
Stereo Unprojection
This document exposes the technical problems faced in stereo with nvidia driver automatic mode when
the fragment position must be unprotected in mono space in the pixel shader.

Problem

Transform pipeline

Here is the standard transform pipeline from Eye space to Image space for the POSITION attribute of a
primitive vertex (in the vertex shader) and the generated fragments (in Rasterization and pixel shader)

In mono

In stereo

In stereo, the 3 differences are

 The stereo separation is applied at the end of the vertex shader on the POSITION attribute of
the vertex output. In stereo the POSITION is expressed in the stereo Clip space

 The rasterization stage is operated in the stereo space and not in the mono space

 The fragment POSITION attribute input in the pixel shader is expressed in the Stereo Image
space and not in the mono space.

The stereo separation applied to the clip space position is

𝑃𝑜𝑠𝑠−𝑐𝑙𝑖𝑝 . 𝑦𝑧𝑤 = 𝑃𝑜𝑠𝑐𝑙𝑖𝑝 . 𝑦𝑧𝑤

𝑃𝑜𝑠
𝑠−𝑐𝑙𝑖𝑝

𝑟𝑖𝑔𝑕𝑡
𝑙𝑒𝑓𝑡

. 𝑥 = 𝑃𝑜𝑠𝑐𝑙𝑖𝑝 . 𝑥 ± 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑃𝑜𝑠𝑐𝑙𝑖𝑝 . 𝑤 − 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

Stereo Drawcall

When the application is issuing a draw call through D3D, a standard mono draw call is executed as
follow.

If the render target is stereo then the stereo driver duplicates it, issuing 2 drawcalls, one rendering in
the right eye render target, the second rendering in the left eye render target. The parameters

Pixel ShaderRasterizationVertex Shader

Eye
space

Clip
space

Normalized
space

Image
space

Projection
Transform

Perspective
Divide

Viewport
Transform

… …

Pixel ShaderRasterizationVertex Shader

Clip
space

Stereo Clip
space

Stereo
Normalized

space

Stereo Image
space

Stereo
Separation

Perspective
Divide

Viewport
Transform

…Eye
space

Projection
Transform

…

D3D RuntimeApplication

Drawcall Generate 1 GPU Drawcall

GPU

GPUDrawcall Render Target

configuring the stereo separation in the vertex shader are updated before each of the 2 draw calls. The
stereo draw call execution looks as follow.

In Stereo, there is no way for the application to know which drawcall side is issued (left or right) when
running the shader.

Unprojection
In a deferred shading scenario, it’s standard for an application to recreate in the pixel shader a 3D
position of the fragment from the input 2D position of the pixel and the depth information fetched from
the depth buffer.

In such a case, the shader code execute the following transformation

In stereo the 2D image space position input in the pixel shader is expressed in the stereo image space.

By default the transformation chain stays in stereo space and never goes back to the expected mono
space because the application cannot differentiate between the left or right drawcall.

The Unprojection matrix used is the inverse of the mono projection. Hence the unprojection
transformation of the stereo clip position to the mono eye space is wrong.

Solution

To fix the unprojection issue, the app needs to transform the position expressed in stereo space back to
mono space. In the pixel shader, the position (in stereo clip space) should be applied the reverse stereo
separation before applying the unprojection in the mono space.

D3D RuntimeApplication

Drawcall
Generate 2 GPU Drawcalls
1st with right configuration
2nd with left configuration

GPU

Right GPUDrawcall
Right

Render Target

Left
Render Target

Right GPUDrawcall

Normalized
space

Clip
space

Eye
space

Viewport-1

Transform
Perspective

Multiply
Projection-1

Transform
POSITION.xy

Depth Buffer

Fetch Depth
at

POSITION.xy

Evaluate
Image Space

position

Image
space

•Clip position is expressed in the stereo clip space
•Unprojection transformation is MONO, not stereo
•Resulting position is not expressed in mono eye space
as expected

Stereo
Normalized

space

Stereo Clip
space

Stereo Eye
space

Viewport-1

Transform
Perspective

Multiply
Projection-1

Transform

POSITION.xy
Stereo Image

Space

Depth Buffer
Left or Right

Fetch Depth
at

POSITION.xy

Evaluate
Image Space

position

Stereo Image
space

…

Stereo to
mono

Transform
…

Clip
space

Eye
space

Projection-1

Transform

Stereo Image
Space

POSITION.xy
…Stereo Clip

space

The stereo to mono transformation needed is

 𝑃𝑜𝑠𝑐𝑙𝑖𝑝 . 𝑦𝑧𝑤 = 𝑃𝑜𝑠𝑠−𝑐𝑙𝑖𝑝 . 𝑦𝑧𝑤

𝑃𝑜𝑠𝑐𝑙𝑖𝑝 . 𝑥 = 𝑃𝑜𝑠𝑠−𝑐𝑙𝑖𝑝
𝑟/𝑙

. 𝑥 ∓ 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑃𝑜𝑠𝑠−𝑐𝑙𝑖𝑝 . 𝑤 − 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

It can be expressed as

𝑃𝑜𝑠𝑐𝑙𝑖𝑝 . 𝑥 = 𝑃𝑜𝑠𝑠−𝑐𝑙𝑖𝑝
𝑟/𝑙

. 𝑥 + 𝐴𝑟/𝑙 ∗ 𝑃𝑜𝑠𝑠−𝑐𝑙𝑖𝑝 . 𝑤 + 𝐵𝑟/𝑙

𝐴right = −𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐵right = 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝐴left = 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐵left = −𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

The sign of 𝐴𝑟/𝑙 and 𝐵𝑟/𝑙 depends on the side of the drawcall. The correct value for these 2 stereo
parameters can be provided to the pixel shader through a stereo texture. A stereo texture has 2 versions
(a left and a right) and the correct binding is automatically managed by the stereo driver.

We can create a stereo texture containing the appropriate values and sign for each side.

The 2 stereo parameters are then fetched from that texture to apply the stereo un-separation to the clip
position. The HLSL sm4 pixel shader function doing that transformation would look like

Texture2D g_StereoParamMap;

float4 stereoToMonoCPOS(float4 cposStereo)

{

 float2 stereoParam = float2(g_StereoParamMap.Load(int3(0, 0, 0)).x

 g_StereoParamMap.Load(int3(1, 0, 0)).x);

 float4 cposMono = cposStereo;

 cposMono.x = cposStereo.x + stereoParam.x * cposStereo.w + stereoParam.y;

 return cposMono;

}

Stereo Texture

Aright Bright Aleft Bleft

