data only. Their solution expression should

be the same, independent of which boundary conditions are imposed. Points above the

blue region depend on both initial data and boundary data. In this region we expect a

different solution expression, depending on which boundary conditions are specified.

Examining I1(x, t) with a = 0, we find

I1(x, t) =
1

2π

∫ ∞

−∞
eikx

e−Ω2t (Ω2û0(k)− v̂0(k))− e−Ω1t (Ω1û0(k)− v̂0(k))

Ω2 − Ω1
dk

=
1

2π

∫ ∞

−∞
eikx

−ikû0(k)
(
eikt − e−ikt

)
− v̂0(k)

(
eikt − e−ikt

)
−2ik

dk

=
1

4π

∫ ∞

−∞
û0(k)

(
eik(x+t)−eik(x−t)

)
dk +

1

4iπ

∫ ∞

−∞
v̂0(k)

eik(x+t) − eik(x−t)

k
dk

=
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

v0(s)ds, (66)
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using well-known calculational properties of the Fourier transform. This is the

d’Alembert form of the solution, as expected in the blue region x > t. This implies

that we should find I2(x, t) = 0 in the blue region. Indeed, with a = 0 and x > t,

I2(x, t) =
1

2π

∫ ∞

−∞
eikx

e−Ω1t
(
g
(1)
1 + ikg

(1)
0

)
− e−Ω2t

(
g
(2)
1 + ikg

(2)
0

)
Ω1 − Ω2

dk

=
1

4ik

∫ ∞

−∞
eikx

e−ikt
(
g
(1)
1 + ikg

(1)
0

)
− eikt

(
g
(2)
1 + ikg

(2)
0

)
k

dk

=
1

4πi

∫ ∞

−∞
dk

∫ t

0

ds

(
eik(x−t+s) − eik(x+t+s)

)
(ux(0, s) + iku(0, s))

k
. (67)

Both x − t + s > 0 and x + t + s > 0 if x > t. Thus the integrands are decaying

exponentially in the upper-half k plane and by Cauchy’s Theorem and Jordan’s Lemma,

I2(x, t) ≡ 0. Note that the singularity at k = 0 in the above integrals is removable. Thus

in x > t,

u(x, t) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

v0(s)ds. (68)

This formula may be extended to include x = t, provided the initial and boundary data

are compatible at (x, t) = (0, 0). Next, we examine x < t.

For the Dirichlet problem, I2(x, t) = T1(x, t) + T2(x, t). With a = 0,

T1(x, t)

=
1

2π

∫ ∞

−∞

eikx

Ω1 − Ω2

(
e−Ω1t (v̂0 (−k)− Ω1û0 (−k))− e−Ω2t (v̂0 (−k)− Ω2û0 (−k))

)
dk

=
1

2π

∫ ∞

−∞

v̂0(−k)
(
eik(x−t) − eik(x+t)

)
− ikû0(−k)

(
eik(x−t) − eik(x+t)

)
2ik

dk

= −1

2
u0(t− x)− 1

2

∫ t−x

0

v0(s)ds. (69)

Next, again with a = 0,

T2(x, t) =
1

π

∫ ∞

−∞

ikeikx

Ω1 − Ω2

(
e−Ω1tg

(1)
0 − e−Ω2tg

(2)
0

)
dk

=
1

2π

∫ ∞

−∞
dk

∫ t

0

ds u(0, s)
(
eik(x−t+s) − eik(x+t−s)

)

= u(0, t− x), (70)

where we have used the definition of the delta function and the fact that the Dirichlet

boundary condition u(0, t) = 0 for t < 0. Using that u0(x) = 0, v0(x) = 0 for x < 0 in

(66), we finally obtain

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(u0(x+ t)− u0(t− x)) +

1

2

∫ x+t

t−x

v0(s)ds+ u(0, t− x), x < t,

1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

v0(s)ds, x > t.

(71)
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It is a straightforward check that this solution satisfies the wave equation, the initial

conditions, and the Dirichlet boundary condition. Further, if initial and boundary data

are compatible at (x, t) = (0, 0), then the solution is continuous at x = t.

For the Neumann problem, I2(x, t) = T1(x, t) + T2(x, t). With a = 0 and x < t,

the new global relations (62a)-(62b) are

ikg
(1)
0 = ikû0(−k)− v̂0(−k)− ikeiktû(−k, t) + eiktv̂(−k, t) + g

(1)
1 , (72a)

ikg
(2)
0 = −ikû0(−k)− v̂0(−k) + ike−iktû(−k, t) + e−iktv̂(−k, t) + g

(2)
1 , (72b)

which are substituted in (59b), resulting in

I2(x, t) =
1

2π

∫ ∞

−∞
eikx

eikt
(
g
(2)
1 + ikg

(2)
0

)
− e−ikt

(
g
(1)
1 + ikg

(1)
0

)
−2ik

dk

= − 1

2π

∫ ∞

−∞

eik(x+t)g
(2)
1 − eik(x−t)g

(1)
1

ik
dk

− 1

4π

∫ ∞

−∞

−ikû0(−k)
(
eik(x+t) + eik(x−t)

)
+ v̂0(−k)

(
eik(x−t) − eik(x+t)

)
ik

dk

= − 1

2π

∫ ∞

−∞
dk

∫ t

0

ds ux(0, s)
eik(x+t−s) − eik(x−t+s)

ik

− 1

4π

∫ ∞

−∞

ikû0(k)e
ik(t−x) + v̂0(k)

(
eik(t−x) − e−ik(x+t)

)
−ik

dk

= −
∫ t

0

ux(0, s) (θ(x+ t− s)− θ(x− t+ s)) ds+
1

2
u0(t− x) +

1

2

∫ t−x

0

v0(s)ds.

(73)

We have omitted the terms containing û(−k, t) and v̂(−k, t), which are easily shown to

have zero contributions. Here

θ(x) =

{
0, x < 0,

1, x > 0,
(74)

the Heaviside function. As before, we have used that u0(x) = 0, v0(x) = 0 for x < 0.

Combining our results, we obtain

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
(u0(x+ t) + u0(t− x)) +

1

2

(∫ t−x

0

v0(s)ds+

∫ x+t

0

v0(s)ds

)

−
∫ t−x

0

ux(0, s)ds, x < t,

1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

v0(s)ds, x > t.

(75)

As for the Dirichlet problem, it is straightforward to check that this solution satisfies the

wave equation, the initial conditions, and the Neumann boundary condition. If initial

and boundary data are compatible at (x, t) = (0, 0), then the solution is continuous at

x = t.
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Lastly, we consider Robin boundary conditions:

au(0, t) + bux(0, t) = f(t), (76)

with given real constants a and b and a time-dependent function f(t). We evaluate this

boundary condition at t = s, multiply by expΩjs and integrate, to obtain

γg
(j)
0 + g

(j)
1 = f (j), j = 1, 2, (77)

with

f (j) = f(Ωj , t) =

∫ t

0

eΩjsf(s)ds, j = 1, 2. (78)

The two equations (77) are valid for all k ∈ C. We solve these equations combined with

the new global relations (42a)-(42b) for g
(j)
m , j = 1, 2, m = 0, 1, obtaining

g
(j)
0 =

f (j) + (Ωjû0(−k)− v̂0(−k))− eΩjt(Ωjû(−k, t)− v̂(−k, t))

γ + ik
, (79a)

g
(j)
1 =

ikf (j) − γ(Ωjû0(−k)− v̂0(−k)) + γeΩjt(Ωj û(−k, t)− v̂(−k, t))

γ + ik
. (79b)

These expressions are substituted in (59b) with a = 0. This results in

I2(x, t) = J1(x, t) + J2(x, t) + J3(x, t), (80)

with

J1(x, t) =
1

2π

∫
C

eikx

γ + ik

(
f (1)e−ikt − f (2)eikt

)
dk, (81)

which depends on the boundary conditions only,

J2(x, t) = − 1

4π

∫
C

eikx(γ − ik)

γ + ik
û0(−k)

(
e−ikt + eikt

)
dk, (82)

the dependence on the initial condition u0(x), and

J3(x, t) =
1

4π

∫
C

eikx(γ − ik)

ik(γ + ik)
v̂0(−k)

(
e−ikt − eikt

)
dk, (83)

the contribution from the initial condition v0(x). In these definitions, the contour C

accommodates the presence of the singularity at k = iγ: in the integral obtained af-

ter substituting (79a)-(79b) in (59b), the singularity at k = iγ is removable, since the

integrand of (59b) is analytic in all of C. If we distribute the integral so as to isolate

the dependence of û(−k, t) (the term with v̂(−k, t) cancels), both integrals have a pole

singularity. If γ > 0, this singularity is in the upper-half plane, which is where we wish

to close the contour to show that the contribution from û(−k, t) vanishes. To avoid this

issue, we deform the path of integration to pass above k = iγ along path C, prior to

distributing the integral. Thus C is the real line if γ < 0, and C is asymptotic to the

real line but passes above iγ if γ > 0. Using this contour, it immediately follows that the

terms containing û(−k, t) vanish, as desired. Thus we have omitted these terms in (80).
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In what follows, we need

1

2π

∫ ∞

−∞

1

γ + ik
eikxdk = sign(x)θ(γx)e−γx, (84)

1

2π

∫ ∞

−∞

γ − ik

γ + ik
eikxdk = −δ(x) + 2 sign(x)γθ(γx)e−γx, (85)

which are obtained using the definition of the delta function and standard contour in-

tegration. As elsewhere in this paper, all integrals over k are principal-value integrals.

Using the definition of f (j), switching the order of integration, and using (84), we find

J1(x, t) = −
∫ t−x

0

f(s)eγ(t−x−s)ds, (86a)

J2(x, t) =
1

2
u0(t− x) + γ

∫ t−x

0

u0(y)e
γ(t−x−y)dy, (86b)

J3(x, t) = −1

2

∫ t−x

0

v0(y)dy +

∫ t−x

0

v0(y)e
γ(t−x−y)dy, (86c)

for both γ > 0 and γ < 0. For γ > 0, these results include the integral contribution

from the real line and a subtracted residue contribution as a consequence of deforming

C back to the real line.

Combining our results, we obtain

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
(u0(x+ t) + u0(t− x)) + γ

∫ t−x

0

u0(y)e
γ(t−x−y)dy

+
1

2

∫ t+x

t−x

v0(y)dy +

∫ t−x

0

v0(s)e
γ(t−x−y)dy −

∫ t−x

0

f(s)eγ(t−x−s)ds, x < t,

1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

v0(s)ds, x > t,

(87)

the d’Alembert form of the solution for the half line boundary value problem for the wave

equation with Robin boundary data. A direct calculation verifies that u(x, t) satisfies

the Robin boundary condition, and is continuous along x = t.
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