
OGC Testbed-14
Next Generation Web APIs - WFS 3.0 Engineering

Report

Table of Contents
1. Summary . 4

1.1. Requirements & Research Motivation . 4

1.2. Prior-After Comparison. 6

1.3. Recommendations for Future Work . 7

1.4. Document contributor contact points . 7

1.5. Review SWGs . 8

1.6. Foreword . 8

2. References . 9

3. Terms and definitions . 10

3.1. Abbreviated Terms. 11

4. Overview . 12

5. Background . 13

5.1. Introduction to WFS 3.0 and OpenAPI. 13

5.1.1. Transitioning to Next-Generation APIs . 16

5.2. OpenID Connect and OAuth 2.0. 17

5.2.1. OpenID Connect Security Environment . 18

6. Experiments . 20

6.1. Demonstration Scenario . 20

6.2. Component Implementation Design . 21

6.3. Technology Integration Experiments . 22

6.3.1. Unsecured WFS 3.0 . 22

6.3.2. Secured WFS 3.0 . 35

7. Implementations . 41

7.1. Component Implementation Design . 41

7.2. Participant Implementations. 41

7.2.1. D113 - Next Generation API Implementation (GeoSolutions) . 41

7.2.2. D140 - Next Generation API Implementation (interactive instruments) 48

7.2.3. D113 - Next Generation API Implementation (CubeWerx) . 56

7.2.4. D142 - Next Generation API Client Implementation (GIS FCU) . 62

8. Extensions . 74

9. Findings . 75

9.1. Recommendations for Future Work . 75

Appendix A: Extensions . 76

A.1. Coordinate reference systems (by reference) extension . 76

A.2. Geometry simplification extension . 76

A.3. Collections selection extension. 78

A.4. Property selection extension. 80

A.5. Asynchronous request extension. 80

A.5.1. Conformance classes . 81

A.5.2. responseHandler parameter . 81

A.5.3. Acknowledgement schema . 83

A.5.4. Asynchronous Processing class. 85

A.5.5. Asynchronous Polling class . 86

A.5.6. Examples . 88

A.5.7. Notification message content . 89

A.6. Hierarchical path extension (i.e. theme extension). 89

A.6.1. Introduction. 89

A.6.2. Operations . 90

A.6.3. Response. 90

A.6.4. Parameters. 92

A.7. Map extension. 98

A.7.1. Introduction. 98

A.7.2. Operation . 99

A.7.3. Parameter style . 99

A.7.4. Parameter width,height . 99

A.7.5. Parameter bgcolor . 101

A.7.6. Parameter transparent . 101

A.7.7. Response. 102

A.8. Tile extension . 103

A.9. OpenSearch query extension . 103

A.10. Advanced adhoc query extension . 107

A.10.1. Examples . 108

A.11. Transaction extension . 112

A.11.1. Simple transactions . 112

A.11.2. Complex transactions . 120

Appendix B: Revision History . 129

Appendix C: Bibliography . 131

Publication Date: 2019-03-07

Approval Date: 2018-12-13

Submission Date: 2018-11-22

Reference number of this document: OGC 18-045

Reference URL for this document: http://www.opengis.net/doc/PER/t14-D021

Category: Public Engineering Report

Editor: Jeff Harrison, Panagiotis (Peter) A. Vretanos

Title: OGC Testbed-14: Next Generation Web APIs - WFS 3.0 Engineering Report

OGC Engineering Report

COPYRIGHT

Copyright (c) 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t14-D021
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
The objective of the Next Generation APIs - WFS 3.0 effort in OGC Testbed-14 was to develop and
test the Web Feature Service (WFS) version 3.0 candidate standard. The initiative assessed OpenAPI,
security based on OpenID Connect and OAuth 2.0 and WFS 3.0 extensions. The effort also began to
assess methods to ease geospatial enterprise transition to next generation Application
Programming Interfaces (APIs).

The purpose of this effort was not to preempt other next generation work taking place in OGC, but
rather to inform and complement that work.

This Engineering Report (ER) describes the implementations and experiments conducted by OGC
Testbed-14 participants to test next generation Web APIs. It includes descriptions of APIs to simplify
and secure access to geospatial feature resources, and was tested in a scenario that showed how
WFS 3.0 can support humanitarian relief activities.

1.1. Requirements & Research Motivation
The motivation behind this ER resides in the need to secure the next generation open geospatial
APIs, and ease transition from legacy services to geospatial enterprise architectures aligned with
current Web architecture and Spatial Data on the Web Best Practices.

Therefore, the requirements addressed by this ER were:

• Adopt API components used in mainstream IT, and build in security.

• Use well-known resource types, and deploy geospatial feature resources as API components.

• Deploy feature resources in a simple core specified as OpenAPI components.

• Implement and test modular extensions for complex functions.

• Deploy facades and versioning to assess legacy service transition to next generation Web APIs.

• Develop and deploy client applications able to access feature resources using HTTP methods.
Leverage openly available, browser-based tools such as Swagger to exercise the OpenAPI
components.

• Secure the clients and services via an Authorization Server using OpenID Connect and OAuth
2.0. OpenID Connect is an authentication layer on top of OAuth 2.0, an authorization
framework. OpenID Connect specifies an API using JavaScript Object Notation (JSON) as a data
format.

• Conduct Technology Integration Experiments (TIEs) and document the ability of next generation
APIs to support simulated users in a humanitarian relief scenario.

4

Figure 1. Overview of the Testbed-14 Next Generation APIs experiments architecture

Technology Integration Experiments conducted during Testbed-14 were informed by activity in the
OGC Vector Tiles Pilot (VTP) which began in August 2018. The objective of the VTP was to extend
WFS 3.0 and other OGC standards to deliver Vector Tiles.

Results of Testbed-14 indicate the simple core of WFS 3.0 specified as OpenAPI can be implemented
rapidly by software developers, and deliver geospatial feature resources secured by OpenID
Connect and OAuth 2.0. In addition, findings indicated feasible methods to ease transition to next-
generation APIs are available through WFS versioning and facades.

5

Figure 2. Technology Integration Experiments

1.2. Prior-After Comparison
Prior to Testbed-14 WFS 3.0 development has focused mainly on revising OGC’s Web Feature
Service standard for querying geospatial information on the web, concentrating on a simple core
specified as reusable OpenAPI components with responses in JSON and Hypertext Markup
Language (HTML). A key element of OpenAPI is the ability to provide standard, language-agnostic
description for APIs and support to modern tools such as Swagger.

OpenAPI and Swagger allow both humans and computers to discover and understand the
capabilities of an API without access to source code, documentation or through network traffic
inspection. In addition, OpenAPI documents can be used by code generation tools to generate
servers and clients in various programming languages.

Security discussions prior to Testbed-14 addressed a variety of approaches, but lacked an industry
framework for integrating security controls into next generation APIs.

On the integration of OGC standards and definition of best practices for integration, the OGC® Web
Services Security specification was published on the 28th January 2019 as an OGC Implementation
Standard. The standard has been developed by the OGC Web Services (OWS) Common Security
Standards Working Group (SWG) with the aim being to standardize the security aspects of current
Web Services Standards while providing backward compatibility and interoperability.

On the other hand security discussions prior to this Testbed include concerns regarding Federated
Identity Management, but these are not specifically addressed in enough detail.

This situation highlights the need for a general approach to security architectures that utilize the

6

current state-of-the-art standards.

As a result of activities performed during this Testbed, the implementations documented in this
Engineering Report serve as an initial step towards a complete high-level architecture to simplify
and secure access to geospatial feature resources - including definition of security requirements
objects aligned with OpenAPI. Documented implementations also indicate the potential of WFS 3.0
extensions to support Vector Tiles, maps and other innovations.

1.3. Recommendations for Future Work
As a result of the activities performed during this Testbed, several future work points have been
identified:

• Assess and advance next generation APIs to support transactions against geospatial feature
resources, perform geometry simplification and other functions.

• Advance a "WMTS 2.0" implemented as reusable OpenAPI components with security based on
OpenID Connect and OAuth 2.0.

• Enhance the ability of next generation APIs to describe and deliver emerging geospatial
resources such as Vector Tiles.

• Assess the ability of next generation APIs to support access control and security metadata,
optionally enclosed within dissemination formats for binding assertion metadata with
geospatial resources.

• Assess how security specifications, access control and dissemination may further enable JSON,
HTML and Vector Tiles-based information exchange.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Jeff Harrison, Editor US Army Geospatial Center

Peter Vretanos, Editor Cubewerx

Clemens Portele Interactive Instruments

Chia-Cheng (Ricky) Lin Feng Chia University

Simone Giannecchini GeoSolutions

Andrea Aime GeoSolutions

Stefano Bovio GeoSolutions

Hector Rodriguez Deimos Space

Juan Jose Doval Deimos Space

7

1.5. Review SWGs
The content of this ER will be reviewed by the following OGC standards working groups:

• Web Feature Service/Filter Encoding Specification (WFS/FES) SWG

1.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

8

Chapter 2. References
The following normative documents are referenced in this document.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard [https://portal.opengeospatial.org/files/?

artifact_id=38867&version=2]

• OGC: OGC Web Feature Service 3.0 [https://github.com/opengeospatial/WFS_FES]

• Open API Initiative: OpenAPI Specification 3.0.1 [https://github.com/OAI/OpenAPI-Specification/blob/

master/versions/3.0.1.md]

• IETF: RFC 6749 - The OAuth 2.0 Authorization Framework [https://tools.ietf.org/html/rfc6749]

• IETF: RFC 6750 - The OAuth 2.0 Authorization Framework: Bearer Token Usage
[https://tools.ietf.org/html/rfc6750]

• IETF: RFC 7662 - OAuth 2.0 Token Introspection [https://tools.ietf.org/html/rfc7662]

• IETF: RFC 7662 - OAuth 2.0 Dynamic Client Registration Protocol [https://tools.ietf.org/html/rfc7591]

• OIDF, OpenID Connect Core 1.0 incorporating errata set 1, 2014 [https://openid.net/specs/openid-

connect-core-1_0.html]

• W3C and OGC: Spatial Data on the Web Best Practice, 2017 [https://www.w3.org/TR/sdw-bp/]

• IETF: The OAuth 2.0 Authorization Framework, 2012 [https://tools.ietf.org/html/rfc6749]

• OpenAPI Initiative: OpenAPI Specification [https://github.com/OAI/OpenAPI-Specification/blob/master/

versions/3.0.0.md#securityRequirementObject]

9

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://github.com/opengeospatial/WFS_FES
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7591
https://openid.net/specs/openid-connect-core-1_0.html
https://www.w3.org/TR/sdw-bp/
https://tools.ietf.org/html/rfc6749
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securityRequirementObject

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• Authorization Code Grant Flow

A security flow that can be used by confidential and public clients to exchange an
authorization code for an access token.

• Dataset

A collection of data, published or curated by a single agent, and available for
access or download in one or more formats.

• Distribution

Represents an accessible form of a dataset.

• Feature

An abstraction of real world phenomena [ISO 19101-1:2014].

• Feature Collection | Collection

A set of features from a dataset.

• Implicit Grant Flow

A simplified security flow that can be used by public clients, where the access
token is returned immediately without an extra authorization code exchange step.

• OpenAPI

A specification for machine-readable interface files for describing, producing,
consuming, and visualizing RESTful APIs.

• Swagger

10

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Tools to visualize and interact with an API’s resources without having any of the
implementation logic in place, automatically generated from an OpenAPI document.

• Web Feature Service 3.0

A revision of the OGC's Web Feature Service standard for querying geospatial
resources on the web, focusing on a simple RESTful core specified as reusable
OpenAPI components with responses in JSON, HTML and emerging forms such as Vector
Tiles.

3.1. Abbreviated Terms
Some of the more frequently used abbreviated terms in this document include:

• API Application Programming Interface

• CORS Cross-Origin Resource Sharing

• COTS Commercial Off The Shelf

• ER Engineering Report

• HTML Hypertext Markup Language

• HTTP Hypertext Transfer Protocol

• JSON JavaScript Object Notation

• OIDC OpenID Connect

• OGC Open Geospatial Consortium

• OSM OpenStreetMap

• REST Representational State Transfer

• TIE Technology Integration Experiment

• TDS Topographic Data Store

• URL Uniform Resource Locator

• W3C World Wide Web Consortium

• WWW World Wide Web

• WFS Web Feature Service

• YAML YAML Ain’t Markup Language

11

Chapter 4. Overview
The objective of the Next Generation APIs - WFS 3.0 effort in Testbed-14 was to develop and test
WFS 3.0. The initiative assessed OpenAPI, security based on OpenID Connect and OAuth 2.0 and
WFS 3.0 extensions. The effort also began to assess methods to ease geospatial enterprise transition
to next generation APIs.

This document contains the following sections:

• Preface - This section presents information on administrative and legal aspects of this
Engineering Report (ER).

• Summary - This section presents information on scope, what this Engineering Report means for
the OGC in general and document contributor contact points. It also provides forward-looking
recommendations.

• References - This section presents information on documents that are referenced in this
Engineering Report.

• Terms - This section presents information on terms and abbreviations that are used in this
Engineering Report.

• Background - This section presents background information on technologies implemented in
this Engineering Report.

• Experiments - This section presents information on the component implementations,
architecture and the results of Technology Integration Experiments conducted.

• Implementations - This section presents detailed information on service endpoints and
applications implemented in this Engineering Report.

• Extensions - This section presents information on extensions to the core API.

• Findings - This section summarizes the findings. It also provides forward-looking
recommendations.

12

Chapter 5. Background
The objective of the Next Generation APIs - WFS 3.0 effort in Testbed-14 was to develop and test
WFS 3.0. The goal was to experiment with the new WFS 3.0 specification, OpenAPI and Swagger and
add security mechanisms based on OpenID Connect and OAuth 2.0. The effort also began to assess
WFS 3.0 extensions and methods to ease geospatial enterprise transition to next generation APIs.

This section provides background information on WFS 3.0, OpenAPI, Swagger, OpenID Connect and
OAuth 2.0 and an introduction to key technologies tested.

5.1. Introduction to WFS 3.0 and OpenAPI
The foundation of WFS 3.0 is a set of interfaces which define the 'core' of the specification. The core
provides a simple API to access geospatial feature resources as 'collections'. For example, this path -

GET /collections

lists the collections on the server that can be queried. GeoJSON is a recommended encoding for
collections provided by WFS 3.0, along with HTML. The core specification supports several basic
filters such as the familiar bbox, the ability to get geographic features and time. For example, this
path -

GET /collections/agriculturepnt

returns a geospatial feature collection - which is something in real-world terrain (i.e. buildings or
roads). Feature collections are typically described by geometries plus other properties. This
approach provides a resource-oriented way to access geospatial features.

In this approach, the feature resource is accessed using HTTP verbs the same way they are used in
HTTP itself. Unique operations like GetFeature or Update are no longer used to access or modify
feature resources. Instead, we use HTTP methods like GET, POST, PUT, DELETE - which can make
things easier for API and client application developers.

HTTP status codes are used to handle error situations, describe specific security schemes and other
functions.

The WFS 3.0 approach is consistent with emerging OGC Web API Guidelines. It is also consistent
with the resource-oriented approach described in the Testbed-12 OGC REST Users Guide
summarized below.

13

Figure 3. REST levels

Advanced functionality is separated into WFS 3.0 extensions. For example, vector tile delivery,
transactions for updates and generalization of features at different resolutions are provided as WFS
3.0 extensions.

Each WFS 3.0 also deploys a landing page which provides easy-to-consume blocks of content
describing the API, supported conformance classes and feature resources (collections) [1]. An
example of Testbed-14 WFS 3.0 landing pages for the dataset over Daraa, Syria is shown below.

Figure 4. Example of Testbed-14 WFS 3.0 landing pages

14

The landing page is available at the 'root' path of a WFS 3.0. For example, it is simply this path -

GET /

WFS 3.0 minimizes the use of WFS-specific components as much as possible and instead uses
industry standards that are commonly used by developers. The most important example of this is
the use of OpenAPI documents instead of OGC-specific "Capabilities" documents. Accordingly, a key
element of the initiative was an assessment of the ability of OpenAPI to provide a simple, language-
agnostic description of the APIs. Testbed-14 also included TIEs to assess the ability of WFS 3.0 to
support modern API specifications and tools such as Swagger.

An example of one of the Testbed-14 WFS 3.0 OpenAPI documents accessed in the Swagger UI is
shown below.

Figure 5. An example of one of the Testbed-14 WFS 3.0 OpenAPI documents

The OpenAPI document is available at the 'root' path of the API. For example, it is simply this path -

15

GET /api

OpenAPI and Swagger allow both humans and computers to understand the capabilities of the API
without access to source code, documentation or through network traffic inspection. In addition,
OpenAPI documents can be used by code generation tools to generate servers and clients in various
programming languages.

5.1.1. Transitioning to Next-Generation APIs

WFS 3.0 with OpenAPI is intended to help the geospatial community ‘break free of legacy’ and
implement modern approaches that align with current Web architecture and Spatial Data on the
Web Best Practices. However, a cutover capability should be available for geospatial enterprises to
provide transition and legacy support.

To ease the transition for geospatial enterprises, Testbed-14 began assessing WFS versioning and
facades. For example, some WFS 3.0 implementations also supported WFS 2.x, 1.1 etc. and exposed
this functionality through facades. Facades can represent legacy OGC web services as resource
oriented WFS 3.0 APIs, easing transition.

Figure 6. Facades

In addition, legacy data models may be complex, with properties that are seldom used by data

16

producers. This can needlessly increase the size and complexity of datasets and reduce the ease of
implementation. To address this challenge some WFS 3.0 in Testbed-14 implemented the ability to
simplify feature resources exposed.

For example, the screenshot on the left below is from the Zaatari dataset, without additional
configuration. the Topographic Data Store (TDS) OpenStreepMap dataset is presented as published
in the WFS 2.0 servers, and all properties are delivered to applications. The screenshot on the right
shows the same feature resource in the Daraa dataset after the configuration of the WFS 3.0 proxy
service to simplify the data. Properties that are never present are not shown, labels have been
changed to more human-friendly text, code values have been translated and the name has been set
up as the label of a feature.

Figure 7. Zaatari and Daraa dataset screenshots

This section provided a brief introduction to WFS 3.0. Additional information on testing,
implementations and security frameworks in Testbed-14 are provided in the Experiments and
Implementations sections of this report.

5.2. OpenID Connect and OAuth 2.0
OpenAPI on WFS 3.0 supports multiple security frameworks. For Testbed-14, OpenID Connect and
OAuth 2.0 were assessed. OpenID Connect is an authentication layer on top of OAuth 2.0, an
authorization framework. OpenID Connect specifies a RESTful API using JSON as a data format. This
section provides background information on OpenID Connect and OAuth 2.0 and an introduction to
key technologies tested.

OAuth 2.0 provides a standard protocol for authorization. OAuth 2.0 supersedes the work done on
the original OAuth protocol created in 2006. OAuth 2.0 focuses on client developer simplicity while
providing specific authorization flows for web applications, desktop applications, mobile phones,
and living room devices.

OpenID Connect (OIDC) provides a simple identity layer on top of the OAuth 2.0 protocol. It allows
Clients to verify the identity of the End-User based on the authentication performed by an

17

Authorization Server, as well as to obtain basic profile information about the End-User in an
interoperable and REST-like manner. OpenID Connect allows clients of all types, including Web-
based, mobile, and JavaScript clients, to request and receive information about authenticated
sessions and end-users. The specification suite is extensible, allowing participants to use optional
features such as encryption of identity data, discovery of OpenID Providers, and session
management, when it makes sense for them.

5.2.1. OpenID Connect Security Environment

For Testbed-14, participants implemented an Authorization Server, which needs to be compliant
with OAuth2.0 and OpenID Connect.

The authorization server adds registration and management capabilities (that populate the LDAP
service) on top of the authorization endpoints and makes information about the service available
by means of an OpenID Connect Discovery document that lies on a commonly used relative path
(/.well-known/openid-configuration).

The Basic Authentication Service is made available for potential use on profile management, and
can either use LDAP credentials or utilize the authentication and authorization scheme. The end-
users can then interact with clients to retrieve tokens and access services. Additional information
on the Testbed-14 OpenID Connect security environment is provided in the OGC Testbed-14 Security
Engineering Report.

The configuration of OAuth2.0 and OpenID Connect in the Next Generation APIs - WFS 3.0
component implementation design is shown below. The client application with security handling is
provided by GIS.FCU. The WFS 3.0 are provided by Interactive Instruments, GeoSolutions and
Cubewerx. The authorization server is provided by Deimos.

18

Figure 8. Configuration of OAuth2.0 and OpenID Connect in the WFS 3.0 implementation design

This section provided a brief introduction to OAuth2.0 and OpenID Connect. Additional information
on testing, implementations and security frameworks in Testbed-14 are provided in the
Experiments and Implementations sections of this report.

19

Chapter 6. Experiments
The objective of the Next Generation APIs - WFS 3.0 effort in Testbed-14 was to develop and test
Web Feature Services (WFS) version 3.0 and its draft extensions in a secured environment.

This section describes tests conducted by Testbed-14 participants implementing WFS 3.0 using
OpenAPI, secured by OpenID Connect and OAuth 2.0. It includes descriptions and testing results of
APIs to help simplify and secure access to geospatial feature data. It also describes how a WFS 3.0
can advertise security requirements for accessing resources in its OpenAPI document.

6.1. Demonstration Scenario
In OGC Testbed-14, participants assessed the ability of WFS 3.0 to support simulated users in a
humanitarian relief scenario. In this scenario large numbers of people are displaced from the
Daraa region of Syria to Zaatari refugee camp due to conflict. Understanding the situation, the
infrastructure and helping refugees is a challenge. To assist this effort users accessed
OpenStreetMap data converted into the NGA Topographic Data Store (TDS) model to better
understand the environment and infrastructure.

The following graphic provides a sample of the scenario and data involved in testing WFS 3.0.

Figure 9. The scenario and data involved in testing WFS 3.0

20

6.2. Component Implementation Design
Based on the requirements the WFS 3.0 test architecture was developed and is shown below.

Figure 10. Overview of the Testbed-14 Next Generation APIs experiments architecture

The test architecture illustrates a sequence of interactions between APIs, client applications and
security frameworks for this part of the OGC Testbed-14 -

• APIs - NGA TDS OpenStreetMap data for the Daraa and Zaatari areas was deployed on multiple
OGC WFS 3.0s including services from GeoSolutions, Interactive Instruments and Cubewerx.
The WFS 3.0s focused on a simple RESTful core specified as reusable OpenAPI components, with
WFS 3.0 Extensions for Generalization, Maps and other functions implemented by different
participants.

• Client Applications - Several types of client applications were exercised including a client from
GIS.FCU designed to exercise the reusable OpenAPI components of WFS 3.0 core. In addition,
off-the-shelf web browsers were used to access the Landing Page paths of the WFS 3.0. Finally,
the Swagger UI was tested as a client to visualize and interact with the resources of the OpenAPI
implementations - and to automatically generate a variety of clients in HTML and other
languages.

• Security Frameworks - WFS 3.0 clients and services were secured via an Authorization Server
using OpenID Connect and OAuth 2.0. Client applications logged in using credentials valid on
the Authorization Server and then performed requests to the WFS 3.0. If the credentials are

21

valid the user is granted access to the WFS 3.0 via the client application.

6.3. Technology Integration Experiments
The architecture was tested in a series of Technology Integration Experiments (TIEs) and
demonstrated in the context of unsecured APIs and Clients and secure APIs and Clients. Unsecured
APIs and Clients did not implement the security framework and secure APIs and Clients
implemented OpenID Connect and OAuth 2.0.

Interoperability experiments conducted are outlined in the following TIE table -

Figure 11. Technology Integration Experiments

The following sections describe experiments conducted with unsecured and secured WFS 3.0 APIs
and Clients.

6.3.1. Unsecured WFS 3.0

This section describes TIEs on Services and Clients that did not implement the security framework
of OpenID Connect and OAuth 2.0. Testing included assessments of the OpenAPI implementations
and the ability of WFS 3.0 to support modern API tools such as Swagger.

The following sections describe results of TIEs for landing pages, OpenAPIs, core conformance
classes conducted for WFS 3.0 during Testbed-14.

Browser Tests

In the first set of Technology Integration Experiments, standard web browsers were used to access

22

the 'root path' of WFS 3.0. For example, if an application or user follows the root path of a WFS 3.0
such as

GET /

The server responds with a 'landing page' that includes links to the following resources

/api

/conformance

/collections

WFS 3.0 from GeoSolutions, Cubewerx and Interactive Instruments were assessed for the ability to
provide landing pages at the root path of each API. To access the WFS 3.0 landing pages a standard
web browser was used to query the path and conduct the TIE -

Figure 12. Browser Technology Integration Experiments

Landing pages were successfully provided by WFS 3.0 from GeoSolutions, Cubewerx and
Interactive Instruments. Each WFS 3.0 Landing Page provided information on the API,
conformance classes and collections.

In the GeoServer WFS 3.0 example below, the HTML landing page has basically the same contents
as a JSON landing page, just in human readable form and with alternative format links for every
entry. In the collections section the daraa_FacilitySrf resource is selected and a simple rendering of
a map preview is displayed in the browser.

23

Figure 13. GeoSolutions landing pages

In the Cubewerx example below the landing page is also HTML but is laid out in a slightly different
form, based on the preferences of the API developer. In the collections section the FacilitySrf
resource is once again selected, and this time a jpeg image preview is displayed in the browser.

Figure 14. Cubewerx landing pages

In the Interactive Instruments example below the WFS 3.0 landing page presents another type of
layout, but again with the same information. In the collections section the FacilitySrf resource is
once again selected, and this time markers on an OpenStreetMap background map are displayed

24

showing the locations of the feature resources.

Figure 15. Interactive Instruments landing pages

Swagger UI Tests

WFS 3.0 minimizes the use of WFS-specific components as much as possible and instead uses
industry standards that are commonly used by developers. The most important example of this is
the use of OpenAPI documents instead of OGC-specific "Capabilities" documents. Some key elements
of the initiative were assessments of the ability of OpenAPI to provide a simple, language-agnostic
interface to RESTful APIs. Accordingly, Testbed-14 also included TIEs to assess the ability of WFS 3.0
to support modern API tools such as Swagger.

It should be noted that Swagger is no the only OpenAPI tool. Other tools include KaiZen, Microsoft
parsers, Apicurio, RepreZen, Google Gnostic and many others. For example, the CITE test for WFS
3.0 uses KaiZen to parse OpenAPI documents into Java classes which are then used in compliance
tests.

This section provides a brief description of Technology Integration Experiments using Swagger
tools to access OpenAPI documents describing the WFS 3.0.

25

Figure 16. Swagger Technology Integration Experiments

In Testbed-14 Swagger tools successfully accessed OpenAPI documents provided by WFS 3.0 from
GeoSolutions, Cubewerx and Interactive Instruments. In the GeoSolutions example below the
resource path for the OpenAPI document is provided to a browser-based Swagger application and
the tool returns an easy to understand description of the API components.

26

Figure 17. GeoSolutions GeoServer Swagger page

In the GeoServer WFS 3.0 example below the /collections/ { collectionsid} API component is
accessed and descriptions of the feature collections provided in the Swagger tool.

27

Figure 18. GeoSolutions GeoServer Swagger response

In the Interactive Instruments example below the resource path for the OpenAPI document is also
provided to a browser-based Swagger application and the tool returns a similar easy to understand
description of the API components.

28

Figure 19. Interactive Instruments Swagger page

In the Interactive Instruments example below a different Swagger tool, Swagger Hub, is exercised.
Specifically, the resource path for the OpenAPI document is provided to Swagger Hub. Swagger Hub
is focused on helping streamline the design and development APIs based on OpenAPI.

29

Figure 20. Interactive Instruments Swagger Hub page

In the Cubewerx example below Swagger Hub is shown at work during the API development
process in July 2018, providing a rare glimpse at development in an OGC Testbed.

30

Figure 21. Cubewerx Swagger page

31

Figure 22. Cubewerx Swagger page 2

Overall, Swagger tools were used extensively in the next generation APIs effort in Testbed-14,
helping streamline design and development in all phases of the project. Although used for API
development some participants exercised even more advanced functions of Swagger, including the
code generation capability. Swagger Codegen can simplify development by generating server stubs
and client SDKs APIs defined with the OpenAPI specification.

WFS 3.0 Client

To test and demonstrate functionality a client implementation of WFS 3.0 Core was developed by
GIS FCU. Testing focused on the API Definition (path /api), Conformance statements (path
/conformance), and the Dataset Distribution (path /collections) resources as outlined in the
following TIE table -

32

Figure 23. Client Technology Integration Experiments with unprotected WFS 3.0 implementations

The GIS FCU example below shows the Testbed-14 WFS 3.0 client application. The application is
divided into several main areas. Along the top of the application is a text box to enter the URL of the
WFS 3.0 API landing page, and shortcuts to TIE components from Interactive Instruments,
Cubewerx and GeoSolutions. Below the shortcuts are links to test the /api, /conformance and
/collections paths of the Interactive Instruments, Cubewerx and GeoSolutions WFS 3.0, Finally, there
is the map view which provides a background map from OpenStreetMap and displays of
OpenStreetMap data converted into the NGA TDS model from WFS 3.0.

Figure 24. GIS FCU Testbed-14 WFS 3.0 client application

In the example below the agriculture feature collection in GeoJSON from the Interactive
Instruments collections API is accessed and displayed.

33

Figure 25. GIS FCU Testbed-14 WFS 3.0 client application accessing the Interactive Instruments collections
API

In the example below the hydrography feature collection in GeoJSON from the GeoSolutions
collections API is accessed and displayed.

Figure 26. GIS FCU Testbed-14 WFS 3.0 client application accessing the GeoSolutions collections API

In the example below the culture feature collection in GeoJSON from the Cubewerx collections API
is accessed and displayed.

34

Figure 27. GIS FCU Testbed-14 WFS 3.0 client application accessing the Cubewerx collections API

6.3.2. Secured WFS 3.0

OpenAPI 3.0 uses the term Security Scheme for authentication and authorization schemes. A
Security Scheme Object provides a detailed description of a type of security control. Currently the
OpenAPI specification supports the following Security Schemes:

• HTTP authentication,

• API key (either as a header or as a query parameter),

• OAuth2’s common flows (implicit, password, application and access code) as defined in
RFC6749, and

• OpenID Connect Discovery.

OAuth 2.0 and OpenID Connect were the security schemes implemented in the Testbed-14 WFS 3.0
effort. OpenID Connect is an authentication scheme on top of OAuth 2.0, an authorization scheme.

OAuth 2.0 provides a standard protocol for authorization. OAuth 2.0 supersedes the work done on
the original OAuth protocol created in 2006. OAuth 2.0 focuses on client developer simplicity while
providing specific authorization flows for web applications, desktop applications, mobile phones,
and living room devices.

OpenID Connect (OIDC) provides a simple identity layer on top of the OAuth 2.0 protocol. It allows
Clients to verify the identity of the End-User based on the authentication performed by an
Authorization Server, as well as to obtain basic profile information about the End-User in an
interoperable and REST-like manner. OpenID Connect allows clients of all types, including Web-
based, mobile, and JavaScript clients, to request and receive information about authenticated
sessions and end-users. The specification suite is extensible, allowing participants to use optional
features such as encryption of identity data, discovery of OpenID Providers, and session
management, when it makes sense for them.

35

For Testbed-14, participants implemented an Authorization Server, which was compliant with
OAuth2.0 and OpenID Connect. The authorization server adds registration and management
capabilities (that populate the LDAP service) on top of the authorization endpoints and makes
information about the service available by means of an OpenID Connect Discovery document that
lies on a commonly used relative path (/.well-known/openid-configuration).

The Basic Authentication Service is made available for potential use on profile management, and
can either use LDAP credentials or utilize the authentication and authorization scheme. The end-
users can then interact with clients to retrieve tokens and access services. Additional information
on the Testbed-14 OpenID Connect and OAuth 2.0 security environment is provided in the Testbed-
14 Security Engineering Report available at the following Security Engineering Report
[https://github.com/opengeospatial/D024-Security_Engineering_Report/blob/master/6-auth.adoc].

The configuration of OAuth2.0 and OpenID Connect in the Next Generation APIs - WFS 3.0
component implementation design is shown below. The client application with security handling is
provided by GIS.FCU. The WFS 3.0 are provided by Interactive Instruments, GeoSolutions and
CubeWerx. The Authorization Server is provided by Deimos.

Figure 28. Configuration of OAuth2.0 and OpenID Connect in the WFS 3.0 implementation design

36

https://github.com/opengeospatial/D024-Security_Engineering_Report/blob/master/6-auth.adoc

Testing of security for WFS 3.0 focused on access control for WFS 3.0 Core APIs including the API
Definition (path /api), Conformance statements (path /conformance), and the Dataset Distribution
(path /collections) resources as outlined in the following TIE table -

Figure 29. Client Technology Integration Experiments with secure WFS 3.0 implementations

The GIS FCU example below shows the Testbed-14 client application. Along the top of the
application is a text box to enter the URL of the WFS 3.0 API landing page, and shortcuts to WFS 3.0
TIE components from Interactive Instruments, Cubewerx and GeoSolutions. At the top right of the
application are a set of panels to register the client on the AUthorization Server for proper
permissions.

37

Figure 30. Security panels of the GIS FCU Testbed-14 client application

In the client application, users can choose the following OAuth 2.0 permission flows -

• Implicit Grant flow - The Implicit Grant type is a simplified flow that can be used by public
clients, where the access token is returned immediately without an extra authorization code
exchange step [2]. It is generally not recommended to use the implicit flow, as industry best
practice has changed to recommend that public clients should use the Authorization Code Grant
flow without the client secret.

• Authorization Code Grant flow - The Authorization Code Grant flow is used by confidential
and public clients to exchange an authorization code for an access token [3].

• Password Grant flow - The Password Grant flow can grant an access token based on Resource
Owner Password Credentials (ROPC) grant type.

• Dynamic Client Registration flow - Users can also select Dynamic Client Registration of OAuth
2.0 if the Authorization Server supports it, and the client can skip this registration.

Additional information on these flows is provided in the Implementations section of this report.

38

Technology Integration Experiments

The TIEs for secured WFS 3.0 included three major component definitions - Service Type, Dataset,
and Providers. Service Type defines what services are covered, such as WFS 3.0 with OAuth. Dataset
defines what data source was been used, such as Daraa or Zaatari. Providers defines which
Participant hosted the services. These three components are described in the following tables.

Service Types

Name Abbre. Description

WFS 3.0 with Security WFS_Sec Service Endpoint of WFS 3.0
with OAuth

OAuth Password Grant OA_Pwd The flow that grants an access
token based on Resource Owner
Password Credentials (ROPC)
grant type

OAuth Implicit Grant OA_Imp The flow that is used by public
clients where the access token
is returned immediately
without an extra authorization
code exchange step.

OAuth Code Grant OA_Code The flow that is used by
confidential and public clients
to exchange an authorization
code for an access token.

Dataset

Name Abbre. Description

Daraa Da NGA Topographic Data Store
(TDS) OpenStreetMap data for
Daraa area

Zaatari Za NGA Topographic Data Store
(TDS) OpenStreetMap data for
Zaatari area

Providers

Name Abbre. Description

Interactive Instruments II WFS 3.0 provider

CubeWerx CW WFS 3.0 provider

GeoSolutions GS WFS 3.0 provider

TIE Results

Results of TIE testing for OAuth are summarized in the following table, with an entry of "Yes"
indicating a successful test

39

TIE for OAuth

Name Success

OA_Pwd Yes

OA_Imp Yes

OA_Code Yes

TIE for WFS

Each secured WFS 3.0 API endpoint is described using the abbreviation of the components in the
following pattern

{Service Type}-{Dataset}-{Provider}

Results of TIE testing for secured WFS 3.0 API endpoints are summarized in the following table,
with an entry of "Yes" indicating a successful test

Endpoint landing
page

/api /conforma
nce

/collection
s

/collection
s/{name}

/collection
s/{name}/i
tems

/collection
s/{name}/i
tems/{id}

WFS_Sec-
Da-II

Yes Yes Yes Yes Yes Yes Yes

WFS_Sec-
Za-II

Yes Yes Yes Yes Yes Yes Yes

WFS_Sec-
Da-CW

Yes Yes Yes Yes Yes Yes Yes

WFS_Sec-
Za-CW

Yes Yes Yes Yes Yes Yes Yes

WFS_Sec-
Za-GS

Yes Yes Yes Yes Yes Yes Yes

WFS_Sec-
Za-GS

Yes Yes Yes Yes Yes Yes Yes

Additional information is provided in the Implementations section of this report.

40

Chapter 7. Implementations
The objective of the next generation APIs effort was to develop and test Web Feature Services (WFS)
version 3.0. The initiative assessed OpenAPI, security based on OpenID Connect and OAuth 2.0 and
WFS 3.0 extensions. The effort also began to assess methods to ease geospatial enterprise transition
to next generation APIs.

This section describes the components implemented by Testbed-14 participants using WFS 3.0 with
OpenAPI, and secured by OpenID Connect and OAuth 2.0.

7.1. Component Implementation Design
The WFS 3.0 Component Implementation Design for this part of Testbed-14 is shown below for
reference -

Figure 31. WFS 3.0 Component Implementation Design for this part of Testbed-14

7.2. Participant Implementations
This subsection describes the WFS 3.0 components implemented by Testbed-14 participants.

7.2.1. D113 - Next Generation API Implementation (GeoSolutions)

This deliverable consists of a single component, a WFS 3.0 server implementation developed by
GeoSolutions [https://www.geo-solutions.it/] as a community plugin to the GeoServer [http://geoserver.org/]
open source software [4]. The plugin has been made available to the GeoServer community from
the start on the public GitHub repository [https://github.com/geoserver/geoserver/tree/master/src/community/

wfs3], while its binary form can be found among the nightly builds of the development series
[https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.15-SNAPSHOT-wfs3-plugin.zip].

This component is published as four separate endpoints, exposing the OSM data for Daraa and

41

https://www.geo-solutions.it/
http://geoserver.org/
https://github.com/geoserver/geoserver/tree/master/src/community/wfs3
https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.15-SNAPSHOT-wfs3-plugin.zip

Zaatari areas, both as unsecured and secured services:

• Daraa Refugee Camp, unsecured [http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3]

• Daraa Refugee Camp, secured [https://cloudsdi.geo-solutions.it/geoserver/daraas/wfs3]

• Zaatari Refugee Camp, unsecured [http://cloudsdi.geo-solutions.it/geoserver/zaatari/wfs3]

• ZaatariRefugee Camp, secured [https://cloudsdi.geo-solutions.it/geoserver/zaataris/wfs3]

The module can be thought of as a protocol proxy layer running over the WFS 2.0 internal engine. It
adds the following output formats to the WFS 3.0 implementation:

• RFC compliant GeoJSON outputs, with paging links (the current GeoJSON implementation, still
available under a different media type, is the classic, pre-RFC GeoJSON output format)

• HTML output with paging links

Specific to WFS 3.0 are the implementations of the landing page, conformance and OpenAPI
responses, as well as collection descriptions.

Exploring the HTML output is a good way to showcase the server abilities, especially since
GeoServer’s current HTML implementation is mimicking the other output formats (JSON, XML).

The landing page provides access to the API document and the collections, while including contact
information should one need to get in touch with the server maintainers. When possible, links to
alternate representations of the same resource are also provided.

42

http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3
https://cloudsdi.geo-solutions.it/geoserver/daraas/wfs3
http://cloudsdi.geo-solutions.it/geoserver/zaatari/wfs3
https://cloudsdi.geo-solutions.it/geoserver/zaataris/wfs3

Figure 32. GeoServer landing page

The API page provides the familiar Swagger UI rendering. In particular, GeoServer generates a
YAML document that the Swagger UI JavaScript toolkit turns into an API description, with the extra
bonus of interactive request tests. An example is shown below:

43

Figure 33. API page

The collections page lists the available collections, providing for each a direct HTML output on the
"collections/{collectionId}/items" resource, as well as access to all available output formats in a
dropdown.

44

Figure 34. Collections page

As a result of the current architecture, GeoServer WFS 3.0 shares all the available output formats
with the other versions of WFS, thus providing not only HTML, GeoJSON and Geography Markup
Language (GML), but also KML, CSV, zipped shapefile, as well as others depending on what plugins
have been installed (e.g. GeoPackage, DXF, Excel and OpenDocument spreadsheets, MIF, and more).

The collections page also links to a "map preview", which is the standard GeoServer preview,
implemented as a GetMap with the special "application/openlayers" output format. An example is
shown below:

45

Figure 35. Map preview page

Finally, following the HTML output links to HTML output representation of the collection items:

46

Figure 36. Collection items

The current output is a simple table, with paging links at the bottom (omitted in the screenshot).

It is also worth noting that all HTML outputs are default implementations which can be replaced by
the administrator on a workspace or collection basis with their own, using custom representations
and their choice of page style and logos, thanks to Freemarker templating language
[https://freemarker.apache.org/].

Conformance Classes

The current implementation of the WFS 3.0 GeoServer plugin supports the following conformance
classes:

• Core

• OpenAPI 3.0

• HTML

• GeoJSON

• GML Simple Feature Profile, Level 2

The supported conformance classes are available at the path /conformance of each server.

Extensions

The WFS 3.0 protocol has presently no official extensions (CRS is currently in the works), GeoServer
will likely start implementing extensions as they reach maturity.

However, given the nature of the internal proxy to the WFS 2.0 implementation, most WFS 2.0 KVP
parameter can be seamlessly used in the WFS 3.0 protocol as well. For example:

• Random paging via "offset/limit", e.g. http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/
collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10

47

https://freemarker.apache.org/
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10

• Filter via CQL_FILTER, e.g. http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/
daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&
cql_filter=Area_ha%3E10

• Property selection via "propertyname", e.g. http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/
collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&
propertyName=ClassName,Orchard

Security considerations

Before Testbed-14, GeoServer did support a few OAuth2 based variants, such as Google, GitHub and
GeoNode ones, but not OpenID Connect. To integrate the server into the security environment of
the Testbed, a new OAuth2/OpenId Connect plugin was developed and made available to the user
community:

• Source code [https://github.com/geoserver/geoserver/tree/master/src/community/security/oauth2-openid-

connect]

• Binary package [https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.15-SNAPSHOT-

sec-oauth2-openid-connect-plugin.zip]

The server endpoints provided for testing support both HTTP and HTTPS (the HTTPS one is
preferred for authenticated requests).

IANA considerations

The WFS 3.0 implementation only added support for media types included in the specification
itself. Non-IANA compliant media types might be present in the components as a result of previous
development efforts (e.g., plugins, older versions of WFS also present in the server).

7.2.2. D140 - Next Generation API Implementation (interactive instruments)

The deliverable consists of two components, a WFS 2.0 component and a WFS 3.0 component that is
a facade providing access to the WFS 2.0 services.

The data consists of two datasets used previously in OGC Testbed-13: Open Street Map data for two
refugee camps that has been transformed to Shapefiles using feature and attribute codes from the
NSG Application Schema (NAS) of NGA.

The WFS 2.0 server uses the XtraServer product of interactive instruments, an OGC Reference
Implementation for WFS 2.0.

The endpoints are:

• Daraa Refugee Camp [https://services.interactive-instruments.de/t14/wfs2/daraa?SERVICE=WFS&

REQUEST=GetCapabilities]

• Zaatari Refugee Camp [https://services.interactive-instruments.de/t14/wfs2/zaatari?SERVICE=WFS&

REQUEST=GetCapabilities]

As no official schema for the datasets exist, the GML application schema is derived from the
datasets.

48

http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&cql_filter=Area_ha%3E10
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&cql_filter=Area_ha%3E10
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&cql_filter=Area_ha%3E10
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&propertyName=ClassName,Orchard
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&propertyName=ClassName,Orchard
http://cloudsdi.geo-solutions.it/geoserver/daraa/wfs3/collections/daraa__Cultivated_2012/items?f=application%2Fgeo%2Bjson&limit=5&offset=10&propertyName=ClassName,Orchard
https://github.com/geoserver/geoserver/tree/master/src/community/security/oauth2-openid-connect
https://build.geoserver.org/geoserver/master/community-latest/geoserver-2.15-SNAPSHOT-sec-oauth2-openid-connect-plugin.zip
https://services.interactive-instruments.de/t14/wfs2/daraa?SERVICE=WFS&REQUEST=GetCapabilities
https://services.interactive-instruments.de/t14/wfs2/zaatari?SERVICE=WFS&REQUEST=GetCapabilities

The WFS 3.0 server uses the ldproxy software, developed by interactive instruments.

The ldproxy tool has been developed as a proxy for WFS endpoints to explore how WFS could be
better aligned with today’s Web and the expectations of developers and users. See, for example, the
report titled "Spatial Data on the Web using the current SDI" [5]. The results have been input to the
development of the W3C/OGC Spatial Data on the Web Best Practice [6] and the OGC Change
Request for WFS 3.0 [7].

From the beginning of the WFS 3.0 process, ldproxy has been updated to assess the usability of
design proposals for the API building blocks of WFS 3.0.

The WFS 3.0 landing pages are:

• Daraa Refugee Camp [https://services.interactive-instruments.de/t14/wfs3/daraa]

• Zaatari Refugee Camp [https://services.interactive-instruments.de/t14/wfs3/zaatari]

In addition, secured services have been set up using the OpenID Connect/OAuth2.0 Server deployed
by Deimos Space for the Testbed.

• Daraa dataset:

◦ Landing page: https://services.interactive-instruments.de/t14/wfs3/daraa-sec/ (requires token
to access)

◦ OpenAPI definition: https://services.interactive-instruments.de/t14/wfs3/daraa-sec/api/

• Zaatari dataset:

◦ Landing page: https://services.interactive-instruments.de/t14/wfs3/zaatari-sec/ (requires
token to access)

◦ OpenAPI definition: https://services.interactive-instruments.de/t14/wfs3/zaatari-sec/api/

The configuration of the facade services for the Daraa dataset has been tweaked to improve the
usability of the services. For example, feature and attribute names have be changed so that they
can be understood more easily (in HTML and GeoJSON), and attributes useful for filtering have
been configured.

The following screenshots illustrate the current HTML representation of selected resources.

49

https://services.interactive-instruments.de/t14/wfs3/daraa
https://services.interactive-instruments.de/t14/wfs3/zaatari
https://services.interactive-instruments.de/t14/wfs3/daraa-sec/
https://services.interactive-instruments.de/t14/wfs3/daraa-sec/api/
https://services.interactive-instruments.de/t14/wfs3/zaatari-sec/
https://services.interactive-instruments.de/t14/wfs3/zaatari-sec/api/

Figure 37. ldproxy landing page in HTML

Since ldproxy is a WFS 2.0 facade, it includes not only the standard WFS 3.0 links to the API
description and to each collection, it also includes a link to the WFS 2.0 server.

50

Figure 38. ldproxy items of a collection (cultural surfaces) in HTML, before configuration

The page displays the features with selected attributes (by default all attributes, this will be
changed in the service configuration) the prev and next links, a map with all features from that
page, links to alternate representations, and options to enter bbox, time and other filter
parameters.

The screenshot is from the Zaatari dataset, without additional configuration i.e., the data is
presented as published in the WFS 2.0 server.

51

Figure 39. ldproxy items of a collection (cultural surfaces) in HTML, after configuration

This figure shows the same feature type in the Daraa dataset after the configuration of the WFS 3.0
proxy service to improve the usability of the data. Attributes that are never present are not shown,
labels have been changed to more human-friendly text, code values have been translated and the
name has been set up as the label of a feature.

The form for filtering is shown in the next figure:

52

Figure 40. ldproxy filtering items of a collection in HTML

Filters have been added to select railway features near the railway station.

Finally, for displaying the OpenAPI definition, ldproxy uses Swagger UI.

53

Figure 41. ldproxy OpenAPI definition in HTML

ldproxy exposes each collection explicitly so that feature attributes can be used for filtering.

Conformance Classes

All of the existing WFS 3.0 conformance classes are supported by the services:

• Core

• OpenAPI specification 3.0

• HTML

• GeoJSON

• Geography Markup Language (GML), Simple Features Profile, Level 0 / 2

The supported conformance classes are available at the path /conformance of each server.

Extensions

This section describes the extensions that have been included in the server.

CRS Support

The draft CRS extension [https://github.com/opengeospatial/WFS_FES/tree/master/extensions/crs] with the
parameters crs and bbox-crs on items / crs on items/{featureId} is supported.

The following CRSs have been enabled in addition to the default CRS, WGS84 lon/lat

54

https://github.com/opengeospatial/WFS_FES/tree/master/extensions/crs
http://www.opengis.net/def/crs/OGC/1.3/CRS84

[http://www.opengis.net/def/crs/OGC/1.3/CRS84]:

• WGS84 lat/lon [http://www.opengis.net/def/crs/EPSG/0/4326]

• WGS84 / Web Mercator [http://www.opengis.net/def/crs/EPSG/0/3857]

• WGS84 / World Mercator [http://www.opengis.net/def/crs/EPSG/0/3395]

• WGS84 / World Equidistant Cylindrical [http://www.opengis.net/def/crs/EPSG/0/4087]

Examples:

• Metadata for a feature collection with CRS information [https://services.interactive-instruments.de/t14/

wfs3/daraa/collections/culturepnt?f=json]

• A feature in the Web Mercator projection [https://services.interactive-instruments.de/t14/wfs3/daraa/

collections/culturepnt/items/CulturePnt.1?f=json&crs=http://www.opengis.net/def/crs/EPSG/0/3857]

• A feature in the World Mercator projection [https://services.interactive-instruments.de/t14/wfs3/daraa/

collections/culturepnt/items/CulturePnt.1?f=json&crs=http://www.opengis.net/def/crs/EPSG/0/3395]

• Select features in a World Mercator bounding box [https://services.interactive-instruments.de/t14/wfs3/
daraa/collections/culturepnt/items?f=json&crs=http://www.opengis.net/def/crs/EPSG/0/3395&

bbox=4010000,3820000,4020000,3830000&bbox-crs=http://www.opengis.net/def/crs/EPSG/0/3395]

Geometry Simplification

A parameter maxAllowableOffset on items and items/{featureId} has been added. This simplifies
geometries using the Douglas-Peucker algorithm and the parameter value is the maximum distance
between the original line string and the simplified line string in the coordinate reference systems of
the response.

NOTE

This parameter follows the design in the GeoServices REST API. For developers and
users it is probably easier to just use a zoom level. This is under discussion in
Testbed-14 and will likely be changed to a different parameter definition. That
parameter would then be converted internally to the distance value for the Douglas-
Peucker algorithm.

The two datasets used are large scale data, so the benefits of using simplification for larger scale
map representations are not so important in this case. In other cases the size of the data can be
reduced significantly.

Example:

• a feature without simplification in HTML [https://services.interactive-instruments.de/t14/wfs3/daraa/

collections/agriculturesrf/items/AgricultureSrf.7?f=html];

• the same feature with a slightly simplified geometry in HTML [https://services.interactive-
instruments.de/t14/wfs3/daraa/collections/agriculturesrf/items/AgricultureSrf.7?f=html&

maxAllowableOffset=0.003]

Extensions based on WFS 2.0 Capabilities

• A parameter offset on items: The optional offset parameter indicates the index within the result

55

http://www.opengis.net/def/crs/EPSG/0/4326
http://www.opengis.net/def/crs/EPSG/0/3857
http://www.opengis.net/def/crs/EPSG/0/3395
http://www.opengis.net/def/crs/EPSG/0/4087
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/culturepnt?f=json
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/culturepnt/items/CulturePnt.1?f=json&crs=http://www.opengis.net/def/crs/EPSG/0/3857
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/culturepnt/items/CulturePnt.1?f=json&crs=http://www.opengis.net/def/crs/EPSG/0/3395
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/culturepnt/items?f=json&crs=http://www.opengis.net/def/crs/EPSG/0/3395&bbox=4010000,3820000,4020000,3830000&bbox-crs=http://www.opengis.net/def/crs/EPSG/0/3395
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/agriculturesrf/items/AgricultureSrf.7?f=html
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/agriculturesrf/items/AgricultureSrf.7?f=html&maxAllowableOffset=0.003

set from which the server shall begin presenting results in the response document. The first
element has an index of 0. Minimum = 0. Default = 0.

◦ In WFS 2.0, the parameter was called startIndex.

• A parameter resultType on items: This service will respond to a query in one of two ways
(excluding an exception response). It may either generate a complete response document
containing resources that satisfy the operation or it may simply generate an empty response
container that indicates the count of the total number of resources that the operation would
return. Which of these two responses is generated is determined by the value of the optional
resultType parameter. The allowed values for this parameter are "results" and "hits". If the
value of the resultType parameter is set to "results", the server will generate a complete
response document containing resources that satisfy the operation. If the value of the
resultType attribute is set to "hits", the server will generate an empty response document
containing no resource instances. Default = "results".

◦ An example: The number of Ground Transportation features with line geometries in the
Daraa dataset (941) [https://services.interactive-instruments.de/t14/wfs3/daraa/collections/

transportationgroundcrv/items?f=json&resultType=hits]

Security considerations

Before Testbed-14, the ldproxy software did not support any of the OpenAPI supported security
schemes. To integrate the server into the security environment of the Testbed, the following
implementation tasks were required:

• implementing the OAuth2/OpenID Connect workflow in the server;

• publish the details in the OpenAPI definition.

In addition, it was identified that a WFS 3.0 with HTML support is basically also a client and the
client workflow needs to be implemented as well.

Another aspect that Participants learned is that the information about the OpenID Connect security
scheme in the OpenAPI definition is not visible/supported in the HTML generated by Swagger UI.

This is different for other schemes. If JWT bearer authentication is used, the generated HTML has a
capability to provide bearer tokens to access the API via the HTML client generated with Swagger
UI.

The server uses HTTPS only.

IANA considerations

The standard media types and link relations are all supported.

7.2.3. D113 - Next Generation API Implementation (CubeWerx)

The CubeWerx D113 deliverables consist of servers deployed at the following endpoints:

• Unsecured, development, servers:

◦ USGS Framework Data [http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/api]

56

https://services.interactive-instruments.de/t14/wfs3/daraa/collections/transportationgroundcrv/items?f=json&resultType=hits
https://services.interactive-instruments.de/t14/wfs3/daraa/collections/transportationgroundcrv/items?f=json&resultType=hits
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/api

◦ VMAP Level 0 Foundation Data [http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/

foundation/api]

◦ Daraa Refugee Camp [http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/api]

◦ Zaztari Refugee Camp [http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/zaatari/api]

◦ US Building Footprints [http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/buildings/api]

• Secured, stable, servers:

◦ VMAP Level 0 Foundation Data [https://tb14.cubewerx.com/cubewerx/cubeserv/default/wfs/3.0.0/

Foundation/api]

◦ Daraa Refugee Camp [https://tb14.cubewerx.com/cubewerx/cubeserv/default/wfs/3.0.0/Daraa/api]

◦ Zaatari Refugee Camp [https://tb14.cubewerx.com/cubewerx/cubeserv/default/wfs/3.0.0/Zaatari/api]

The usernames/password for the secured servers is tb14guest/tb14guest. The security protocols
supported by the server are described in the Security Considerations clause.

Conformance Classes

All of the existing WFS 3.0 conformance classes are supported by the CubeWerx WFS 3.0 server
deployed for Testbed-14:

• Core

• OpenAPI specification 3.0

• HTML

• GeoJSON

• Geography Markup Language (GML), Simple Features Profile, Level 0 / 2

The supported conformance classes are available at the /conformance path.

Extensions

The following extensions have been implemented by the CubeWerx WFS 3.0 server (D113) for
Testbed-14:

• Coordinate reference systems (by reference) extension

• Geometry simplification extension

• Collections selection extension

• Property selection extension

• Asynchronous request extension

• Hierarchical path extension

• Map extension

• Tile extension

• OpenSearch query extension

• Advanced adhoc query extension

57

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/api
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/api
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/zaatari/api
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/buildings/api
https://tb14.cubewerx.com/cubewerx/cubeserv/default/wfs/3.0.0/Foundation/api
https://tb14.cubewerx.com/cubewerx/cubeserv/default/wfs/3.0.0/Daraa/api
https://tb14.cubewerx.com/cubewerx/cubeserv/default/wfs/3.0.0/Zaatari/api

• Transaction extension

Security considerations

In Testbed-14 CubeWerx implemented methods for a WFS 3.0 to advertise security requirements
objects and security scheme objects in its OpenAPI document.

As defined in OGC Web Feature Service 3.0: Path 1 - Core [https://rawgit.com/opengeospatial/WFS_FES/

master/docs/17-069.html#_api_definition_2] a server’s OpenAPI document can be accessed via the "/api"
path.

Security Requirements Object

The security requirements object [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/

3.0.0.md#securityRequirementObject] is a declaration of which security mechanisms can be used to
authorize resource access across the API.

The list of values includes alternative security requirement objects that can be used. Only one of the
security requirement objects needs to be satisfied to authorize resource access. The field name of
the security requirements object is "security". The following JSON fragment illustrates the top level
security requirements objects:

 ...
 "servers": [
 ...
],
 "security": [
 { "apiKey": [] },
 { "cubewerxApiKey": [] },
 { "httpBasic": [] },
 { "httpBearer": [] },
 { "oauth2": ["profile", "openid", "email"] }
],
 "paths": {
 ...
 },
 ...

Individual operations can override this definition using a locally scoped security requirements
object [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operation-object].

 "/collections": {
 "get": {
 "summary": "Undefined message",
 "description": "Undefined message",
 "operationId": "describeCollections",
 "tags": [
 "FeatureSets"
],

58

https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#_api_definition_2
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operation-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operation-object

 "security": [
 { "apiKey": [] },
 { "oauth2": ["profile", "openid", "email"] }
],
 "parameters": [
 {
 "name": "f",
 "in": "query",
 "description": "A MIME type indicating the representation of the resources
to be presented (e.g. application/gml+xml; version=3.2 for GML 3.2).",
 "required": false,
 "allowEmptyValue": true,
 "schema": {
 "type": "string",
 "enum": [
 "json",
 "xml",
 "html"
]
 },
 "style": "form",
 "explode": true
 }
],
 "responses": {
 "200": {
 "description": "Undefined message",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/content-json"
 }
 },
 "application/xml": {
 "schema": {
 "$ref": "#/components/schemas/content-xml"
 }
 },
 "text/html": {
 "schema": {
 "type": "string"
 }
 }
 }
 },
 "default": {
 "description": "Undefined message",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/exception-json"

59

 }
 },
 "application/xml": {
 "schema": {
 "$ref": "#/components/schemas/exception-xml"
 }
 },
 "text/html": {
 "schema": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }

Security scheme object

Each security requirement (i.e. "apiKey", "cubewerxApiKey", etc.) specified at the API or operation
level must reference a security scheme object [https://github.com/OAI/OpenAPI-Specification/blob/master/

versions/3.0.0.md#securitySchemeObject] defined in the components section [https://github.com/OAI/OpenAPI-

Specification/blob/master/versions/3.0.0.md#componentsObject] of a server’s OpenAPI document.

Supported schemes are HTTP authentication, an API key (either as a header or as a query
parameter), OAuth2’s common flows (implicit, password, application and access code) as defined in
RFC 6749 [https://tools.ietf.org/html/rfc6749], and OpenID Connect Discovery [https://tools.ietf.org/html/draft-

ietf-oauth-discovery-06].

The following JSON fragment illustrates a security schemes object in the components section of a
WFS’s OpenAPI document:

 ...
 "components": {
 "parameters": {
 ...
 },
 "securitySchemes": {
 "apiKey": {
 "type": "apiKey",
 "name": "apiKey",
 "in": "query"
 },
 "cubewerxApiKey": {
 "type": "apiKey",
 "name": "CubeWerx-API-Key",
 "in": "header"
 },
 "httpBasic": {

60

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securitySchemeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#componentsObject
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-discovery-06

 "scheme": "Basic",
 "type": "http"
 },
 "httpBearer": {
 "scheme": "Bearer",
 "type": "http"
 },
 "cwauth": {
 "schema": "CwAuth",
 "type": "http",
 "description": "CubeWerx-specific scheme. Pass value of CW_CREDENTIALS
cookie."
 },
 "oauth2": {
 "type": "oauth2",
 "flows": {
 "implicit": {
 "authorizationUrl": "https://tb14.cubewerx.com/cubewerx/oauth/authorize",
 "scopes": {
 "profile": "requests access to the end-user's profile",
 "openid": "OpenID Connect scope",
 "email": "requests access to the end-user's e-mail address"
 }
 },
 "password": {
 "tokenUrl": "https://tb14.cubewerx.com/cubewerx/oauth/token",
 "scopes": {
 "openid": "OpenID Connect scope",
 "profile": "requests access to the end-user's profile",
 "email": "requests access to the end-user's e-mail address"
 }
 },
 "authorizationCode": {
 "authorizationUrl": "https://tb14.cubewerx.com/cubewerx/oauth/authorize",
 "tokenUrl": "https://tb14.cubewerx.com/cubewerx/oauth/token",
 "scopes": {
 "openid": "OpenID Connect scope",
 "profile": "requests access to the end-user's profile",
 "email": "requests access to the end-user's e-mail address"
 }
 }
 }
 }
 }
 },
 ...

Issues

Access to a secured WFS requires that a client reads a server’s OpenAPI document at /api in an
unsecured way in order to understand the security controls that the server supports. This view of

61

the OpenAPI cannot be the normal document that the server generates because it would introduce
a covert channel likely disclosing access controlled information such as the list of collections that
the server offers.

This issue is under discussion in the WFS/FES SWG and the current thinking is that in the
anonymous case, the server’s OpenAPI document could report support for two Security
Requirement Objects. One would indicate support for anonymous access, the other for your
selected authentication method. According to the OpenAPI specification [https://github.com/OAI/

OpenAPI-Specification/blob/master/versions/3.0.2.md], "The Paths MAY be empty, due to ACL constraints."
So under anonymous access you would not see any of the details of the Paths objects. The complete
discussion can be found here [https://github.com/opengeospatial/WFS_FES/issues/135].

IANA considerations

Standard media types and link relations are supported.

CORS considerations

CubeWerx has implemented the Cross-Origin Resource Sharing (CORS) mechanism as detailed in
"http://www.w3.org/TR/cors/". Specifically, we support the "Access-Control-Request-Method" and
"Origin" HTTP request headers, and generate the "Access-Control-Allow-Origin", "Access-Control-
Allow-Credentials", "Access-Control-Max-Age", "Access-Control-Allow-Methods", "Access-Control-
Allow-Header" and "Access-Control-Expose-Headers" HTTP response headers in accordance with
the CORS mechanism. This includes full support for preflight requests. The list of Origins for from
which credentialed access is allowed is fully configurable, and the entire mechanism can be
disabled if necessary (e.g., to support older environments that are not compatible with CORS).

7.2.4. D142 - Next Generation API Client Implementation (GIS FCU)

This subsection describes the Testbed-14 client application for secure WFS 3.0.

62

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/opengeospatial/WFS_FES/issues/135

Figure 42. Next Generation API Client Implementation

To align with Testbed-14 objectives this deliverable implements at least the following interfaces
defined in WFS 3.0 Core.

• the API Definition (path /api),

• the Conformance statements (path /conformance),

• the Dataset Distribution metadata (path /collections).

For security, the client uses the same logic as when requesting unprotected WFS 3.0 resources, but
just "appends" the security requirements before requests. An overview of the security integration is
described the following illustration:

63

Figure 43. WFS 3.0 Security Overview (without security)

64

Figure 44. WFS 3.0 Security Overview (with security)

NOTE
An animated image illustrating the security overview can be found here
[http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/FCU_annimated_GIFs/

fcu_wfsSecurityOverview.gif].

Implementing Security in a Client Application

OAuth 2.0 and OpenID Connect are the security mechanisms implemented in the WFS 3.0 Client. For
details on the security aspects, please see Security Engineering Report [https://github.com/

opengeospatial/D024-Security_Engineering_Report/blob/master/6-auth.adoc].

Implementation Questions

If an application needs to consume secured WFS, what should it do?

Before presenting the implementation discussion, there is information that needs to be collected.
This section will use a Q&A method to introduce several questions that need to be answered, and
the expected output of each answer. Such as:

• Is the application registered on the Authorization Server?

• What kind of client application is going to be implemented?

These questions are described in the following subsections.

65

http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/FCU_annimated_GIFs/fcu_wfsSecurityOverview.gif
https://github.com/opengeospatial/D024-Security_Engineering_Report/blob/master/6-auth.adoc

Is the application registered on the Authorization Server?

The client application should be registered on the Authorization Server for proper permissions.
After the registration, please keep the following mandatory parameters in mind:

a. Expected parameters gathered in this step

i. client id

ii. client secret

iii. authorization URL

▪ The endpoint on the Authorization Server to validate client credentials and grant the
Authorization Code or Access Token.

iv. token URL (only for Authorization Code Grant)

▪ The endpoint on the Authorization Server to grant the Access Token.

NOTE - If the Authorization Server supports Dynamic Client Registration of OAuth2, the client can
skip this registration. For more information, please refer to the section on Considerations with
Dynamic Client Registration and OAuth 2.0

What kind of client application is going to be implemented?

For public client applications, we can choose OAuth Implicit Grant Flow, but it is also recommended
to use Authorization Code Grant Flow without client secret for better security. For server-side apps,
it is always recommended to use Authorization Code Grant Flow.

a. Expected parameters gathered in this step

i. redirect uri

▪ The URL where you are redirected back, and where you perform the callback() function.

ii. nonce

▪ client can send a random "nonce" value during authentication and check this value
again after server response to avoid replay attack

iii. scope

▪ a set of claims (space separated) about the End-User information, only required if the
client app needs the End-User information.

iv. response type

▪ To determine the authorization processing flow to be used, including what parameters
are returned from the endpoints used

response_type Flow

code Authorization Code Flow

id_token Implicit Flow

id_token token Implicit Flow

code id_token Hybrid Flow

66

response_type Flow

code token Hybrid Flow

code id_token token Hybrid Flow

NOTE - OpenID Connect also defines a Hybrid Flow to retrieve OAuth 2.0 Multiple Response Type
[https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html], the procedures in the Hybrid Flow are
almost the same as Authorization Code Grant except for the "response type" parameters. To
simplify this discussion, we use Authorization Code Grant as the Hybrid Flow instead.

Example of Configuration for Implementations Questions

Given the Implementation Questions an example configuration is shown below.

{
 providerID: "Deimos",
 response_type: "id_token code",
 client_id: "xxx",
 client_secret: "yyy", //only for implicit grant
 redirect_uri: "https://map.gis.tw/testbed14/",
 authorization_url: "https://testbed14-sso.elecnor-
deimos.com/oxauth/restv1/authorize",
 token_url: "https://testbed14-sso.elecnor-deimos.com/oxauth/restv1/token",
 scope: ["openid","profile","email"],
 nonce: "123456"
}

The Authorization Flows of OAuth

This section describes the flows that grant a proper Access Token to the client prior to accessing
resources.

Implicit Grant Flow

1. Client sends the request to the Authorization Server

2. Authorization Server Authenticates the End-User

3. Authorization Server obtains End-User Consent/Authorization

4. Authorization Server sends the End-User back to the Client with an ID Token and Access Token

5. Client validates the ID token and retrieves the End-User’s profile

6. Client uses Access Token to request WFS endpoints

67

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html

Figure 45. WFS with Implicit Grant Flow

NOTE
An animated image illustrating the WFS with Implicit Grant Flow can be found here
[http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/FCU_annimated_GIFs/

fcu_implicit_grant.gif].

Authorization Code Grant Flow

1. Client sends the request to the Authorization Server

2. Authorization Server authenticates the End-User and obtains End-User Consent

3. Authorization Server sends the End-User back to the Client with an Authorization Code and,
depending on the Response Type, one or more additional parameters

4. Client requests a response using the Authorization Code at the Token Endpoint

5. Client receives a response that contains an ID Token and Access Token in the response body

6. Client validates the ID Token and retrieves the End-User’s Subject Identifier

7. Client uses Access Token to request WFS endpoints

68

http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/FCU_annimated_GIFs/fcu_implicit_grant.gif

Figure 46. WFS with Authorization Code Grant Flow

NOTE
An animated image illustrating the WFS with Authorization Code Grant Flow can be
found here [http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/

FCU_annimated_GIFs/fcu_authorization_code_grant.gif].

The Problem of CORS

For security reasons, modern browsers such as Chrome and Firefox send an OPTIONS request (aka.
preflight [https://www.w3.org/TR/cors/#preflight-request]) to the API before sending the actual requests
(GET/POST/PUT/DELETE) during Cross-Origin Resource Sharing (CORS) scenarios.

The CORS procedures for modern browsers are described in the following image. The red arrows
are the flow that makes the problem occur.

69

http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/FCU_annimated_GIFs/fcu_authorization_code_grant.gif
https://www.w3.org/TR/cors/#preflight-request

Figure 47. The CORS procedures for modern browsers

Possible Solutions to the Problem of CORS

Browsers require the following headers that make the pre-API request work. Either server-side and
client-side should consider supporting these headers with proper settings.

• Access-Control-Allow-Origin

◦ the domain that makes the request, like https://map.gis.tw

• Access-Control-Allow-Headers

◦ value of “Authorization”

• Access-Control-Allow-Methods

◦ at least of “GET”, “OPTIONS”

Pagination

To enable pagination-like functions, the client should implement the "limit" parameter in the WFS
Core, and the parameter of "offset" in the WFS Extensions.

• Example of the query string to retrieve features on the page 2

/collections/{collection_id}/items?f=json&limit=100&offset=100

70

https://map.gis.tw

If the WFS offset extension is not supported, using "next" and "prev" links defined in the Core are
another alternative to load pages one by one. The "lazy-loading" mechanism, which loads the pages
in the background, may be considered as an implementation option in the client as well.

Security Scheme Object of OpenAPI 3.0

While a variety of security schemes [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/

3.0.0.md#securitySchemeObject] are possible, OAuth is not the only option for OpenAPI.

Both server and client sides should negotiate the security scheme.

pseudo code of how client determine which Security Schemes to negotiate

if the client detects the API metadata contains Security Scheme Objects {
 if the security schemes are supported by the client {
 show security scheme
 } else {
 hide the security schemes that were not supported
 }
}
if the client cannot detects the Security Scheme Objects {
 the client will show all the security schemes that the client supports by default.
}

Figure 48. Illustrating how to display which Security Schemes that the endpoint supports

71

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securitySchemeObject

Considerations when using 3rd party libraries to implement security

• Pros: Reduce learning curve on securities.

• Cons: For clients using 3rd party library to implement OAuth, it’s hard to debug if the
communication between server and client has some problems.

Considerations with Dynamic Client Registration and OAuth 2.0

If the Authorization Server supports Dynamic Client Registration of OAuth 2.0, the client does not
need to register itself before the authorization process.

Steps of Integrating Dynamic Client Registration

• 1) Register the client on the Authorization server

• 2) Use the returned credential (replace the default one) to authorize the OpenAPI.

Figure 49. Illustrating the flow of Dynamic Client Registration

NOTE
An animated image illustrating the flow of Dynamic Client Registration can be
found here [http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/

FCU_annimated_GIFs/fcu_dynamicClientRegistration.gif].

Conformance Classes

• WFS 3.0 Core

• OpenAPI specification 3.0

• HTML

• GeoJSON

72

http://www.pvretano.com/Projects/tb14/WebAPIs/EngineeringReports/D021/FCU_annimated_GIFs/fcu_dynamicClientRegistration.gif

Extensions

• Parameter offset on items (see more detail in Pagination)

Security considerations

• SSL Support

• Logout Mechanism

◦ In order to release authorized status (cookie, session, etc), a logout function should be
considered.

IANA considerations

• For GeoJSON format, either legacy "application/json" or IETF "application/geo+json" should be
considered to be supported.

73

Chapter 8. Extensions
During Testbed-14, a number of experiments in extending WFS 3.0 Core were implemented and
tested. The specific list of extensions is:

• Coordinate reference systems (by reference) extension

• Geometry simplification extension

• Collections selection extension

• Property selection extension

• Asynchronous request extension

• Hierarchical path extension

• Map extension

• Tile extension

• OpenSearch query extension

• Advanced adhoc query extension

• Transaction extension

The implementation details for each extension can be found in Annex A.

74

Chapter 9. Findings
The objective of the Next Generation Web APIs effort in Testbed-14 was to develop and test WFS 3.0.
The goal was to experiment with the new WFS 3.0 specification, OpenAPI and to add security
mechanisms based on OpenID Connect and OAuth 2.0.

The evidence obtained through the Testbed-14 Next Generation Web APIs effort supports the
following main findings:

• It is possible to develop and deploy multiple OGC WFS 3.0 with a simple core specified as
OpenAPI components.

• It is possible to implement multiple OGC WFS 3.0 with modular extensions for complex
functions.

• It is possible to use well-known resource types, and deploy geospatial feature resources on
multiple OGC WFS 3.0.

• It is possible to deploy facades on selected WFS 3.0 to assist legacy service transition to next
generation APIs.

• It is possible to develop and deploy client applications able to access geospatial feature
resources using HTTP methods. Leverage openly available, browser-based tools such as
Swagger to exercise the OpenAPI components of WFS 3.0.

• It is possible to secure the WFS 3.0 clients and services via an Authorization Server using
OpenID Connect and OAuth 2.0.

9.1. Recommendations for Future Work
As a result of the work performed during this Testbed, several future work points have been
identified:

• Assess the ability of secure WFS 3.0 extensions to support transactions against geospatial
feature resources, geometry simplification and other functions.

• Experiment with OpenAPI and security mechanisms based on OAuth 2.0 as a Profile of a WMTS
implemented as reusable OpenAPI components.

• Assess the ability of secure WFS 3.0 extensions to support access control and security metadata,
optionally enclosed within dissemination formats for binding assertion metadata with data
resources.

• Assess the ability of secure WFS 3.0 extensions to describe and deliver emerging forms of
geospatial resources such as Vector Tiles.

• Assess how security specifications, access control and dissemination may further enable JSON,
HTML and Vector Tiles-based information exchange.

75

Appendix A: Extensions
This annex describes the various experiments in extending WFS 3.0 that were implemented and
tested during Testbed-14.

The following list of extension are described:

• Coordinate reference systems (by reference) extension

• Geometry simplification extension

• Collections selection extension

• Property selection extension

• Asynchronous request extension

• Hierarchical path extension

• Map extension

• Tile extension

• OpenSearch query extension

• Advanced adhoc query extension

• Transaction extension

A.1. Coordinate reference systems (by reference)
extension
See https://github.com/opengeospatial/WFS_FES/tree/master/extensions/crs.

A.2. Geometry simplification extension
A common usage pattern for a WFS is as a data source for visualization. An issue that arises when
used in this way is that the server has no information about the display scale and thus may, in
certain situations, provide much more information in the response than is necessary to visually
render the information.

The optional resolution parameter provides the server with the information necessary to suitably
generalize geometries and features in the response for a specified resolution. This document does
not describe a specific method or methods of generalization that a server might use. However, the
CubeWerx server uses the Douglas-Peucker [https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm]
algorithm.

The resolution parameter may be added to the following WFS paths:

• /collections/{collectionId}/items

• /collections/{collectionId}/items/{fid}

Clients making a getFeature request using the resolution parameter should be aware that

76

https://github.com/opengeospatial/WFS_FES/tree/master/extensions/crs
https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm

geometries in the response document may be modified and have non-visible segments removed or
that even sub-pixel (and thus not visible) features may be removed altogether from the response
document.

The value of the resolution shall be either a single value denoting the resolution along all display
dimensions or a list of double values corresponding to the resolution along each display dimension
of the data. If a list of values is specified, the order of values shall be as specified by the definition of
the nearest-to-scope coordinate reference system for the geometry or feature being processed.

Servers implementing this document shall understand the presence of the resolution parameter
but are not obliged to use the information in generating a response document. In other words, the
resolution parameter is a rendering hint that a sever may or may not use.

NOTE
One possible outcome of generalization is dimensional collapse. This occurs when a
subset of dimensions in a geometry are rendered non-visible by the generalization
process. In this case, the entire geometry shall be considered non-visible.

Example: The following examples illustrate responses without and with geometry simplification.

• without simplified geometries: http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/
framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-
77.1336,39.0062,-76.9102

• with simplified geometries: http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/
framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-
77.1336,39.0062,-76.9102&resolution=13

The following image illustrates the effects of simplification graphically.

77

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-77.1336,39.0062,-76.9102
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-77.1336,39.0062,-76.9102
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-77.1336,39.0062,-76.9102
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-77.1336,39.0062,-76.9102&resolution=13
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-77.1336,39.0062,-76.9102&resolution=13
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/collections/NHDLIHI/items?f=application%2Fgeo%2Bjson&bbox=38.7952,-77.1336,39.0062,-76.9102&resolution=13

Figure 50. Simplified versus un-simplified WFS response

A.3. Collections selection extension
The collections selection extension defines a query parameter, named collections, that may be
used to set the scope of a particular resource or operation to an enumerated subset of collections
offered by a WFS. The following YAML fragment defines the parameter:

name: collections
in: query
description: A list of collection identifiers.
required: false
allowEmptyValue: false
schema:
 type: array
 items:
 type: string
 enum: {list of valid collection id's}
style: form
explode: false

The value of the collections parameter is a comma-separated list of collection identifiers. The
domain of collection identifiers is from the set of collections offered by a WFS.

The collections parameter may be appended to the following set of resources defined in the OGC
Web Feature Service 3.0: Part 1 - Core [https://github.com/opengeospatial/WFS_FES] specification:

78

https://github.com/opengeospatial/WFS_FES
https://github.com/opengeospatial/WFS_FES

• landing page (path = /)

• API definition (path = /api)

• Feature collections metadata (path = /collections)

The effect of appending this parameter to any of these paths is to limit the scope of the collection-
specific components of the retrieved resource(s) to those collections specified as the value of the
parameter. For example, the /collections resource from the CubeWerx [http://www.pvretano.com/

cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections] Testbed-14 server:

• http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections?f=json

lists over thirty collections. If, however, the collections parameter is appended to the resource:

• http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections?
collections=AgricultureSrf,HydrographySrf,StructureSrf&f=json

the server only lists metadata for the 3 specified collections in the response.

In addition to the collections parameter, this extension defines a new top-level resource, /items
that aggregates all the features offered by a server under a single path. Thus, for example, a client
can fetch all the features from all collections within a particular AOI using the URL:

• http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/items?
bbox=32.6228,36.0998,32.6304,36.1070.

Appending the collections parameter to this URL would further limit the scope of the operation by
returning only features from the specified collections (i.e. AgricultureSrf, HydrographySrf,
StructureSrf):

• http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/items?
collections=AgricultureSrf,HydrographySrf,StructureSrf&bbox=32.6228,36.0998,32.6304,36.1070

The WFS 3.0 Core specification defines the following filtering parameters for features:

• limit

• bbox

• time

• filter parameters for feature properties

All of these parameters may be used with the /limits resources.

Filter parameters for feature properties merit particular attention because not all features are
required to have the same schema. If a particular property filtering parameter is specified that does
not exist in the schema of a particular feature then that predicate test shall evaluate to false while
evaluating the overall query predicate.

79

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections?f=json
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections?collections=AgricultureSrf,HydrographySrf,StructureSrf&f=json
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections?collections=AgricultureSrf,HydrographySrf,StructureSrf&f=json
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/items?bbox=32.6228,36.0998,32.6304,36.1070
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/items?bbox=32.6228,36.0998,32.6304,36.1070
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/items?collections=AgricultureSrf,HydrographySrf,StructureSrf&bbox=32.6228,36.0998,32.6304,36.1070
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/items?collections=AgricultureSrf,HydrographySrf,StructureSrf&bbox=32.6228,36.0998,32.6304,36.1070

NOTE

If and how a schema is defined for the /items resource was not formally
investigated during the testbed. The CubeWerx WFS for Testbed-14, however,
generates a schema for all collections aggregated under the /items resource via the
/items/schema path.

A.4. Property selection extension
The default behaviour of a WFS is to present all feature properties in a response document. The
property selection extension defines a parameter named properties that may be used to control
which subset of optional properties are presented in a server’s response. The following JSON
fragment defines the properties parameter:

name: properties
in: query
description: A list of properties names.
required: false
allowEmptyValue: false
schema:
 type: array
 items:
 type: string
 enum: {list of valid property names}
style: form
explode: false

The value of the properties parameter is a comma-separated list of optional feature property
names.

Attention is drawn to the use of the word "optional". Some output formats, such as GML, are bound
by strict schema validation requirements that define certain properties as mandatory and others as
optional. For such output formats, mandatory properties are always presented in the response
regardless of the value of the properties parameter. Since mandatory properties will, for schema
validation reasons, always be presented in the response, only the names of optional properties
need be specified.

The list of possible optional feature properties that may be specified as elements of the value of the
properties parameter may be determined by inspecting the schema of a feature which, as per
Recommendation 7 in the WFS 3.0 Core specification, may be determined by resolving the link with
'rel=describedBy' in the feature collection metadata.

Example: http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections/
AgricultureSrf/items?count=10&outputFormat=application%2Fgml%2Bxml&properties=f_code

A.5. Asynchronous request extension
This clause describes a light-weight protocol extension for WFS 3.0 for processing long-running
operations asynchronously. Rather than the standard request-response invocation pattern – where

80

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections/AgricultureSrf/items?count=10&outputFormat=application%2Fgml%2Bxml&properties=f_code
http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/daraa/collections/AgricultureSrf/items?count=10&outputFormat=application%2Fgml%2Bxml&properties=f_code

a client submits a request and then waits to get the response from the server – an asynchronous
request is executed in the background by the server and either a notification message is sent when
operation processing has completed or (depending on the conformance classes implemented) the
server may be polled periodically to determine the execution status of the request.

A.5.1. Conformance classes

Two conformance classes are defined for asynchronous request processing:

1. Asynchronous Processing

2. Asynchronous Polling

For the Asynchronous Processing conformance class, a server implements the ability to accept an
asynchronous request, acknowledge that the request was successfully accepted, process the request
in the background and finally send a notification — using the specified response handler — when
the request’s processing has been completed. Servers that implement this class may optionally
provide a hypermedia control that may be used to cancel the asynchronous request after it has
been invoked.

For the Asynchronous Polling conformance class, a server implements the ability to accept an
asynchronous request, acknowledge that the request was successfully accepted, process the request
in the background and allow the server to be polled periodically to obtain the execution status and
progress of the request’s execution. Once request processing has been completed a hypermedia
control, provided by the server, will allow the request’s response to be retrieved.

A.5.2. responseHandler parameter

Asynchronous request processing shall be triggered by the presence of the responseHandler
parameter.

The responseHandler parameter may be added to the following WFS paths:

• /collections/{collectionId}/items

• /collections/{collectionId}/map

If the responseHandler parameter is present, the server shall immediately respond with an
acknowledgement message that indicates that the request has been successfully accepted or an
exception messages if there was a problem. At this point communication with the server shall
terminate.

The server shall then proceed to process the request in the background, taking as much time as
necessary to completed its processing.

For servers that implement the Asynchronous Processing class, when request processing has
completed a notification message shall be sent using the scheme(s) specified as the value of the
responseHandler parameter. The content of the notification message is discussed in clause
Notification message content.

For servers that implement the Asynchronous Polling class, the acknowledgement message shall

81

contain a means by which the server may be polled to determine the execution status of the
request. When request processing has been completed, the acknowledgement message shall
contain a means by which the request’s response may be retrieved.

The value of the responseHandler parameter shall be a list of one or more values. The value of
each element of the list shall either be a URI or the token "poll".

If a list element value of the responseHandler parameter is a URI, then its form shall be a valid
expression of the one the notification schemes that the server claims to support in its API
document.

This standard does not define a normative set of notification schemes but possible schemes include:

• Email scheme as per RFC 2368

◦ Example — mailto:tb12@pvretano.com

• Sms scheme as per Apple Inc. (or perhaps RFC 5724)

◦ Example – sms:1-555-555-5555

• Webhook as per http://www.webhooks.org

◦ Example —  http://www.myserver.com/posthandler

The specific set of schemes supported for each operation shall be advertised in the server’s API
document.

If a list element value of the responseHandler parameter is the token "poll", the server shall, in its
acknowledgement message, provide a hypermedia control that may be used to poll the server
periodically to determine the execution status of the request.

If more than one instance of the "poll" token appears as a list element value of the
responseHandler parameter, the extraneous instances of the token shall be ignored. The "poll"
token need only appear once to trigger the inclusion of the status, progress and control elements
within acknowledgement messages.

The following YAML fragment defines the responseHandler parameter.

name: responseHandler
in: query
description: A list of response handlers.
required: false
allowEmptyValue: false
schema:
 type: array
 items:
 type: string
 format: url
style: form
explode: false

82

http://www.webhooks.org
http://www.myserver.com/posthandler

Example: The following example fetches NHD flow lines asynchronously from the CubeWerx
Testbed-14 WFS server (D113).

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/framework/
 collections/NHDFLHI/items?
 count=100&
 f=application%2Fgeo%2Bjson&
 bbox=37.709077,-122.513476,37.839064,-122.351771&
 responseHandler=pvretano@pvretano.com

NOTE
Examples in this clause are formatted to facilitate readability and to highlight the
various query parameters.

A.5.3. Acknowledgement schema

This clause defines the XML-Schema and JSON-schema of the acknowledgement message that is
used to signal that an asynchronous request has been successfully accepted. The same message
schema is also used in response to a polling request to indicate the execution status of an
asynchronous request.

The following JSON-Schema fragment define the JSON encoding of the acknowledgement message.

 "ackMessageType" : {
 "type" : "object",
 "properties" : {
 "links" : {
 "type" : "array",
 "items" : {
 "$ref" : "#/components/schemas/jsonLink"
 }
 },
 "executionStatus": {
 "type": "string",
 "enum": [
 "cancelled",
 "completed",
 "executing",
 "pending"
]
 },
 "precentCompleted": {
 "type": "integer"
 }
 }
 },
 "jsonLink" : {
 "type" : "object",
 "required" : [

83

 "href"
],
 "properties" : {
 "href" : {
 "type" : "string",
 "format" : "uri"
 },
 "rel" : {
 "type" : "string",
 "example" : "next"
 },
 "type" : {
 "type" : "string",
 "example" : "application/gml+xml;version=3.2"
 },
 "hreflang" : {
 "type" : "string",
 "example" : "el"
 },
 "title" : {
 "type" : "string",
 "example" : "Trierer Strasse 70, 53115 Bonn"
 }
 }
 }

The following XML-Schema fragment defines the ows:Acknowledgement element:

84

 <xsd:element name="Acknowledegment"
 type="ows:Acknowledgement" id="Acknowledgement"/>
 <xsd:complexType name="Acknowledgement" id="AcknowledgementType">
 <xsd:sequence>
 <xsd:element ref="atom:link" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Status"
 type="wfs:ExecutionStatusType" minOccurs="0"/>
 <xsd:element name="PercentCompleted"
 type="xsd:nonNegativeInteger" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="ExecutionStatusType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="cancelled"/>
 <xsd:enumeration value="completed"/>
 <xsd:enumeration value="executing"/>
 <xsd:enumeration value="pending"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="other:\w{2,}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

When an operation is invoked asynchronously, the server shall respond immediately with an
acknowledgement message indicating that the server has successfully accepted the request or an
OGC exception message indicating an error. If successfully accepted, the HTTP status code shall be
set to "202 Accepted".

A.5.4. Asynchronous Processing class

For servers that implement the Asynchronous Processing conformance class, the acknowledgement
message may contain an link, with rel="cancel", that may be used to cancel the asynchronously
invoked operation.

The response to resolving the rel="cancel" link shall be an acknowledgement message that shall
contains the wfs:Status element with its value set to "cancelled". The HTTP status code in this case
shall be set to "200 OK".

NOTE
The "cancel" link may also be included in the response’s HTTP header using the
Link field (see RFC 5988 [https://tools.ietf.org/html/rfc5988]).

85

https://tools.ietf.org/html/rfc5988

NOTE

This document does not define a specific template, form or encoding of any link that
appears in an acknowledgement message. Server implementations are free to
encode the URI value of the href attribute of a link element in whatever way they
deem suitable.

NOTE
When resolving links, this should be done with the same credentials as the original
asynchronous request.

Figure 51. Sequence diagram for the Asynchronous Process Class

Example: Simple JSON acknowledgement with a hypermedia control to cancel the request.

 {
 "links": [
 {"rel": "cancel",
 "href": "http://www.someserver.com/jobs/cancel/1013"}
]
 }

A.5.5. Asynchronous Polling class

For servers that implement the Asynchronous Polling conformance class, the acknowledgement
message shall include a link element, with rel="monitor" that may be periodically resolved to
determine the execution status of an asynchronous request.

The response to resolving the rel="monitor" link shall be an acknowledgement message that shall
contain the a status component indicating the execution status of the asynchronous request and
may include a percent completed component with a percentage value indicating how much of the
request has been completed. The HTTP status code in this case shall be set to "200 OK".

Requesting the execution status of an asynchronous request after its processing has been

86

completed — and the operation’s response is still available — shall result in an acknowledgement
message that shall contain a status component with its value set to "completed" and shall also
include a link component, with rel="http://www.opengis.net/def/rel/ogc/1.0/operationResponse",
that provides a URI that may be used to retrieve the response.

Requesting the execution status of an asynchronous request after its processing has been
completed — and the operation’s response is no longer available (e.g. is has expired) — shall result
in an OGC exception message and the HTTP status code shall be set to "404 Not Found".

NOTE
The rel "http://www.opengis.net/def/rel/ogc/1.0/operationResponse" is an extension
relation type (see RFC 5988 [https://tools.ietf.org/html/rfc5988], Section 4.2) and shall, in
due course, be defined with OGC Naming Authority.

NOTE
The "http://www.opengis.net/def/rel/ogc/1.0/operationResponse", "monitor" and
"cancel" links may also be included in the response’s HTTP header using the Link
field (see RFC 5988 [https://tools.ietf.org/html/rfc5988]).

Figure 52. Sequence diagram for the Asynchronous Polling Class

87

https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc5988

A.5.6. Examples

EXAMPLE: The following example shows the response that a server that implements the
Asynchronous Polling conformance class might initially generate in response to an asynchronously
invoked operation. The acknowledgement message contains hypermedia controls to monitor the
execution status of the request and to cancel the request. The execution status at this time is
pending indicating that the request has been queued for execution.

 {
 "links": [
 {"rel": "monitor",
 "href": "http://www.someserver.com/jobs/1013"},
 {"rel": "cancel",
 "href": "http://www.someserver.com/jobs/cancel/1013"},
 "status": "pending"
 }

EXAMPLE: The following example shows a polling response some time after an operation was
invoked asynchronously. The acknowledgement message contains hypermedia controls to monitor
the execution status of the request and to cancel the request.

 {
 "links": [
 {"rel": "monitor",
 "href": "http://www.someserver.com/jobs/1013"},
 {"rel": "cancel",
 "href": "http://www.someserver.com/jobs/cancel/1013"},
 "status": "executing",
 "percentCompleted": 47
 }

EXAMPLE: This following example shows the polling response after request processing has been
completed. Resolving the hypermedia control with
rel="http://www.opengis.net/def/rel/ogc/1.0/operationResponse" will retrieve the request’s response
if it is still available; if the response is not available (e.g. it has expired from the cache) resolving the
control would result in an OGC exception message and a "404 Not Found".

 {
 "links": [
 {"rel": "http://www.opengis.net/def/rel/ogc/1.0/operationResponse",
 "href": "http://www.someserver.com/jobs/results/1013"}
],
 "status": "completed",
 }

88

A.5.7. Notification message content

For servers that implement the Asynchronous Processing conformance class, an operation’s
response shall be accessible via the notification message sent by the server using the specified
response handler(s) (see responseHandler parameter) to signal that request processing has been
completed.

In general the content of a notification message shall either be the operation’s complete response,
or a reference to it, or an exception message.

The specific content of a notification message is not defined in this document because it is
dependent on the scheme(s) specified as the value of the responseHandler parameter (see
responseHandler parameter). For size-limited schemes, such as sms, a URL reference to the
response would seem to be most appropriate since the entire response content is unlikely to fit into
the message space. For other schemes, such as webhooks, the content of the notification message
can be the complete response of the operation (e.g. the response to a GetFeature request). The
following table contains informative recommendations for the content of notification messages
based on the scheme being used:

Table 1. Recommended notification content based on scheme

Notification
scheme

Recommended content (good
response)

Recommended content
(exception)

mailto: An email message containing a
URL for retrieving the operation’s
response.

An email message containing a
narrative that describes the
exception; an optional attachment
with the server’s actual OGC
exception message may also be
included

sms: A URL for retrieving the
operation’s response; tiny URLs
may be used if the retrieval URL is
particularly long

A URL for retrieving the server’s
OGC exception message; tiny URLs
may be used if the retrieval URL is
particularly long

http: (webhook) The operation’s complete response The complete OGC exception
message

A.6. Hierarchical path extension (i.e. theme extension)

A.6.1. Introduction

The theme extension defines a mechanism that allows WFS providers to organize the collections
their WFS offers into one or more hierarchies or themes. A theme is a hierarchy of connected nodes
where intermediate nodes can be references to other themes or collections and terminal (leaf)
nodes are references to collections.

A service can offer any number of themes, and themes or collections can be members of zero or
more themes.

89

NOTE

The same capability could also be achieved under the '/collections' path by allowing
additional path elements between the '/collections' element and the '{collectionId}'
element. However, as per issue https://github.com/opengeospatial/WFS_FES/issues/
90, it was decided (for Testbed-14) to preserve the simplicity of the '/collections' path
and define an external mechanism for hierarchies under the '/themes' path.

A.6.2. Operations

Requirement 1 /req/extensions/themes/themes-root

The server SHALL support the HTTP GET operation at the path
/themes.

Requirement 2 /req/extensions/themes/themes-node

The server SHALL support the HTTP GET operation on a path that
starts with the '/themes' path element, is followed by zero or more
'/{themeId}' path elements and is terminated by the '/items' path
element or the pseudo-terminal '/{collectionId}' path elements.

If the terminal path element is the '/collectionId' path element, it
may be followed by the other elements defined in the WFS 3.0
Core specification (i.e. the '/items' path element or the '/items/{fid}'
path element.

A.6.3. Response

Requirement 3 /req/extension/themes/themes-description

A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

The content of the response is defined in table X.

Path Response

/themes A "themes-root" document as per the schema below.

/themes/{themeId}[/{
themeId}…]

A "theme-node" document as per the schema below.

/themes[/{themeId}…
]/items

Same behaviour as /{collectionId}/items except that the collection
is the union of all terminal leaf {collectionId} nodes.

/themes[/{themeId}…
]/{collectionId}

Same behaviour as /{collectionId}

90

https://github.com/opengeospatial/WFS_FES/issues/90
https://github.com/opengeospatial/WFS_FES/issues/90

/themes[/{themeId}…
]/{collectionId}/items

Same behaviour a /{collectionId}/items

 "themes-root": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/theme-node"
 }
 }

 "theme-node": {
 "type": "object",
 "required": ["name","themes","collections"],
 "properties": {
 "name": {
 "type": "string"
 },
 "title": {
 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "themes": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/theme-node"
 }
 },
 "collections": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/collectionInfo"
 },
 }
 }
 }

 "collectionInfo": {
 "type": "object",
 "required": ["name","title","links"],
 "properties": {
 "name": {
 "type": "string"
 },
 "title": {
 "type": "string"
 },
 "description": {
 "type": "string"

91

 },
 "links": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/link
 }
 },
 "extent": {
 "$ref": "#/components/schemas/bbox"
 },
 "crs": {
 "type": "array",
 "default": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 "items": {
 "type": "string",
 "format": "uri"
 }
 }
 }
 }

A.6.4. Parameters

For paths that terminate with a '/{collectionId}' or '/items' path element, the parameters defined in
the WFS 3.0 Core specification may be used.

For paths that terminate with '/{collectionId}/items', the behaviour shall be the same as that defined
for the '/collections/{collectionId}/items' path in the WFS 3.0 Core.

For paths that terminate with '/{themeId}/items', the behaviour shall be the same as accessing a
collection of features composed of the union of all {collectionId} leaf nodes for the sub-tree
anchored by the specified {themeId} node.

NOTE

If parameter filtering [https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#

_parameters_for_filtering_on_feature_properties] is used it is likely that not all filters will
apply for all collections aggregated under a theme. In this case, the filter shall be
applied to those collections that contain the specified parameter and ignored
otherwise.

NOTE

Say there is a theme X that aggregates collection A, B and C. Collection A has
properties P1,P2 and collections B and C have properties P1,P3. In this example, for
the following operation '/X/items?P1=value1&P3=value2', the 'P1=value1' filter shall
be applied to collections A, B and C and the 'P3=value2' filter shall additionally be
applied to collections B and C. In other words, it would be same as executing the
following three queries:

92

https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#_parameters_for_filtering_on_feature_properties

 /A?P1=value1
 /B?P1=value1&P3=value2
 /C?P1=value1&P3=value2

and then union-ing the results into a single response document.

EXAMPLE:

The following example was generated from the Testbed-14 Cubewerx server using the following
URL: http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/themes?f=json

{
 "themes": [
 {
 "name": "BOUNDARIES",
 "title": "Boundaries",
 "themes": [
 {
 "name": "...",
 "title": "...",
 "collection":
 },

],
 "collections": [
 {
 "name": "barrierl_1m",
 "title": "Barrier Line Features",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ba
rrierl_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the barrierl_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ba
rrierl_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the barrierl_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ba
rrierl_1m?f=text%2Fhtml",

93

http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/themes?f=json

 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the barrierl_1m feature collection as HTML."
 }
]
 },
 {
 "name": "coastl_1m",
 "title": "Coastlines",
 "description": "Coastline/shorelines (BA010) have been portrayed for coastal
islands but not inland islands.",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/co
astl_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the coastl_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/co
astl_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the coastl_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/co
astl_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the coastl_1m feature collection as HTML."
 }
]
 }
]
 },
 {
 "name": "HYDROGRAPHY",
 "title": "Hydrography",
 "collections": [
 {
 "name": "inwatera_1m",
 "title": "Inland Water Areas",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/in

94

watera_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the inwatera_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/in
watera_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the inwatera_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/in
watera_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the inwatera_1m feature collection as HTML."
 }
]
 },
 {
 "name": "miscl_hydro_1m",
 "title": "Miscellaneous Line Features",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/mi
scl_hydro_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the miscl_hydro_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/mi
scl_hydro_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the miscl_hydro_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/mi
scl_hydro_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the miscl_hydro_1m feature collection as HTML."
 }

95

]
 },
]
 },
 {
 "name": "POPULATION",
 "title": "Population",
 "collections": [
 {
 "name": "builtupa_1m",
 "title": "Built-Up Areas",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/bu
iltupa_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the builtupa_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/bu
iltupa_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the builtupa_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/bu
iltupa_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the builtupa_1m feature collection as HTML."
 }
]
 },
 {
 "name": "builtupp_1m",
 "title": "Built-Up Area Points",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/bu
iltupp_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the builtupp_1m feature collection as JSON."
 },
 {

96

 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/bu
iltupp_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the builtupp_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/bu
iltupp_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the builtupp_1m feature collection as HTML."
 }
]
 },
]
 },
 {
 "name": "TRANSPORTATION",
 "title": "Transportation",
 "collections": [
 {
 "name": "aerofacp_1m",
 "title": "Airport Facilities Points",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ae
rofacp_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the aerofacp_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ae
rofacp_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the aerofacp_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ae
rofacp_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the aerofacp_1m feature collection as HTML."
 }

97

]
 },
 {
 "name": "roadl_1m",
 "title": "Roads",
 "links": [
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ro
adl_1m?f=application%2Fjson",
 "rel": "collection",
 "type": "application/json",
 "title": "Metadata about the roadl_1m feature collection as JSON."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ro
adl_1m?f=text%2Fxml",
 "rel": "collection",
 "type": "text/xml",
 "title": "Metadata about the roadl_1m feature collection as XML."
 },
 {
 "href":
"http://www.pvretano.com/cubewerx/cubeserv/default/wfs/3.0.0/foundation/collections/ro
adl_1m?f=text%2Fhtml",
 "rel": "collection",
 "type": "text/html",
 "title": "Metadata about the roadl_1m feature collection as HTML."
 }
]
 },
]
 }
]
}

A.7. Map extension

A.7.1. Introduction

This clause defines the behavior of a WFS that supports the diagrammatic representation of feature
data in the form of a digital image or map. In this sense, this extension is similar to a Web Map
Server (WMS). However, this extension differs from a WMS in that the contents of the map, with
respect to the underlying feature data, can be dynamically specified at request time by the
requester. In other words, filter expressions using the filtering capabilities defined in WFS 3.0 Core
or using any other query extension may be used to define the set of features that shall be rendered
into the map response.

98

This clause describes:

• an access path for the 'getMap' operation

• a set of query parameters that are specific to the 'getMap' operation

• a set of HTTP response headers to encode metadata about the response

A.7.2. Operation

For every feature collection identified in the metadata about the feature collection (path '/'), the
server SHALL support the HTTP GET operation at the path '/collections/{name}/map'.

The parameter 'name' is each property of the same name in the feature collection metadata
(JSONPath: '$.collections[*].name').

A.7.3. Parameter style

Each getMap operation SHALL support a parameter 'style' with the following characteristics (using
an OpenAPI Specification 3.0 fragment):

name: style
in: query
required: false
schema:
 type: string
 description: the named style to use to render the features into the map
 enum:
 - {list of valid style names}
 default:
 - {the name of the default style}
style: form
explode: true

The optional 'style' parameter specifies the style in which the set of features in the response SHALL
be rendered into the map.

The value of the 'style' parameter SHALL be from the set of style names advertised in the service
description document of the server.

If the 'style' parameter is not specified, the set of feature in the response SHALL be rendered into
the map using the style listed as the default style in the service description document of the server.

A.7.4. Parameter width,height

Each getMap operation SHALL support a 'width' and 'height' parameter with the following
characteristics (using an OpenAPI Specification 3.0 fragment):

99

name: width
in: query
description: Width of output map in pixels.
required: false
allowEmptyValue: true
schema:
 type: integer
 minimum: {min width supported by the server}
 maximum: {max width supported by the server}
 default: {default width if the parameter is not specified}
style: form
explode: true

name: height
in: query
description: Height of output map in pixels.
required: false
allowEmptyValue: true
schema:
 type: integer
 minimum: {min height supported by the server}
 maximum: {max height supported by the server}
 default: {default height if the parameter is not specified}
style: form
explode: true

If the optional 'width' and/or 'height' parameters are specified then the server SHALL generate a
map of the specified pixel width and height.

If either or both parameters are not specified on a getMap operation then the default values
advertised in the service description document of the server SHALL be used.

The optional 'width' and 'height' parameters specify the size in integer pixels of the map to be
produced.

If the request is for a picture format, the returned picture, regardless of its MIME type, SHALL have
exactly the specified width and height in pixels.

In the case where the aspect ratio of the 'bbox' parameter [https://rawgit.com/opengeospatial/WFS_FES/

master/docs/17-069.html#_parameter_bbox] and the ratio of the 'width'/'height' parameters are different,
the server shall stretch the returned map so that the resulting pixels could themselves be rendered
in the aspect ratio of the 'bbox' parameter. In other words, it SHALL be possible using this
definition to request a map for a device whose output pixels are themselves non-square, or to
stretch a map into an image area of a different aspect ratio.

Map distortions will be introduced if the aspect ratio 'width'/'height' is not commensurate with X, Y
and the pixel aspect. Client developers should minimize the possibility that users will inadvertently
request or unknowingly receive distorted maps.

100

https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#_parameter_bbox

If a request is for a graphic element format that does not have explicit width and height, the client
shall include the 'width' and 'height' values in the request and a server may use them as helpful
information in constructing the output map.

The optional <MaxWidth> and <MaxHeight> elements in the service metadata are integers
indicating the maximum width and height values that a client is permitted to include in a single
GetMap request. If either element is absent, the server imposes no limit on the corresponding
parameter.

A.7.5. Parameter bgcolor

Each getMap operation SHALL support a 'bgcolor' parameter with the following characteristics
(using an OpenAPI Specification 3.0 fragment):

name: bgcolor
in: query
description: Background colour of map.
required: false
allowEmptyValue: true
schema:
 type: string
 default: {default background map color}
 example: 0xFFFFFF
style: form
explode: true

The optional 'bgcolor' parameter is a string that specifies the color to be used as the background
(non-data) pixels of the map. The general format of 'bgcolor' is a hexadecimal encoding of an RGB
value where two hexadecimal characters are used for each of red, green, and blue color values. The
values can range between 00 and FF (0 and 255, base 10) for each. The format is 0xRRGGBB; either
upper or lower case characters are allowed for RR, GG, and BB values. The “0x” prefix shall have a
lower case “x”.

The default value of the 'bgcolor' parameter shall be specified in the service description document
of the server.

When FORMAT is a picture format, a WFS shall set the background pixels to the color specified by
'bgcolor'.

When FORMAT is a graphic element format (which does not have an explicit background), or a
picture format, a WFS should avoid use of the 'bgcolor' value for foreground elements because they
would not be visible against a background picture of the same color.

When the value of the 'transparent' parameter is set to FALSE, non-data pixels shall be set to the
value of 'bgcolor' parameter.

A.7.6. Parameter transparent

Each getMap operation SHALL support a 'transparent' parameter with the following characteristics

101

(using an OpenAPI Specification 3.0 fragment):

name: transparent
in: query
description: Flag indicating whether the map should be transparent or not.
required: false
allowEmptyValue: true
schema:
 type: boolean
 default: false
style: form
explode: true

The optional 'transparent' parameter specifies whether the map background is to be made
transparent or not. The 'transparent' parameter can take on two values, "true" or "false".

The default value SHALL be FALSE if this parameter is absent from a getMap request.

The ability to return pictures drawn with transparent pixels allows results of different Map
requests to be overlaid, producing a composite map.

It is strongly recommended that every WFS offer a format that provides transparency for maps that
could sensibly be overlaid above others.

NOTE

The image/gif format provides transparency and is properly displayed by common
web clients. The image/png format provides a range of transparency options but
support in viewing applications is less common. The image/jpeg format does not
provide transparency at all.

When the value of the 'transparent' parameter is set to TRUE and the requested format is a picture
format (e.g. image./gif), then the server SHALL return (when permitted by the requested format) a
result where all of the pixels not representing feature data in the map are set to a transparent
value.

When the value of the 'transparent' parameter is set to FALSE, non-data pixels shall be set to the
value of bgcolor.

A.7.7. Response

A successful execution of the operation SHALL be reported as a response with a HTTP status code
'200'.

The response SHALL only render features selected by the request into the map.

The number of features rendered into the map depends on the server and the parameter limit.

Unlike the case for text-based responses, the server is not required to include any additional
hypermedia controls in the response.

102

If, however, a server wishes to do so, those hypermedia controls SHALL be specified using the HTTP
response header 'Link' [https://www.w3.org/wiki/LinkHeader].

If hypermedia controls are provided in the header, they SHALL include the 'rel' and 'type' link
parameters.

Additional response metadata such as a timestamp [https://rawgit.com/opengeospatial/WFS_FES/master/

docs/17-069.html#_response_6], number of matched features [https://rawgit.com/opengeospatial/WFS_FES/

master/docs/17-069.html#_response_6] and number of returned features [https://rawgit.com/opengeospatial/

WFS_FES/master/docs/17-069.html#_response_6] may be included in the response as HTTP headers.

If timestamp information is included in the response, it SHALL be encoded using the HTTP header
'Date'.

If the number of matched features is included in the response, it SHALL be encoded using a HTTP
header defined by this standard named 'OGC-NUMBER-MATCHED'.

If the number of returned features (i.e. the number of features rendered into the map) is included
in the response, it SHALL be encoded using a HTTP header defined by this standard named 'OGC-
NUMBER-RETURNED'.

NOTE

The WFS core standard does not define HTTP headers for the 'numberMatched' and
'numberReturned' cases since their usefulness for text-based, and perhaps
streamed, response formats is limited given that this information is usually known
at the end of request. However, in the map case, such headers make sense and are
thus defined by this standard.

A.8. Tile extension
The concurrently running Vector Tiles Pilot generated some details about a tile extensions for WFS.
This is actually less an extension of WFS as much as a test to see if the architectural pattern
established by WFS can be applied to objects other than features. However, the information is still
relevant to this ER and so the reference is listed here.

See: https://portal.opengeospatial.org/files/?artifact_id=81698&version=1

A.9. OpenSearch query extension
The OpenSearch query extension defines a set of query parameters that can be mapped to
OpenSearch [https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md] and/or OpenSearch
Geo [https://portal.opengeospatial.org/files/?artifact_id=56866] parameters.

NOTE
The acronym "f.i.t." stands for "fixed in template". That is that the value is fixed in
an OpenSearch query template.

The following query parameters may be used on the following paths:

• /collections/{collectionId}/items

103

https://www.w3.org/wiki/LinkHeader
https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#_response_6
https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#_response_6
https://rawgit.com/opengeospatial/WFS_FES/master/docs/17-069.html#_response_6
https://portal.opengeospatial.org/files/?artifact_id=81698&version=1
https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md
https://portal.opengeospatial.org/files/?artifact_id=56866
https://portal.opengeospatial.org/files/?artifact_id=56866

to define a query predicate used to select a sub-set of features to be presented in a response
document.

Table 2. OpenSearch query parameters

Query class Query
subclass

URL
componen
t

OpenSearc
h
parameter
(s)

Description Datatype and
Value

Text search N/A q searchTer
ms

A space-separated list of
search terms are used to
search all text fields in a
feature

Character
string

Identity
search

N/A fids uid A comma-separated list of
feature identifiers to
retrieve

Character
string

104

Spatial search Bounding
box search

bbox box The bounding box to be used
as a spatial predicate

Array of
number
(lower,upper)

bbox_crs n/a Asserts the crs of the bbox
parameter

AnyURI
(default=http:
//www.opengi
s.net/def/crs/
OGC/1.3/CRS8
4)

Geometry
search

geometry geometry The geometry to be used as a
spatial predicate

WKT String
(see OGC 06-
103r4)

geometry_
crs

N/A Asserts the crs of the
geometry parameter

AnyURI
(default=http:
//www.opengi
s.net/def/crs/
OGC/1.3/CRS8
4)

relation relation The spatial operator to apply
when comparing with the
geometry parameter

Character
string. One
of: equals,
disjoint,
touches,
within,
overlaps,
crosses,
intersects,
contains,
dwithin,
beyond
(default=inter
sects)

distance N/A Distance value for dwithin
or beyond spatial operators

Number

distance_u
om

N/A The units of measure used to
express the value of the
distance parameter

Number

Proximity
search

lat lat Latitude expressed in
WGS84

Number

lon lon Longitude expressed in
WGS84

Number

radius radius Search radius Number

radius_uo
m

N/A The units of measure used to
express the value of the
radius parameter

Character
string (see
http://unitsof
measure.org/
ucum.html)
(default=m)

105

http://unitsofmeasure.org/ucum.html
http://unitsofmeasure.org/ucum.html
http://unitsofmeasure.org/ucum.html

Temporal
search

time start/end A time instance or time
period

Character
string (see
http://www.w
3.org/TR/
NOTE-
datetime)

time_rs N/A The temporal reference
system for the time
parameter

AnyURI
(default=http:
//www.opengi
s.net/def/uom
/ISO-
8601/0/Grego
rian)

trelation N/A The temporal operator to
apply using the value of the
time parameter

Character
string. One
of:after,
before,
begins,
begunBy,tCon
tains, during,
endedBy,
ends, tEquals,
meets, metBy,
tOverlaps,
overlappedBy
,
anyIntersects
(default=anyI
ntersects)

Complex
predicate

n/a filter n/a A text fragment encoding a
query predicate is some
query language

Character
string

filter_lang
uage

n/a Indicates the predicate
language used to encode the
filter expression that is the
value of the filter
parameter.

Character
string
(default=urn:
ogc:def:query
Language:OG
C-FES:Filter)

Notes:

1. The geometry_crs, relation, distance and distance_uom parameters are all modifiers of the
geometry parameter and should only be specified if the geometry parameter is specified.
2. If specified, the parameters lat, lon and radius must all be specified together.
3. The trelation parameter is a modifier of the time parameter and should only be specified if the
time parameter is specified.
4. The filter and filter_language parameters are mutually exclusive with the text search, identify
search, spatial search, proximity search and temporal search parameters.
5. The implied logical operation for the search parameter is AND.
6. The default trelation value for a single time instant is after.
7. The default trelation value for a time period is AnyInteracts.

106

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Basic text searching using the q parameter is expected to be processed as follows:

1. Match against the full text of all the character-valued properties of an entry

2. Matching is case insensitive

3. In the case of multiple search terms, if any of the property values being tested, as per (a),
contains at least one of the specified search terms then that entry shall appear in the result set

A.10. Advanced adhoc query extension
The WFS 3.0 Core specification supports what can be classified as simple adhoc queries. That is, the
ability to dynamically define a subset of features from a single collection using a small and simple
subset of query predicates (i.e. bbox, time and feature property filters). The advanced adhoc query
extension adds the ability to dynamically define a subset of features from one or more collections
using a combination of simple and/or complex predicates that can include logically connected
scalar, spatial and temporal predicates.

The root of all adhoc queries is the /query resource.

Individual adhoc queries have the path /query/{queryId} where the query identifier is assigned by
the server when an adhoc query is created.

The following table summarizes the actions that may be performed on the /query and
/query/{queryId} resources.

Table 3. Actions for query resources

Resource HTTP Method Description

all OPTIONS Get the list of supported representations
and methods for the resource

/query GET Not specified

PUT Not specified

POST Creates a new adhoc query. The body of the
request contains the query expressed using
one of the representations supported by the
server.

DELETE Not specified.

/query/{queryId} GET Executed the adhoc query and return the
query response; or a 410 if the query has
expired.

POST Not specified.

PUT Not specified.

DELETE Removes the adhoc query; not strictly
necessary since the server automatically
manages the adhoc query.

107

A.10.1. Examples

EXAMPLE: Does the server support complex queries?

 CLIENT SERVER
 | |
 | OPTIONS /cubewerx/cubeserv/default/wfs/3.0.0/query HTTP/1.1
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Allow: OPTIONS, POST |
 | Accept: text/xml |
 |<--|

Since the server did not return an exception indicating that the /query path is invalid and because it
also lists the POST method as a valid method, this server supports adhoc complex queries.

EXAMPLE: Create a query. In this case, the query uses a spatial join to find all lakes within
Algonquin park.

NOTE

The participants tried to come up with a complex query example using the Daraa
data but most of the property values in that data set are empty, resulting in empty
responses for most queries that were tried. So, the participants returned to a WFS
2.0 example since the idea with this extension is to illustrate the ability to express a
complex query.

108

 CLIENT SERVER
 | |
 | POST /.../query HTTP/1.1 |
 | Host: www.pvretano.com |
 | Content-Type: text/xml |
 | |
 | <?xml version="1.0"?> |
 | <GetFeature |
 | service="WFS" |
 | version="2.0" |
 | xmlns="http://www.opengis.net/wfs/2.0" |
 | xmlns:cw="http://www.cubewerx.com/cw" |
 | xmlns:fes="http://www.opengis.net/fes/2.0" |
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"|
 | xsi:schemaLocation="http://www.opengis.net/wfs/2.0 ../../wfs.xsd">
 | <Query typeNames="cw:Parks cw:Lakes"> |
 | <fes:Filter> |
 | <fes:And> |
 | <fes:PropertyIsEqualTo> |
 | <fes:ValueReference>/cw:Parks</fes:ValueReference>
 | <fes:Literal>Algonquin Park</fes:Literal>|
 | </fes:PropertyIsEqualTo> |
 | <fes:Contains> |
 | <fes:ValueReference>/cw:Parks/geometry</fes:ValueReference>
 | <fes:ValueReference>/cw:Lakes/geometry</fes:ValueReference>
 | </fes:Contains> |
 | </fes:And> |
 | </fes:Filter> |
 | </Query> |
 | </GetFeature> |
 |-->|
 | |
 | HTTP/1.1 201 Created |
 | Location: /.../query/7f26634c |
 |<--|

The response indicates that the server has created the query and assigned it the identifier 7f26634c.

NOTE
Creating a query does not mean that the result set of the query is also created. The
result set of the query is generated at run time or when the query is actually
executed using the GET method.

EXAMPLE: What query response representations does the server provide for this query.

109

 CLIENT SERVER
 | |
 | OPTIONS /.../query/7f26634c HTTP/1.1 |
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Allow: OPTIONS, GET, DELETE |
 | Accept: application/gml+xml; version=3.2, |
 | application/geo+json, text/html |
 |<--|

This server support HTML, GeoJSON and GML output formats.

EXAMPLE: Execute the query requesting GML.

NOTE
The engineering report used an XML/GML response example here because the WFS
2.0 specification defines the necessary response containers to express join tuples
which GeoJSON does not support.

 CLIENT SERVER
 | |
 | GET /.../query/7f26634c HTTP/1.1 |
 | Host: www.pvretano.com |
 | Accept: application/gml+xml; version=3.2 |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: application/gml+xml; version=3.2 |
 | |
 | <?xml version="1.0" encoding="UTF-8"?>
 | <wfs:FeatureCollection
 | timeStamp="2008-08-15T11:36:00" numberMatched="12"
 | numberReturned="12" xmlns="http://www.someserver.com/cw"
 | xmlns:wfs="http://www.opengis.net/wfs/2.0"
 | xmlns:gml="http://www.opengis.net/gml/3.2"
 | xmlns:xlink="http://www.w3.org/1999/xlink"
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 | xsi:schemaLocation="http://www.someserver.com/cw
 | ./SampleSchema.xsd
 | http://www.opengis.net/wfs/2.0
 | ../../wfs.xsd
 | http://www.opengis.net/gml/3.2
 | http://schemas.opengis.net/gml/3.2.1/gml.xsd">
 | <wfs:member>
 | <wfs:Tuple>
 | <wfs:member>
 | <Parks gml:id="Parks.287796">
 | <Name>Algonquin Park</Name>

110

 | <Boundary>
 | <gml:Polygon gml:id="GID_13"
 | srsName="http://www.opengis.net/def/crs/epsg/0/4326">
 | <gml:exterior>
 | <gml:LinearRing>
 | <gml:posList>...</gml:posList>
 | </gml:LinearRing>
 | </gml:exterior>
 | </gml:Polygon>
 | </Boundary>
 | </Parks>
 | </wfs:member>
 | <wfs:member>
 | <Lakes gml:id="Lakes.287797">
 | <Name>Canisbay Lake</Name>
 | <Boundary>
 | <gml:Polygon gml:id="GID_14"
 | srsName="http://www.opengis.net/def/crs/epsg/0/4326">
 | <gml:exterior>
 | <gml:LinearRing>
 | <gml:posList>...</gml:posList>
 | </gml:LinearRing>
 | </gml:exterior>
 | </gml:Polygon>
 | </Boundary>
 | </Lakes>
 | </wfs:member>
 | </wfs:Tuple>
 | </wfs:member>
 | <wfs:member>
 | <wfs:Tuple>
 | <wfs:member xlink:href="#Parks.287796"/>
 | <wfs:member>
 | <Lakes gml:id="Lakes.287798">
 | <Name>Kearney Lake</Name>
 | <Boundary>
 | <gml:Polygon gml:id="GID_15"
 | srsName="http://www.opengis.net/def/crs/epsg/0/4326">
 | <gml:exterior>
 | <gml:LinearRing>
 | <gml:posList>...</gml:posList>
 | </gml:LinearRing>
 | </gml:exterior>
 | </gml:Polygon>
 | </Boundary>
 | </Lakes>
 | </wfs:member>
 | </wfs:Tuple>
 | </wfs:member>
 | <wfs:member>
 | <wfs:Tuple>

111

 | <wfs:member xlink:href="#Parks.287796"/>
 | <wfs:member>
 | <Lakes gml:id="Lakes.287799">
 | <Name>Lake Of Two Rivers</Name>
 | <Boundary>
 | <gml:Polygon gml:id="GML_16"
 | srsName="http://www.opengis.net/def/crs/epsg/0/4326">
 | <gml:exterior>
 | <gml:LinearRing>
 | <gml:posList>...</gml:posList>
 | </gml:LinearRing>
 | </gml:exterior>
 | </gml:Polygon>
 | </Boundary>
 | </Lakes>
 | </wfs:member>
 | </wfs:Tuple>
 | </wfs:member>
 | .
 | .
 | .
 | </wfs:FeatureCollection>
 |<--|

NOTE The result has been truncated in the interests of space!

A.11. Transaction extension
The following extension defines the ability to insert, update and delete features from collections.

The REST architectural style is resource oriented and most naturally deals with individual
resources. For this reason this extension categorizes transactions as simple and complex.

A simple transaction is a transaction that acts on a single feature in a collection. That is adding a
new single feature to a collection, modifying an existing feature in a collection or delete a feature
from a collection.

A complex transaction is a transaction that acts upon multiple features, perhaps spread across
multiple collections and those actions have to all all succeed or the entire set of actions is rolled
back leaving the affected collection(s) in a consistent state.

A.11.1. Simple transactions

The following table shows resources for simple transactions.

Table 4. Resources for simple transactions

Access path Description

112

/collections/{collectionId}/it
ems

The URL of a feature collection.

/collections/{collectionId}/it
ems/{fid}

The URL of a feature.

/collections/{collectionId}/it
ems/properties/{propertyN
ame}

The URL of a property that is common to all features in the
collection.

/collections/{collectionId}/it
ems/{fid}/properties/{prop
ertyName}

The URL of a property that belongs to a specific feature.

Representations

The canonical representation of features in a query response shall be features encoded using GML
3.2 (see OGC 07-036/ISO19136:2007). The MIME type for this representation is application/gml+xml;
version=3.2.

The canonical representation of values in a property value query shall be:

• Plain text for scalar values (i.e. MIME type plain/text)

• XML for composite or complex values such as an address (i.e. MIME type text/xml)

• GML 3.2 for geometric values (i.e. MIME type application/gml+xml; version=3.2)

Other representations (e.g. GeoJSON) for both features and property values are allowed but are not
described in this International Standard.

Methods

The following table describes the actions a server should take with the specified HTTP method is
used to process the specified resource.

Table 5. Actions for simple transaction resources

Access path Method Description

All OPTIONS Get the list of supported representations and methods
for the resource via the Accept and Allow HTTP headers

/collections/{colle
ctionId}/items

POST Add a new item or feature to the collection; a
recognized representation of the new feature to be
added is supplied in the body of the request.

PUT Replaces all features or a subset of features (if the
query parameters in Table 38 are used) in a collection;
a recognized representation of the replacement feature
is supplied within the body of the request.

DELETE Deletes all features from the specified collection;
probably not a good idea to not access control this
method!

113

/collections/{colle
ctionId}/items/{fi
d}

POST Not specified.

PUT Replaces an existing feature; a recognized
representation of the replacement feature is supplied
within the body of the request

DELETE Deletes or removes the feature identified by the
specified URL

/collections/{colle
ctionId}/items/pr
operties/{propert
yName}

POST Not specified

PUT Replaces the value of the named property for all
features in a collection (or a subset of features in the
collection if the query parameters in Table 38 are used);
a recognized representation of the replacement value is
supplied in the body of the request

DELETE Sets the value of the named property to NULL for all
features in the collection (or a subset of features if the
query parameters in Table 38 are used)

{feature
URL}/{prop}

GET Gets the value of the named property for the feature
identified by the specified URL.

/collections/{colle
ctionId}/items/{fi
d}/properties/{pr
opertyName}

POST

Not specified.

PUT

Replaces the
value of the
named property
for the feature
identified by the
specified URL; a
recognized
representation of
the value is
supplied in the
body of the
request.

DELETE Sets the value of the named property to NULL for the
feature identified by the specified URL.

NOTE

Although not discussed in this extension, using the GET method on the
/collections/{collectionId}/items/{fid}/properties/{propertyName} access path can be
used to retrieve the value of a feature property rather than fetching the entire
feature. Simple scalar properties would probably be returned as text/plain.
Complex properties (i.e. properties with many, perhaps nested sub-fields) could be
returned using JSON or XML. Furthermore, the access path
/collections/{collectionId}/items/properties/{propertyName} could be used to
retrieve the value of the specified property for all features in a collection or a subset
thereof if query predicates are used to restrict the scope of the operation.

Examples

EXAMPLE: Get the available representations for the collection StructureSrf.

114

CLIENT SERVER
 | |
 | OPTIONS /default/wfs/3.0.0/daraa/collections/StructureSrf HTTP/1.1
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Allow: OPTIONS, GET, POST, PUT, DELETE |
 | Accept: application/gml+xml; version=3.2, |
 | application/geo+json, text/html |
 |<--|

EXAMPLE: Get the available representations and allowed methods for the property F_CODE.

CLIENT SERVER
 | |
 | OPTIONS
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/properties/F_CODE HTTP/1.1
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Allow: OPTIONS, GET, PUT |
 | Accept: text/plain |
 |<--|

NOTE
Since the PUT method is included in the list of allowed methods, that means that the
value of the property can be updated directly.

EXAMPLE: Get the value of the F_CODE property for a specific feature.

CLIENT SERVER
 | |
 | GET
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.9/propert
ies/F_CODE
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: text/plain |
 | |
 | GH301 |
 |<--|

EXAMPLE: Add a new StructureSrf feature to the collection. (INSERT)

115

CLIENT SERVER
 | |
 | POST /default/wfs/3.0.0/daraa/collections/StructureSrf/items HTTP/1.1
 | Host: www.pvretano.com |
 | Content-Type: application/geo+json |
 | |
 | { |
 | "type": "Feature", |
 | "geometry": { |
 | "type": "Polygon", |
 | "coordinates":
[[[36.1092489,32.6071056],[36.109329,32.6072337],[36.1091835,32.6072983],[36.1091033,3
2.6071702],[36.1092489,32.6071056]]]
 | }, |
 | "properties": { |
 | "F_CODE": "AL013", |
 | "UFI": "9d0e0ea8-dae1-41c6-b053-44561db4f780", |
 | "ZI001_SDV": "2011-01-09T00:30:09Z", |
 | "ZI026_CTUC": 5, |
 | "FCSUBTYPE": 100083 |
 | } |
 | } |
 | |
 |-->|
 | |
 | HTTP/1.1 201 Created |
 | Location:
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10
|
 |<--|

EXAMPLE: Update an existing feature. (UPDATE)

116

CLIENT SERVER
 | |
 | PUT
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10
HTTP/1.1
 | Host: www.pvretano.com |
 | Content-Type: application/geo+json |
 | |
 | { |
 | "type": "Feature", |
 | "geometry": { |
 | "type": "Polygon", |
 | "coordinates":
[[36.0402269,32.578595],[36.0403499,32.578645],[36.040208,32.5788926],[36.0400851,32.5
788426],[36.0402269,32.578595]]]
 | }, |
 | "properties": { |
 | "F_CODE": "AL013", |
 | "UFI": "9d0e0ea8-dae1-41c6-b053-44561db4f780", |
 | "ZI001_SDV": "2011-01-09T00:30:09Z", |
 | "ZI026_CTUC": 5, |
 | "FCSUBTYPE": 100083 |
 | } |
 | } |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Location:
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10
|
 |<--|

EXAMPLE: Change the value of the F_CODE property.

CLIENT SERVER
 | |
 | PUT
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10/proper
ties/F_CODE HTTP/1.1
 | Host: www.pvretano.com |
 | Content-Type: text/plain |
 | |
 | AL999 |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 |<--|

117

EXAMPLE: Change the geometric property of a feature.

CLIENT SERVER
 | |
 | PUT
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10/proper
ties/geometry HTTP/1.1
 | Host: www.pvretano.com |
 | Content-Type: application/geo+json |
 | |
 | { |
 | "type": "Polygon", |
 |
"coordinates":[[[36.1084202,32.605522],[36.1085062,32.6056253],[36.1083383,32.6057245]
,[36.1082523,32.6056213],[36.1084202,32.605522]]]}
 |-->|
 | |
 | HTTP/1.1 200 OK |
 |<--|

EXAMPLE: Get the modified feature back.

118

CLIENT SERVER
 | |
 | GET
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10
HTTP/1.1
 | Host: www.pvretano.com |
 | Accept: application/geo+json |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: application/geo+json |
 | |
 | { |
 | "type": "Feature", |
 | "geometry": { |
 | "type": "Polygon", |
 |
"coordinates":[[[36.1084202,32.605522],[36.1085062,32.6056253],[36.1083383,32.6057245]
,[36.1082523,32.6056213],[36.1084202,32.605522]]]}
 | }, |
 | "properties": { |
 | "F_CODE": "AL999", |
 | "UFI": "9d0e0ea8-dae1-41c6-b053-44561db4f780", |
 | "ZI001_SDV": "2011-01-09T00:30:09Z", |
 | "ZI026_CTUC": 5, |
 | "FCSUBTYPE": 100083 |
 | } |
 | } |
 |<--|

EXAMPLE: Delete the feature.

CLIENT SERVER
 | |
 | DELETE
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10
HTTP/1.1
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 |<--|

EXAMPLE: Try to fetch the deleted feature.

119

CLIENT SERVER
 | |
 | GET
/default/wfs/3.0.0/daraa/collections/StructureSrf/items/CWFID.STRUCTURESRF.0.10
HTTP/1.1
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 404 Not Found |
 |<--|

A.11.2. Complex transactions

Introduction

Unlike simple transactions, complex transactions act on multiple features perhaps across multiple
collections. During Testbed-14, two approaches for transactions where explored; the document
approach and the "shopping-cart" approach.

In the document approach, a single document is presented to the server that contains an encoding
of the entire transaction to be preformed. The server reads this document and processes the
transaction described therein. As was the case with WFS 2.X, the transaction document is posted to
a transaction endpoint.

The shopping cart method makes use to a transaction resource. It is assumed that when a new
transaction resource is created, the entire offerings of the server are accessible through that
transactions resource’s path. That is to say, a "virtual" and isolated view of the server’s entire
offerings are available using the transaction resource’s path as the root element of the access paths
to other feature resources. Using the shopping cart method, a transaction proceeds roughly as
follows:

• A new transaction is created by POST-ing an empty body to a transaction resource.

◦ The server responds with a Location header indicating the URL of the newly created
transaction resource.

• Features are created, modified or deleted within the context of the transaction using the POST,
PUT and DELETE methods as described for simple transactions.

• All actions performed within the context of the transaction (i.e. POST, PUT and DELETE) are not
committed to the server’s repository until a commit token is PUT to the transaction resource
URL.

• A transaction can be rolled back by deleting the transaction resource without sending the
commit token.

Resources

The following table lists the resource paths for complex transactions.

Table 6. Resources for complex transactions

120

Access path Description

/transactions The transaction factory used to create transaction resources or
execute transactions.

/transactions/{txId} A transaction resource.

/transactions/{txId}/collecti
ons/{collectionId}/items

The URL of a feature collection within the context of a
transaction.

/transactions/{txId}/collecti
ons/{collectionId}/items/{fi
d}

The URL of a feature within the context of a transaction.

/transactions/{txId}/collecti
ons/{collectionId}/items/pr
operties/{propertyName}

The URL of a feature property, within the context of a
transaction, that is common to all features in the collection.

/transactions/{txId}/collecti
ons/{collectionsId}/items/{f
id}/properties/{propertyNa
me}

The URL of a property of a feature within the context of a
transaction.

Methods

The following table defines what actions shall be performed for each HTTP method when applied to
the resources that support complex feature management.

Table 7. Actions for complex transaction resources

Access path Method Description

All OPTIONS Gets list of supported representations and methods for
the resource via the Accept and Allow HTTP headers.

/transaction GET Not specified.

POST With an empty body, creates a new transaction
resource. With a body containing a transaction
document executes and commits the transaction.

PUT Not specified.

DELETE Not specified.

/transaction/{txId
}

GET See notes after table.

POST Not specified.

PUT When the request body contains the token "commit",
commits the transaction; upon commit the server
cleans up the transaction resource. Otherwise not
specified.

DELETE Deletes the transaction and rolls back any pending
changes if the transaction was not previously
committed.

121

/transactions/{txI
d}/collections/{col
lectionId}/items

GET See notes after table.

POST Add a new feature to the collection; a representation of
the new feature is provided in body of the request.

PUT Replaces all existing features in the collection (or a
subset thereof based on any query parameters); a
representation of the replacement feature is provided
in the body of the request.

DELETE Deletes all existing features in the collection (or a
subset thereof based on any query parameters).

/transactions/{txI
d}/collections/{col
lectionId}/items/{
fid}

GET See notes after table.

POST Not specified.

PUT Replaces an existing feature; a representation of the
replacement feature is provided in the body of the
request.

DELETE Deletes a feature.

/transactions/{txI
d}/collections/{col
lectionId}/items/p
roperties/{proper
tyName}

GET See notes after table.

POST Not specified.

PUT Replaces the existing value of the specified property for
all features in the collection (or a subset thereof based
on any query parameters); a representation of the
replacement value is provided in the body of the
request.

DELETE Sets the value of the specified property to NULL or all
features in the collection (or a subset thereof based on
any query parameters).

/transactions/{txI
d}/collections/{col
lectionId}/items/{
fid}/properties/{p
ropertyName}

GET See notes after table.

POST Not specified.

PUT Replaces the existing value of the specified property for
the specified feature; a representation of the
replacement value is provided in the body of the
request.

DELETE Sets the value of the specified property for the specified
feature to NULL.

NOTE

The GET method for the /transactions/{txId} path is not specified in this ER
because it was not tested. The "going-in" idea was that doing a GET on this resource
would return a list of editable collections from the server. For each collection, the
resource would include a 'rel="edit"' link to indicate where POST, PUT and DELETE
method could be used to add, modify or remove feature from that collection within
the context of the transactions. This idea was not implemented because of time and
resource limitations.

122

NOTE

The GET method for feature resources within the context of a transaction, was not
implemented or tested during Testbed-14. However, it can be assumed that GET
could be used to retrieve the current value of feature or feature property within the
context of a transaction. That is to say (for example), the participants can change
the value of a property within the context of a transaction and then get that value
back; other users of the system, however, will not see that change until the
transaction is committed. This is just the standard database transaction isolation
semantic.

NOTE
No investigation was made into locking which is something that WFS 2.0 supported.
However, defining lockid and lockAction parameters that could be appended to
resources might be an easy way to add to this capability (perhaps for Testbed-15?).

Examples

NOTE

Because of time and resource limitation most work on the complex transaction
extension was performed using XML in order to leverage the work done to support
previous version of the WFS specification. In other words, a lot of existing code can
be reused, specifically the code written to implement the abandoned WFS 2.5
specification.

EXAMPLE: Insert, update and delete features atomically using the "shopping cart" method.

STEP 1: Create a Transaction resource

123

CLIENT SERVER
 | |
 | POST /default/wfs/3.0.0/daraa/transactions HTTP/1.1 |
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 201 Created |
 | Location: /default/wfs/3.0.0/daraa/transactions/1 |
 | Content-Type: text/xml |
 | |
 | <?xml version="1.0" encoding="UTF-8"?> |
 | <FeatureTypeList xmlns="http://www.opengis.net/wfs/2.5" |
 | xmlns:xlink="http://www.w3.org/1999/xlink" |
 | xmlns:cw="http://www.cubewerx.com/cw" |
 | xmlns:atom="http://www.w3.org/2005/Atom" |
 | xmlns:xsd="http://www.w3.org/2001/XMLSchema" |
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"|
 | xsi:schemaLocation="http://www.opengis.net/wfs/2.5 |
 | http://www.pvretano.com/schemas/wfs/2.5/wfs.xsd">|
 | <FeatureType> |
 | <atom:link rel="edit" |
 |
href="http://www.pvretano.com/default/wfs/3.0.0/daraa/transactions/1/AeronauticCrv/ite
ms"/>
 | <Name>cw:AeronauticCrv</Name> |
 | <NoCRS/> |
 | </FeatureType> |
 | . |
 | . |
 | . |
 | <FeatureType> |
 | <atom:link rel="edit" |
 |
href="http://www.pvretano.com/default/wfs/3.0.0/daraa/transactions/1/VegetationSrf/ite
ms"/>
 | <Name>cw:VegetationSrf</Name> |
 | <NoCRS/> |
 | </FeatureType> |
 | </FeatureTypeList> |
 |<--|

NOTE
Normally an empty body is all that is required but since the code was available, the
testbed included a FeatureTypeList body in the response with edit links that a client
can use to now POST, PUT and DELETE features to the various editable collections.

STEP 2: Insert a new feature encoded as JSON

124

CLIENT SERVER
 | |
 | POST /default/wfs/3.0.0/daraa/transactions/1/collections/StructureSrf/items
HTTP/1.1
 | Host: www.pvretano.com |
 | Content-Type: application/geo+json |
 | |
 | { |
 | "type": "Feature", |
 | "geometry": { |
 | "type": "Polygon", |
 | "coordinates":
[[[36.1092489,32.6071056],[36.109329,32.6072337],[36.1091835,32.6072983],[36.1091033,3
2.6071702],[36.1092489,32.6071056]]]
 | }, |
 | "properties": { |
 | "F_CODE": "AL013", |
 | "UFI": "9d0e0ea8-dae1-41c6-b053-44561db4f780", |
 | "ZI001_SDV": "2011-01-09T00:30:09Z", |
 | "ZI026_CTUC": 5, |
 | "FCSUBTYPE": 100083 |
 | } |
 | } |
 | |
 |-->|
 | |
 | HTTP/1.1 201 Created |
 | Location:
/default/wfs/3.0.0/daraa/transactions/1/collections/StructureSrf/items/CWFID.STRUCTURE
SRF.0.11
 |<--|

NOTE
Question: Should this really be a 201? A 202 Accepted might be better since the
feature will not actually be created in the repository until the transaction is
committed. For the moment, the feature is simply accepted.

STEP 3: Replace a feature

125

CLIENT SERVER
 | |
 | PUT
/default/wfs/3.0.0/daraa/transactions/1/AgricultureStr/CWFID.AGRICULTURESRF.0.9
HTTP/1.1
 | Host: www.pvretano.com |
 | ContentType: application/geo+json |
 | |
 | { |
 | "type": "Feature", |
 | "geometry": { |
 | "type": "Polygon", |

"coordinates":[[[36.0782644,32.608309],[36.0768589,32.6082005],[36.0768171,32.6085991]
,[36.0756471,32.608562],[36.0754653,32.6091413],[36.0736628,32.6090781],[36.0732868,32
.6053536],[36.0788867,32.6063478],[36.0790262,32.6069171],[36.0806902,32.6071621],[36.
0806999,32.6067093],[36.0845837,32.607369],[36.0845622,32.6077034],[36.083307,32.60867
95],[36.0782644,32.608309]]]
 | }, |
 | "properties": { |
 | "F_CODE": "EA010", |
 | "UFI": "4f1ffd2f-3918-469a-850f-43ed3ad35b9f", |
 | "ZI001_SDV": "2011-12-31T12:41:16Z", |
 | "ZI026_CTUC": 5, |
 | "FCSUBTYPE": 100380 |
 | } |
 | } |
 |-->|
 | |
 | HTTP/1.1 202 Accepted |
 |<--|

STEP 4: Update the property of a feature

CLIENT SERVER
 | |
 | PUT
/default/wfs/3.0.0/daraa/transactions/1/collections/StructureSrf/items/CWFID.STRUCTURE
SRF.0.10/properties/F_CODE HTTP/1.1
 | Host: www.pvretano.com |
 | Content-Type: text/plain |
 | |
 | AL999 |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 |<--|

126

STEP 5: Delete a feature

CLIENT SERVER
 | |
 | DELETE
/default/wfs/3.0.0/daraa/transactions/1/collections/StructureSrf/items/CWFID.STRUCTURE
SRF.0.7 HTTP/1.1
 | Host: www.pvretano.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 |<--|

STEP 6: Commit the transaction

CLIENT SERVER
 | |
 | PUT /default/wfs/3.0.0/daraa/transactions/1
 | Host: www.pvretano.com |
 | ContentType: text/plain |
 | |
 | commit |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | ContentType: text/xml |
 | |
 | <?xml version="1.0" encoding="UTF-8"?> |
 | <wfs:TransactionResponse version="2.5.0" |
 | xmlns:wfs="http://www.opengis.net/wfs/2.5" |
 | xmlns:fes="http://www.opengis.net/fes/2.5" |
 | xmlns:atom="http://www.w3.org/2005/Atom" |
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 | xsi:schemaLocation="http://www.opengis.net/wfs/2.5 |
 | http://schemas.opengis.net/wfs/2.5/wfs.xsd |
 | http://www.w3.org/2005/Atom |
 | http://schemas.opengis.net/kml/2.2.0/atom-author-link.xsd">
 | <wfs:TransactionSummary> |
 | <wfs:totalInserted>1</wfs:totalInserted> |
 | <wfs:totalUpdated>1</wfs:totalUpdated> |
 | <wfs:totalReplaced>1</wfs:totalReplaced> |
 | <wfs:totalDeleted>1</wfs:totalDeleted> |
 | </wfs:TransactionSummary> |
 | <wfs:InsertResults> |
 | <wfs:Feature> |
 | <fes:ResourceId rid="CWFID.STRUCTURESRF.0.11"/>
 | <atom:link
href="/default/wfs/3.0.0/daraa/transactions/1/collections/StructureSrf/items/CWFID.STR
UCTURESRF.0.11"/>

127

 | </wfs:Feature> |
 | <wfs:UpdateResults> |
 | <wfs:Feature> |
 | <fes:ResourceId rid="CWFID.STRUCTURESRF.0.10"/>
 | <atom:link
href="/default/wfs/3.0.0/daraa/transactions/1/collections/StructureSrf/items/CWFID.STR
UCTURESRF.0.10"/>
 | </wfs:Feature> |
 | </wfs:UpdateResults> |
 | <wfs:ReplaceResults> |
 | <wfs:Feature> |
 | <fes:ResourceId rid="CWFID.AGRICULTURESRF.0.9"/>
 | <atom:link
href="/default/wfs/3.0.0/daraa/transactions/1/AgricultureStr/CWFID.AGRICULTURESRF.0.9"
/>
 | </wfs:Feature> |
 | </wfs:ReplaceResults> |
 | <wfs:DeleteResults> |
 | <wfs:Feature> |
 | <fes:ResourceId rid="CWFID.STRUCTURESRF.0.7"/>|
 | </wfs:Feature> |
 | </wfs:DeleteResults> |
 | </wfs:TransactionResponse> |
 |<--|

NOTE
Normally an empty body is all that is required but since the code was available, the
testbed included a wfs:TransactionResponse body in the response.

128

Appendix B: Revision History
Table 8. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

June 21, 2018 Vretanos 0.1 all initial version

June 23, 2018 Portele 0.1 all comments
integrate

June 25, 2018 Harrison 0.1 various comments
integrate

June 29, 2018 Lin 0.1 various comments
integrate

July 11, 2018 Harrison 0.1 various comments
integrate

July 18, 2018 Lin 0.1 various comments
integrate

August 15, 2018 Harrison 0.1 various comments
integrate

August 21, 2018 Lin 0.1 various comments
integrate

August 22, 2018 Vretanos 0.1 various comments
integrate

August 23, 2018 Harrison 0.1 various comments
integrate

August 28, 2018 Portele 0.1 various comments
integrate

August 29, 2018 Lin 0.1 various comments
integrate

August 30, 2018 Vretanos 0.1 various comments
integrate

Sept 10, 2018 Harrison 0.1 various comments
integrate

Sept 11, 2018 Portele 0.1 various comments
integrate

Sept 12, 2018 Lin 0.1 various comments
integrate

Sept 13, 2018 Vretanos 0.1 various comments
integrate

Sept 19, 2018 Harrison 0.1 various comments
integrate

Sept 20, 2018 Lin 0.1 various comments
integrate

129

Date Editor Release Primary
clauses
modified

Descriptions

Sept 27, 2018 Vretanos 0.1 various comments
integrate

Sept 28, 2018 Lin 0.1 various comments
integrate

Sept 29, 2018 Portele 0.1 various comments
integrate

Sept 30, 2018 Harrison 0.1 various comments
integrate

Oct 2, 2018 Harrison 0.1 various comments
integrate

Oct 3, 2018 Vretanos 0.1 various comments
integrate

Oct 5, 2018 Harrison 0.1 various comments
integrate

Oct 10, 2018 Harrison 0.1 various comments
integrate

Oct 16, 2018 Harrison 0.1 various comments
integrate

Oct 19, 2018 Harrison 0.1 various comments
integrate

Oct 26, 2018 Vretanos 0.1 various comments
integrate

Oct 26, 2018 Harrison 0.1 various comments
integrate

Oct 29, 2018 Harrison 0.1 various comments
integrate

Nov 21, 2018 Vretanos 0.1 various Finish update to
Annex A. Add
cross ref
anchors. Handle
animated GIF
issue.

130

Appendix C: Bibliography
1. OGC: Web Feature Service (WFS) Conformance Checklist, https://github.com/opengeospatial/

WFS_FES/blob/master/guide/conformance_checklist.md.

2. IETF OAuth Working Group: OAuth 2.0 Implicit Grant, https://oauth.net/2/grant-types/implicit/.

3. IETF OAuth Working Group: OAuth 2.0 Authorization Code Grant, https://oauth.net/2/grant-
types/authorization-code/.

4. GeoServer: WFS 3 prototype, https://github.com/geoserver/geoserver/tree/master/src/
community/wfs3.

5. Portele, C., Genuchten, P. van, Verhelst, L., Zahnen, A.: Spatial Data on the Web using the current
SDI, http://geo4web-testbed.github.io/topic4/, (2016).

6. Tandy, J., Brink, L. van den, Barnaghi, P.: Spatial Data on the Web Best Practices. OGC 15-
107,Open Geospatial Consortium and World Wide Web Consortium, https://www.w3.org/TR/
2017/NOTE-sdw-bp-20170928/ (2017).

7. Portele, C.: Change Request 488: WFS/FES 2.x and work on a multi-part WFS/FES 3.0 standard
supporting the Spatial Data on the Web Best Practices, http://ogc.standardstracker.org/
show_request.cgi?id=488.

131

https://github.com/opengeospatial/WFS_FES/blob/master/guide/conformance_checklist.md
https://github.com/opengeospatial/WFS_FES/blob/master/guide/conformance_checklist.md
https://oauth.net/2/grant-types/implicit/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://github.com/geoserver/geoserver/tree/master/src/community/wfs3
https://github.com/geoserver/geoserver/tree/master/src/community/wfs3
http://geo4web-testbed.github.io/topic4/
https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/
https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/
http://ogc.standardstracker.org/show_request.cgi?id=488
http://ogc.standardstracker.org/show_request.cgi?id=488

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.2. Prior-After Comparison
	1.3. Recommendations for Future Work
	1.4. Document contributor contact points
	1.5. Review SWGs
	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated Terms

	Chapter 4. Overview
	Chapter 5. Background
	5.1. Introduction to WFS 3.0 and OpenAPI
	5.1.1. Transitioning to Next-Generation APIs

	5.2. OpenID Connect and OAuth 2.0
	5.2.1. OpenID Connect Security Environment

	Chapter 6. Experiments
	6.1. Demonstration Scenario
	6.2. Component Implementation Design
	6.3. Technology Integration Experiments
	6.3.1. Unsecured WFS 3.0
	6.3.2. Secured WFS 3.0

	Chapter 7. Implementations
	7.1. Component Implementation Design
	7.2. Participant Implementations
	7.2.1. D113 - Next Generation API Implementation (GeoSolutions)
	7.2.2. D140 - Next Generation API Implementation (interactive instruments)
	7.2.3. D113 - Next Generation API Implementation (CubeWerx)
	7.2.4. D142 - Next Generation API Client Implementation (GIS FCU)

	Chapter 8. Extensions
	Chapter 9. Findings
	9.1. Recommendations for Future Work

	Appendix A: Extensions
	A.1. Coordinate reference systems (by reference) extension
	A.2. Geometry simplification extension
	A.3. Collections selection extension
	A.4. Property selection extension
	A.5. Asynchronous request extension
	A.5.1. Conformance classes
	A.5.2. responseHandler parameter
	A.5.3. Acknowledgement schema
	A.5.4. Asynchronous Processing class
	A.5.5. Asynchronous Polling class
	A.5.6. Examples
	A.5.7. Notification message content

	A.6. Hierarchical path extension (i.e. theme extension)
	A.6.1. Introduction
	A.6.2. Operations
	A.6.3. Response
	A.6.4. Parameters

	A.7. Map extension
	A.7.1. Introduction
	A.7.2. Operation
	A.7.3. Parameter style
	A.7.4. Parameter width,height
	A.7.5. Parameter bgcolor
	A.7.6. Parameter transparent
	A.7.7. Response

	A.8. Tile extension
	A.9. OpenSearch query extension
	A.10. Advanced adhoc query extension
	A.10.1. Examples

	A.11. Transaction extension
	A.11.1. Simple transactions
	A.11.2. Complex transactions

	Appendix B: Revision History
	Appendix C: Bibliography

