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Chapter 1. Summary
This Engineering Report (ER) enhances the understanding of the concept of application profiles
(AP) for ontologies based on the Web Ontology Language (OWL) and used by Linked Data (LD)
applications. The concept of an Application Profile for Unified Modeling Language (UML) and
Extensible Markup Language (XML) schemas, in particular Geographic Markup Language (GML)
application profiles, is pretty well-defined and understood within the communities of Open
Geospatial Consortium (OGC) and International Organization for Standardization (ISO). Moreover,
in the context of Linked Data and ontologies, the term is still ill-defined, as ontologies are defined
using an Open World Assumption (OWA), as well as classes and properties are first-class modeling
objects in ontology modeling. The work documented in this report includes:

• Definition and characterization of Resource Description Framework (RDF) application profiles
for simple linked data applications and complex analytic linked data applications.

• Determination of preliminary techniques for the development of subsets of ontologies to
support different types of applications (simple linked data and complex analytic)

• An initial model for defining metadata about application profiles, so they can be searched and
discovered by agents.

1.1. Requirements & Research Motivation
This ER relates to ontologies developed for the National System for Geospatial Intelligence (NSG).
The ER describes the work to define NSG Enterprise Ontology (NEO) Application Profiles and
sample data for a Simple Linked Data application and a Complex Analytic Application. The goal of
this task is to design NEO application profiles that exercise different aspects of ontology for simple
linked data application and for complex analytic application.

A simple linked data application is defined as an application in which no or limited ontology
reasoning would be employed. They are typically used to enable display or navigation of
information. Application profiles supporting simple linked data applications are profiles-of-
ontologies that are still ontologies but whose utility is restricted to some particular domain-of-
discourse (e.g., maritime safety-of-navigation, rather than all-of-geography) and can be consumed
by applications having limited capabilities, e.g. handling of a feature model with only simple
geometries and attributes.

A complex analytic application is defined as an application in which a “complete” ontology
reasoning would be employed, e.g. an application layered over a triple-store. Application profiles
supporting complex analytic applications are profiles-of-ontologies that are still ontologies but
whose utility is restricted to some particular domain-of-discourse (e.g., maritime safety-of-
navigation, rather than all-of-geography).

One challenge of this task is to define and properly characterize the notion of Application Profiles
that are based on ontologies. While the definition of Application Profile is pretty well-established
for UML and XML Schema-based (e.g. GML application profiles), application profiles based on
ontologies are not yet well-defined in the industry. There are some ongoing efforts at World Wide
Web Consortium (W3C) attempting to describe application profiles for describing dataset metadata
using the Data Catalog (DCAT) ontology and its derivatives DCAT-AP and GeoDCAT.
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The following requirements have been addressed by the work documented in this Engineering
Report:

• Investigate the derivation of ontology(ies) having different levels of complexity from a single
application schema, to support different types of applications (simple linked data and complex
analytic). This work will result in a better understanding of the desirable characteristics of
ontologies for these applications. Further, it will provide experience on how such ontologies can
be created. The results will be complemented by publicly available sample NEO-conformant
RDF individual data.

Unfortunately, due to budget and time constraints (including the lengthy analysis phase needed to
characterize application profiles for Linked Data applications), no sufficient time was spent on
reviewing and refining the application profiles and sample dataset produced for this OGC Testbed-
14. More work may be needed in future testbeds.

1.2. Prior-After Comparison
The current version of RDF representation of NEO, v8.0, is derived from the UML model of the
National System for Geospatial Intelligence (NSG) Application Schema (NAS) using ShapeChange
and a set of conversion rules defined in ISO 19150-2. The resulting ontology contains a very large
set of classes and properties that addresses a large number of communities within the National
Geospatial Intelligence Agency (NGA). Specific Communities of Interest (CoI) typically deal with a
small subset of classes and properties to describe their domain. These communities use this
information with a variety of applications ranging from simple linked data applications typically
used for navigation or data capture, to more complex analytic applications where reasoning based
on the ontology axioms is involved.

The goal of this OGC Testbed-14 work is to characterize and define application profiles (in
particular NEO profiles) that can be used by simple linked data applications and complex analytic
applications. The goal is to define application profiles that contain only the classes and properties
of a specific Community-of-Interest, while preserving the semantic integrity and coherence of the
application profile with the original ontology it is derived from.

1.3. Recommendations for Future Work
The following recommendations are made for future work in OGC Testbeds:

• SHACL support in ShapeChange: This ER increases OGC community understanding of
Application Profiles for OWL-based ontologies. In Testbed-14, the focus of the analysis for
converting Object Constraint Language (OCL) constraints was on OWL as the target language.
However, some OCL language constructs (e.g. variables, addition, subtraction) and specific OCL
constraints (that instances of a specific class are generally not allowed) cannot be represented
in OWL. However, it may be possible to encode these constraints as Shape Constraint Language
(SHACL) constraints, so that they can be checked for an RDF dataset. Future work should
therefore analyze the conversion of OCL constraints to SHACL. If it turns out that SHACL can
represent OCL constraints, enhance ShapeChange accordingly. Another aspect could be to
enhance ShapeChange to derive profile definitions using SHACL.

• RDF Application/Validation Profile based on multiple ontologies and SHACL: The focus of
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this ER was mostly on deriving application profiles as a strict subset of an ontology and logical
coherence with the base ontology it is derived from. However typical application profiles are
often based on one or more based ontologies and often focus on validation rules for specific
applications (e.g. data capture). SHACL is emerging as a powerful standard to perform
validation, data capture and build application profiles. For future testbeds, investigation should
be conducted to encode RDF application profiles in SHACL documents and that are derived
from multiple ontologies, so they can be used for validation and data capture. The task should
leverage recent work conducted by the DCAT Revision W3C Working Group (WG) and be
applied to NEO but also OGC Semantic Registry Information Model (SRIM) application profiles.

• Metamodel for RDF Application Profiles: This ER proposes an initial metamodel for
describing RDF application profiles. It aims at facilitating search and discovery of application
profiles based on specific ontologies. Testbed-12 investigated an Application Programming
Interface (API) for a semantic mediation service and defined an SRIM profile for a semantic
registry to represent schemas and schema mappings. This work can be extended and refined to
accommodate RDF application profiles, so they can be searched and discovered by registry
clients and used by a semantic mediation service.

• SHACL Service: SHACL is a W3C standard to encode RDF application profiles and support data
capture and validation rules. There are a number of SHACL application profiles that are
emerging in the data catalog community (DCAT profiles), but there is currently no good practice
on how to manage, search and use these SHACL profiles. Future testbed should investigate and
design best practices and APIs that address these needs.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Stephane Fellah Image Matters LLC

1.5. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• Profile

A set of one or more base standards or subsets of base standards, and, where
applicable, the identification of chosen clauses, classes, options and parameters
of those base standards, that are necessary for accomplishing a particular
function. [adapted from ISO/IEC TR 10000-1:1998]

• Application Profile [DCAT-AP]

An Application Profile is a specification that re-uses terms from one or more base
standards, adding more specificity by identifying mandatory, recommended and
optional elements to be used for a particular application, as well as
recommendations for controlled vocabularies to be used.

• RDF Application Profile (new proposal)

An RDF Application Profile is a specification that re-uses terms from one or more
base ontologies using standard based on RDF Schema (RDFS), adding more specificity
by identifying mandatory, recommended and optional classes and properties to be
used for a particular application, as well as recommendations for controlled
vocabularies to be used and validation constraints that do not affect the
underlying model of reality expressed by ontologies.

• Application Schema

conceptual schema for data required by one or more applications [ISO 19101]

• Concept

structured conceptual element including entity types and properties (abstractions
of real-world objects) defined in formal models (e.g. UML, OWL) to enable
understanding of structured datasets.

• Conceptual Model

model that defines concepts of a universe of discourse [ISO 19101]
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• Conceptual Schema

formal description of a conceptual model [ISO 19101]

• Application Profile Characteristic

logical and validation features of an RDF application profile.

• Linked Data

a set of best practices for publishing and connecting structured data on the Web.
Data from heterogeneous sources can be combined using typed links. Key technologies
that support Linked Data are the Uniform Resource Identifier (URI), HyperText
Transfer Protocol (HTTP) and RDF. A URI is a generic means to identify entities or
concepts in the world. HTTP is a universal mechanism for retrieving resources, or
descriptions of resources, RDF is a generic graph-based data model which is used to
structure and link conceptual data.

Linked Data is the data format that supports the Semantic Web. The basic
rules for Linked Data are defined as:

• Use URIs to identify things.

• Use HTTP URIs so that these things can be referred to and looked up
("dereferenced") by people and user agents.

• Provide useful information about the thing when its URI is dereferenced,
using standard formats such as RDF/XML

• Include links to other, related URIs in the exposed data to improve
discovery of other related information on the Web.

— W3C Semantic Web Wiki [https://www.w3.org/2001/sw/wiki/Semantic_Web_terminology#linked_data]

• Simple Linked Data Application

An application which uses linked data with limited ontology-based reasoning. The
purpose of a simple RDF application profile is to capture the list of valid
concepts (classes, properties) and basic cardinality restrictions, in order to
support the encoding of instance descriptions. The set of concepts and restrictions
is generally insufficient for performing complex reasoning.

• Complex Analytic Application
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An application in which “complete” ontology-based reasoning would be employed, e.g.
an application layered over a triple-store. RDF application profiles supporting
complex analytic applications are subsets-of-ontologies that are still ontologies
but whose utility is restricted to some particular domain-of-discourse (e.g.,
maritime safety-of-navigation, rather than all-of-geography).

• Constraint Component

A constraint component is defined by a URI and a set of parameters (mandatory and
optional) and is associated with a validator which provides instructions (for
example expressed via SPARQL queries) on how the specified parameters are used to
validate data. Validating an RDF term against an RDF shape involves validating the
term against each constraint where the RDF shape has values for all mandatory
parameters of the component of the constraint, using the validators associated with
the respective component. [SHACL]

• RDF Shape

A collection of constraints to be applied to some node in an RDF graph. Under the
Closed World Assumption (CWA), every property attached to that node must be
included in the RDF shape.

• Node Shape

Constraints about a given focus node in an RDF instance data graph.

• Property Shape

Constraints about a given property and the values of a path for a node in an RDF
instance data graph.

• Path

A path in an RDF graph G from RDF term n to RDF term m is a finite sequence of RDF
triples in G such that the subject of the first RDF triple is n, the object of the
last RDF triple is m, and the object of each RDF triple except the last is the
subject of the next

• Focus Node

An RDF term that is validated against an RDF Shape using the triples from an RDF
instance data graph.
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• Term

Lexical items including words, phrases, or abbreviations (expressed in text
strings)

• Value Node

Reference node used in the specification of constraint components, as follows: (i)
For node shapes, the value nodes are the individual focus nodes in an RDF instance
data graph, forming a set with exactly one member. (ii) For property shapes, for
given path 'p' the value nodes are the set of nodes in the RDF instance data graph
that can be reached from the focus node given the path mapping of 'p'.

3.1. Abbreviated terms
• BFO Basic Formal Ontology

• CWA Closed World Assumption

• DASH Data Shapes Vocabulary

• DCAT Data Catalogue Vocabulary

• DCAT-AP DCAT Application profile for data portals in Europe

• DDL Data Definition Language

• DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

• DXWG Dataset Exchange Working Group

• ER Engineering Report

• GEOINT Geospatial Intelligence

• GML Geography Markup Language

• IRI Internationalized Resource Identifier

• ISO International Organization for Standardization

• JSON JavaScript Object Notation

• JSON-LD JSON for Linked Data

• NAS NSG Application Schema

• NCV NSG Core Vocabulary

• NEO NSG Enterprise Ontology

• NSG U.S. National System for Geospatial Intelligence

• OCL Object Constraint Language

• OGC Open Geospatial Consortium

• OWA Open World Assumption

11



• OWL Web Ontology Language

• RDF Resource Description Framework

• RDFS RDF Schema

• SHACL Shapes Constraint Language

• ShEx Shape Expression

• SKOS Simple Knowledge Organization System

• SPIN SPARQL Inferencing Notation

• SQL Structured Query Language

• SUMO Suggested Upper Merged Ontology

• SPARQL SPARQL Protocol and RDF Query Language

• TSC Technical Steering Committee

• UGAS UML to GML Application Schema

• UML Unified Modeling Language

• URI Uniform Resource Identifier

• URL Uniform Resource Locator

• W3C World Wide Web Consortium

• WFS Web Feature Service

• WKT Well Known Text

• XML Extensible Markup Language

• XPath XML Path Language

• XSLT Extensible Stylesheet Language� Transformations
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Chapter 4. Overview
Section 5 provides an analysis of the difference between semantic and data-centric representations.
The analysis aims at providing a better understanding of the difference between application
profiles based on syntactic-based application schemas (such as XML Schema, Relax NG,Java Script
Object Notation (JSON) Schema) and semantic-based application profiles using ontologies.

Section 6 focuses on the similarities and differences between UML and OWL modeling.

Section 7 provides a definition of ontology, an overview of the different types of ontologies, a
comparison of Open World Assumption (OWA) versus Closed World Assumption (CWA) and these
assumptions relate to the existing W3C standards OWL and SHACL.

Section 8 compares OWL and SHACL standards to better understand their roles in the definition of
application profiles for ontologies.

Section 9 distinguishes RDF application profiles versus RDF Validation Profiles and discusses more
in-depth the RDF application profile characteristics and constraints for simple linked data
applications and complex analytic applications.

Section 10 documents a proposal for defining metadata about application profiles so they can be
more easily searched and discovered, as well as being linked to other standards in a catalog service.
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Chapter 5. Semantic versus data-centric
representation
To better understand the difference between application profiles based on syntactic-based
application schemas (such as XML Schema, Relax NG, Java Script Object Notation (JSON) Schema)
and semantic-based applications, an analysis of the difference between semantic and data-centric
representation is needed.

Knowledge assertions are expressed by RDF, as sets of triples, each triple being rather like the
subject, verb and object of an elementary sentence. In RDF, a document makes assertions that
particular things (people, Web pages or whatever) have properties (such as "is a sister of," "is the
author of") with certain values (another person, another Web page). This structure turns out to be a
natural way to describe the vast majority of the data processed by machines [1] and allow anyone
to say anything about anything. This is in tension with conventional data practices which reject
data with any assertions that are not recognized by the schema. For Structured Query Language
(SQL) schemas, this is enforced by the data storage itself; there is simply no place to record
assertions that do not correspond to some attribute in a table specified by the Data Definition
Language (DDL). XML Schema offers some flexibility with constructs like <xs:any
processContents="skip"> but these are rare in formats for the exchange of machine-processable
data. Schema-based systems put emphasis on strict protocol-adherence, which is an unforgiving
requirement and makes current systems very brittle when there is any deviation from protocol or
alternative interpretation of the semantics of the protocol. Because of this underlying brittleness,
software tends to be built up into layers, which introduces lock-in and sedimentation of ideas and
protocols [2].

The main issue with a schema-based system (data-centric) versus a semantic-based system is that in
the former the semantic information is implicit and requires out-of-line information to properly
interpret the information (by human interpretation or writing code). In a semantic-based system,
ontologies make the semantic information explicit and allow machines to immediately interpret the
information without the need for writing new code. Semantic-Enabled Approaches add a machine-
encoded knowledge layer to existing environments. This layer captures the conceptual meanings,
significance, relevance and relationships of all relevant information required for use in a target
mission domain. The layer also encodes business rules that are used by enhanced reasoning
services to draw inferences and make sense of mission concepts. Finally, the knowledge layer
integrates with an array of analytical and reasoning services to enhance information triage, fusion,
situation awareness, and sense making. The layer facilitates a higher level of utility, automation,
interoperability, extensibility and flexibility, beyond that which is possible with data-centric
approaches. It also dramatically reduces the cognitive burden on users.

Some notable advantages of this approach are:

1. The knowledge layer provides a more user friendly and mission-relevant unified conceptual
view of all pertinent data and services for a target mission domain. Users are able to interact
with familiar, well-understood concepts, rather than deal at the level of fixed data schemata
with its commensurate semantic and contextual ambiguities. This allows users to obtain
relevant actionable information more readily, which in turn leads to making better decisions
more quickly. User productivity and effectiveness increases with the reduction in cognitive
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burden.

2. There is substantially more flexibility in accommodating data evolution, variety and veracity. It
is easier to add new data sets, make changes to existing data sets, and accommodate data set
differences. Changes in information requirements will first affect the “knowledge layer”,
reducing effects on databases and software.

3. Business rules are encoded in the knowledge layer, where they can be more easily changed
without changing business applications. (Current approaches require that business logic must
be wired into business applications… a costly, inflexible approach.)

4. The vastly improved filtering, fusion, analytics and reasoning services provide an enhanced
information triage mechanism for quickly finding “the needle in the haystack”, locating
patterns across a complex array of data, and making inferences that are not directly exposed in
data (i.e., “determine the haystack from the needles”). User productivity and effectiveness
increases with the increased level of automation.

Table 1 presents the main issues with a data-centric approach addressed by the Semantic-Enabled
Approach, along with its benefits.

Table 1. Data-Centric Issues with Corresponding Semantic-Enabled Approach and Benefits

Issues with Data-Centric
Approaches

Semantic-Enabled Approach Value Proposition

Data model standardization
relies upon homogeneous
data description and
organization. This imposes
strict adherence to a standard
that is defined at the syntactic-
schematic level, whereupon it is
harder to achieve consensus and
flexibility. Modelers struggle
between producing simpler
models for which it is easier to
gain consensus, but harder to
achieve desired business reality,
versus those seeking richer
models that are closer to reality
but have unwanted complexity.

• A semantic-enabled
approach employs a
standards-based formal,
sharable framework that
provides a conceptual
domain model to
accommodate various
business needs.
Decentralized model
extensions can be
accommodated without
adversely affecting existing
information infrastructure.

• Allows decentralized
extensions of the domain
model

• Accommodates
heterogeneous
implementations of the
domain model (lessens
impact on systems; reduces
cost)

• Shareable machine-
processable model and
business rules; reduces
required code base
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Issues with Data-Centric
Approaches

Semantic-Enabled Approach Value Proposition

Data-centric approaches
increase the chance for
multiple interpretations and
misinterpretations of data.
Data interpretation requires
knowledge of its semantics (e.g.,
meanings, significance, and
relevance) and surrounding
context. Data-centric
approaches are unable to
capture these semantics and
context, which are in turn
required for automated fusion,
analytics, and reasoning.

• Semantic-enabled
approaches encode data
characteristics in ontology.
By formalizing the semantic
and business rules
unambiguously in a
declarative ontology,
software can use off-the-
shelf semantic components
to interpret, infer and
validate domain data, thus
reducing interpretation
errors.

• Increased software
maintainability

• Improved data
interpretation and utility

• Actionable information for
the decision maker

Data model implementations
have limited support for
business rules, and lack
expressiveness. Data-centric
implementations encode
business rules using software or
database programming
languages. Additional
programming is necessary to
apply business rules when using
the data. Robust conceptual and
contextual meanings of
information may not be captured
in the model. The risk is high for
inconsistent conceptual
encoding and interpretation in
each implemented system.

• Standards-based knowledge
encoding (OWL, SPARQL
Rules) captures formal
conceptual models and
business rules, providing
explicit, unambiguous
meanings for use in
automated systems. With
richer semantic and
contextual expressiveness,
automated systems are less
complex to design and
develop. Proper
interpretation and use are
more consistent across
enterprise systems.

• Reduction of software and
associated development cost

• Conceptual models and
rules that provide enhanced
meaning, thus reducing the
burden on users

• Unambiguous
interpretation of domain
model; greater consistency
in use
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Issues with Data-Centric
Approaches

Semantic-Enabled Approach Value Proposition

Data-centric implementations
are inflexible when data
requirements change.
Whenever business rules and
semantic meaning are encoded
in a programming language,
changes impact the full
development life cycle for
software and data. When the
change includes a conceptual
change (new/enhanced business
concept), the full
standardization process must
also be executed.

• The semantic-enabled
approach uses an ontology
that contains a flexible,
versatile conceptual model
that can better
accommodate the
requirements of each
stakeholder in the business
domain. Changes or
extensions are integrated
and implemented by
enhancing the domain
ontology. Older concepts
and heterogeneity can still
be supported.

• Increased flexibility to
accommodate stakeholder
needs; Decentralized and
organic evolution of the
domain model

• Changes only impact
affected stakeholders, not
others; reduces software
updates

• Software adapts to domain
model as ontology evolves

• The enterprise can better
keep up with changing
environment/requirements

Data-centric approaches
require additional software
development (tools) to
integrate across several
domains. The heterogeneity of
data schemas and business
models in alien domains
requires additional software
development (or tools) to
integrate and make sense of the
alien data in the local domain.

• Standards-based knowledge
technologies provide the
means to exchange
knowledge, schemas/rules
and query knowledge.
Knowledge representations
are non-disruptively
layered on top of existing
information assets. They
enhance rather than
displace existing
information resources.

• Using semantic-enabled
technologies, different data
sources can be accessed in
their native form and
linked-fused-reasoned
about on-the-fly for more
creative uses.

• Leverages and enhances
“As-Is” enterprise;
preserves investments

• Open standards enhance
interoperability (the
knowledge layer is the “last
rung in the interoperability
ladder”)

• Enables use of diverse Web
and enterprise data sources
for full business context;
enhances business
applications

• Easy to work across
different domains and
answer more challenging,
relevant business questions
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Issues with Data-Centric
Approaches

Semantic-Enabled Approach Value Proposition

Data-centric approaches
require that data inferencing
and validation rules are
encoded in software or
delegated to human-intensive
validation processes. Reliable
data that is essential for critical
systems, inferencing, and
effective decision support,
requires rules that support
inferencing and validation.

• Semantic-enabled
approaches use a formal
language (OWL) that
provides well-defined
semantics in a form
compliant with off-the-shelf
software that automates
data inferencing and
validation.

• Semantic-enabled
approaches can
accommodate situations
where information may be
missing or incomplete.

• Employs off-the-shelf
software for inferencing
and validation

• Reduction of validation and
testing in the development
process

• Uses all available data from
sources, including
inferences, while
accommodating cases of
missing/incomplete
information

Data-centric approaches
presume a priori knowledge
of data utility. Semantics are
pre-wired into applications
based upon data verbosity,
conditions and constraints.
Changes in data directly impact
code.

• Encoding the conceptual
model and rules explicitly
using OWL enables rapid
integration of new/changed
data. Software accesses data
through the “knowledge
layer” where it’s easier to
accommodate changes
without rewriting software.

• Reduced software
maintenance owing to
emergent data
perturbations

• Software quickly adapts to
evolving domain model

• New information are
readily introduced and
understood in their broader
domain context
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Chapter 6. UML versus OWL Modeling
The NEO ontology is derived from object-oriented UML models. Modeling ontologies is very
different than modeling object-oriented software artifacts. This section attempts to outline the
differences and similarities between UML modeling and OWL modeling.

UML is a notation for modeling object-oriented software artifacts. UML is used in the Model-Driven
development process. OWL is a notation for knowledge representation. OWL is used in the
Ontology-Driven development process. These are two quite different problems so asking about
expressivity differences would lead to an 'apples-versus-oranges' comparison. In particular
thinking in object-oriented terms when working with OWL or RDFS will almost always lead a
developer astray.

To take an example, both OWL and UML have things called "classes" and those classes are related in
some sort of hierarchy that you can depict via a diagram. However, they are not the same notion at
all.

In UML, a class is a software object acting as a template (or frame) for objects. You can create
instances of a class and that creation process has procedural semantics involving things like
assigning values to attributes (a.k.a. slots, members). So procedural notions, such as a default value
for an attribute which is resolved at construction time, is a simple well-defined thing in UML.
Instance objects also have some associated storage, so UML distinguishes between containment and
association - things are stored in the object v. things that are outside the object.

Instance objects have a runtime semantic, so you can have notions of static values and mutable
values. Attributes and the association role are owned by classes, i.e. their existence depends on the
existence of the classes. They are not first-class modeling concepts. Asserting a property on a class
(or discovering such an assertion) cannot lead to inferring that it is a member of further classes (for
example the fact that a class has property length does not lead to the conclusion that the class is a
spatial object).

None of that is true in RDFS or OWL or similar languages. In OWL, modeling a class is a category, it
is a label given to a set of things in a domain. In OWL terms, a class is simply the set of things which
are members of that set. So RDFS/OWL has no notion of instantiating or constructing an instance
and so no notion of default values for instance creation. OWL has the notion of Individuals that
belong to a Class. However, if you have a resource and it meets the criteria for membership of the
class, then it is a member of that class; if you didn’t already know that your resource was in that
class then you can derive this information by reasoning.

Asserting a property on a resource (or discovering such an assertion) can lead to you inferring that
it is a member of further classes. Resources (in RDFS terms, Individuals in OWL terms) are not
things with state, storage or runtime semantics. They are simply identifiers for things in your
domain. Assertions about those resources can be made, found or derived but the resources
themselves are not objects with slots and so notions like static and public/private have no meaning
here. This is not a limitation of OWL or RDFS so much as the fundamental nature of what you are
modeling. OWL classes are like labels for concepts, UML classes are like templates that define a
runtime object and its storage.
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Figure 1. UML Modeling versus OWL modeling

In addition, in OWL, properties are first class objects and are scoped to the ontology (namespace).
Property re-use in different classes is expected and commonly used as well as specialization of
properties (using subPropertyOf hierarchy). Property redefinition and refinement is very
uncommon and complicated to model in UML. Figure 1 and Figure 2 summarize the difference
between UML modeling and OWL Modeling.

In UML, the domain and range of the properties are very narrow as the properties belong by
default to the Class, thus the property has a default scope to the class. Additional annotations are
needed to indicate that the properties are global (as defined in ISO 19150-2). In OWL, properties are
typically defined globally and thus have a broader domain and narrow range. Further, cardinality
of OWL properties is looser than cardinality in UML model. Figure 2 shows an example where the
length of a runway property has a domain Runway. In OWL, the length can be defined globally and
has a broader domain of SpatialObject. The conversion from UML to OWL using the default settings
generates ontology with very limited expressiveness and reusability. In OWL, reuse of external
vocabularies is commonly expected. The choice of the vocabularies requires the expertise of an
ontologist and a subject-matter expert, and cannot be automated.
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Figure 2. Property modeling in UML versus OWL

Despite all these differences there is however some connection between both modeling languages.
Both UML and OWL are languages for modeling. They are used for modeling totally different things
and so have different capabilities. They are completely different approaches to semantics but have
some structural similarities. MOF (Meta Object Facility) is the meta-modeling tool on which UML is
based. It is a language in which you can express other modeling languages. So, UML is specified in
MOF. You can do the same for RDFS and OWL - that is, express their metamodels in MOF. This is
what ODM (Ontology Definition Metamodel) provides which provides a profile for writing RDF and
OWL within UML. It also includes mappings between UML and OWL as well as mappings amongst
RDF, RDFS, Common Logic and Topic Maps.

This discussion should highlight why modeling ontologies cannot be done by simply converting
(automatically or not) UML diagrams to OWL. Ontologies are better designed from the ground-up
but can be informed by concepts expressed in UML models.

21



Chapter 7. Ontology overview

7.1. Definition
Ontologies provide a way to share the semantics of concepts in some area-of-interest. It is all about
common understanding of essential concepts. A generally accepted short definition of ontology is
given by Gruber [3]:

An ontology is an explicit specification of a conceptualization.

The term conceptualization is defined as follows:

A conceptualization is the combination of objects, concepts, and other entities that
are assumed to exist in some area of interest and the relationships that hold among
them. A conceptualization is an abstract, simplified view of the world that we wish to
represent for some purpose.

Ontologies are used to formally represent an inevitably reductionist view of reality by defining the
concepts (entities and properties) and logical axioms found in the world. These concepts are
typically formalized using Description Logic (DL), which can be leveraged to infer additional
information about things using deductive logic.

7.2. Ontology classification
Ontologies are often classified based on scope of their domain of discourse. The following
classification of ontologies are typically used:

Upper-ontologies: An upper-ontology (also known as a foundation ontology or top-level ontology)
is an ontology which consists of very general terms (such as "object", "process", "role", "function")
that are common across all domains. An important function of an upper ontology is to support
broad semantic interoperability and alignment among a large number of domain-specific
ontologies and to provide a common starting point for developing more specific domain ontologies.
Upper ontologies are limited to concepts that are meta, generic, abstract or philosophical. Examples
of upper ontologies include Suggest Upper Merged Ontology (SUMO), OpenCyc, Basic Formal
Ontology (BFO) and Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE).

Mid-level ontologies: A mid-level ontology serves as a bridge between abstract concepts defined in
an upper ontology and low-level domain specific concepts specified in a domain ontology. While
ontologies may be mapped to one another at any level, the mid-level and upper ontologies are
intended to provide a mechanism to make this mapping of concepts across domains easier. Mid-
level ontologies may provide more concrete representations of abstract concepts found in upper
ontologies. This ontology category also encompasses the set of ontologies that represent commonly
used concepts, such as Location and Time. These commonly used ontologies are sometimes referred
to as utility ontologies [4].
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Domain ontologies: A domain ontology specifies concepts particular to a domain of interest and
represents those concepts and their relationships from a domain specific perspective. While the
same concept may exist in multiple domains, the representations may vary widely due to the
differing domain contexts and assumptions. Domain ontologies may be composed by importing
mid-level ontologies. They may also extend concepts defined in mid-level or upper ontologies.
Reusing well established ontologies in the development of a domain ontology allows one to take
advantage of the semantic richness of the relevant concepts and logic already built into the reused
ontology [4]. Not everything that is part of an entity within a given domain is also part of that
domain. For example, every human being has molecules as parts, but molecules do not form part of
the domain of human geography or sociology for example.

Application ontologies: An application ontology is an ontology that is created to accomplish some
specified local task or application. Portions of multiple existing ontologies can be reused in an
application ontology, which will typically also contain new ontology content created to address its
specific local purpose. They are typically narrower in scope than domain ontologies, as they are
designed for a specific application, thus less reusable for other domain or applications.

7.3. Open World Assumption
An important aspect of DL knowledge bases (and OWL ontologies) is that they are based on the
Open World Assumption (OWA), which has implications for the reasoning on them. OWA means
that there is an assumption that everything can be true until it is explicitly stated that it does not
exist. This implies that the absence of information in a knowledge base only indicates the lack of
knowledge. In this respect, instances of DL concepts are treated differently as instances of database
schemas [5]. However, the actual openness of that world is affected when adding ontological
constraints such as domain, range or cardinality restrictions. These constraints, which provide
context and meaning, and also provide the rules for inferencing, are sometimes confused with the
rules that metadata-producing communities commonly employ for quality control (data validation)
and data consistency.

7.4. Closed World Assumption
The opposite of OWA is called Closed-World Assumption (CWA). It is the presumption that a
statement that is true is also known to be true. Therefore, conversely, what is not currently known
to be true, is false. Decisions on CWA vs. OWA determine the understanding of the actual semantics
of a conceptual expression with the same notations of concepts. In the context of knowledge
management, the closed-world assumption is used in at least two situations: (1) when the
knowledge base is known to be complete (e.g., a corporate database containing records for every
employee), and (2) when the knowledge base is known to be incomplete, but a "best" definite
answer must be derived from incomplete information (typically returning a default value). In OWA,
the use of default value is not allowed and assume that the lack of knowledge does not imply falsity,
it is just not known. When developing application profiles for an ontology, it is possible that some
constraints needs to be expressed using CWA. These constraints are typically used for data
validation, data completion, but also reasoning in CWA. They often cannot be expressed in OWL. In
particular, OWL ontologies do not provide constraints that one would typically view as data
validation. Other standards, such as Shape Constraint Language (SHACL), Shape Expression (ShEx)
are a better fit for addressing the aspect of data validation. These standards can be seen as
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complementary modeling techniques to OWL.
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Chapter 8. OWL versus SHACL
Now that there is an understanding of OWA and CWA, this section will focus on the similarities and
differences between OWL and SHACL, which are both used to define RDF application profiles. OWL
has been designed for classification tasks (inferencing in an "open world"), while SHACL covers
data validation (in a "closed world") similar to traditional schema languages. Given this division of
roles, both technologies can be used together or individually. Further, SHACL can also be used for
general purpose rule-based inferencing.

The next sub-sections explain the use of OWA versus CWA and their implications in OWL and
SHACL. The observations are based on the excellent comparison of OWL versus SHACL made by
Holger Knublauch [6](author of Protege, Topbraid applications and SPIN and SHACL specifications).

8.1. OWL
OWL is designed as an extension of RDF Schema. OWL adds in the language restrictions properties
such as owl:maxCardinality , property characteristics (transitive, symmetric,functional,
inverseFunction, reflexive,etc), logical classes (union, intersection, complement) and richer
datatype expressions. Like RDFS, OWL was designed for inferencing. In OWL, restrictions are
actually used for inferences not for data constraints. The implication of this usage can lead to
surprising outcomes for OWL novices. For example, assuming there is an owl:maxCardinality 1
restriction stating that a person can only have 1 value for ex:hasFather and there is an instance of
ex:Person that has two ex:hasFather values, then an OWL processor will infer that these two values
represent in fact the same real-world entity, just with different URIs. This topic is sometimes called
Unique-Name Assumption (or, in the case of OWL: the lack of that assumption).

Holger [6] notes that "OWL’s interpretation is based on a (rather philosophical) distinction between
a resource (URI) and a real-world entity that is represented by that resource. If you follow the OWL
spec, you cannot send a set of instances to an OWL processor and ask whether these instances
"match" or "conform to" the given schema in the same way that you would send an XML file to an
XML Schema validator. Instead, an OWL processor will actually add to the data in attempt to
conform to the restrictions rather than report an error. If the addition of new facts results in logical
contradictions, then the processor will report an error. However, the error is rarely traceable to the
original data statement(s) that have caused the contradictions".

OWL properties are given a certain meaning (aka semantics) that make OWL-based data fit for the
open world of the Web in which any RDF resource may link to any other RDF resource without
having full control over which triples are actually present when the resource is in use. As a
consequence of OWA, an application should not assume that the absence of a certain statement
means that the statement is false. Holger [6] gives the following example: "if an OWL ontology
states that the rdfs:range of the property ex:hasFather is ex:Person and an application only sees a
triple stating ex:John ex:hasFather ex:Bob and nothing else then it should not assume that ex:Bob is
an not instance of ex:Person. In fact, the application should assume the opposite, and automatically
infer the triple ex:Bob rdf:type ex:Person. Another surprise for newer OWL users is that missing a
value for a property with a restriction of owl:minCardinality 1 is not reported as an error by an
OWL processor, because more data may appear at any time to satisfy that restriction under the
Open-World Assumption".
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8.2. SHACL
Although data validation is an important practical use case for the RDF stack, until SHACL came
around, there was no W3C standard mechanism for defining data constraints. Over time, people
became creative in working around this limitation. Many tools simply decided that for all practical
purposes, the open-world and non-unique-name assumptions should simply be ignored. OWL-
aware tools including TopBraid and Protégé, for example, provide data entry forms that restrict
users from entering more than one value if there is a corresponding owl:maxCardinality 1
restriction, or require the selection of a specific instance of ex:Person if that class is the rdfs:range
of the property.

SHACL provides a high-level vocabulary with properties such as sh:minCount and sh:datatype as
well as a fallback mechanism that allows users to express basically any constraint using SPARQL or
(using the SHACL-JS extension) in JavaScript. The high-level vocabulary makes SHACL also a
schema/ontology language, allowing tools to examine the structure of a class to, for example,
suggest how instances of a class should be presented on an input form. Since OWL performs
(limited, as described above) data validation through inferencing, it has no separation between
data validation and reasoning. SHACL separates checking data validity from inferring new facts.
Both, however, are possible with SHACL.

The W3C launched the RDF Data Shapes Working Group in 2014 to address the lack of a suitable
standard to express constraints and schemas with a Closed World Assumption. SPARQL Inferencing
Notation (SPIN) and other member submissions such as IBM’s Resource Shapes were used as inputs
by the Working Group and the term shape was adopted to mean a collection of constraints that
apply to targeted RDF resources. SHACL was standardized as a W3C Recommendation in July 2017.

A key differentiator between SHACL and OWL is that SHACL is extensible while OWL is limited to
exactly the features that have been specified by the OWL committee. SHACL-SPARQL and SHACL-JS
specifications provides more details on some SHACL extension points. In particular, SPARQL
includes the concept of variables which has no equivalent in OWL and therefore makes it
impossible to express many real-world use cases in OWL alone.

SHACL also includes a very rich results vocabulary in which the results of the validation process
are returned. For example, it includes both human-readable and machine-readable pointers to
specific data that violates SHACL constraints, the specific constraint type that was violated (e.g.
sh:minCount), and it distinguishes errors from warnings and informational results. Even if OWL
processors would return constraint violations, they would not have a standard way of expressing
them.

8.3. Comparison of Built-in Constraint Types in OWL
and SHACL
Table 2 summarizes the available kinds of constraints that are built (hard-coded) into OWL and
SHACL processors. The table does not necessarily mean that OWL and SHACL are equivalent in
their interpretation - as mentioned before there are fundamental differences in how OWL
interprets restrictions (for inferencing) from how SHACL interprets constraints (for validation).

Note that SHACL offers its extension mechanisms (SPARQL,JavaScript) allowing anyone to create
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their own constraint types that can then be used with properties similar to the ones below. Such
extension namespaces can be published on the web, for anyone to reuse. An example of such an
extension namespace is the Data Shapes Vocabulary (DASH), which is indicated where suitable
below. The SHACL Core vocabulary was designed with this extensibility in mind, i.e. although it
covers the most common use cases, the comparison is not completely comprehensive.

Table 2. Comparison of built-in Constraint Types in OWL and SHACL

OWL SHACL Notes

Value Type Constraints

owl:allValuesFrom sh:class or sh:datatype also checks well-formedness

- sh:nodeKind

Cardinality Constraints

owl:maxCardinality sh:maxCount

owl:minCardinality sh:minCount

owl:cardinality sh:minCount + sh:maxCount SHACL is more verbose but less
redundant for tools

owl:FunctionalProperty sh:maxCount 1 In OWL: global axiom, in
SHACL: local constraint

owl:InverseFunctionalProperty sh:maxCount 1 on a
sh:inversePath

In OWL: global axiom, in
SHACL: local constraint

Value Range Constraints

owl:onDatatype/owl:withRestrict
ions/xsd:minExclusive etc

sh:minExclusive etc Datatype facets are
considerably more verbose in
OWL

String-based Constraints

owl:onDatatype/owl:withRestrict
ions/xsd:minLength

sh:minLength

owl:onDatatype/owl:withRestrict
ions/xsd:maxLength

sh:maxLength

owl:onDatatype/owl:withRestrict
ions/xsd:length

sh:minLength + sh:maxLength

owl:onDatatype/owl:withRestrict
ions/xsd:pattern

sh:pattern OWL does not support sh:flags

owl:onDatatype/owl:withRestrict
ions/rdf:langRange

sh:languageIn Different approach

- sh:uniqueLang

Property Pair Constraints

owl:equivalentProperty sh:equals
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OWL SHACL Notes

owl:propertyDisjointWith,
owl:AllDisjointProperties

sh:disjoint

owl:inverseOf sh:inversePath/sh:equals

- sh:lessThan

- sh:lessThanOrEquals

rdfs:subPropertyOf dash:subSetOf Or: combine SHACL with RDFS
inferencing

owl:onProperty,
owl:propertyChainAxiom

sh:path SHACL supports arbitrary
property paths, OWL does not

Logical Constraints

owl:complementOf sh:not

owl:intersectionOf sh:and

owl:unionOf sh:or

owl:qualifiedMin/MaxCardinalit
y

1 sh:xone

owl:disjointUnionOf sh:node/sh:or/sh:not This is verbose in SHACL

Shape-based (structural) Constraints

rdfs:subClassOf,
owl:equivalentClass

sh:node

rdfs:subClassOf,
owl:equivalentClass

sh:property

owl:someValuesFrom sh:qualifiedMinCount 1 or
dash:hasValueWithClass

owl:qualifiedMinCardinality etc sh:qualifiedMinCount etc

Property Characteristics

owl:ReflexiveProperty sh:not/sh:disjoint in a node
shape

owl:IrreflexiveProperty sh:disjoint in a node shape

owl:SymmetricProperty -

owl:AsymmetricProperty -

owl:TransitiveProperty sh:path with * operator

Other Constraints

- sh:closed, sh:ignoredProperties

owl:hasValue sh:hasValue

owl:oneOf sh:in
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OWL SHACL Notes

owl:hasKey dash:uriStart Approximation

owl:sameAs, owl:differentFrom,
owl:AllDifferent

- In SHACL every resource is
distinct by default
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Chapter 9. RDF Application Profiles

9.1. RDF Application Profiles versus RDF Validation
Profiles
Based on the background information given in previous sections, two categories of profiles for RDF
have been identified:

• RDF Application Profiles: profiles that support “complex analytic applications” profiles-of-
ontologies that are still ontologies but whose utility is restricted to some particular domain-of-
discourse (e.g., maritime safety-of-navigation, rather than all-of-geography). This is the primary
focus of this testbed. RDF Application Profiles use ontologies declared elsewhere and merely
specify how the terms of those vocabularies are constrained and packaged in matching sets of
instance data. In RDF Application Profiles, constraints are expressed as logical constraints on
data, not as data constraints on the underlying RDF vocabularies. Classes and properties can be
reused in different application profiles without changing their underlying definition or
affecting how they are used elsewhere. OWL Ontologies, in contrast, typically define logical
constraints as an integral part of the vocabulary itself. To describe something using classes and
properties from an OWL Ontology is to implicitly accept its underlying model of the universe.

• RDF Validation Profiles: Profiles that support “data validation/quality” describe the structure
and constraints on the data content. The constraints are expressed as constraints on data, not as
constraints on the underlying RDF vocabularies. Classes and properties can be reused in
different application profiles without changing their underlying definition or affecting how
they are used elsewhere. They can define constraints on data creation similar to those provided
by XML schema or application-specific rules that are used for the validation of instance data.
RDF Validation schemas can ensure the quality of data in ways not requiring inference schemas
such as OWL Ontologies. Machine-actionable application profiles can document such rules both
for quality control usage during data creation and data re-use, and for documenting shared
data. While this is an important class of profiles that are useful for many applications, it is not
the primary focus of this testbed. However, this class of profiles will require further
investigation in future testbeds.

The following sections provide more details about the characteristics of RDF Application Profiles.

9.2. RDF Application Profile General Characteristics
RDF Application Profiles are useful as they allow the implementor to declare how they are using
standard ontologies. In the context of working applications where there is often a difference
between the ontology in use and the 'standard' namespace ontology, the following requirements
need to be respected:

• may restrict the choice of options defined in base standards (OWL ontologies) to the extent
necessary to achieve the objective of the profile. A profile may retain base standard options as
options of the profile;

• shall not specify any requirements that would contradict or result in non-conformance to the
base standards (OWL ontologies) to which it refers;
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• may contain conformance requirements which are more specific and limited in scope than
those of the base standard to which it refers.

Thus, by definition, conformance to a profile implies conformance to the set of base standards to
which it refers. However, conformance to that set of base standards does not necessarily imply
conformance to the profile [adapted from ISO/IEC TR 10000-1:1998]. That is, the profile may
specifically exclude optional aspects of the base standards.

RDF Application Profiles are distinguished by a number of characteristics:

• May draw on one or more existing ontologies

The application profile may use elements from one or more different ontologies, but the application
profile cannot create new elements not defined in existing ontologies. In the context of this testbed,
NEO application profiles are defined as a strict subset of the NEO ontology.

• Introduce no new data elements

All elements in an application profile are drawn from elsewhere, from distinct ontologies. If an
implementor wishes to create ‘new’ elements that do not exist elsewhere then (under this rubric)
they must create their own ontology and take responsibility for ‘declaring’ and maintaining that
ontology and its elements.

• May specify permitted ontologies and values

Often individual implementations wish to specify which range of values are permitted for a
particular element, in other words they want to specify a particular restricted (or possibly
extended) range for a property. The implementor may also want to specify mandatory schemes to
be used for particular elements, for example particular date datatypes, particular format datatypes
for personal names.

9.3. RDF Application Profile constraints
This section discusses the different types of RDF application profiles constraints and the most
important characteristics of the RDF application profiles. When relevant, a comparison is done with
characteristics of RDF Validation Profiles encoded in SHACL. A summary table of the OWL axioms
used for simple Linked Data Application Profile and Complex Analytic Application is given at the
end of this section.

9.3.1. Class Obligation

An RDF Application Profile is a specification that re-uses terms from one or more base ontologies,
adding more specificity by identifying mandatory, recommended and optional classes and
properties to be used for a particular application or domain-of-discourse, as well as
recommendations for controlled vocabularies to be used.

The first set of constraints is about class obligation. Three types of class obligations are
distinguished: mandatory, recommended and optional. In the following sections, the meaning of the
terms MUST, MUST NOT, SHOULD and MAY are as defined in RFC 2119. In the given context, the
term "processing" means that consumers must accept incoming data and transparently provide
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these data to applications and services.

• Mandatory class: a consumer of data MUST be able to process information about instances of
the class; a producer of data MUST provide information about instances of the class.

• Recommended class: a producer of data SHOULD provide information about instances of the
class; a producer of data MUST provide information about instances of the class, if such
information is available; a consumer of data MUST be able to process information about
instances of the class.

• Optional class: a consumer MUST be able to process information about instances of the class; a
producer MAY provide the information but is not obliged to do so.

There is no built-in mechanism to distinguish mandatory, recommended and optional classes in
OWL. A potential solution is to introduce annotation properties for mandatory, recommended and
optional classes in the profile specification (potentially in ISO 19150-2).

9.3.2. Property Obligation

In the context of ontologies, cardinality refers to constraints on the appearance of a property on an
instance of a domain class. Cardinality constraints specify restrictions on the minimum and
maximum number of distinct value nodes that may appear with a given property of individuals of
the class. They are used to define the structure of an individual of the given domain class. A
property can be made optional, mandatory, conditional, recommended or appears with an exact,
minimum and/or maximum number of occurrences of values.

The status of properties can be made more stringent in a given context. For instance, an optional
property can be made mandatory in a particular application profile. A typical example would be a
property that specifies the human language of a resource: such an element can be made mandatory
in a multi-lingual community. Along the same lines, an application may make the status of an
optional property conditional, or a conditional property mandatory.

As an application profile must operate within the interoperability constraints defined by the OWL
standard, it cannot relax the status of data elements [7]. Violating these constraints will result in
introduction of inconsistencies in logical axioms, which will lead to invalid inferences of the logical
theory, making it unusable. For example, if a property is defined in an OWL ontology with a
minimum cardinality of 1, it cannot be relaxed to make it optional in an application profile
(minimum cardinality 0). An OWL reasoner will detect such an inconsistency.

Best Practice

To accommodate the largest number of application profiles and improve modularity
ontologies should minimize the use cardinality restrictions to favor reusability of properties
in application profiles. The use of rdfs:domain restriction is preferred when a property is
tightly coupled to the domain class (example: geometry always applies to a spatial thing).
However, not defining domain restriction will favor reusability of properties in many more
application contexts (e.g. Dublin Core Properties).

While OWL provides constructs to define the range of occurrences of a property using
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owl:exactCardinality, owl:minCardinality, owl:maxCardinality restrictions to represent mandatory
or optional properties, OWL does not provide mechanisms to express more nuanced cardinality
constraints such as optional versus recommended properties. Many application profile
documentations define cardinality constraints using the following categories based on the producer
and consumer perspective (see DCAT-AP or GeoDCAT-AP profiles specifications for example):

• Mandatory property: a consumer MUST be able to process the information for that property; a
producer MUST provide the information for that property.

• Recommended property: a consumer MUST be able to process the information for that
property; a producer SHOULD provide the information for that property if it is available.

• Optional property: a consumer MUST be able to process the information for that property; a
producer MAY provide the information for that property but is not obliged to do so.

The meaning of the terms MUST, MUST NOT, SHOULD and MAY are as defined in RFC 2119. In the
given context, the term "processing" means that consumers must accept incoming data and
transparently provide these data to applications and services. It neither implies nor prescribes
what applications and services finally do with the data (parse, convert, store, make searchable,
display to users, etc.). Classes are classified as Mandatory (M) if they appear as the range of one of
the mandatory properties.

There is no built-in mechanism to distinguish mandatory, recommended and optional properties in
OWL. A potential solution is to introduce annotation properties for mandatory, recommended and
optional properties in the profile specification (potentially in ISO 19150-2).

9.3.3. Class definition

Named Class

Classes can be understood as sets of individuals. The addition of named classes (instances of
rdfs:Class or owl:Class defined with a URI) should be added in an application profile in order to
classify information and facilitate the search of individuals of a given class. By not adding classes in
a profile, it would not be possible to find instances of a given category.

Logical class

OWL 2 provides three types of class descriptions to represent more advanced class constructors
that are used in DL. They can be viewed as representing the AND, OR and NOT operators on classes.
The three operators get the standard set-operator names: intersection, union and complement.
These language constructs also share the characteristic that they contain nested class descriptions,
either one (complement) or more (union, intersection). These classes are defined as anonymous
classes and require the usage of an owl:sameAs axiom to an associated named class for a logical
class definition. To leverage these classes expressions, a reasoner is required to classify these
individuals according their definition. For this reason, these axioms are reserved for complex
analytic applications. They should not be used in a simple RDF application profile.

9.3.4. Class Hierarchy

In modeling, a class hierarchy allows the definition of classes at different levels of generalization

33



with properties at the appropriate levels, with specialized classes inheriting properties from
general classes. A hierarchy allows the categorization of instances at the lowest level of specificity,
while being able to retrieve them using more general queries.

Thus, when adding a class in an application, the superclasses definition should be added along with
the axioms rdfs:subclassOf relating these classes. By adding this hierarchy, a transitive reasoner can
be used to classify instances to more general concepts (superclasses). By not doing so, generalized
query and property inheritance will not be possible.

9.3.5. Property hierarchy

In modeling, a property hierarchy allows the definition of properties (roles) at different levels of
generalization. A hierarchy allows the categorization of properties at the lowest level of specificity,
while being able to retrieve them using more general property queries.

Thus, when adding a property in an application, the super properties definition should be added
along with the axioms rdfs:subPropertyOf relating these properties. By adding this hierarchy, a
transitive reasoner can be used to classify properties to more general properties). By not doing so,
generalized query on properties will not be possible.

Property hierarchies are not necessary for a simple RDF application profile, as the explicit
definitions of properties associated with a class are enough to support instance description and
validation.

9.3.6. Cardinality constraints encoding

There are two approaches that will need to be considered when encoding the cardinality
constraints depending on whether cardinality restrictions are to be used for inferencing or for
constraining data (validation).

OWL encoding

OWL provides owl:exactCardinality, owl:minCardinality, owl:maxCardinality predicates to capture
cardinality restrictions. As long as the application profile operates within the interoperability
constraints defined by the OWL standard and does not relax existing cardinality constraints in the
ontology (e.g. changing mandatory to optional), additional cardinality-related axioms can be added
in the profile if it is encoded in OWL. As described in the discussion OWL versus SHACL above and
Unique-Name Assumption, OWL was designed for inferencing. OWL restrictions are not actually
data constraints, but rather describe inferences to be applied based on them. For example,
assuming there is an owl:maxCardinality 1 restriction stating that a person can only have 1 value
for ex:hasFather and there is an instance of ex:Person that has two ex:hasFather values, then an
OWL processor will assume that these two values must in fact represent the same real-world entity,
just with different URIs.

Pros:

• Can use OWL reasoner for inferencing, leveraging Unique-name assumption.

Cons:
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• Axioms are defined globally in the namespace and it is hard to know which applications profile
they apply.

• Extra annotations on restrictions (such as recommended, optional) are rare in OWL and harder
to process.

• Duplication of axioms, cannot be merged globally

• Use of owl cardinality restriction cannot be used for data constraints/validation but it is often
misused by ontologists.

SHACL Encoding

SHACL defines cardinality constraint components to specify restrictions on the minimum and
maximum number of distinct value nodes. The default cardinality in SHACL for property shapes is
{0,unbounded}. These restrictions are used to describe cardinality restrictions from a validation
viewpoint, not a logical viewpoint (see previous section).

NOTE
If no cardinality is declared, ShEx standard assumes the cardinality to be {1,1} while
SHACL assumes {0,*}.

Table 3. SHACL cardinality constraint components

Operation Description

sh:minCount Restricts minimum number of value nodes. If
not defined, there is no restriction (no
minimum).

sh:maxCount Restricts maximum number of value nodes. If
not defined, there is no restriction (unbounded).

Pros:

• The capture of cardinality restrictions for validation purposes is intuitive for end-users and
simpler to capture in SHACL.

• SHACL cardinality restrictions can be used to validate and build data capture forms.

• Annotation for property obligation (mandatory, recommended, optional) can be easily captured
on SHACL property constraints.

Cons:

• Requires a separate RDF validation language outside of OWL to capture property restrictions.

Example

The following SHACL shape for neo:Aircraft defines a mandatory property neo:DeviceEntity.name
by setting the sh:minCount and sh:maxCount to 1. Note that additional properties have been added
on the property shape to overwrite the label and description of the property in the context of the
application profile. An example of annotation for capturing obligation types (mandatory,
recommended and optional) can also be captured.
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SHACL shape defining mandatory property for neo:Aircraft

:AircraftShape a sh:NodeShape;
   sh:targetClass neo:Aircraft ;
   sh:property [
    sh:path     neo:DeviceEntity.name ;
    rdfs:label  "Aircraft name"
    rdfs:comment "The name of the aircraft";
    profile:obligation 'mandatory';
    sh:minCount 1;
    sh:maxCount 1;
  ] ;

9.3.7. Value Space Restriction

For some data elements, the value space can be made more restrictive than in the standard. This
mechanism can apply when the standard is very loose about the values for a data element. The
following value space constraints have been identified:

Closed Classes

In some cases, a class is composed of a finite set (a.k.a. closed set) of individuals (e.g. days of the
week). OWL provides a straightforward way to describe a class by enumerating all its instances by
using owl:oneOf axiom and owl:equivalentClass axiom. The usage of this axiom requires an OWL
reasoner to validate the logical correctness of the assertion using individuals of these class.
However, for a simple RDF application profile, the instances of closed class could be copied in
the application profile to make them available to the end user without the need for reasoners.
There is however no guarantee for a simple RDF application profile to prevent the introduction of
new instances of the closed class that are outside the enumerated list of individuals.

NOTE
The current version of NEO does not use owl:oneOf construct, but this use case is
documented as it may be used in other ontologies.

Code List and Taxonomic Terms

In many cases, properties take instance values defined in code lists, taxonomies or thesauri. The
standard ISO 19150-2 defines a design pattern for encoding code lists by defining subclasses of
skos:Concept and skos:ConceptScheme and instances of skos:Collection for each code list. The actual
values of the code lists or taxonomies are defined separately in a separate RDF document, so can be
easily switched for different domains. This approach can be used for defining a simple RDF
application profile. In this case, to favor reusability of the profile, an application profile should be
composed of a bundle of RDF documents including the application profile ontology and a set of one
or more RDF documents for the code lists/taxonomies.

Node Kind Constraints

Node Kind constraints specifies conditions to be satisfied by the RDF node kind of each value node.
The node kind constraints lie into two categories: individual node kinds for value nodes of object
properties, and literal node kinds for value nodes of datatype properties.
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If an individual is not expected to be used outside a particular ontology, one can use an anonymous
individual, which is identified by a local node ID rather than a global IRI. Anonymous individuals
are analogous to blank nodes in RDF. Individuals expected to be used outside a particular ontology,
should be identified by URIs.

WARNING

The use of blank node in RDF data is often problematic when data are accessed
from remote services (such as SPARQL endpoint), as there is no guarantee that
the same blank node will have the same identifier for different queries on the
remote endpoint. It is highly recommended to use URI for any instances that
required to be queried directly.

The class owl:NamedIndividual is new to OWL 2. It is used for declaring named (in contrast to
anonymous) individuals (with IRI) in OWL 2 DL. However, these is no mechanism in OWL to
indicate a node should be anonymous only.

SHACL provides a more flexible way to indicate the kind of node allowed in a model, by introducing
shacl:nodeKind property. The node kind (IRI, blank node, literal or combinations of these) of all
value nodes. The values of sh:nodeKind in a shape are one of the following six instances of the class
sh:NodeKind: sh:BlankNode, sh:IRI, sh:Literal sh:BlankNodeOrIRI, sh:BlankNodeOrLiteral and
sh:IRIOrLiteral described in Table 4 . A shape has at most one value for sh:nodeKind.

Table 4. Node kinds in SHACL

Nodekind Description

sh:IRI Nodes must be IRIs

sh:BlankNode Nodes must be Blank nodes

sh:Literal Nodes must be Literals

sh:BlankNode
OrLiteral

Nodes must be Blank nodes or
literals

sh:BlankNode
OrIRI

Nodes must be Blank nodes or IRIs

sh:IRIOrLiter
al

Nodes must be IRIs or literals

The following example states that all values of ex:knows need to be IRIs, at any subject.

SHACL shape to check that ex:knows values are IRIs

ex:NodeKindExampleShape
    a sh:NodeShape ;
    sh:targetObjectsOf ex:knows ;
    sh:nodeKind sh:IRI .

Instances with constraints

In some cases, properties of an entity need to accept only instances following certain constraints.
Two categories of constraints for instances are distinguished:
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• logical constraints: this type of constraints is addressed by OWL using class typing, composite
classes, and use of restrictions.

• syntactic constraints: this type of constraints is mostly used for validation use case and cannot
be expressed in OWL. SHACL provides extensible mechanisms such as SHACL_SPARQL
extensions to express complex syntactic constraints such as URI being in a given namespace.
This is out of scope for this testbed but should be investigated in future testbeds

For a simple RDF application profile, the only logical constraints allowed on individuals of the
membership are to a named class. The use of logical classes (owl:unionOf, owl:intersectionOf,
owl:complementOf) can only be leveraged by the use of DL reasoners, thus are reserved for
complex analytical application profiles.

Literal Constraints

Datatypes, such as xsd:string or xsd:integer, and literals such as "1"^^xsd:integer, can be used to
express data ranges. The simplest data ranges are datatypes. OWL provides a mechanism to define
the type of a literal (number, string, date, datetime) using rdfs:Datatype. OWL uses XSD Schema
Simple types to define the set of core datatypes supported by OWL. Recent additions to RDF 1.1
introduce the rdf:langString for literal with languages. OWL2 also introduces
owl:DatatypeRestriction (modeled with facets restrictions) to define more precisely the constraints
on a datatype (such as owl:minExclusive, owl:maxExclusive) and standard set-theoretic operations
on data ranges using owl:DataIntersectionOf, owl:DataUnionOf, and owl:DataComplementOf data
ranges; in logical languages these are usually called conjunction, disjunction, and negation,
respectively. The owl:DataOneOf data range consists of exactly the specified set of literals (Figure 3).

For a simple RDF application profile, only the use of rdfs:Datatype with URI is allowed as the more
advanced data range constructs in OWL 2 requires a datatype reasoner. To validate a value on the
client-side, this approach requires a client to get the definition of the type in XML schema datatype
encoding and to understand XML schema datatype specification and OWL 2 Data Range constructs.
This implies significant overhead and complexity on the client that in practice very few clients
support, as XML datatype validation is beyond the basic type definition.

Figure 3. Data Ranges in OWL 2
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9.3.8. Property Constraints

Property constraints enable the declaration of constraints on the outgoing and incoming properties
of a focus node.

Domain restriction

rdfs:domain is an instance of rdf:Property that is used to state that any resource that has a given
property is an instance of one or more classes. A domain of a property limits the individuals to
which the property can be applied. The property hasChild may be stated to have the domain of
Mammal. From this a reasoner can deduce that if Frank hasChild Anna, then Frank* must be a
Mammal.

If a property relates an individual to another individual, and the property has a class as one of its
domains, then the individual must belong to the class. Where a property P has more than one
rdfs:domain property, then the resources denoted by subjects of triples with predicate P are
instances of all the classes stated by the rdfs:domain properties.

rdfs:domain is allowed in simple RDF Application Schema. To accommodate the largest number of
application profiles and improve modularity, ontologies should minimize the use of cardinality
restrictions to favor reusability of properties in application profiles. The use of rdfs:domain
restriction is preferred when a property is tightly coupled to the domain class (example: geometry
always applies to a spatial thing). However, not defining domain restriction will favor reusability of
properties in many more application contexts (e.g. Dublin Core Properties).

Range restriction

rdfs:range is an instance of rdf:Property that is used to state that the values of a property are
instances of one or more classes. The range of a property limits the individuals that the property
may have as its value. If a property relates an individual to another individual, and the property
has a class as its range, then the other individual must belong to the range class. Where P has more
than one rdfs:range property, then the resources denoted by the objects of triples with predicate P
are instances of all the classes stated by the rdfs:range properties.

The use of rdfs:range is strongly recommended when adding properties in simple RDF application
profile.

9.3.9. Property Value constraints

OWL property restrictions provide a group of properties to model value constraints:
owl:allValuesFrom, owl:someValuesFrom, owl:hasValue. An OWL reasoner is required to perform
logical consistency and validation, so these restrictions should only be reserved only for complex
analytical application profiles. For a simple RDF application profile, the restriction
owl:allValuesFrom could be replaced by rdfs:range.

Default Value

OWL ontologies are based on the OWA. An entity may have a value but still not know what the
value is. That does not mean that the entity does not have the value. In a CWA, default values are
often used when an entity does not provide a value for a property. An OWL model does not
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support the definition of default values because of OWA, while this is a common occurrence in
relational databases or in XML. SHACL and SHex provides mechanisms to assign default values for
properties and complement OWL in this respect when it comes to modeling a closed world. This
requirement is not about using default values as "inferred" triples at run-time (using owl:hasValue
for example).

Example of usage of default value in SHACL for a length unit of measure

:LengthMeasureShape a sh:NodeShape ;
     sh:property [
        sh:path         ex:value ;
        sh:name        "value";
        sh:description "Value of the measure"
     ] ;
    sh:property [
        sh:path        ex:uom ;
        sh:name        "Unit of measure";
        sh:description "Unit of measure of a value (default meter)";
        sh:defaultValue "meter"
    ].

Property Characteristics

OWL2 provides property characteristics such as owl:TransitiveProperty,
owl:SymmetricProperty,owl:AsymmetricProperty, owl:inverseOf, owl:FunctionalProperty,
owl:ReflexiveProperty, owl:InverseFunctionalProperty, owl:IrreflexiveProperty that are extremely
useful to perform advanced analytical tasks but requires an OWL reasoner to be leveraged. For this
reason, these constructs are not allowed in an RDF Simple Application Profile.

Other Property constraints not supported by OWL

There are a number of property constraints that cannot be modeled in OWL that are mostly used
for data validation. These constraints can be modeled using SHACL. Most of the use cases are
related to interrelationships between data elements and their value spaces. For instance, the
presence of one data element may impose the requirement that another element be present.
Similarly, an ontology can restrict the value set of a data element, based on the value of another
data element. A typical example would restrict the value space of the data type of a resource, based
on its genre: for instance, a 'text' document cannot be of type MP3. Another set of use cases is the
use of comparison between properties (Equals, LessThen, LessThanOrEquals, GreaterThan,
GreaterThanOrEqual). For example:

• birthDate⇐deathDate is reasonable for most person databases

• birthDate-deathDate < 150 years is reasonable except for historic/art databases, where not-
precisely known dates are often replaced with a wider interval to ensure search recall

• deathDate⇐today()

These types of constraints should be investigated in future testbeds.

40



9.3.10. Summary of profile characteristics

Table 5 summarizes which OWL axioms types are allowed for simple and complex analytic
applications. The Simple Linked Data Application Profile supports axioms that do not require the
use of DL reasoners. In order to allow inheritance of properties, the usage of rdfs:subclassOf axiom
type in a simple RDF application profile is allowed.

Table 5. Summary of OWL Axioms types supported by simple and complex analytical applications

Axiom types Simple Application
Profile

Complex Analytic
Profile

Class Axioms

Named Class Y Y

owl:unionOf N Y

owl:intersectionOf N Y

owl:complementOf N Y

owl:oneOf N Y

owl:subclassOf Y Y

owl:equivalentClass N Y

owl:disjointWith N Y

Property Axioms

rdfs:Property Y Y

owl:ObjectProperty Y Y

owl:DatatypeProperty Y Y

owl:AnnotationProperty Y Y

rdfs:subProperty N Y

owl:equivalentProperty N Y

owl:inverseOf N Y

owl:minCardinality N Y

owl:maxCardinality N Y

owl:cardinality N Y

rdfs:domain Y Y

rdfs:range Y Y

rdfs:sameAs N Y

owl:SymmetricProperty N Y

owl:TransitiveProperty N Y

owl:FunctionalProperty N Y

owl:InverseFunctionalProperty N Y

owl:ReflexiveProperty N Y

owl:IrreflexiveProperty N Y
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Axiom types Simple Application
Profile

Complex Analytic
Profile

owl:allValuesFrom N Y

owl:someValuesFrom N Y

owl:hasValue N Y

Individual Axioms

Named Individual Y Y

owl:differentFrom N Y

owl:sameAs N Y

owl:AllDifferent N Y

Datatype Axioms

primitive datatype Y Y

Enumerated datatype (owl:DataRange) N Y
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Chapter 10. Application Profile Metadata
description
This section attempts to define a formal model to describe metadata about application profiles.
While the main focus of the model is to describe application profiles for linked-data-based
applications. the model should be applicable also for application profiles using other schema
languages (such as XML schema and JSON schema for example). The names of the classes of the
model are chosen in such a way that it should remain applicable to different application profiles
based on different schema languages. While this is out of scope for the testbed, a formal model was
proposed for capturing application profile metadata to manage application profiles in vocabulary
management system. This could be an area of investigation in future testbeds.

Of relevance to the design of this model, is the work done during OGC Testbed-12 [8] to model a
semantic mediation service. The model introduced two main concepts:

• Schema defines the structure and constraints on a conceptual model. Schemas are modeled as a
specialization of dcat:Dataset [9]. A schema can have zero or more distributions that define the
encoding of the schema using different representation techniques
(adms:representationTechnique) such as SHACL, ShEx, XML Schema or JSON Schema.

• SchemaMapping defines the transformation from one source schema to a target schema (using
XSLT, Script, SPARQL rules, or other mapping languages). SchemaMappings are also modeled as
specialization of dcat:Dataset. A schema mapping can have zero or more distributions that
define the encoding of the schema mapping using different representation techniques
(adms:representationTechnique) [10] such as XSLT or other schema mapping languages.

In our model, the concept of Vocabulary (which is a subclass of dcat:Dataset) is introduced to
represent the concepts, properties, associations and axioms of a conceptual model. In our case, a
vocabulary is associated with a namespace and uses a schema language such as RDF Schema, OWL,
XML Schema or JSON Schema.

One or more subsets of vocabularies can be used to define an application profile. The concept of
Profile is defined as a subclass of Dublin Core dct:Standard. A dataset used by a given application
conforms (dct:conformsTo) to an application standard. A vocabulary can be used by multiple
application profiles.

The Application Profile is typically associated with a Schema which defines the encoding of the
structure and value constraints on the vocabulary terms.

The following figure illustrates the conceptual model for representing application profile metadata.
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Figure 4. Application Profile Metadata Conceptual Model

At the time of this testbed, there is an ongoing activity in the W3C Dataset Exchange Working Group
(DXWG). This working group is in charge of updating the DCAT ontology and defining best practices
on how to define application profiles based on this ontology. There is also an attempt to define a
conceptual model to represent metadata about application profiles, but it is still at a very early
stage. It would be desirable to share the outcome of this testbed with the W3C working group in
order to get an emerging standard to enable management, search, and discovery application
profiles and validation of data against application profiles.
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Appendix A: NEO Application Profiles and
Sample Data
This section describes the process and artifacts used to generate the application profiles and sample
data. The domain of the application profile was about Civilian Aerodrome Facilities. The reason for
choosing this domain was because there were some overlaps with the Aviation Thread during the
Testbed 14.

A.1. Processing Workflow description
An export of the NAS Model in ShapeChange-specific XML format (SXCML) was provided by the
sponsor. The model contains all the information of the NAS UML model and OCL constraints
defined in Enterprise Architect.

Figure 5 illustrates the workflow to process profile using the Profile Management Tool (PMT) and
ShapeChange.
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Figure 5. ShapeChange workflow - process profile created using the PMT

A.1.1. ShapeChange Profile Management Tool

The first step of the process was to the import the NAS export into the Profile Management Tool
(PMT). PMT is a web application to edit application schema profiles. The definition of a consistent
profile for a large application schema like the NAS is a non-trivial task. The PMT provides a number
of features to support the user in this task. The PMT can load UML models from files in State Chart
XML (SCXML) format. Profiles can be added to the model, edited, copied, and deleted. The tool
provides a web client application to navigate through the model. A text-based search can be used to
look up specific model elements. Packages, classes, and their properties can be added to or removed
from a profile. The visual display of a model element changes accordingly. For selected packages
and classes, the PMT offers actions for mass processing contained model elements (e.g. adding all
properties of a class to the profile). In the case of Testbed-14, the participants manually selected
classes related to Civilian Aerodrome facilities from Aerodrome Building and Structures, Aircraft
Movement Surfgaces and General Aeronautical Ground Features packages (see Figure 6 and Figure
7).
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Figure 6. Selecting classes for application profile using PMT

Figure 7. Selecting properties from class using the PMT

Once the classes and properties were selected, an export of the application profile was done in
SCXML format to be consumed by ShapeChange.

A.1.2. Configuring shape change

The next step was to build two configuration files for the Simple Linked Data Application and
Complex Analytic Profile, so they can be used by the ShapeChange tool to produce the RDF
application profiles needed for this Testbed.

Application Profile Configuration for Simple Linked Data Application

To perform the generation of the application profile for the Simple Linked Data Application, the
configuration used to generated the NEO ontology was used as a starting point and was modified to
handle the profile model by adding the Profiler Transformer and removing the mapping rules that
were not compatible with the Simple Application Profile (commented in the configuration file
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source code). The target output was set to produce an OWL model using the RDF/XML encoding.
The following is the configuration used for generating the application profile for Simple Linked
Data Application.

simpleCivilianAirport.xml

<?xml version="1.0" encoding="UTF-8"?>
<ShapeChangeConfiguration
  xmlns="http://www.interactive-instruments.de/ShapeChange/Configuration/1.1"
  xmlns:sc="http://www.interactive-instruments.de/ShapeChange/Configuration/1.1"
  xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.interactive-
instruments.de/ShapeChange/Configuration/1.1
https://shapechange.net/resources/schema/ShapeChangeConfiguration.xsd">
  <input id="INPUT">
    <parameter name="addTaggedValues"
      value=
"ontologyName,ontologyDefinition,ontologyDescription,ontologyResourceURI,name,definiti
on,description,primaryCode,aliasList,mdbPK,skosConceptSchemeSubclassName,broaderListed
Value"/>

    <!--<parameter name="inputModelType" value="EA7"/>
   <parameter name="inputFile" value="C:/NAS/v2/TEST_v8.x.eap"/>-->
   <parameter name="inputModelType" value="SCXML"/>
   <parameter name="inputFile" value="C:/testbed14/nas_export.xml"/>
    <parameter name="appSchemaName" value="NSG Application Schema" />
    <!--
    <parameter name="taggedValueImplementation" value="array" />
    <parameter name="useStringInterning" value="true" />
    -->
    <parameter name="publicOnly" value="true"/>
    <!--<parameter name="checkingConstraints" value="enabled"/>-->
   <parameter name="checkingConstraints" value="disabled"/>
    <parameter name="sortedSchemaOutput" value="true"/>
    <parameter name="dontConstructAssociationNames" value="true"/>
    <!-- <xi:include href="src/main/resources/config/StandardAliases.xml"/> -->
    <descriptorSources>
      <DescriptorSource descriptor="documentation" source="tag" tag="documentation"/>
      <DescriptorSource descriptor="alias" source="none"/>
      <DescriptorSource descriptor="definition" source="tag" tag="definition"/>
      <DescriptorSource descriptor="description" source="tag" tag="description"/>
      <DescriptorSource descriptor="example" source="none"/>
      <DescriptorSource descriptor="legalBasis" source="none"/>
      <DescriptorSource descriptor="dataCaptureStatement" source="none"/>
      <DescriptorSource descriptor="primaryCode" source="tag" tag="primaryCode"/>
      <DescriptorSource descriptor="language" source="none"/>
    </descriptorSources>
  </input>

  <log>
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    <parameter name="reportLevel" value="INFO"/>
   <parameter name="logFile" value="C:/testbed14/results/log.xml"/>
  </log>

  <transformers>
    <Transformer id="TRF1" input="INPUT" class=
"de.interactive_instruments.ShapeChange.Transformation.Profiling.Profiler" mode=
"enabled">
      <parameters>
        <ProcessParameter name="profiles" value="CivilianAirport"/>
      </parameters>
      <rules>
        <ProcessRuleSet name="profiler">
          <rule name="rule-trf-profiling-preprocessing-profilesValueConsistencyCheck
"/>
          <rule name="rule-trf-profiling-preprocessing-modelConsistencyCheck"/>
          <rule name="rule-trf-profiling-processing-explicitProfileSettings"/>
          <rule name="rule-trf-profiling-processing-classRemovalIncludesAllSubtypes"/>
        </ProcessRuleSet>
      </rules>
   </Transformer>

    <Transformer id="TRF2" input="TRF1" class=
"de.interactive_instruments.ShapeChange.Transformation.Flattening.AssociationClassMapp
er" mode="enabled">
      <rules>
        <ProcessRuleSet name="mapper">
          <!-- disable constraint validation, else the "comment" (nas:description) of
the OclConstraint is reset to what the SC parser finds in the constraint text
(nas:definition = OCL expression) -->
          <rule name="rule-trf-all-postprocess-skip-constraint-validation"/>
        </ProcessRuleSet>
      </rules>
    </Transformer>
    <Transformer id="TRF3" input="TRF2" class=
"de.interactive_instruments.ShapeChange.Transformation.Flattening.Flattener" mode=
"enabled">
      <parameters>
        <ProcessParameter name="includeUnionIdentifierTaggedValue" value="true"/>
        <ProcessParameter name="replaceUnionExcludeRegex" value=
"MaritimeBottomCharacter(MaterialCode|MaterialQualCode|SedimentColourCode)Reason"/>
      </parameters>
      <rules>
        <ProcessRuleSet name="flattener">
          <rule name="rule-trf-cls-replace-with-union-properties"/>
          <!-- OCL expressions that rely on property value(s)OrReason will be invalid
- to keep the log clean we've disabled constraint validation -->
          <rule name="rule-trf-all-postprocess-skip-constraint-validation"/>
        </ProcessRuleSet>
      </rules>
    </Transformer>
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  </transformers>

  <targets>

    <TargetOwl inputs="TRF3" class=
"de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150" mode="enabled">
     <targetParameter name="outputDirectory" value="C:/testbed14/results/ontology"/>
      <!-- Output format identifiers: turtle ntriples nquads rdfxml jsonld rdfjson
trig trix rdfthrift -->
      <targetParameter name="outputFormat" value="rdfxml"/>
      <targetParameter name="defaultEncodingRule" value="NEO"/>
      <targetParameter name="language" value="en"/>
      <targetParameter name="defaultTypeImplementation" value="owl:Class"/>

      <targetParameter name="ontologyNameCode" value="neo"/>
      <targetParameter name="source" value="NSG Enterprise Ontology (NEO) Standard
8.0"/>
      <targetParameter name="URIbase" value="http://api.nsgreg.nga.mil/ontology"/>

      <targetParameter name="skosConceptSchemeSuffix" value="_ConceptScheme"/>
      <targetParameter name="codeNamespaceForEnumerations"  value=
"http://api.nsgreg.nga.mil/ontology/neo-enum/8.0"/>
      <targetParameter name="codeListOwlClassNamespaceForEnumerations"  value=
"http://api.nsgreg.nga.mil/ontology/neo-enum/8.0"/>

      <!-- over-ride default "#" -->
      <!-- <targetParameter name="rdfNamespaceSeparator" value="/"/> -->

      <descriptorTargets>
        <DescriptorTarget appliesTo="ontology" target="rdfs:label" template=
"[[TV:ontologyName]]" format="langString"/>
        <DescriptorTarget appliesTo="ontology" target="skos:definition" template=
"![CDATA[Definition: [[TV:ontologyDefinition]]  Description:
[[TV:ontologyDescription]]]]" noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="ontology" target="rdfs:isDefinedBy" template=
"[[TV:ontologyResourceURI]]" format="IRI"/>
        <DescriptorTarget appliesTo="ontology" target="skos:prefLabel" template=
"[[TV:ontologyName]]" format="langString"/>
        <DescriptorTarget appliesTo="ontology" target="skos:altLabel" template=
"[[TV(|):aliasList]]" multiValueBehavior="splitToMultipleTargets" format="langString
"/>

        <DescriptorTarget appliesTo="class" target="rdfs:label" template=
"[[TV:primaryCode]]" format="langString"/>
        <DescriptorTarget appliesTo="class" target="skos:definition" template=
"![CDATA[Definition: [[TV:definition]]  Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="class" target="rdfs:isDefinedBy" template=
"http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
        <DescriptorTarget appliesTo="class" target="skos:prefLabel" template=
"[[TV:name]]" format="langString"/>
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        <DescriptorTarget appliesTo="class" target="skos:altLabel" template=
"[[TV(|):aliasList]]" multiValueBehavior="splitToMultipleTargets" format="langString
"/>

        <DescriptorTarget appliesTo="property" target="rdfs:label" template=
"[[TV:primaryCode]]" format="langString"/>
        <DescriptorTarget appliesTo="property" target="skos:definition" template=
"![CDATA[Definition: [[TV:definition]]  Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="property" target="rdfs:isDefinedBy" template=
"http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
        <DescriptorTarget appliesTo="property" target="skos:prefLabel" template=
"[[TV:name]]" format="langString"/>
        <DescriptorTarget appliesTo="property" target="skos:altLabel" template=
"[[TV(|):aliasList]]" multiValueBehavior="splitToMultipleTargets" format="langString
"/>

        <DescriptorTarget appliesTo="conceptscheme" target="rdfs:label" template=
"[[TV:primaryCode]]_ConceptScheme" format="langString"/>
        <DescriptorTarget appliesTo="conceptscheme" target="skos:definition" template
="![CDATA[Definition: [[TV:definition]]  Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="conceptscheme" target="rdfs:isDefinedBy"
template="http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
        <DescriptorTarget appliesTo="conceptscheme" target="skos:prefLabel" template=
"[[TV:name]] - Concept Scheme" format="langString"/>
      </descriptorTargets>

     <xi:include href="C:/testbed14/config/StandardMapEntries-owl.xml"/>
      <rdfMapEntries>
        <!-- <RdfTypeMapEntry type="Binary" target="owl:Class"/> -->

        <RdfTypeMapEntry type="SecurityAttributesGroupType" target="ntk:RequiresType
"/>
        <RdfTypeMapEntry type="ISM_Notice" target="icism:NoticeType"/>
        <RdfTypeMapEntry type="NTKAccess" target="ntk:RequiresType"/>
        <RdfTypeMapEntry type="RevisionRecall" target="rr:RevisionRecallType"/>
<!--        <RdfTypeMapEntry type="VoidValueReason" target="test:VoidValueReason"/>-->
      </rdfMapEntries>

      <rdfConversionParameters>
        <!--        <StereotypeConversionParameter wellknown="FeatureType"
subClassOf="geo:Feature"/>  -->
      </rdfConversionParameters>

      <constraintMappings>
     <!--   <ConstraintMapping constraintType="OCL" template="[[name]]: [[comment]]
OCL expression: [[text]]" noValue="[None Specified]" format="langString"/> -->
      </constraintMappings>

     <xi:include href="C:/testbed14/config/StandardNamespaces-owl.xml"/>
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      <namespaces>
<!--        <Namespace nsabr="test" ns="https://my.test/enums#"/>-->
        <Namespace nsabr="icism" ns=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/ISM-Public#" location=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/ISM-Public"/>
        <Namespace nsabr="ntk" ns=
"https://www.dni.gov/files/documents/CIO/ICEA/India/NTK-V10-Public#" location=
"https://www.dni.gov/files/documents/CIO/ICEA/India/NTK-V10-Public" />
        <Namespace nsabr="rr" ns=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/RevRecall-Public#" location=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/RevRecall-Public" />
      </namespaces>

      <rules>
        <EncodingRule name="NEO" extends="*">
          <rule name="rule-owl-pkg-singleOntologyPerSchema"/>
          <rule name="rule-owl-pkg-ontologyName-code"/>
          <rule name="rule-owl-pkg-ontologyName-appendVersion"/>
          <rule name="rule-owl-pkg-versionInfo"/>
          <rule name="rule-owl-pkg-versionIRI"/>
          <rule name="rule-owl-pkg-versionIRI-avoid-duplicate-version"/>
          <rule name="rule-owl-pkg-dctSourceTitle"/>
          <rule name="rule-owl-cls-iso191502IsAbstract"/>
          <rule name="rule-owl-cls-generalization"/>
      <!--    <rule name="rule-owl-cls-disjoint-classes"/> -->

          <rule name="rule-owl-cls-encode-featuretypes"/>
          <rule name="rule-owl-cls-encode-objecttypes"/>
          <rule name="rule-owl-cls-encode-mixintypes"/>
          <rule name="rule-owl-cls-encode-datatypes"/>
          <rule name="rule-owl-cls-encode-basictypes"/>

          <rule name="rule-owl-prop-general"/>
          <rule name="rule-owl-prop-range-global"/>
          <!-- <rule name="rule-owl-prop-range-local-withUniversalQuantification"/>
-->
          <rule name="rule-owl-prop-localScopeAll"/>
          <rule name="rule-owl-prop-multiplicityAsUnqualifiedCardinalityRestriction"/>
          <!-- <rule name="rule-owl-prop-
multiplicityAsQualifiedCardinalityRestriction"/> -->
          <rule name="rule-owl-prop-iso191502AssociationName"/>
      <!--    <rule name="rule-owl-prop-inverseOf"/> -->
          <rule name="rule-owl-prop-iso191502Aggregation"/>
          <!--
          <rule name="rule-owl-all-constraints-humanReadableTextOnly"/>
          <rule name="rule-owl-all-constraints-byConstraintMapping"/>
          <rule name="rule-owl-cls-union"/>
          <rule name="rule-owl-cls-unionSets"/>
          <rule name="rule-owl-cls-iso191502Enumeration"/>
          <rule name="rule-owl-cls-enumerationAsCodelist"/> -->
          <rule name="rule-owl-cls-codelist-external"/>
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       <!--    <rule name="rule-owl-cls-codelist-19150-2"/> -->
          <rule name="rule-owl-cls-codelist-19150-2-skos-collection"/>
       <!--   <rule name="rule-owl-cls-codelist-19150-2-objectOneOfForEnumeration"/>
-->
      <!--    <rule name="rule-owl-cls-codelist-19150-2-differentIndividuals"/> -->
          <rule name="rule-owl-cls-codelist-19150-2-owlClassInDifferentNamespace"/>
          <!--  <rule name="rule-owl-cls-codelist-19150-2-conceptSchemeSubclass"/> -->
          <rule name="rule-owl-prop-code-broader-byBroaderListedValue"/>
        </EncodingRule>
      </rules>
    </TargetOwl>
   <!--<Target
class="de.interactive_instruments.ShapeChange.Target.ModelExport.ModelExport"
    mode="enabled" inputs="INPUT">
    <targetParameter name="outputDirectory" value="C:/NAS/v2/results/modelExport"/>
    <targetParameter name="outputFilename" value="nas_export"/>
    <targetParameter name="sortedOutput" value="true"/>
   </Target>-->
  </targets>
</ShapeChangeConfiguration>

Application Profile Configuration for Complex Analytic Application

The following configuration was used to define an RDF Application Profile for a Complex Analytic
Application. The configuration file was adapted to consume the PMT exported model by adding the
Profiler Transformer. All the mapping rules defined in the original NEO mapping were kept (except
the generation of OCL constraints as text) as defined in the standard ISO 19150-2. The following is
the configuration used for generating the application profile for Complex Analytic Application.

complexCivilianAirport.xml

<?xml version="1.0" encoding="UTF-8"?>
<ShapeChangeConfiguration
  xmlns="http://www.interactive-instruments.de/ShapeChange/Configuration/1.1"
  xmlns:sc="http://www.interactive-instruments.de/ShapeChange/Configuration/1.1"
  xmlns:xi="http://www.w3.org/2001/XInclude" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.interactive-
instruments.de/ShapeChange/Configuration/1.1
https://shapechange.net/resources/schema/ShapeChangeConfiguration.xsd">
  <input id="INPUT">
    <parameter name="addTaggedValues"
      value=
"ontologyName,ontologyDefinition,ontologyDescription,ontologyResourceURI,name,definiti
on,description,primaryCode,aliasList,mdbPK,skosConceptSchemeSubclassName,broaderListed
Value"/>

    <!--<parameter name="inputModelType" value="EA7"/>
   <parameter name="inputFile" value="C:/NAS/v2/TEST_v8.x.eap"/>-->
   <parameter name="inputModelType" value="SCXML"/>
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   <parameter name="inputFile" value="C:/testbed14/nas_export.xml"/>
    <parameter name="appSchemaName" value="NSG Application Schema" />
    <!--
    <parameter name="taggedValueImplementation" value="array" />
    <parameter name="useStringInterning" value="true" />
    -->
    <parameter name="publicOnly" value="true"/>
    <!--<parameter name="checkingConstraints" value="enabled"/>-->
   <parameter name="checkingConstraints" value="disabled"/>
    <parameter name="sortedSchemaOutput" value="true"/>
    <parameter name="dontConstructAssociationNames" value="true"/>
    <!-- <xi:include href="src/main/resources/config/StandardAliases.xml"/> -->
    <descriptorSources>
      <DescriptorSource descriptor="documentation" source="tag" tag="documentation"/>
      <DescriptorSource descriptor="alias" source="none"/>
      <DescriptorSource descriptor="definition" source="tag" tag="definition"/>
      <DescriptorSource descriptor="description" source="tag" tag="description"/>
      <DescriptorSource descriptor="example" source="none"/>
      <DescriptorSource descriptor="legalBasis" source="none"/>
      <DescriptorSource descriptor="dataCaptureStatement" source="none"/>
      <DescriptorSource descriptor="primaryCode" source="tag" tag="primaryCode"/>
      <DescriptorSource descriptor="language" source="none"/>
    </descriptorSources>
  </input>

  <log>
    <parameter name="reportLevel" value="INFO"/>
   <parameter name="logFile" value="C:/testbed14/results/log.xml"/>
  </log>

  <transformers>
    <Transformer id="TRF1" input="INPUT" class=
"de.interactive_instruments.ShapeChange.Transformation.Profiling.Profiler" mode=
"enabled">
      <parameters>
        <ProcessParameter name="profiles" value="CivilianAirport"/>
      </parameters>
      <rules>
        <ProcessRuleSet name="profiler">
          <rule name="rule-trf-profiling-preprocessing-profilesValueConsistencyCheck
"/>
          <rule name="rule-trf-profiling-preprocessing-modelConsistencyCheck"/>
          <rule name="rule-trf-profiling-processing-explicitProfileSettings"/>
          <rule name="rule-trf-profiling-processing-classRemovalIncludesAllSubtypes"/>
        </ProcessRuleSet>
      </rules>
   </Transformer>

    <Transformer id="TRF2" input="TRF1" class=
"de.interactive_instruments.ShapeChange.Transformation.Flattening.AssociationClassMapp
er" mode="enabled">
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      <rules>
        <ProcessRuleSet name="mapper">
          <!-- disable constraint validation, else the "comment" (nas:description) of
the OclConstraint is reset to what the SC parser finds in the constraint text
(nas:definition = OCL expression) -->
          <rule name="rule-trf-all-postprocess-skip-constraint-validation"/>
        </ProcessRuleSet>
      </rules>
    </Transformer>
    <Transformer id="TRF3" input="TRF2" class=
"de.interactive_instruments.ShapeChange.Transformation.Flattening.Flattener" mode=
"enabled">
      <parameters>
        <ProcessParameter name="includeUnionIdentifierTaggedValue" value="true"/>
        <ProcessParameter name="replaceUnionExcludeRegex" value=
"MaritimeBottomCharacter(MaterialCode|MaterialQualCode|SedimentColourCode)Reason"/>
      </parameters>
      <rules>
        <ProcessRuleSet name="flattener">
          <rule name="rule-trf-cls-replace-with-union-properties"/>
          <!-- OCL expressions that rely on property value(s)OrReason will be invalid
- to keep the log clean we've disabled constraint validation -->
          <rule name="rule-trf-all-postprocess-skip-constraint-validation"/>
        </ProcessRuleSet>
      </rules>
    </Transformer>
  </transformers>

  <targets>

    <TargetOwl inputs="TRF3" class=
"de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150" mode="enabled">
     <targetParameter name="outputDirectory" value="C:/testbed14/results/ontology"/>
      <!-- Output format identifiers: turtle ntriples nquads rdfxml jsonld rdfjson
trig trix rdfthrift -->
      <targetParameter name="outputFormat" value="rdfxml"/>
      <targetParameter name="defaultEncodingRule" value="NEO"/>
      <targetParameter name="language" value="en"/>
      <targetParameter name="defaultTypeImplementation" value="owl:Class"/>

      <targetParameter name="ontologyNameCode" value="neo"/>
      <targetParameter name="source" value="NSG Enterprise Ontology (NEO) Standard
8.0"/>
      <targetParameter name="URIbase" value="http://api.nsgreg.nga.mil/ontology"/>

      <targetParameter name="skosConceptSchemeSuffix" value="_ConceptScheme"/>
      <targetParameter name="codeNamespaceForEnumerations"  value=
"http://api.nsgreg.nga.mil/ontology/neo-enum/8.0"/>
      <targetParameter name="codeListOwlClassNamespaceForEnumerations"  value=
"http://api.nsgreg.nga.mil/ontology/neo-enum/8.0"/>
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      <!-- over-ride default "#" -->
      <!-- <targetParameter name="rdfNamespaceSeparator" value="/"/> -->

      <descriptorTargets>
        <DescriptorTarget appliesTo="ontology" target="rdfs:label" template=
"[[TV:ontologyName]]" format="langString"/>
        <DescriptorTarget appliesTo="ontology" target="skos:definition" template=
"![CDATA[Definition: [[TV:ontologyDefinition]]  Description:
[[TV:ontologyDescription]]]]" noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="ontology" target="rdfs:isDefinedBy" template=
"[[TV:ontologyResourceURI]]" format="IRI"/>
        <DescriptorTarget appliesTo="ontology" target="skos:prefLabel" template=
"[[TV:ontologyName]]" format="langString"/>
        <DescriptorTarget appliesTo="ontology" target="skos:altLabel" template=
"[[TV(|):aliasList]]" multiValueBehavior="splitToMultipleTargets" format="langString
"/>

        <DescriptorTarget appliesTo="class" target="rdfs:label" template=
"[[TV:primaryCode]]" format="langString"/>
        <DescriptorTarget appliesTo="class" target="skos:definition" template=
"![CDATA[Definition: [[TV:definition]]  Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="class" target="rdfs:isDefinedBy" template=
"http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
        <DescriptorTarget appliesTo="class" target="skos:prefLabel" template=
"[[TV:name]]" format="langString"/>
        <DescriptorTarget appliesTo="class" target="skos:altLabel" template=
"[[TV(|):aliasList]]" multiValueBehavior="splitToMultipleTargets" format="langString
"/>

        <DescriptorTarget appliesTo="property" target="rdfs:label" template=
"[[TV:primaryCode]]" format="langString"/>
        <DescriptorTarget appliesTo="property" target="skos:definition" template=
"![CDATA[Definition: [[TV:definition]]  Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="property" target="rdfs:isDefinedBy" template=
"http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
        <DescriptorTarget appliesTo="property" target="skos:prefLabel" template=
"[[TV:name]]" format="langString"/>
        <DescriptorTarget appliesTo="property" target="skos:altLabel" template=
"[[TV(|):aliasList]]" multiValueBehavior="splitToMultipleTargets" format="langString
"/>

        <DescriptorTarget appliesTo="conceptscheme" target="rdfs:label" template=
"[[TV:primaryCode]]_ConceptScheme" format="langString"/>
        <DescriptorTarget appliesTo="conceptscheme" target="skos:definition" template
="![CDATA[Definition: [[TV:definition]]  Description: [[TV:description]]]]"
noValueText="[None Specified]" format="langString"/>
        <DescriptorTarget appliesTo="conceptscheme" target="rdfs:isDefinedBy"
template="http://nsgreg.nga.mil/as/view?i=[[TV:mdbPK]]" format="IRI"/>
        <DescriptorTarget appliesTo="conceptscheme" target="skos:prefLabel" template=
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"[[TV:name]] - Concept Scheme" format="langString"/>
      </descriptorTargets>

     <xi:include href="C:/testbed14/config/StandardMapEntries-owl.xml"/>
      <rdfMapEntries>
        <!-- <RdfTypeMapEntry type="Binary" target="owl:Class"/> -->

        <RdfTypeMapEntry type="SecurityAttributesGroupType" target="ntk:RequiresType
"/>
        <RdfTypeMapEntry type="ISM_Notice" target="icism:NoticeType"/>
        <RdfTypeMapEntry type="NTKAccess" target="ntk:RequiresType"/>
        <RdfTypeMapEntry type="RevisionRecall" target="rr:RevisionRecallType"/>
<!--        <RdfTypeMapEntry type="VoidValueReason" target="test:VoidValueReason"/>-->
      </rdfMapEntries>

      <rdfConversionParameters>
        <!--        <StereotypeConversionParameter wellknown="FeatureType"
subClassOf="geo:Feature"/>  -->
      </rdfConversionParameters>

      <constraintMappings>
     <!--   <ConstraintMapping constraintType="OCL" template="[[name]]: [[comment]]
OCL expression: [[text]]" noValue="[None Specified]" format="langString"/> -->
      </constraintMappings>

     <xi:include href="C:/testbed14/config/StandardNamespaces-owl.xml"/>
      <namespaces>
<!--        <Namespace nsabr="test" ns="https://my.test/enums#"/>-->
        <Namespace nsabr="icism" ns=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/ISM-Public#" location=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/ISM-Public"/>
        <Namespace nsabr="ntk" ns=
"https://www.dni.gov/files/documents/CIO/ICEA/India/NTK-V10-Public#" location=
"https://www.dni.gov/files/documents/CIO/ICEA/India/NTK-V10-Public" />
        <Namespace nsabr="rr" ns=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/RevRecall-Public#" location=
"https://www.dni.gov/files/documents/CIO/ICEA/Juliet/RevRecall-Public" />
      </namespaces>

      <rules>
        <EncodingRule name="NEO" extends="*">
          <rule name="rule-owl-pkg-singleOntologyPerSchema"/>
          <rule name="rule-owl-pkg-ontologyName-code"/>
          <rule name="rule-owl-pkg-ontologyName-appendVersion"/>
          <rule name="rule-owl-pkg-versionInfo"/>
          <rule name="rule-owl-pkg-versionIRI"/>
          <rule name="rule-owl-pkg-versionIRI-avoid-duplicate-version"/>
          <rule name="rule-owl-pkg-dctSourceTitle"/>
          <rule name="rule-owl-cls-iso191502IsAbstract"/>
          <rule name="rule-owl-cls-generalization"/>
          <rule name="rule-owl-cls-disjoint-classes"/>
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          <rule name="rule-owl-cls-encode-featuretypes"/>
          <rule name="rule-owl-cls-encode-objecttypes"/>
          <rule name="rule-owl-cls-encode-mixintypes"/>
          <rule name="rule-owl-cls-encode-datatypes"/>
          <rule name="rule-owl-cls-encode-basictypes"/>

          <rule name="rule-owl-prop-general"/>
          <rule name="rule-owl-prop-range-global"/>
          <!-- <rule name="rule-owl-prop-range-local-withUniversalQuantification"/>
-->
          <rule name="rule-owl-prop-localScopeAll"/>
          <rule name="rule-owl-prop-multiplicityAsUnqualifiedCardinalityRestriction"/>
          <!-- <rule name="rule-owl-prop-
multiplicityAsQualifiedCardinalityRestriction"/> -->
          <rule name="rule-owl-prop-iso191502AssociationName"/>
          <rule name="rule-owl-prop-inverseOf"/>
          <rule name="rule-owl-prop-iso191502Aggregation"/>
          <!-- <rule name="rule-owl-all-constraints-humanReadableTextOnly"/> -->
     <!--    <rule name="rule-owl-all-constraints-byConstraintMapping"/> -->
          <rule name="rule-owl-cls-union"/>
          <rule name="rule-owl-cls-unionSets"/>
<!--           <rule name="rule-owl-cls-iso191502Enumeration"/> -->
          <rule name="rule-owl-cls-enumerationAsCodelist"/>
          <rule name="rule-owl-cls-codelist-external"/>
          <rule name="rule-owl-cls-codelist-19150-2"/>
          <!--  <rule name="rule-owl-cls-codelist-19150-2-skos-collection"/> -->
          <rule name="rule-owl-cls-codelist-19150-2-objectOneOfForEnumeration"/>
          <rule name="rule-owl-cls-codelist-19150-2-differentIndividuals"/>
          <rule name="rule-owl-cls-codelist-19150-2-owlClassInDifferentNamespace"/>
          <!--  <rule name="rule-owl-cls-codelist-19150-2-conceptSchemeSubclass"/> -->
          <rule name="rule-owl-prop-code-broader-byBroaderListedValue"/>
        </EncodingRule>
      </rules>
    </TargetOwl>

  </targets>
</ShapeChangeConfiguration>

A.1.3. Generating the profiles

ShapeChange 2.6.1-SNAPSHOT was used to generate the application profiles by running the
following commands:
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Command for Simple Linked Data Application Profile Generation

java -jar ShapeChange-2.6.1-SNAPSHOT.jar -Dfile.encoding=UTF-8 -c
simpleCivilianAirport.xml

Output:

I ---------- Semantic validation of ShapeChange configuration: START ----------
I --- Validating transformer with @id 'TRF3' ...
I --- Validating transformer with @id 'TRF1' ...
I --- Validating target with @class
'de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150' and @inputs
'TRF3' ...
I ---------- Semantic validation of ShapeChange configuration: COMPLETE ----------
I Now processing transformation 'TRF1' for input ID: 'INPUT'.
I ---------- TransformationManager postprocessing: validating constraints ----------
I Performed transformation for transformer ID 'TRF1' for input ID: 'INPUT'.
-------------------------------------------------
I Now processing transformation 'TRF2' for input ID: 'TRF1'.
I Performed transformation for transformer ID 'TRF2' for input ID: 'TRF1'.
-------------------------------------------------
I Now processing transformation 'TRF3' for input ID: 'TRF2'.
I ========== processing phase ==========
I ---------- now processing: rule-trf-cls-replace-with-union-properties ----------
I ========== postprocessing phase ==========
I Performed transformation for transformer ID 'TRF3' for input ID: 'TRF2'.
-------------------------------------------------
I Application schema found, package name: 'NSG Application Schema', target namespace:
'http://api.nsgreg.nga.mil/ontology'
I Now processing target 'ISO 19150-2 OWL Ontology' for input 'TRF3'.
I The default type implementation is 'owl:Class'.
I Executed target class
'de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150' for input ID:
'TRF3'.
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Command for Complex Analytic Application Profile Generation

java -jar ShapeChange-2.6.1-SNAPSHOT.jar -Dfile.encoding=UTF-8 -c
complexCivilianAirport.xml

Output:

I ---------- Semantic validation of ShapeChange configuration: START ----------
I --- Validating transformer with @id 'TRF3' ...
I --- Validating transformer with @id 'TRF1' ...
I --- Validating target with @class
'de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150' and @inputs
'TRF3' ...
I ---------- Semantic validation of ShapeChange configuration: COMPLETE ----------
I Now processing transformation 'TRF1' for input ID: 'INPUT'.
I ---------- TransformationManager postprocessing: validating constraints ----------
I Performed transformation for transformer ID 'TRF1' for input ID: 'INPUT'.
-------------------------------------------------
I Now processing transformation 'TRF2' for input ID: 'TRF1'.
I Performed transformation for transformer ID 'TRF2' for input ID: 'TRF1'.
-------------------------------------------------
I Now processing transformation 'TRF3' for input ID: 'TRF2'.
I ========== processing phase ==========
I ---------- now processing: rule-trf-cls-replace-with-union-properties ----------
I ========== postprocessing phase ==========
I Performed transformation for transformer ID 'TRF3' for input ID: 'TRF2'.
-------------------------------------------------
I Application schema found, package name: 'NSG Application Schema', target namespace:
'http://api.nsgreg.nga.mil/ontology'
I Now processing target 'ISO 19150-2 OWL Ontology' for input 'TRF3'.
I The default type implementation is 'owl:Class'.
I Executed target class
'de.interactive_instruments.ShapeChange.Target.Ontology.OWLISO19150' for input ID:
'TRF3'.

NOTE
The application profile generated for Complex Analytic Application was pretty
limited in expresiveness due to the lack of axioms in NEO to represent property
hierarchies and property characteristics (transitive, functional, etc).

A.2. Sample Data
To generate the sample data (dolon.rdf), the simple RDF application profile was imported into
Topbraid and sample data were created manually by creating a fictitious Airport and Heliport in
Dolon. The dataset was inspired from sample data encoded in AIXM, which contains similar
elements (http://github.com/aixm/donlon).

Only one sample dataset was generated, as they can be used by both application profiles (as they
share the same namespace). The result of the inferences was richer in the case of the complex
analytic application profile as it contained more expressive axioms.
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The following is a sample of the dataset:

dolon:DolonAirport
  rdf:type neo-ent:LandAerodrome ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.aerodromeBeacon>
dolon:DolonAirportBeacon1 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.aerodromeBoundary>
dolon:DolonAirportBoundary ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.aerodromeElevation> [
      rdf:type neo-ent:MeasureMeta ;
      <http://api.nsgreg.nga.mil/ontology/neo/1-8#MeasureMeta.value> "253
m"^^sc:Measure ;
      rdfs:label "253 meter" ;
    ] ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.aerodromeLocationDesc> [
      rdf:type neo-ent:TextLexUnconMeta ;
      <http://api.nsgreg.nga.mil/ontology/neo/1-8#TextLexUnconMeta.value> "Dolon" ;
      rdfs:label "Dolon" ;
    ] ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.aerodromeOfficialName> [
      rdf:type neo-ent:TextNonLex80Meta ;
      rdfs:label "Dolon Airport" ;
    ] ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.airfieldType>
<http://api.nsgreg.nga.mil/vocabulary/ncv/AirfieldTypeTermSet/major> ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.faaIdentifier>
dolon:StructuredTextMeta_1 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.highestElevation> [
      rdf:type neo-ent:MeasureMeta ;
      <http://api.nsgreg.nga.mil/ontology/neo/1-8#MeasureMeta.value> "256
m"^^sc:Measure ;
      rdfs:label "256 m" ;
    ] ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.installationLocation>
dolon:DolonAerodromeInstLocation ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea>
dolon:DolonAirportApron1 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea>
dolon:DolonAirportApron2 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea>
dolon:DolonAirportApron3 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea>
dolon:DolonAirportTaxiway_1 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea>
dolon:DolonAirportTaxiway_2 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea> dolon:Helipad_1
;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea> dolon:Helipad_2
;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea> dolon:Runway_1 ;
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  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.movementArea> dolon:Runway_2 ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Aerodrome.referencePoint> [
      rdf:type neo-ent:PointPositionInfo ;
      rdfs:label "" ;
    ] ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Entity.uniqueEntityIdentifier>
<urn:uuid.dd062d88-3e64-4a5d-bebd-89476db9ebea> ;
  rdfs:label "Dolon Airport" ;
.

dolon:DolonAirportApron1
  rdf:type neo-ent:Apron ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#AerodromeMoveArea.atAerodrome>
dolon:DolonAirport ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-
8#AerodromeMoveArea.featureOperationalStatus>
<http://api.nsgreg.nga.mil/vocabulary/ncv/FeatureOperationalStatusTermSet/operational>
;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#AerodromeMoveArea.highestElevation> [
      rdf:type neo-ent:MeasureMeta ;
      <http://api.nsgreg.nga.mil/ontology/neo/1-8#MeasureMeta.value> "254
m"^^sc:Measure ;
      rdfs:label "254 m" ;
    ] ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Apron.apronType>
<http://api.nsgreg.nga.mil/vocabulary/ncv/ApronTypeTermSet.cargo> ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Apron.apronUsage>
<http://api.nsgreg.nga.mil/vocabulary/ncv/ApronUsageTermSet.parking> ;
  <http://api.nsgreg.nga.mil/ontology/neo/1-8#Apron.featureDesignator> [
      rdf:type neo-ent:TextNonLexUnconMeta ;
      <http://api.nsgreg.nga.mil/ontology/neo/1-8#TextNonLexUnconMeta.value> "A1" ;
      rdfs:label "" ;
    ] ;
  rdfs:label "Apron A1" ;
.

A.3. Generated Artifacts
The following artifacts were generated for this project and commited in GitHub at:
https://github.com/opengeospatial/D022-
1_Characterization_of_RDF_Application_Profiles_Engineering_Report/tree/master/profiles

Table 6. Artifacts generated by ShapeChange process flow.

Name Description

pmp-export/nas-export PMT export of the Application Profile from NAS

configuration/simpleCivilianAirport.xml ShapeChange configuration for Simple Linked
Data Application
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Name Description

configuration/complexCivilianAirport.xml ShapeChange configuration for Complex
Analytic Application

simple/neo.rdf RDF Application profile for Simple Linked Data
Application

simple/enums.rdf Code lists for Simple Linked Data Application

simple/neo-codes.rdf Codelist_ConceptScheme for Simple Linked Data
Application

complex/neo.rdf RDF Application profile for Complex Analytic
Application

complex/enums.rdf Code lists for omplex Analytic Application

complex/neo-codes.rdf Codelist_ConceptScheme for Complex Analytic
Application

samples/dolon.ttl Sample dataset compliant with the application
profiles.
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Appendix B: Revision History
Table 7. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

Oct. 27, 2018 Stephane Fellah .1 all Splitting of
original ER
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