
OGC Testbed-16
Aviation Engineering Report

Publication Date: 2021-01-13

Approval Date: 2020-12-14

Submission Date: 2020-11-07

Reference number of this document: OGC 20-020

Reference URL for this document: http://www.opengis.net/doc/PER/t16-D001

Category: OGC Public Engineering Report

Editor: Sergio Taleisnik

Title: OGC Testbed-16: Aviation Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2021 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t16-D001
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 7

2. Executive Summary. 8

2.1. What does this ER mean for the Geosemantics Working Group and the OGC in general. 10

2.2. Document contributor contact points . 11

2.3. Foreword . 11

3. References . 12

4. Terms and definitions . 13

4.1. Abbreviated terms . 13

5. Overview . 15

6. Background . 16

6.1. Semantic-Enablement . 16

6.2. OpenAPI-based Web APIs . 18

7. Technical Architecture . 20

7.1. Status Quo. 20

7.2. Problem Statement. 21

7.3. Functional Overview . 22

7.3.1. Frontend Component Interactions . 23

7.3.2. Backend Component Interactions. 24

8. SWIM Data Relay API . 26

8.1. Status Quo. 26

8.2. Functional Overview . 27

8.2.1. Harvester . 28

8.2.2. Feature Handler . 29

8.2.3. Database . 30

8.2.4. OGC API - Features Implementation. 31

8.3. Challenges and Lessons Learned . 40

8.4. Accomplishments . 43

9. Semantic Registry. 45

9.1. Status Quo. 45

9.2. Functional Overview . 47

9.2.1. Harvester . 49

9.2.2. Asset Importer . 50

9.2.3. Asset Importer for NSRR . 50

9.2.4. Asset Importer for SWIM Data Relay API . 51

9.3. Semantic Registry API . 51

9.3.1. Linked Data support. 52

9.3.2. Semantic Registry GraphQL API . 52

9.4. Challenges and Lessons Learned . 55

4

9.5. Accomplishments . 55

10. Triple Builder and Triple Store. 56

10.1. Status Quo . 56

10.2. Functional Overview . 56

10.2.1. Triple Builder. 58

10.2.2. Triple Store. 61

10.3. Challenges and Lessons Learned . 65

10.4. Accomplishments . 66

11. Aviation Ontologies . 67

11.1. Status Quo . 67

11.2. Requirements Statement . 67

11.3. Functional Overview . 68

11.3.1. Equipment Ontology . 69

11.3.2. Aircraft Ontology . 69

11.3.3. Flight Ontology . 70

11.3.4. Route Ontology . 71

11.3.5. Facility Ontology . 72

11.3.6. Aviation Infrastructure Ontology . 73

11.4. Challenges and Lessons Learned . 73

11.5. Accomplishments . 73

12. Semantic Web Client . 74

12.1. Status Quo . 74

12.2. Functional Overview . 74

12.3. Challenges and Lesson Learned . 76

12.4. Accomplishments . 76

13. SWIM Data Client . 77

13.1. Status Quo . 77

13.2. Functional Overview . 77

13.2.1. Visualization . 77

13.2.2. Connection and Retrieval of SWIM Data. 80

13.3. Challenges and Lessons Learned . 82

13.4. Accomplishments . 84

14. Recommendations and Future Work . 85

14.1. Fostering the use of OGC API and Linked Data in aviation . 85

14.1.1. Implementing OGC API - Features within SWIM Data Services . 85

14.1.2. Demonstrating The Value of Linked Data in Aviation . 86

14.1.3. Exploring Alternatives for a Seamless Transition to Linked Data . 87

14.1.4. Demonstrating Interoperability Between Diverse APIs . 88

14.1.5. Exploring Linked Data Support Alternatives for OGC APIs . 88

14.2. Ontology Development . 88

14.2.1. Expanding the Scope of Aviation Ontologies . 88

5

14.2.2. Standardizing the SRIM Model . 89

14.2.3. Improving the GeoSPARQL Standard. 89

14.3. Better Understanding the Industry by Engaging with SWIM Consumers 89

Appendix A: SWIM Data Relay API: Sample FIXM to GeoJSON Mapping . 91

A.1. FIXM-NAS (original) . 91

A.2. MessageCollection . 93

A.3. GeoJSON . 95

Appendix B: Semantic Registry: Sample Resource and Collection Mapping . 99

B.1. Harvesting the NSRR . 99

B.2. Harvesting the SWIM Data Relay API . 108

Appendix C: Semantic Registry: GraphQL Schema . 119

Appendix D: Triple Builder: Sample Triple Generation . 136

D.1. Sample Flight Feature. 136

D.2. Flight Ontology . 138

D.3. Flight Triples . 139

Appendix E: SWIM Data Client: Sample GraphQL Call to the Semantic Registry 143

Appendix F: Revision History . 147

Appendix G: Bibliography . 148

6

Chapter 1. Subject
This Testbed-16 Aviation Engineering Report (ER) summarizes the implementations, findings and
recommendations that emerged from the efforts of further advancing interoperability and usage of
Linked Data within the Federal Aviation Administration (FAA) System Wide Information
Management [https://www.faa.gov/air_traffic/technology/swim/] (SWIM) context. The goal of this effort was
to experiment with OpenAPI and Linked Data to explore new ways for locating and retrieving
SWIM data in order to enable consumers to consume SWIM data more easily in their business
applications, and enable the discovery of additional relevant information for their needs.

Specifically, this ER documents the possibility of querying and accessing data (and its metadata)
using Semantic Web Technologies as well as interlinking heterogeneous semantic data sources
available on the Web. Together with an analysis on the potential for using OpenAPI-based
Application Programming Interface (API) definitions to simplify access to geospatial information,
an exploration of solutions for data distribution that complement those currently used by SWIM is
presented.

This ER describes a solution architecture consisting of a collection of interoperable components
developed to demonstrate technologies that can help achieve Testbed 16 objectives. This document
describes 1.) a component built to relay SWIM data through an OGC API – Features endpoint, and 2.)
a Client Application built to interact with this API. This document also describes:

• A Semantic Registry built to serve SWIM service and collection metadata,

• A Triple Builder and a Triple Store designed to generate aviation linked data, and

• A Semantic Web Client built to interact with the Triple Store.

Finally, this ER captures lessons learned and recommendations for future work.

7

https://www.faa.gov/air_traffic/technology/swim/
https://www.faa.gov/air_traffic/technology/swim/

Chapter 2. Executive Summary
FAA SWIM Data Services currently produce data from the National Airspace System (NAS) to
consumers using various protocols and service offerings in both synchronous and asynchronous
messaging formats. These services are documented and described in the FAA’s NAS Service
Registry/Repository (NSRR). Consumers can access the NSRR to obtain this information for each
SWIM service offering in order to develop their business applications. Often, business applications
require multiple SWIM data. Therefore, efforts were made to standardize the SWIM data models for
their domains (i.e. weather, aeronautical, and flight) based on XML standards such as Weather
Information Exchange Model (WXXM), Flight Information Exchange Model (FIXM), and
Aeronautical Information Exchange Model (AIXM).

The use of standardized data models improves the interoperability of data processing. SWIM Data
Services are designed with "data-centric approaches" consisting on defining and standardizing
logical data models. These in turn drive the implementation of dictionaries (what to call things),
metadata (a means to discover things) and services (how to access and process things). As the
implementations that result from these approaches fall short of providing sufficient semantics and
context, the interoperability between them becomes limited. These circumstances can be improved
by taking a semantic-enabled approach which adds a machine-encoded, semantics-based
knowledge layer to NAS data and services, helping ensure that SWIM objects and entities are
properly interpreted and employed, in a useful mission context [1].

Previous OGC work has addressed the challenges of increasing interoperability and semantically-
enabling aviation data services. Recently, the OGC community has developed a new family of
standardized OpenAPI-based Web APIs for the various geospatial resource types with the potential
to enhance the way in which consumers can access geospatial data from various sources. One
initiative in particular, reflected in the Testbed-14 (OGC 18-035) Semantically Enabled Aviation Data
Models Engineering Report, provided the baseline and recommendations that shaped the
requirements for the Testbed-16 Aviation Task.

The goals for the Aviation Task were classified into two main areas:

• API Modernization

◦ Evaluating solutions for data distribution that complement those currently used by FAA
SWIM

◦ Advancing data integration in the aviation community by facilitating flexibility in
deployment solutions

◦ Exploring the potential of OpenAPI on simplifying and modernizing access to geospatial
information

• Linked Data

◦ Querying and accessing SWIM data (and associated metadata) using Semantic Web
technologies

◦ Interlinking heterogeneous aviation related semantic data sources available on the Web

To achieve these goals, the Aviation Task was organized into the development and testing of a
system of six interconnected components, as shown in Figure 1:

8

• A SWIM Data Relay API (identified as D100): An OGC API - Features endpoint relaying SWIM
data retrieved from SWIM Data Services.

• A Semantic Registry (identified as D101): An API serving metadata for SWIM services and
metadata for the datasets these services provide.

• A Triple Builder and a Triple Store (identified as D103): A generator and provider of aviation
linked data by combining aviation ontologies with data retrieved from either the SWIM Data
Relay API or from other external data sources.

• A set of Aviation Ontologies: Built to support the generation of aviation linked data by the
Triple Builder.

• A Semantic Web Client (identified as D105): A client application built to consume SWIM linked
data from the Triple Store and use it in several types of user interfaces.

• A SWIM Data Client (identified as D106): A client application built to consume SWIM data from
the SWIM Data Relay API and use it in a 3D map environment.

Figure 1. Testbed-16 Component Breakdown and Data Flow

• The API Modernization goals were explored through the work in the SWIM Data Relay API
(D100) and the SWIM Data Client (D106). The development and testing of these components
demonstrated the use of OGC API - Features as a proxy to fetch, serve and ultimately consume
heterogeneous SWIM data.

• The Linked Data goals were explored through the work in the Semantic Registry (D101), the
Triple Builder / Triple Store (D103), and the Semantic Web Client (D105). The development and
testing of these components demonstrated the generation and consumption of aviation linked
data, as well as the generation and consumption of semantically-enriched SRIM assets.

All components were successfully developed and tested. The lessons learned throughout the
Testbed are captured in this ER. The following is a set of recommendations for future work:

9

• Fostering the use of OGC API and Linked Data in aviation: Work in Testbed 16 demonstrated
the benefits of using OGC APIs but also documented several downsides that may require
adapting the perspective on how the aviation industry pretends to leverage their power of
interoperability. The Testbed also shed light on the complexities of generating and consuming
aviation linked data while at the same time laying the foundation for future activities that could
facilitate the adoption of linked data by the aviation community. Recommendations include:

1. Implementing OGC API - Features within SWIM Data Services would eliminate the two
main issues demonstrated in this Testbed of an OpenAPI-based SWIM API: the need for
massive additional storage and a complex transformation logic.

2. Demonstrating Interoperability Between Diverse APIs would speed up the development
of OpenAPI-based SWIM APIs by troubleshooting the design and communication of both
servers and clients.

3. Demonstrating the Value of Linked Data in Aviation would help the aviation industry
leverage the return of investment of transitioning to using linked data. The components
built in this Testbed could be used as a starting point for such a demonstration.

4. Exploring Alternatives for a Seamless Transition to Linked Data would make it easier
for servers and clients to gradually transition to using linked data.

5. Exploring Linked Data Support Alternatives for OGC APIs would help foster the adoption
of linked data within OGC APIs.

• Ontology Development: Work on this Testbed demonstrated the critical role of ontologies to
support information integration and reasoning by means of search and discovery of assets and
support of aviation linked data. Recommendations include:

1. Expanding the Scope of Aviation Ontologies by first building foundational cross-domain
ontologies followed by aviation-specific ontologies based on the aforementioned.

2. Standardizing the SRIM Model to facilitate the adoption of semantic registries.

3. Improving the GeoSPARQL Standard to enhance support for querying aviation linked data

2.1. What does this ER mean for the Geosemantics
Working Group and the OGC in general
The OGC Working Group for review of this ER is the Geosemantics Domain Working Group (DWG).
This Testbed work may also be applicable to the Aviation DWG which is co-chaired by the FAA and
EUROCONTROL.

The scope of the Geosemantics DWG is any aspect of semantic conceptual modeling and formal
representation of data models that advances the geospatial interoperability mission of the OGC. The
mission of the Geosemantics DWG is to establish an interoperable and actionable semantic
framework for representing the geospatial knowledge domains of information communities as well
as mediating between them.

The Geosemantics DWG has reviewed several ERs that served as baseline for the Testbed-16
Aviation Task, most notably the Semantically Enabled Aviation Data Models ER of Testbed-14 (OGC
18-035), making this DWG the ideal reviewer of this Testbed-16 Aviation ER. This Task took a step
further from the conceptual elements explored in previous work and generated a working example

10

of a modern and semantically-enabled system of interconnected aviation data sources. The lessons
learnt from the development of this system will help advance the objectives of this DWG and the
OGC.

2.2. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Sergio Taleisnik Skymantics Editor

Charles Chen Skymantics Contributor

Eugene Yu George Mason University Contributor

Felipe Carrillo Romero Hexagon Contributor

Stephane Fellah Image Matters Contributor

Wenwen Li Arizona State University Contributor

Yuanyuan Tian Arizona State University Contributor

Scott Serich OGC Contributor

2.3. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

11

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 17-069, OGC API - Features - Part 1: Core (2019) [http://docs.opengeospatial.org/is/17-069r3/

17-069r3.html]

• OGC: OGC 11-052r4, OGC GeoSPARQL - A Geographic Query Language for RDF Data (2012)
[http://www.opengis.net/doc/IS/geosparql/1.0]

• FAA, SESAR: Service Description Conceptual Model (SDCM) 2.0 [https://www.faa.gov/air_traffic/

technology/swim/governance/service_semantics/media/SDCM_v2.0/SDCM_v2.0.html]

• EUROCONTROL, FAA, NGA: AIXM 5.1 Specification (2010) [http://aixm.aero/page/aixm-51-specification]

• EUROCONTROL, FAA: FIXM Core v4.2.0 [https://www.fixm.aero/release.pl?rel=FIXM-4.2.0]

• IETF: RFC-7946 The GeoJSON Format (2016) [https://tools.ietf.org/html/rfc7946]

• Facebook: GraphQL Specification (2018) [http://spec.graphql.org/June2018/]

• W3C: RDF Schema 1.1 (2014) [http://www.w3.org/TR/rdf-schema/]

• W3C: OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax
(2012) [https://www.w3.org/TR/owl-syntax/]

12

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://www.opengis.net/doc/IS/geosparql/1.0
https://www.faa.gov/air_traffic/technology/swim/governance/service_semantics/media/SDCM_v2.0/SDCM_v2.0.html
http://aixm.aero/page/aixm-51-specification
https://www.fixm.aero/release.pl?rel=FIXM-4.2.0
https://tools.ietf.org/html/rfc7946
http://spec.graphql.org/June2018/
http://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-syntax/
https://www.w3.org/TR/owl-syntax/

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● Linked Data

a set of best practices for publishing and connecting structured data on the Web.

● Semantics

a conceptualization of the implied meaning of information that requires words and/or symbols
within a usage context. [1]

● DCAT

Data Catalog Vocabulary — an RDF vocabulary designed to facilitate interoperability between
data catalogs published on the Web.

● SRIM

Semantic Registry Information Model — a superset of the DCAT ontology that defines the set of
classes and properties commonly used to represent any item in a register. [2]

● SWIM

System Wide Information Management — program overseen by the Federal Aviation
Administration (FAA) designed to facilitate greater sharing of Air Traffic Management (ATM)
system information

● Taxonomy

a system or controlled list of values by which to categorize or classify objects. [1]

● Triple

the most high-level abstraction in the semantic web. It describes a statement using a triple of
"Subject - Predicate - Object". URIs are used to identify the subject of the statement. The object of
the statement can be another URI or a literal like a string or number. [3]

4.1. Abbreviated terms
• AIXM Aeronautical Information Exchange Model

• API Application Programming Interface

• DCAT Data Catalog Vocabulary

• FIXM Flight Information Exchange Model

• OWL Web Ontology Language

• RDF Resources Description Framework

• SKOS Simple Knowledge Organization System

• SRIM Semantic Registry Information Model

13

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• SWIM System Wide Information Management

• WSDOM Web Service Description Ontological Model

• WXXM Weather Information Exchange Model

14

Chapter 5. Overview
Section 6 describes the background work that preceded and laid the foundation for the work
performed in the Aviation Task.

Section 7 outlines the status quo, presents the Testbed 16 Aviation Task goals and summarizes the
work performed on this Testbed activity.

Section 8 describes the SWIM Data Relay API developed to meet the goals of this Testbed activity as
well as documenting lessons learned and challenges.

Section 9 describes the Semantic Registry developed to meet the goals of this Testbed activity as
well as documenting lessons learned and challenges.

Section 10 describes the Aviation Ontologies developed to meet the goals of this Testbed activity as
well as documenting lessons learned and challenges.

Section 11 describes the Triple Builder and Triple Store developed to meet the goals of this Testbed
activity as well as documenting lessons learned and challenges.

Section 12 describes the Semantic Web Client developed to meet the goals of this Testbed activity as
well as documenting lessons learned and challenges.

Section 13 describes the SWIM Data Client developed to meet the goals of this Testbed activity as
well as documenting lessons learned and challenges.

Section 14 provides recommendations for future work.

15

Chapter 6. Background
This Testbed-16 task worked on better understanding the value of semantic-enablement and of
modern Web APIs in the context of SWIM service integration. The work carried out in this Testbed
was based on a knowledge base composed of a plethora of OGC initiatives, summarized in Figure 2
and further described in this chapter.

Figure 2. OGC Work Timeline Preceding Testbed-16

6.1. Semantic-Enablement
The Semantic Web is a Web of Data — of dates and titles and any other data one might conceive of.
The collection of Semantic Web technologies (RDF, OWL, SKOS, SPARQL, etc.) provides an
environment where applications can query that data and draw inferences using vocabularies,
among others [4].

To enable wider adoption of the Semantic Web, the term of Linked Data was introduced in 2008.
Linked data provides a simplified view of the Semantic Web as a web of linkage between data
nodes. The idea of linked data is similar to the web of hypertext. However the semantic web is not
merely about publishing data on the web but more about making links in such a way that a person
or a machine can explore the data [3]. The linked data leads to other related data. The semantic web
is also constructed in such a way that it can be parsed and reasoned about. The web of hypertext is
constructed with links anchored in HTML documents. At the same time the semantic web is
constructed in such a way that arbitrary links between entities are described by Triples in RDF.
URIs are used to identify any kind of concept [5].

16

OGC has investigated the use of Linked Data and Semantic Web Technologies in numerous past
Testbeds:

1. OGC 18-094r1, OGC Testbed-14: Characterization of RDF Application Profiles for Simple Linked
Data Application and Complex Analytic Applications Engineering Report

2. OGC 18-032r2, OGC Testbed-14: Application Schema-based Ontology Development Engineering
Report

3. OGC 17-040, OGC Testbed-13: DCAT/SRIM Engineering Report

4. OGC 17-032r2, OGC Testbed-13: Aviation Abstract Quality Model Engineering Report

5. OGC 17-018, OGC Testbed-13: Data Quality Specification Engineering Report

The topic of semantic-enablement of models used in the domain of aviation has been explored
previously in OGC Testbeds.

1. OGC 19-021, OGC Testbed-15: Semantic Web Link Builder and Triple Generator

2. OGC 18-035, OGC Testbed 14: Semantically Enabled Aviation Data Models Engineering Report

3. OGC 17-036, OGC Testbed-13: Geospatial Taxonomies Engineering Report

4. OGC 16-039r2, OGC Testbed-12: Aviation Semantics Engineering Report

5. OGC 16-046r1, OGC Testbed-12: Semantic Enablement Engineering Report

Testbed-12 participants focused on semantic-enablement by means of parallel initiatives that
worked on topics of semantic portrayal, semantic search and semantic mediation (OGC 16-046r1).
An OGC ER (OGC 16-039r2) examined the role of geospatial semantic technology within aviation by
proposing extensions to WSDOM that enabled an efficient discovery of OGC-compatible web
services (OWS) and helped to create a service knowledge base. A Semantic Registry Information
Model (SRIM) was defined as a superset of the W3C Data Catalog (DCAT) ontology that defined the
set of classes and properties commonly used to represent any item in a register (OGC 16-059).

Other initiatives within Testbed-12 reviewed the topic of cyber security within the aviation domain
in conjunction with OGC Web Services (OWS) (OGC 16-040r1), provided recommendations for the
implementation of GML elements into FIXM (OGC 16-028r1), and advanced previous work in the
area of business rules for AIXM 5 based on SBVR (OGC 16-061).

Testbed-13 saw the implementation of a RESTful Semantic Registry that supported the Semantic
Registry Information Model (SRIM) (OGC 17-040). This work served as a foundation for the
Semantic Registry built in Testbed-16.

Further work in Testbed-13 focused on formulating geospatial taxonomies to support the
classification of aviation services based on their geospatial characteristics and integrating them
with SDCM in order to enable the discovery of those services (OGC 17-036).

Finally, Testbed-13 also focused on aviation data quality. The Aviation Abstract Quality Model ER
(OGC 17-032r2) describes a taxonomy and a model for the fundamental concepts related to data
quality. The OGC Data Quality Specification ER (OGC 17-018) provided methods to quantify the
quality concepts described in the AQM, and extended the SDCM to be able to support this quality
information for each service described in the registry.

17

The Testbed-14 Semantically Enabled Aviation Data Models ER (OGC 18-035) describes work on
semantically-enabling existing data and metadata models used in the aviation industry. Before
Testbed-14, these models were already using Linked Data standards to represent information.
However, these models were failing to provide enough semantics to facilitate the integration of
information and services, improve search and discovery in the current registry, and increase the
level of automation in systems. OGC 18-035 laid out a series of recommendations for future work,
many of which were addressed in Testbed-16: Managing controlled vocabularies, developing a
Semantic Registry, investigating the modularization and encoding of aviation ontologies, as well as
demonstrating the use of semantic enablement of aviation data.

Finally, the Testbed-15 Semantic Web Link Builder and Triple Generator (OGC 19-021) described a
generalized approach towards performing data fusion from multiple heterogeneous geospatial
linked data sources. Despite the use case in this Testbed was not aviation focused, the concepts
developed were deemed reusable within any other domain and were therefore utilized for the
Testbed 16 Aviation task.

6.2. OpenAPI-based Web APIs
There are many documented benefits for using Web APIs in the context of data retrieval and
processing like SWIM. Benefits include faster time to market for products, more flexibility in
deployment models, and straight forward upgrade paths as standards evolve.

The goal of the OpenAPI Specification is to define a standard, language-agnostic interface
description for HTTP APIs which allows both humans and computers to discover and understand
the capabilities of the service without access to source code, documentation, or through network
traffic inspection. When properly defined via OpenAPI, a consumer can understand and interact
with the remote service with a minimal amount of implementation logic. Similar to what interfaces
have done for lower-level programming, OpenAPI removes the guesswork in calling the service [6].

OGC members have been investigating the use of OpenAPI since 2016. This investigation was in
part due to recognizing that OGC’s existing web service standards (aka W*S or OWS) were in effect
web APIs. Modernizing the OGC model for getting content on the web required a fairly
fundamental change in underlying design [7].

Work in Testbed-14 initiated OGC developments in OpenAPI. A major revision of the OGC Web
Feature Service (WFS) was revised by proposing a set of innovations, including the support of the
OpenAPI specification (OGC 18-021, OGC 18-045). OGC built upon that experience and one year later
published OGC API - Features (OGC 17-069r3), the first OGC standard defined and documented using
OpenAPI. Concurrently, Testbed-15 proposed an OpenAPI-based API specification for maps and tiles
(OGC 19-069), as well as styles (OGC 19-010r2).

At the time of publication of this ER, the OGC members are actively working on nine API standards,
each one focused on serving a specific set of elements:

• OGC API - Features [https://ogcapi.ogc.org/features/]

• OGC API - Common [https://ogcapi.ogc.org/common/]

• OGC API - Maps [https://ogcapi.ogc.org/maps/]

• OGC API - Tiles [https://ogcapi.ogc.org/tiles/]

18

https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/common/
https://ogcapi.ogc.org/maps/
https://ogcapi.ogc.org/tiles/

• OGC API - Styles [https://ogcapi.ogc.org/styles/]

• OGC API - Environmental Data Retrieval (EDR) [https://ogcapi.ogc.org/edr/]

• OGC API - Records [https://ogcapi.ogc.org/records/]

• OGC API - Processes [https://ogcapi.ogc.org/processes/]

• OGC API - Coverages [https://ogcapi.ogc.org/coverages/]

This section next describes two of the OGC APIs that are most relevant to this Testbed-16 Aviation
task.

OGC API - Features

The OGC API – Features Standard is a multi-part standard that defines the capability to create,
modify, and query vector feature data on the Web and specifies requirements and
recommendations for APIs that want to follow a standard way of accessing and sharing feature
data [8].

This OGC API was considered as the foundation for the SWIM Data Relay API and the SWIM Data
Client developed in this Testbed, as the data retrieved from SWIM services would ultimately be
displayed as geospatial elements on maps.

OGC API - Records

The OGC API – Records document is a multi-part draft specification that defines the capability to
create, modify, and query metadata on the Web. The draft specification enables the discovery of
geospatial resources by standardizing the way collections of descriptive information about the
resources (metadata) are exposed [9].

This draft OGC API was initially considered as the foundation for the Semantic Registry developed
in this Testbed, as metadata querying was a fundamental part of these components, but was
eventually replaced by a standard REST API.

19

https://ogcapi.ogc.org/styles/
https://ogcapi.ogc.org/edr/
https://ogcapi.ogc.org/records/
https://ogcapi.ogc.org/processes/
https://ogcapi.ogc.org/coverages/

Chapter 7. Technical Architecture
This chapter outlines the current status of semantic-enablement and interoperability of SWIM
Services, presents the goals defined for this Testbed based on the status quo, and finally describes
the components and their interactions that were built to tackle those goals.

7.1. Status Quo
The System-Wide Information Management (SWIM) initiative supports the sharing of aeronautical,
air traffic and weather information by providing communications infrastructure and architectural
solutions for identifying, developing, provisioning, and operating a network of highly-distributed,
interoperable, and reusable services.

As part of the SWIM architecture, data providers create services for consumers to access their data.
Each service is designed to be stand-alone. However, the value of data increases when combined
with other data. Real-world situations are often not related to data from not just one but from
several SWIM Data Services. Having consumers retrieving data from several SWIM services raises
the need for interoperability between those services. In recent years OGC members have worked on
the development of a standardized family of Web APIs defined using OpenAPI for the various
geospatial resource types utilized by the geospatial community. Currently, there are no SWIM
services implemented using the new generation of OGC APIs.

The diversity of actors providing SWIM Services requires measures ensuring the data being
transmitted can be successfully consumed. Traditionally, SWIM Data Services are designed with
"data-centric approaches" consisting of defining and standardizing logical data models. These
models in turn drive the implementation of dictionaries (what to call things), metadata (a means to
discover things) and services (how to access and process things). As the implementations that result
from these approaches fall short of providing sufficient semantics and context, the interoperability
between them becomes limited [1].

The FAA has engaged in initiatives to facilitate the integration of heterogeneous data sources,
including:

• Service Description Conceptual Model (SDCM): A joint FAA-SESAR work, the SDCM is a
graphical and lexical representation of the properties, structure, and interrelationships of all
service metadata elements, collectively known as a Service Description.

• SWIM Controlled Vocabulary (SWIM CV): A single source providing terms and definitions
commonly employed in SWIM.

• Web Service Description Ontological Model (WSDOM): An ontology model intended to be a
basis for model-driven implementation of artifacts related to Service Oriented Architectures
(SOA)

• Semantic Web for Air Transportation (SWAT) Special Interest Group: A taskforce dedicated
to sharing experiences and approaches in applying Semantic Web technologies

• semantics.aero: An open repository for use by the international aviation community to publish
artifacts developed using Semantic Web technologies

20

7.2. Problem Statement
Testbed-16 required investigating data integration options based on semantic web technologies and
analyzing the current status of achievable interoperability.

The goals of the Testbed-16 Aviation Task were classified into two areas:

• API Modernization

◦ Evaluating solutions for data distribution that complement those currently used by FAA
SWIM.

◦ Advancing data integration in the aviation community by facilitating flexibility in
deployment solutions.

◦ Exploring the potential of OpenAPI for simplifying and modernizing access to geospatial
information.

• Linked Data

◦ Querying and accessing SWIM data (and associated metadata) using Semantic Web
technologies.

◦ Interlinking heterogeneous aviation related semantic data sources available on the Web.

The following questions were proposed in the Testbed 16 Call for Participation (CFP) as guidance
for the Task efforts:

1. Should the existing SWIM architecture be modernized with resource-oriented Web APIs?

2. What role can OGC Web APIs play for a modernized SWIM services?

3. How can OGC APIs be used to address the heterogeneous semantic SWIM landscape?

4. What impact do Linked Data principles and requirements have on OGC Web APIs?

5. How to deal with the various ontologies and taxonomies used in SWIM?

6. How to best enhance the various ontologies and how to build a scalable geospatial definition
server?

7. How to best combine data from various SWIM data feeds to make it available for multi-source
and linked data based analytics?

The long-term goal for the FAA is, as seen on Figure 3, to facilitate access to SWIM services and
registries from not only the FAA but also other aviation partners as well such as EUROCONTROL or
the Korea Aviation Corporation (KAC), Republic of Korea (ROK). For the purposes of this Testbed,
only FAA SWIM services were considered as part of the scope.

21

Figure 3. Deployment of API and Semantic Technology in Today’s Global SWIM

7.3. Functional Overview
As shown in Figure 4, the Aviation Task architecture was organized into a system of six
interconnected components. All six components were developed simultaneously throughout the
Testbed, with permanent communication and cooperation among participant organizations. The
following is an overview of each component and their interactions between them. A more thorough
description of their internal architecture and lessons learned can be found in the following
chapters in this ER.

• A SWIM Data Relay API (identified as D100): An OGC API - Features endpoint serving SWIM data.

• A Semantic Registry (identified as D101): An API serving metadata of SWIM services together
with metadata of the datasets they provide.

NOTE

The Testbed CFP included two instances of the SWIM Data Relay API and did not
include the Semantic Registry. The need for a Semantic Registry, and the
replacement of the second SWIM Data Relay API instance with the Semantic
Registry, was proposed and accepted early in the Testbed.

• A Triple Builder and Triple Store (identified as D103): A generator and provider of aviation
linked data by combining aviation ontologies with data retrieved from either the SWIM Data
Relay API or from other external data sources.

• A set of Aviation Ontologies: Built to support the generation of aviation linked data by the Triple
Builder.

22

NOTE
The development of ontologies was not part of the requirements specified in the
Testbed CFP. The need for ontologies was identified in the early stages of the
Testbed and acquired enough significance to be considered a separate component.

• A Semantic Web Client (identified as D105): A client application built to consume SWIM linked
data from the Triple Store and use it in several types of user interfaces.

• A SWIM Data Client (identified as D106): A client application built to consume SWIM data from
the SWIM Data Relay API and use it in a 3D map environment.

Each component, as well as their interactions, was designed to help answer the questions laid out
by the main Testbed goals:

• The Linked Data goals were explored through the work in the Semantic Registry (D101), the
Triple Builder / Triple Store (D103), and the Semantic Web Client (D105). The development and
testing of these components demonstrated the generation and consumption of aviation linked
data, as well as the generation and consumption of semantically-enriched SRIM assets.

• The API Modernization goals were explored through the work in the SWIM Data Relay API
(D100) and the SWIM Data Client (D106). The development and testing of these components
demonstrated the use of OGC API - Features as a proxy to fetch and serve heterogeneous SWIM
data.

Figure 4. Testbed-16 Aviation Task Components

7.3.1. Frontend Component Interactions

Two scenarios involving end users were identified - one for each of the two clients developed in
this Testbed: The SWIM Data Client (D106) and the Semantic Web Client (D105). Both scenarios
consist of the end user interfacing a client application to visualize aviation data. The major
differences between the scenarios are:

23

• Clients have different visual interfaces to display aviation data. The SWIM Data Client is a 3D
map environment displaying aeronautical infrastructure, airspaces, and routes. The Semantic
Web Client displays linked data about airports and flights on 2D maps, tables and graphs.

• The SWIM Data Client retrieves SWIM data via the SWIM Data Relay API, while the Semantic
Web Client retrieves SWIM linked data from the Triple Store.

• The SWIM Data Client discovers data source endpoints through the Semantic Registry, while the
Semantic Web Client has the endpoints hardcoded.

The frontend scenarios are described in Figure 5. Detailed descriptions and lessons learned from
each component are presented in the following chapters in this ER.

Figure 5. Testbed-16 Aviation Task Frontend Components Interactions

7.3.2. Backend Component Interactions

The backend processes support the operations of the frontend. There are three main backend
scenarios, one for each of the backend components. These have in common the consumption,
processing and storage of data related to aviation.

• The operation of the SWIM Data Relay API (D100) consists of extracting features from SWIM
Publish/Subscribe (Pub/Sub) messages and making them available for other components to
consume through an OGC API - Features endpoint.

• The operation of the Semantic Registry (D101) consists of extracting service and collection
metadata from providers of SWIM data and making them available for other components to

24

consume as SRIM/DCAT assets through a REST or a GraphQL endpoint.

• The operation of the Triple Builder and Triple Store (D103) consists of extracting aviation
data, transforming it into linked data, and making it available for other components to consume
through a GeoSPARQL endpoint.

The backend scenarios are described in Figure 6. Detailed descriptions and lessons learned from
each component are presented in the following chapters in this ER.

Figure 6. Testbed-16 Aviation Task Backend Components Interactions

25

Chapter 8. SWIM Data Relay API
The SWIM Data Relay API was the component designed to fetch information from SWIM data
sources, receive requests from the SWIM Data Client or the Triple Builder, and relay that
information through an OGC API - Features service. This Component provides unified discovery
operations that allow users to retrieve metadata (capabilities and information about the
distribution of data) and data (encoded in standard simple feature formats, e.g. GeoJSON).

George Mason University participants did the development of this component. The main design
objective of this component was to demonstrate the distribution of SWIM data through an OpenAPI-
based API.

8.1. Status Quo
There are different services to enable the discovery and access of data within a System Wide
Information Management (SWIM) system for aeronautic information. For the Federal Aviation
Administration (FAA) SWIM, the NAS (National Aviation Services) Service Registry and Repository
(NSRR) provides a centralized registry to hold detailed information about all existing and planned
SWIM-enabled services. This includes information on where services and documents can be
registered and searched. In addition, the FAA System Wide Information Management (SWIM) Cloud
Distribution Service (SCDS) provides near real-time FAA SWIM data to the public via Solace Java
Message Service (JMS) messaging.

Among the data services in SCDS, there are:

• SWIM Terminal Data Distribution System (STDDS) for surface movement data (Airport Surface
Detection System — Model X (ASDE-X), Airport Surface Surveillance Capability (ASSC)),
approach surveillance radar data from STARS systems, Runway Visual Range (RVR), and a
variety of departure event data; Integrated Terminal Weather System (ITWS) for a variety of
weather information in graphic and textual forms from different sites;

• Traffic Flow Management(TFMS) for both flight data (Flight Plans, Departure/Arrival
Notifications, Position Reports) and flow information (Traffic Management Initiative (TMI),
Ground Stop (GS), Ground Delay Program (GDP));

• Time Based Flow Management (TBFM) metering information data for knowledge of when
metering is in effect at an Air Route Traffic Control Center (ARTCC) when Adjacent Center
Metering (ACM) is occurring and at which sites, flight Scheduled Time of Arrivals (STAs) to the
runway threshold, meter fix and all arcs, and flight Estimate Time of Arrivals (ETAs) to the
runway threshold;

• SWIM Flight Data Publication Service (SFDPS) for a variety of En Route flight data (such as flight
plans, beacon codes, and handoff status) and airspaces (such as sector configuration data, route
status, Special Activity Airspace (SAA) status, and altimeter settings, and general data including
En Route Automation Modernization (ERAM) status information);

• The Aeronautical Information Management (AIM) Federal Notices to Airmen (NOTAM) System
(AIM FNS) for information on temporary changes to components of, or hazards in the National
Airspace System (NAS).

26

There are different schemas for discovering and accessing data with the FAA SWIM. For example,
the AIM FNS delivers messages that contain encoding in the Aeronautical Information Exchange
Model (AIXM) 5.1 format with different extensions (e.g. FAA extension, Event extension). The SFDPS
delivers en-route flight information in Flight Information Exchange Model (FIXM) NAS 3.0. The
ITWS in production delivers weather information in legacy ITWS data models.

Standard exchange information models have been developed in the aviation domain. AIXM is
designed to exchange information on aerodrome/heliport including movement areas, services,
facilities, airspace structures, organizations and units (including services), points and NAVAIDs,
procedures, routes, and flying restrictions. The latest version of AIXM is 5.1.1. FIXM is designed to
exchange information on flight and flow Information. Version 4.2.0 is the latest version of FIXM.
The Weather Information Exchange Model (WXXM) is designed to deliver weather data. The latest
version of WXXM is version 2.0. The implementation and support of these standard exchange
information models differs among different services and organizations.

SWIM data are time sensitive. Most SWIM data are delivered through message services in near real
time or real time. Data volume is high volume and velocity. Over 1.6 trillion messages per day and
4.3 terabytes of data per day are passing through the SWIM. There is no direct support of
spatiotemporal searching.

The emerging suite of OGC APIs is a new generation of OGC standard interfaces to enable the
interoperation of geospatial resource discovery and access. The currently approved OGC API –
Features is defined and documented using the OpenAPI 3.0 specification. OpenAPI supports the
automation of coding for servers and clients in unified RESTful services, i.e. those implementing
Representational State Transfer (REST). To the knowledge of this Testbed’s participants, there is
currently no SWIM data service implemented as a service described using OpenAPI.

8.2. Functional Overview
This component acts as a proxy service to relay information from SWIM data services. SWIM data is
normally delivered by SWIM Data Providers through publish/subscribe services. Since APIs defined
using the OpenAPI specification deliver data through on-demand RESTful calls, the SWIM Data
Relay API Component had to restructure the retrieved SWIM data before making it available
through its REST endpoint. To achieve this, the component consists of four interconnected
subcomponents:

1. A Harvester periodically captures SWIM messages.

2. A Feature Handler maps the incoming messages into a common feature model that supports
both spatial and temporal searches.

3. A geospatially-aware database manages and stores the harvested data.

4. An OGC API - Feature Service publishes and relays SWIM data stored in the database.

Figure 7 breaks down the SWIM Data Relay API, and outlines how data flows through its
subcomponents. The workflow sequence of its elements, as well as their connections to external
components, is outlined on Figure 8.

27

Figure 7. SWIM Data Relay API Component Breakdown and Data Flow

Figure 8. SWIM Data Relay API Subcomponent Interaction

8.2.1. Harvester

SWIM data services are primarily publish/subscribe services for messages that flow from providers

28

to users. Publish/subscribe messaging, or pub/sub messaging, is a form of asynchronous service-to-
service communication. In a pub/sub model, any message published to a topic is immediately
received by all of the subscribers to the topic. Regular SWIM data consumers first need to subscribe
to approved services they may be interested in, then start a client service to receive messages
delivered in near real time from those SWIM data services they subscribed to.

The harvester consists of a Solace JMS (Java Message Service) Message Client. The JMS message
client is responsible for listening to subscribed services in SWIM and relay the incoming messages
to the feature handlers that process the messages.

8.2.2. Feature Handler

For each service, there is an information handler application built to analyze and process each
service feed. Message handlers are implemented using Java. All these handlers run as services to
continuously monitor and analyze incoming messages.

Processing spatial and temporal extent:

In each SWIM message, features have location, coverage, or geometric dimensions, which are used
to define the spatial extent of each feature. Each message also includes temporal validation,
distribution timestamp, or creation timestamp, which are used to define the temporal extent of
each feature described. The handlers extract geospatial information and temporal extent from each
message and store spatiotemporal information into the geo-database for indexing and searching.

Specific attributes are also extracted from each feed as required. Selection of attributes depend on
the services and the data types to be handled. As an example, flight data may have speed and
altitude, while airspace data may have elevation and upper limit of vertical structures. During the
harvest stage, some of these native attributes are extracted and elevated as properties in GeoJSON
encoding. For example, speed and altitude of a flight from FIXM-NAS flight data are exposed as
properties.

Feature description, abstract, and topics are extracted from their schema description, or relevant
online document. For example, AIXM features have an online UML model document
[http://www.aixm.aero/sites/aixm.aero/files/imce/AIXM51HTML/index.html]. The online document was used to
extract relevant information about each feature, such as AIXM data representing airspace
[http://aixm.aero/sites/aixm.aero/files/imce/AIXM51HTML/AIXM/Class_Airspace.html]. Title and description are
directly extracted from the heading and the table element, respectively. Schema information is
extracted from the section for the table of “List of attributes”. These are used in describing each
airspace collection.

Generating encodings:

To support different media-types in the SWIM Data Relay API Component, the harvesting stage
includes a preliminary encoding process. Each message is converted and encoded in a supported
format with native or default projections. The projection may be changed by reprojection in the
server of the Feature Server. Additional attributes may be added to combine each message into
feature collections. For this Testbed, the component was designed with three types of encodings
supported:

1. First, there is a native encoding which depends on the message service that provided the data.

29

http://www.aixm.aero/sites/aixm.aero/files/imce/AIXM51HTML/index.html
http://aixm.aero/sites/aixm.aero/files/imce/AIXM51HTML/AIXM/Class_Airspace.html

For example, the message may be kept in AIXM, FIXM-NAS, or TFM Data Service schema.

2. Second, a conversion to GeoJSON is performed based on a common model. Spatial and temporal
extents are extracted from the original message. Geocoding may be applied to get spatial extent
in actual longitude and latitude coordinates. Selected properties may be elevated and extracted
as properties from its original message. For example, altitude and speed are extracted for flight
and elevation and top limit for airspace. The original message is also converted into JSON and
kept completely in a property “json”.

3. Third, the conversion to Text/HTML is done on the fly by using a writer under media
negotiation support through JAX-RS service implementation. The conversion is primarily from
GeoJSON but adding some necessary JavaScript functions to support map viewer and active
links.

8.2.3. Database

The database manages the harvested information as documents. Attributes commonly found in
AIXM, FIXM or GeoJSON objects do not have a corresponding table or field in the database. The data
schema is treated within each document (feature) encoding. Attributes commonly indexed and
frequently searched could be eventually elevated as fields in the database for performance and
convenience. PostGIS was used to maintain and index spatial properties. PostgreSQL was used to
manage and archive indexes.

To store the same SWIM data in different encodings, the database has an encoding table, where two
attributes "type" and "encoding" pair the data to its corresponding different encodings. The field
"type" uses the actual media type supported by the service. The media types are currently (or
proposed to be) registered with the Internet Assigned Numbers Authority (IANA).

The metadata is stored in a collection table (Collections) and a linked encoding table
(CollectionEncoding). For example, title and description for a collection are stored in corresponding
fields in the collection table. The "list of attributes" are extracted, re-formatted, encoded, and stored
in the encoding table by linking to the collection identifier. The pair of type and encoding has the
similar relationship as that used in feature encoding table, i.e. type is media type and encoding
store the stubs of collection class in related encoding type.

Reusable and common attributes for a collection are directly stored in the Collection table while
details and customized attributes are encoded and stored in the CollectionEncoding table. With the
current implementation, customized attributes are only available for AIXM feature because that is
the only one that has corresponding pages to scrape information from. Only text/html encoding is
stored for now. Because of this limitation, the details in the encoding table are not necessarily
available/used during the serving stage for the current implementation.

Figure 9 shows the Entity-Relationship Diagram of the SWIM Data Relay API Component.

30

Figure 9. Entity-Relationship Diagram of the SWIM Data Relay API Component

8.2.4. OGC API - Features Implementation

An OGC API Feature Service for SWIM was deployed providing RESTful endpoints for consumers to
access SWIM data. The OGC 17-069r3 (OGC API – Features – Part 1: Core) Standard was used in this
Testbed. Two types of resources are managed by the OGC API - Features Service:

• Metadata, primarily used to describe each feature collection in the OGC API Feature Service.

• Data, which can either be retrieved by collection or individually.

Available media types include HTML, AIXM, FIXM, and GeoJSON. Geometries are represented in the
WGS 84 Coordinate Reference System (CRS) with axis order longitude/latitude.

Media type negotiation was implemented following the IETF RFC 2616 HTTP specification,
specifically Section 14.1 [https://tools.ietf.org/html/rfc2616#section-14.1]. If a RESTful client is used, the
client can specify alternative media types supported by the service and retrieve the data as
requested. Client programs should negotiate with the proper media type by adding a proper
“Accept” header in its request. This mediation negotiation rule is applicable to any of the negotiable
paths in the OGC API Feature service.

Each endpoint provides a dedicated path for each supported media type. In general, the pattern

31

https://tools.ietf.org/html/rfc2616#section-14.1

takes the extension of contracted sub-media type registered in IANA media type registry
[http://www.iana.org/assignments/media-types/media-types.xhtml]. For example, the media type
"application/json" will have an extension of “.json”. For collections, the type would have the path of
"/collections.json". When subtype is combination of two types, the “+” will be replaced with “.”. For
example, media type "application/geo+json" would have an extension of “.geo.json”.

Whenever a collection of features is requested from the OGC API - Features service, a unique
identifier is generated on-the-fly by combining the service UUID and a sequence number for each
record/feature/message. This process is performed during the “combining” stage when a feature
collection is created from pieces of features matching the search criteria. The combining process is
the process of adding each feature to a feature collection. Each feature is attributed with the
generated unique identifier. A detailed description of this challenge is presented in the Challenges
Section.

Appendix A describes an example of a FIXM message converted into a GeoJSON feature and its
encoding of application/fixm+nas+xml;version=3.0 in OGC API - Features output.

The Feature Server was designed with seven endpoints:

• UC1 - Get the landing page

• UC2 - Get descriptions of collections

• UC3 - Describe a collection

• UC4 - Get features in a collection

• UC5 - Retrieve features in a collection intersecting a bounding box

• UC6 - Retrieve features in a collection within a temporal range

• UC7 - Retrieve a specific feature by identifier

8.2.4.1. UC1 - Get the landing page

The landing page of the OGC API - Features Service provides information about the API in YAML or
JSON, conformance, and link to collections served in this service. Table 1 lists the path and possible
encoding negotiation. Figure 10 shows a screen capture of the output in HTML when the request is
negotiated as media type "text/html".

Table 1. Get the landing page of the OGC API - Features Service

Use Case UC1: Retrieve the landing page

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3

Path /

Header "Accept" "text/html"

Header "Accept" "application/json"

32

http://www.iana.org/assignments/media-types/media-types.xhtml
https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3

Figure 10. Landing Page of D100

8.2.4.2. UC2 - Get descriptions of collections

Table 2 lists the path for retrieving collections and possible encodings for negotiation. Figure 11
shows a screen capture of the output in HTML when the request is negotiated as media type
"text/html".

Table 2. Get Collection Descriptions of the OGC API - Features Service

Use Case UC2: Get descriptions of collections

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Path /collections

Header "Accept" "text/html"

Header "Accept" "application/json"

33

https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Figure 11. Getting the Description of all Collections in D100

8.2.4.3. UC3 - Describe a collection

The metadata for a specific collection can be retrieved by using a collection identifier. Table 3 lists
the path for retrieving collection metadata and possible encodings for the negotiation. Figure 12
shows a screen capture of the output in HTML when the request is negotiated as media type
"text/html".

Table 3. Get metadata for a specific collection in the OGC API - Features Service

Use Case UC3: Get the metadata for a specific collections

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Path /collections/{CollectionIdentifier}

Example Path /collections/ApronElement

Header "Accept" "text/html"

Header "Accept" "application/json"

34

https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Figure 12. Viewing the Metadata of a Specific Collection in D100

8.2.4.4. UC4 - Get features in a collection

Features in a specific collection can be retrieved by using collection identifier. Table 4 lists the path
for retrieving features in a collection and possible encodings for the negotiation. Figure 13 shows a
screen capture of the output in HTML when the request is negotiated as media type "text/html".
Pagination is applied with default value of 10 items per page. The maximum per page is 10000.

Table 4. Get features of a specific collection in the OGC API - Features Service

Use Case UC4: Get features of a specific collections

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Path /collections/{CollectionIdentifier}/items

Example Path /collections/Airspace/items

Header "Accept" "text/html"

Header "Accept" "application/geo+json"

Header "Accept" "application/aixm+xml;version=5.1"

35

https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Figure 13. Viewing all the Features of a Specific Collection in D100

8.2.4.5. UC5 - Retrieve features in a collection intersecting a bounding box

Spatial filtering can be applied to features in a specific collection. Table 5 lists all parameters
supported at feature retrieval and gives an example with bounding box restrictions. Figure 14
shows a screen capture of the output in HTML when the request is negotiated as media type
"text/html".

Table 5. Get features of a specific collection in the OGC API - Features Service

Use Case UC5: Get features of a specific collections with bouding box

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Path /collections/{CollectionIdentifier}/items

Parameters limit limit per page

bbox bounding box

datetime temporal extent

Example Path /collections/NasFlightMessage/items?bbox=-91.513079,36.970298,-
87.494756,42.508481

36

https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Use Case UC5: Get features of a specific collections with bouding box

Header "Accept" "text/html"

Header "Accept" "application/geo+json"

Header "Accept" "application/fixm+nas+xml;version=3.0"

Figure 14. Viewing Features Intersecting a Bounding Box in D100

8.2.4.6. UC6 - Retrieve features in a collection within a temporal range

Temporal filtering can be applied to features in a specific collection. Table 6 lists all parameters
supported at feature retrieval and gives an example with a temporal range between 2019-02-
02T00:01:01Z and 2020-08-08T23:59:59Z. Figure 15 shows a screen capture of the output in HTML
when the request is negotiated as media type "text/html".

Table 6. Get features of a specific collection in the OGC API - Features Service

Use Case UC6: Get features of a specific collection within a temporal range

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Path /collections/{CollectionIdentifier}/items

37

https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Use Case UC6: Get features of a specific collection within a temporal range

Parameters limit limit per page

bbox bounding box

datetime temporal extent

Example Path /collections/Airspace/items?datetime=2019-02-
02T00%3A01%3A01Z%2F2020-08-08T23%3A59%3A59Z

Header "Accept" "text/html"

Header "Accept" "application/geo+json"

Header "Accept" "application/aixm+xml;version=5.1"

Figure 15. Viewing Features Within a Temporal Range in D100

8.2.4.7. UC7 - Retrieve a specific feature by identifier

If the identifier of a feature is known, it can be used to retrieve the feature. Table 7 lists the path to
request a specific feature by its identifier and provides an example path for retrieving a
fltdMessage (flight data message) feature with the identifier FID-150061c7-5575-475b-8496-
c938019fc8e0-2873. Figure 16 shows a screen capture of the output in HTML when the request is

38

negotiated as media type "text/html".

Table 7. Get a specific feature in the OGC API - Features Service

Use Case UC7: Get a specific feature

End point https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

Path /collections/{CollectionIdentifier}/items/{FeatureIdentifier}

Example Path /collections/fltdMessage/items/FID-150061c7-5575-475b-8496-
c938019fc8e0-2873

Header "Accept" "text/html"

Header "Accept" "application/geo+json"

Header "Accept" "application/tfmdataservice+xml;version=3.1"

Figure 16. Viewing a Specific Feature in D100

39

https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/

NOTE

An identifier is only available in the geojson and text/html responses of this API. An
identifier in native SWIM format may be difficult to define. The solution depends on
the data format in the response. For example, for media type
"application/aixm+xml;verson=5.1", the gmlid of TimeSlice element is normally an
acceptable identifier. The identifier is also added as an element in each time slice of
features. Further details on the implementation are discussed in the Challenges
section.

8.3. Challenges and Lessons Learned
The following summarize major challenges during the design and implementation of the OGC API -
Features Service for SWIM data.

• What is a feature in SWIM for the OGC API - Features service? The SWIM cloud distribution
service is implemented to deliver data through the Solace JMS (Java Message Service)
messaging. Data needs to be mapped into features in order to make them available through an
OGC API - Features, and this mapping is not a simple one-to-one match because a message may
contain several features with different spatial and temporal ranges. The identification of
mappable features from SWIM services needs to be considered carefully case by case.

For AIXM features, as identified in previous Testbeds and initiatives, time slices may be treated
as the smallest subset of features to be discovered and retrieved in the feature service. For FIXM
features, individual message (for example, flight position) may be seen as features to be
managed. [10] [11]

• Unique identification of a feature: Uniquely identifying a feature in the OGC API - Features
Service is important to support search and retrieval. Previous work reported for AIXM features
that the change of its identifier gml:id by using a format of [“uuid”]. [UUID].[Timeslice
Interpretation Code].[sequenceNumber].[correctionNumber] could not guarantee uniqueness in
the feature store [11]. For this Testbed, the original gml:id was kept intact and indexed since
messages might have been cross-referenced using these IDs. This proved to be easier to
implement since the sequence number FID was already used in uniquely identifying records in
the back-end database.

The OGC API service was planned to deliver the data in native, domain-specific encodings. For
example, AIXM, FIXM, and traffic message data service format of FAA may be suitable for
domain-specific applications. These encodings follow a well-defined schema that may restrict
the generation of unique identifiers for the OGC API Service. The SWIM Data Relay API
Component was built implementing the following strategies to maintain a unique identifier for
each feature:

◦ For outputs in geojson or text/html, a unique identifier was generated by using the UUID of
the service plus the unique number within the service. For example, the service created in
this Testbed has a service UUID as 150061c7-5575-475b-8496-c938019fc8e0. As an example, a
unique feature ID, FID-150061c7-5575-475b-8496-c938019fc8e0-2859 is formed by using
template FID-{UUID}-{Seq#} where the sequence number is 2859.

◦ For native formats, a unique identifier was added to each feature through an additional or

40

unused element under the schema.

▪ For example, in AIXM features, the generated unique identifier was added to the
generally-not-used name element without violating the schema. To distinguish it from
other identifier/name, a special codeSpace attribute was defined as
http://www.opengis.net/ogcapi-features-1/1.0/aixm/id. An example of an identifier is
<gml:name codeSpace="http://www.opengis.net/ogcapi-features-1/1.0/aixm/id">FID-
150061c7-5575-475b-8496-c938019fc8e0-2859</gml:name>.

▪ For FIXM-NAS message, a gumi metadata element was added for each message. For
example, <metadata gumi="FID-150061c7-5575-475b-8496-c938019fc8e0-5728"
xsi:type="nas:MessageMetadataType"/> was added as a first child element to a FIXM-NAS
message.

• Spatial extent in a feature collection: The spatial extent of a collection may increase as each
message is received and data is accumulated in the database. By doing so, the spatial extent of
each collection reflects the actual spatial coverage.

Figure 17 shows an example of updating the spatial extent for the feature collection Apron
Element during the harvesting stage. The collection is initiated with the first harvested element.
The extent is assigned to be the same as that of element 1, i.e. (-87.9011,41.9545,-
87.8985,41.9568). When feature 2 in the collection Apron Element is added, the spatial extent is
expanded to cover both feature 1 and 2, i.e. (-87.9048,41.9545,-87.8985,41.9664). The spatial
extent for feature collection Apron Element gets updated as new features are harvested.

Figure 17. Spatial Extent Expansion During the Harvesting Stage

• Temporal extent in a feature collection: When a SWIM message is received, features are
extracted and harvested into a backend geospatially-aware database for spatial/temporal
indexing. A collection is also picked up when any feature from that collection is received. The
temporal extent of a collection is first set based on the first feature in that collection received.
When more features from that collection are received, the temporal ranges of the collection are
expanded based on the minimum and maximum temporal extent values of the entire collection.

41

http://www.opengis.net/ogcapi-features-1/1.0/aixm/id

• Spatial information in a feature: Some SWIM data may not have explicit geometry properties
but rather named places or locations, requiring geocoding to add or extract geometry properties
for each feature. Two of these situations were encountered during this Testbed:

◦ One geometry property of a flight feature may be represented as the trajectory from the
departure airport to the destination airport (or the great circle if no waypoints are
available). Flight data from SWIM data services may only include the codes of the departure
and arrival airports, and not its coordinates. To generate the geometry property for two
given departure and arrival airports, the Harvester takes three steps to geocode and
interpolate the trajectory, before saving it in the database encoded in GeoJSON:

1. First, one of the most frequently updated airport databases, ourairports
[https://ourairports.com/data/airports.csv], is used to retrieve the codes and coordinates of
over 57,000 airports worldwide.

2. Second, a script maps inside the database the airport code coming from SWIM data with
the IATA code, GPS code, or any recognized local code (including 3 letter ICAO code) of
the database.

3. Finally, geographic interpolation is used to generate the approximate trajectory using the
GeographicLib library for Java.

◦ Another type of named geometry property in SWIM data may be expressed as the affected
area by a given radius. The location may be an airport or a location. As an example, the
extension of features of type Event in AIXM often describe an event that affect an area with
a given radius.

The Harvester may use geocoding to extract the actual coordinates of the center.
Additionally, because GeoJSON does not support circles or curves, the Harvester would use
an interpolated circular area (polygon) to approximate the spatial coverage. GeoJSON
encoding of curves is less precise than GML and may consume as much as ten times of
storage space. The geocoding program first looked for the location to convert to latitude and
longitude. If that failed, the program would check if there was any given coordinate in the
original dataset. The reason to put the geocoding of a location as the preferred location was
that the original coordinates seemed off due to precision issues.

• Limited semantic descriptions of feature collections and features: The semantic description
of each collection and feature is limited. A proper ontology to describe each collection may not
be available. The implementation of the OGC API - Features Service for SWIM data took the
following measures to augment features semantically:

1. Geocoding was used to add spatial contextual information;

2. online descriptions and documents of features were used to add descriptions and schema
for each collection; and

3. units for distance and speed are unified by using ISO standard units.

Further work is needed to add more semantic descriptions to each collection and feature.
Controlled vocabularies and ontologies should be further developed. Descriptions for each
collection with a well-defined ontology should be further developed.

• Large data volume: Due to the large amount of flight, weather, airport and ground data

42

https://ourairports.com/data/airports.csv

transferred, more than 4 terabytes of data are estimated to be distributed daily through the FAA
SWIM SCDS services [12]. The implementation of the SWIM Data Relay API Component
supported a permanent ingestion and storage of SWIM data on its database. However, since the
actual volume exchanged is beyond the capacity of the testing server used in this Testbed to
store the vast amount of data. Therefore, for the purposes of testing the harvesting service, the
service only ran for as long as two days to collect enough testing datasets to demonstrate the
capabilities of the OGC API - Features Service.

A more scalable database may be used, such as Accumulo, HBase, or GeoMesa. Another aspect to
be considered could be for how long the data needs to be kept. A considerable volume of SWIM
data consists of status data that are valid only for certain periods. A time limit could be defined
for this data to be removed after the limit is surpassed.

• Automatic code generation is not perfect: One of the benefits of adopting the OGC API
approach is the capability of automatically generating code for both client and server
applications in many popular frameworks and programming languages. This implementation
used the OpenAPI Generator [https://github.com/OpenAPITools/openapi-generator] to generate server-
side code stubs using the OpenAPI in YAML [https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/

wfs3.yaml]. The general Java JAX-RS RESTful framework was chosen to create the server. The
code was generated successfully, adding convenience in the implementation of the server.
However, the following downsides of this approach were detected:

1. For JAX-RS code, the handling of the property OneOf is not supported and properly generated.
A workaround and fix-up should be applied.

2. The parameter of bbox was generated with a dimension constraint of either 4 or 6 elements.
This constraint made the bbox parameter not to be optional, which was not desired. To make
the parameter optional, the solution was either to remove the constraint or to specify the
constraint with looser values like (min=0, max=6). In the final implementation, the
constraint was removed.

3. For bbox parameter, the generated code stub uses repeated parameter bbox to pass an array
of BigDecimal values - 4 repeats for 2-D bbox and 6 repeats for 3-D bbox. This is not commonly
preferred to pass bbox. The commonly preferred bbox is passed to the server using a comma-
separated array. In the implementation, a string of comma-separated values is accepted and
parsed to get bounding box.

8.4. Accomplishments
• Exposed features from SWIM data services: OGC API Feature Core was implemented in Testbed

16. Selected data and services from SWIM are proxied through the OGC API - Features service.
These include AIXM Features from the AIM FNS for Notice to Airmen (NOTAMs), FIXM features
from the SWIM Flight Data Publication Service (SFDPS), and the flight information from the
SWIM TFMData Service. These provide information on flights, flight status, ground delay
program (GDP), etc., which were necessary to answer the questions in the Testbed 16
demonstration scenarios.

• Spatial and temporal filtering: Features were populated with spatial and temporal properties.
This enables the discovery of features by spatial and temporal constraints.

• Encoding: The OGC API - Features Service expands the data distribution encodings. Not only

43

https://github.com/OpenAPITools/openapi-generator
https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/wfs3.yaml

native aviation-domain-specific encodings (AIXM, FIXM, TFM Data Service encoding) are
supported, but also well-accepted GeoJSON and HTML are supported. GeoJSON is good for data
distribution. HTML is good for instantly previewing and examining data in depth.

44

Chapter 9. Semantic Registry
The Semantic Registry component was built to enable the search and discovery of Aviation-related
assets (services, datasets, vocabularies, etc) using metadata about these assets. The Semantic
Registry was designed to harvest semantic metadata information from SWIM Service Registries, as
well as OGC APIs serving SWIM data. Assets such as Services and Datasets are searched and
discovered by receiving search requests from the Triple Builder and the SWIM Data Client using
either a REST API or a GraphQL API. The matching asset metadata records are sent back to the
requesting component, which uses the access information to query and retrieve the content of the
datasets. The development of Semantic Registry was carried out by Image Matters LLC.

9.1. Status Quo
In order to connect to aviation data services to extract information, users first need to know which
services are available and what information each service provides. The NAS Service Registry and
Repository (NSRR) is an online service for storing, sharing, and managing information about all
SWIM-enabled services, both currently available and under development. As seen on Figure 18, the
exploration of services is mainly performed manually through the NSRR website. Automation of
this exploratory process has the potential of fostering the development and interconnectivity of
applications based on the consumption of SWIM data. For this reason, this automation has been the
subject of numerous research endeavors in the past.

45

Figure 18. SWIM Service Description in the NSRR Website

Testbed-16 leveraged the Testbed-13 work that defined a draft Semantic Registry REST API
specification and the Semantic Registry Information Model (SRIM). These specifications were based
on a generalization of DCAT 1 [https://www.w3.org/TR/2014/REC-vocab-dcat-20140116/] to accommodate
other types of assets such as Maps, Layers, Galleries, Services. DCAT 2 [https://www.w3.org/TR/vocab-

dcat-2/] closed some of the gaps addressed in the SRIM specification (dcat:Resource,
dcat:DataService). The implementation of this Semantic Registry API and the SRIM model was
refined in the context of Geoplatform.gov effort that managed all geospatial assets from the US
Government. The service is currently powering the Geoplatform.gov registry.

There is also an ongoing OGC effort to define, document, and approve the OGC API – Records. This
API is a multi-part draft specification that offers the capability to create, modify, and query
metadata on the Web. OpenAPI 3.0 is used to define and document that API. While the Records API
has a lot of similarity with the Semantic Registry API, there are some significant differences. The
OGC API - Records uses GeoJSON as the default data encoding while the Semantic Registry uses
JSON-LD and Linked Data formats based on well-defined ontologies (DCAT, Dublin Core
[https://www.dublincore.org/specifications/dublin-core/dces/], PROV-O [https://www.w3.org/TR/prov-o/]). The
REST API endpoints are very similar though in term of path structure. During the period of
performance for Testbed-16, the OGC API - Records specification was still in a draft version.

46

https://www.w3.org/TR/2014/REC-vocab-dcat-20140116/
https://www.w3.org/TR/vocab-dcat-2/
https://www.dublincore.org/specifications/dublin-core/dces/
https://www.w3.org/TR/prov-o/

Therefore, the Testbed-16 participants could not investigate the adaptation of OGC API - Records for
this testbed. Once the specification is finished and approved, this would be a subject of
investigation for future testbeds.

REST principles have become the most common approach for designing web APIs. REST offers some
great ideas, such as stateless servers and structured access to resources. REST APIs have been
widely adopted in the industry as it lowers the bar of integration of services with clients using
standards HTTP verbs (GET, POST, PUT, DELETE) for performing create, read, update and delete
(CRUD) operations. Many of these APIs are now using JSON as the standard formats because it is
less verbose than XML and integrate easily with JavaScript client based (web browsers). However,
REST APIs have shown to be too inflexible to keep up with the rapidly changing requirements of the
clients that access them.

One of the most common problems with REST is that of overfetching and underfetching. This
happens because the only way for a client to download data is by hitting endpoints that return
fixed data structures. It is very difficult to design the API in a way that is able to provide clients
with their exact data needs. The issues of overfetching and underfetching resources is that the
server side imposes specific data view point of the client, forcing clients to perform multiple calls to
the server to get the data following the structure needed by client or getting too many information
for displaying specific views, especially in mobile environment. Another issue with REST APIs is
that there is no standard way to describe the schema of the data model to the client that allows the
discovery of APIs without writing custom code.

To address these gaps, Facebook published in 2015 the GraphQL specification, which provides a
query API for APIs. GraphQL not only provides a single endpoint to perform CRUD operations but
also a publish/subscription mechanism for asynchronous communication. In addition, GraphQL
provides a schema language (GraphQL Schema) that enables clients to discover the data model and
operations allowed on the data model in a consistent way and then perform validation on client
and server side.

GraphQL query language enables clients to define the exact structure of the response (including
aliasing of field names) giving back control to clients to define what data needs to be returned. This
solves the issue of overfetching and underfetching in a REST API. This significantly improves
performance of the applications by minimizing the number of requests and payload size exchanged
with the service. A large number of vendors have adopted the GraphQL standard (GitHub, AWS,
Facebook, Twitter) and libraries exists for mostly all programming languages making it easy to
integrate with any clients.

9.2. Functional Overview
The Semantic Registry consists of the following sub-components:

• Harvester: Designed to collect service and dataset information by crawling relevant links. For
this Testbed, the Harvester only retrieved data from the NSRR.

• Importer Plugins: Each native format (OGC API - Features JSON or NSRR XML document) is
associated with an importer plugin that parses the native metadata document to SRIM Asset
model. The Importer for OGC API - Features Service was also designed to connect to the API and
extract the information without going through the Harvester.

47

• Semantic Registry Service: This service stores the SRIM Asset Metadata generated by the
Importers into a NoSQL database, along with the versioning history and associations to other
assets. In addition, the assets are indexed in a search index to support lexical, geospatial,
temporal and semantic search. The Service provides GraphQL and REST APIs for clients to
perform search and discovery tasks and transactions.

Figure 19 breaks down the Semantic Registry, and outlines how data flows through its
subcomponents. The workflow sequence of its elements, as well as their connections to external
components, is outlined on Figure 20.

Figure 19. Semantic Registry Component Breakdown and Data Flow

48

Figure 20. Semantic Registry Subcomponent Interaction

9.2.1. Harvester

To harvest metadata information from different sources, Image Matters used their Factweave
Harvester [https://www.imagemattersllc.com/products-and-services/factweave/]. The Harvester connects to a
data source, extracts data in a programmatic way, and handles the extracted information to an
Asset Importer. The Importer is responsible for parsing the XML document and mapping the data to
the SRIM model and storing the results in the registry.

The Harvester has a REST API that enables managing its capabilities. The configuration consists of
the following elements:

• Source configuration: Consists of a source type (OGC CSW, Web Accessible Folder, RSS Feeds,
OpenAPIs, etc.) and parameters bindings. Each source type requires a specific harvester plugin,
which contains the logic required to extract that specific data source.

• Handler configuration: Depending on the source harvested, the Harvester relayed the retrieved
data to a specific Asset Importer Plugin designed to process that type of data. The handler
configuration consists of a handler type and parameter bindings.

49

https://www.imagemattersllc.com/products-and-services/factweave/
https://www.imagemattersllc.com/products-and-services/factweave/

• Schedule: Configuration of the scheduling of the harvesting consisting of trigger conditions,
frequency and duration of the harvesting.

• Log: A log can be configured to provide status, errors, and amount of services retrieved.

For Testbed-16, an instance of the Semantic Registry Harvester was configured to harvest the root
index page URL of the NSRR; this page contains only a brief description of the service (id, title,
description) and a link to the XML document describing a full description of the service. The
Harvester extracted these links from index page (located at https://nsrr.faa.gov/rim/index) and then
accessed them in order to fetch the complete XML service description document. An example of the
harvested NSRR Index and a full XML service description can be seen in Appendix B. The Harvester
was not used to extract data from SWIM Data Relay API because there was just one service to
connect to. Future work could see the Harvester being used to connect to multiple OpenAPI
Services.

9.2.2. Asset Importer

Two Asset Importers were implemented for the Semantic Registry: One to process the imported
service and collection metadata from SWIM Data Relay API, and another one to process the
imported service metadata from the NSRR Service Description. These two Importers were
responsible for converting the native asset metadata information retrieved from the service into
SRIM asset entities.

The importers parse the incoming native metadata documents and extract only the relevant
information to support the search and discovery of assets, such as:

• The descriptive metadata (id, title, description, version).

• Attributions (publisher, contributor,…).

• Classification of assets (theme, function, status, subject, service category) using semantic-based
taxonomies and keywords.

• Standard conformance.

• Access and distribution information and related resources.

A globally unique universal URI is generated if needed for each asset so they can be used to link to
other assets using Linked Data principles. The assets extracted by the importers are persisted in a
NoSQL database and indexed in a search index to support fast search and discovery requests from
the REST API and GraphQL API. All the original native metadata is preserved separately in the
database, and referred by the asset using Dublin Core source (dct:source) property.

9.2.3. Asset Importer for NSRR

The Asset Importer of the NSRR extracted Related Resources from each SWIM service by
interpolating new URLs from the data using web page scraping techniques in order to complement
information about the service that were not encoded in the XML document. These Service
Documents are available through the web version of the NSRR, as seen on Figure 21.

50

https://nsrr.faa.gov/rim/index

Figure 21. Service Documents scraped from HTML encoded as Related Resources.

The result of the import of the previous example can be seen in Appendix B. The JSON encoding can
be turned to a Linked Data using the implicit JSON-LD context serviced at the new endpoint
/context.

9.2.4. Asset Importer for SWIM Data Relay API

This Asset Importer extracted metadata from the SWIM Data Relay API through a POST call to the
import endpoint of the registry, specifying as parameters the version and the URL of the root of the
service. The importer then traverses the links to collect metadata information about the service and
the different feature collections managed by the service. Each feature collection metadata was
converted to a DCAT Dataset with different distributions (one for each representation available in
the API).

The result of the import of the previous example can be seen in Appendix B. The JSON encoding can
be turned to Linked Data using the implicit JSON-LD context serviced at the new endpoint /context.

9.3. Semantic Registry API
For Testbed-16, Image Matters extended the Semantic Registry APIs implemented during Testbed-13
by:

51

• Linked Data Support: Adding support of JSON-LD context and Linked Data formats (TTL,
RDF/XML, JSON-LD).

• GraphQL Support: Adding a GraphQL API to address some of the limitations of the REST API.

9.3.1. Linked Data support

To support Linked Data serialization, the item classes were annotated with Java RDF annotations.
The Linked Data representation and JSON-LD context were generated by processing these
annotations to produce the output. Content-negotiation by mime type or file extension on URL were
added to support Turtle, RDF/XML, N-Triples and JSON-LD.

The JSON-LD encoding provides an easy way to integrate with web clients (compared to RDF/XML
or Turtle [https://www.w3.org/TR/turtle/]), while preserving the semantic of the information, which can
be harvested and processed by agents to perform information integration, linking and reasoning.
An example in JSON-LD can be seen in Appendix B.

The same dataset can be returned in Turtle format using file extension (ttl) or HTTP Accept header.
An example in TTL can be seen in Appendix B.

The previous examples demonstrate the equivalent representation of the JSON-LD in Turtle, which
can be directly ingested in Triple Stores and used by semantic reasoners to perform logical
consistency checking and inferences. The example shows that the SRIM model is superset of the
well-established DCAT standard.

Each item in the semantic registry is addressable and can be serialized in JSON, JSON-LD, RDF/XML,
Turtle, N-Triples. This does not mean that the data needs to be persisted in an RDF store. Relational
database and NoSQL databases such as MongoDB can be used. The ontologies used in SRIM are
based on a mixed of well-established standards such as Dublin Core Terms, PROV-O, DCAT, FOAF
[http://xmlns.com/foaf/spec/]. Future work should investigate the implementation of a SPARQL endpoint
to perform semantic query on the semantic registry.

9.3.2. Semantic Registry GraphQL API

REST APIs require declaring endpoints based on the resources they return. In GraphQL, you need to
define a schema. This schema is used to:

• Declare the types available and their relationships.

• Declare how data can be mutated or queried.

While having POST, GET, PUT, DELETE and others as request methods in a REST API, for GraphQL
there is just Query (equivalent of GET in REST) and Mutation (equivalent of PUT, POST, PATCH and
DELETE in REST).

9.3.2.1. Semantic Registry GraphQL Schema

The GraphQL Schema Definition Language (SDL) is the schema language used for GraphQL. A
schema is often seen as a contract between the server and client. SDL is simple and intuitive to use
while being programming language-agnostic and extremely powerful, expressive and extensible.
The syntax is defined in the official GraphQL specification [https://graphql.github.io/graphql-spec/draft/#

52

https://www.w3.org/TR/turtle/
http://xmlns.com/foaf/spec/
https://graphql.github.io/graphql-spec/draft/#sec-Schema

sec-Schema].

GraphQL query language is basically about defining the shapes of JSON objects to retrieve from the
server by selecting fields on objects. GraphQL SDL describes the schema composed of the set of
possible data that can be requested by providing a description of the object types and its fields and
constraints. When GraphQL queries come in, they are validated and executed against that schema.

The main components of a schema definition are the types and their fields. Additional information
can be provided as custom directives.

A type has a name and can implement one or more interfaces. This supports the inheritance of
fields from the interfaces, allowing redefinition of the same field definition for each subtype.

type Dataset implements Item {
 # ...
}

GraphQL queries are hierarchical and composed, describing a tree of information. Scalar types
describe the leaf values of these hierarchical queries.

The GraphQL specification defines some built-in scalar values but more can be defined by a
concrete implementation.

Most types in the schema are just normal object types, but there are two types that are special
within a schema:

schema {
 query: Query
 mutation: Mutation
}

Every GraphQL service has a query type and may or may not have a mutation type. These types are
the same as a regular object type, but they are special because they define the entry point of every
GraphQL query.

For the Semantic Registry GraphQL API, we define two queries: getItem and searchItems. A
deleteItem mutation was defined to delete any registry item by identifier. Save mutation methods
were defined for each item type (modeled as input instead of type). The save mutation methods are
equivalent to the POST or PUT operation in REST API.

The GraphQL schema for the Semantic Registry is documented in Appendix C.

9.3.2.2. GraphQL Implementation

During Testbed-16, GraphQL Java library was used and a GraphQL schema for the SRIM model was
defined first before writing the type resolver and data fetcher needed to assemble the data
requested by the GraphQL query. A sandbox Graphiql [https://www.electronjs.org/apps/graphiql] was
deployed with the registry to demonstrate the discovery of the schema and perform queries and

53

https://www.electronjs.org/apps/graphiql

mutations on the data.

The integration of the GraphQL endpoint with D106 was relatively straightforward without
requiring to reference a how-to guide, as GraphQL schema allow clients to validate and discover
the data model and operations available for the registry. The GraphQL also provides flexibility to
evolve the API and support new operations and data model without redefining a new protocol.

9.3.2.3. Comparative analysis between REST and GraphQL

Table 8 compares REST API and GraphQL API based on the lessons learned from the
implementation of the REST API and GraphQL API for the Semantic Registry.

Table 8. Comparison of GraphQL and REST API

GraphQL REST API

Architecture Client-Driven Server-Driven

Organized in terms of Schema & Type
System

Endpoints

Operations Query, Mutation,
Subscription

Create, Read, Update,
Delete

Number of Endpoints 1 n (typically 1 per
resource type).

Data Fetching Specific Data with a
single API call

Fixed Data with
multiple API calls

Community Fast-growing Large

Performance Fast Multiple network
calls take up more
time

Development Speed Rapid Slower

Learning Curve Moderate Easy

Self-Documenting Yes No

File Uploading Yes (Through
Extension)

Yes

Web Caching No (via libraries built
on top)

Yes

Stability Less error-prone:
Automatic validation
and type checking

Better choice for
complex queries

Use Cases Multiple
microservices, Mobile
apps

Simple apps,
Resource-driven apps

54

9.4. Challenges and Lessons Learned
• Limitations of the NSRR: The FAA has defined the WSDOM ontology to describe their services.

However, the NSRR registry was based on an XML encoding based on a XML schema. Each
service description is classified using reference URIs to SKOS taxonomies. In addition, an index
file provides a summary of each service required to make a call to get the full description of
each service. There is no query API that allows performing a search and retrieving the list of
services in full details. For this reason, custom codes are required to be written to harvest and
convert data to Linked Data representation.

Having the SWIM registry expose the services as linked data and providing a SPARQL endpoint
to perform custom search of information would be simpler. The mix of data centric (XML based
on XML Schema) and knowledge centric (SKOS) makes it impossible to leverage the WSDOM
ontology to perform inference and linking services to other assets expressed in Linked data
(such as Dataset, Map, Layer, etc.)

• Support of different application profiles: There are number of profiles for DCAT (DCAT-AP,
GeoDCAT, DCAT-US, DCAT_FR, among others), each one defining different usage of the DCAT
models using specific taxonomies or properties. SHACL has emerged as the standard way to
validate Linked Data for these profiles. The current implementation of the Semantic Registry
does not have a mechanism to publish the supported profiles and perform validation against
specific profiles. This is an important topic to be investigated in the future. In addition, the
import of RDF data and support of a GeoSPARQL endpoint on the Semantic Registry should be
considered in future testbeds.

• GraphQL and Linked Data: Further investigation is needed to define a normative way to map
GraphQL to Linked Data. In particular, investigating the role and usage of JSON-LD context with
GraphQL schema to define the mapping to RDF model and SHACL to define the application
profiles that translate to GraphQL Schema.

9.5. Accomplishments
• The descriptions of 94 services were harvested from the NSRR.

• The metadata from 33 collections were retrieved and converted to DCAT Datasets from the
SWIM Data Relay API Component of this Testbed.

• The Semantic Registry was extended with a GraphQL API and Linked data serialization using
JSON-LD, Turtle, RDF/XML and N-Triples.

• The Triple Store and OpenAPI Client Components accessed the Semantic Registry using the REST
API and GraphQL API, respectively.

• The SRIM model was updated to be better aligned with DCAT 2 and taxonomies developed in
previous testbeds (semantics.aero) were used to classify FAA services.

55

Chapter 10. Triple Builder and Triple Store
The Triple Builder was the component designed to build triples based on the retrieval and
combination of both aviation data and aviation ontologies. A Triple Store component was included
to store the aforementioned triples and make them available through SPARQL and GeoSPARQL
endpoints.

The development of these two components was carried out by Arizona State University (ASU). The
main goals were to demonstrate the process of semantic-enrichment of aviation data, and to unlock
further demonstrations by providing linked data to the Semantic Web Client developed in this
Testbed.

10.1. Status Quo
ASU’s previous experience on semantic enrichment has been through research on the development
of ontologies for land use and land cover change, as well as the development of a
cyberinfrastructure portal that supports the semantic query and visualization of the time series
data. To convert data into formal knowledge, ASU segmented remote sensing images into different
land use patches, and then converted each of the polygonal features into triples and saved them
into a triple store. Jena [https://jena.apache.org/] and Virtuoso [https://virtuoso.openlinksw.com/] were used
for ontology building and triple building. Another experiment was the building of ontologies for a
spatial decision support semantic portal where Protégé [https://protege.stanford.edu/] was used for
ontology building and instance importing.

This was the first time ASU has used RDF4J [https://rdf4j.org/] for semantic work, and the first time
ASU used the OGC API - Features Standard for the retrieval of data with the purpose of semantically
enriching the data.

To the knowledge of this Testbed’s participants, there is currently no SWIM service implemented as
a service described using OpenAPI.

10.2. Functional Overview
The Triple Builder and Triple Store generated, stored, and relayed semantically enriched aviation
data. The generation of triples was performed by the Triple Builder, which then handed over the
triples to the Triple Store to store them and make them available for clients to consume.

The Triple Builder generated two sets of triples for this Testbed, one for flight data and another one
for airport data. A third set of triples was generated by combining the two aforementioned sets of
triples. Each set of triples was generated through a different process:

1. On one hand, the set of flight triples was generated by first retrieving flight data from the SWIM
Data Relay API Component and then storing that data into a database. Finally, the Component
used a script with the Jena RDF API to generate triples by combining the aforementioned data
with a set of flight ontologies built specifically for this testbed.

2. On the other hand, the airport triples were manually generated using a tool named Protégé to
combine a dataset of airports with a set of airport ontologies also built specifically for this

56

https://jena.apache.org/
https://virtuoso.openlinksw.com/
https://protege.stanford.edu/
https://rdf4j.org/

testbed.

3. The airport and flight triples were then loaded into a triple store built on a platform named
RDF4J to build a federation repository. A federation repository can be built using the workbench
UI or a repository config template deployed in the RDF4J Server. This repository serves as a
virtual endpoint (SPARQL and GeoSPARQL) from which the Semantic Web Client Component
consumed the triples.

The Triple Builder was also connected to the Semantic Registry Component to retrieve the flight
datasets from SWIM Data Relay API to demonstrate the service discovery capabilities of the
Semantic Registry.

Figure 22 breaks down the Triple Builder and Triple Store, and outlines how data flows through its
subcomponents. The workflow sequence of its elements, as well as their connections to external
components, is outlined on Figure 23.

Figure 22. Triple Builder and Triple Store Component Breakdown and Data Flow

57

Figure 23. Triple Builder and Triple Store Subcomponent Interaction

10.2.1. Triple Builder

Each set of triples were generated through a different process, and later loaded into the Triple
Store. The flight triples were generated through scripts, while the airport triples were manually
generated through the user interface of a software application.

Flight Triples

The process for generating the flight triples consisted of three steps: Harvesting, storing, and triple
generating. The creation process of the flight triples was entirely performed through scripts.
Despite the fact ASU manually triggered these scripts for the purpose of this Testbed this process
paved the way for future work to see these scripts being executed automatically.

A script written in Java, named "Harvester", was built to discover SWIM datasets and services
through the Semantic Registry Component, retrieve SWIM data from the SWIM Data Relay API
Component, and load the retrieved data into a database.

The Harvester communicated with the Semantic Registry to query for the flight datasets that were
required to build the flight triples. The Harvester first makes an API query to the Semantic Registry
to access a dataset that matched a specific collection being searched. Next, a Turtle (TTL)
description of the metadata is retrieved. Finally, a SPARQL query on the TTL returns the exact
endpoint of the SWIM Data Relay API to download the requested collection.

After acquiring the service and dataset information, the Harvester performed API calls to the SWIM
Data Relay API Component to request the flight data that would ultimately be used for the creation

58

of the flight triples. The SWIM Data Relay API returned flight data collections encoded as GeoJSON
objects which implemented OGC’s simple feature specification.

For the purposes of this Testbed, two collections were retrieved using the GeoJSON format:

• trackInformation: Containing flight track information, both international and domestic.

• NASFlightMessage: Containing flight information with U.S. Extension in FIXM.

Once the flight features were retrieved, the Harvester stored them into a PostgreSQL database
extended with PostGIS. PostgreSQL (version 9.5.11) was used to manage and archive indexes, while
PostGIS (version 2.2.1) was used to maintain and index spatial properties.

A second Java script, named "Triple Generator", was coded to retrieve the flight features from the
PostgreSQL and combine them with an ontology in order to generate the flight triples. The triples
were generated using an open-source Semantic Web framework for Java named Jena RDF API. First,
Jena was used to create a Jena Ontology Model object that included all the namespace references,
ontology class definition, ontology properties, and description of relationships. The script then
iterated all the feature objects and put all the attributes into newly created ontology pieces
generated by the ontology model based on the schema. The output format of the triples was RDF.

A triple generation example is outlined in Appendix D.

Airport Triples

Triples may also be generated based on external datasets. To demonstrate this, airport triples were
generated based on data not retrieved from the SWIM Data Relay API.

The generation of the airport triples was performed manually through the user interface (UI) of
Protégé [https://protege.stanford.edu/], a free and open-source ontology editor and framework for
building intelligent systems.

Airport data were retrieved from an FAA database [https://www.faa.gov/airports/airport_safety/

airportdata_5010/] as comma-separated values (CSV) files. The main tool used to generate the flight
triples, Jena API, is effective at building triples through parsing rules coded in a script; in the case of
processing CSV files (which have a table-like data structures), Jena does not provide a visual
interface to interact with the data. Protégé, which has a friendly UI for both triple building and
instance importing, was therefore chosen to generate the airport triples.

The airport datasets were imported as instances through a Protégé plugin for spreadsheet
importing named Cellfie [https://github.com/protegeproject/cellfie-plugin]. As seen on Figure 24, the plugin
provides a visualization of the imported data. The upper section of the window displays the
spreadsheet as a reference for the construction of rules. The lower section of the window displays
the importing rule editor. For reusability, mapping rules can be saved in a syntax named
Manchester as a JSON file. A sample JSON file can be seen in Sample Cellfie Rule Mapping JSON
Code.

59

https://protege.stanford.edu/
https://www.faa.gov/airports/airport_safety/airportdata_5010/
https://github.com/protegeproject/cellfie-plugin

Figure 24. Cellfie Spreadsheet Importer

Sample Cellfie Rule Mapping JSON Code

{
 "Collections":[
 {
 "sheetName":"test", "startColumn":"A", "endColumn":"A", "startRow":"2",
"endRow":"+",
 "comment":"",
 "rule":"Individual: @C*(mm:prefix\u003d\"airport\")\n\nTypes: Airport\n
\nAnnotations: \nrdfs:label@L*\n\nFacts: \n\u0027faa airport code\u0027@C*,\n
\u0027airport name\u0027@L*,\n\u0027has identifier\u0027@A*,\n\u0027icao airport
code\u0027@CX*,\nhasGeometry@C* (mm:prepend(\"Geo_\"))",
 "active":true
 }, {
 "sheetName":"test", "startColumn":"CZ", "endColumn":"CZ", "startRow":"2",
"endRow":"+",
 "comment":"",
 "rule":"Individual: @C* (mm:prepend(\"Geo_\"))\n\nTypes: Geometry\n
\nAnnotations: \nrdfs:label@L*(mm:prepend(\"geometry for airport \"))\n\nFacts:
\n\u0027asWKT\u0027@CZ*",
 "active":true
 }
]
}

Aircraft Triples

60

A third set of aviation data was proposed for triple generation. These data were based on aircraft
data. These data are useful not only as an independent triple repository, but also as an additional
component of the federated triples that were already composed by flight and airport triples. Adding
aircraft triples would have expanded the semantic-enrichment of the flight triples by allowing data
consumers (i.e. users of Semantic Web Client) to explore additional information related to the
aircraft associated with a flight.

Aircraft data was obtained from the FAA as CSV static files. Aircraft data were found to be available
in SWIM feeds but under certain conditions:

1. Registration number is optional. In their distributed messages from SWIM Flight Data
Publication Service (SFDPS), the registration is available under aircraftDescription for
messages with source="HU", "AH", or "FH". These are FIXM messages related to flight plan.

2. Linking "registration" in HU, AH, or FH to flight is possible through Globally Unique Flight
Identifier (GUFI) or flightPlan/identifier.

Due to time constraints in the Testbed, the creation of aircraft triples and its use within the
federated triples was left for future work.

10.2.2. Triple Store

The triples generated in the Triple Builder were stored in a triple store named RDF4J Server. Eclipse
RDF4J is an open-source modular Java framework for working with RDF data. RDF4J allows
external software tools to connect with SPARQL endpoints and create applications that leverage the
power of Linked Data and Semantic Web.

RDF4J provides two tools for users to load triples into the RDF4J Server: The RDF4J Console, which is
a text console application for interacting with RDF4J, and the web-based UI named RDF4J
Workbench. RDF4J Server is a servlet-based web application deployed to any standard servlet
container. ASU used Tomcat as the container. A special Tomcat configuration was needed to enable
UTF-8 Support for RDF4J Workbench to solve a character encoding issue.

For this testbed, the RDF4J Workbench was used to manually load the triples into the RDF4J Server.
Figure 25 shows the Workbench being used to visualize airport triples after being loaded into the
RDF4J Server. Future work could see this manual process be automated by using scripts to load
triples into the triple store without user intervention.

RDF4J enables users to connect with SPARQL endpoints and provides support to the majority of
GeoSPARQL queries. This was a critical reason for ASU selecting this triple store because the
Semantic Web Client Component required both SPARQL and GeoSPARQL queries. Up to the
beginning of Testbed 16, there was no triple store fully supporting GeoSPARQL. Furthermore,
compared to other solutions, RDF4J had shown satisfying performance in both GeoSPARQL support
as well as efficiency especially for spatial selection queries [13]. Finally, another reason for ASU to
choose RDF4J in this Testbed was RDF4J is open source and well documented.

ASU decided to work with triple stores because these support ontologies. This allows for a formal
description of the data: Triple stores specify both object classes and relationship properties, and
their hierarchical order, while general graph databases do not. For this Testbed, the ability to infer
and reason was considered more useful because various aviation datasets are not just linked but

61

also semantically understandable.

Figure 25. RDF4J Workbench Displaying Airport Triples

Federated Triples

After the airport and flight triples were loaded into RDF4J as separate repositories, a single
federation repository was created as a combination of the aforementioned individual repositories.
The federation repository consisted of triples made up of references from both flight and airport
triples. These federated triples enabled the Triple Store to answer complex queries made in
SPARQL, as seen on Sample SPARQL Query to the Triple Store, and whose response was in the form
of linked data. The triples were generated using the RDF4J Workbench.

Table 9 presents a sample response to a SPARQL query. A regular flight element would not include
detailed information about the airports, but linked data enables access to additional information
about each element by following the links on each attribute. The subsequent tables outline the
sample content returned when exploring each element of the response (Flight, Airport Code,
Airport Name, Airport FAA Code, Geometry, and FWKT), providing an example of the semantic
enrichment of aviation data.

62

Sample SPARQL Query to the Triple Store

PREFIX flight: <http://www.opengis.net/ont/testbed16/aviation/activities/flight#>
PREFIX infrastructure: <http://www.opengis.net/ont/testbed16/aviation/infrastructure#>
PREFIX geosparql: <http://www.opengis.net/ont/geosparql#>

SELECT ?Flight ?Arrival_Airport_Code ?airportName ?FAA_code ?geo ?fWKT
WHERE {
 ?Flight a flight:Flight;
 flight:arrival ?Airport_Arrival.
 ?Airport_Arrival flight:airport ?Arrival_Airport.
 ?Arrival_Airport infrastructure:icaoAirportCode ?Arrival_Airport_Code.

 ?airport a infrastructure:Airport;
 infrastructure:icaoAirportCode ?Arrival_Airport_Code;
 infrastructure:airportName ?airportName;
 infrastructure:faaAirportCode ?FAA_code;
 geosparql:hasGeometry ?geo.

 ?geo geosparql:asWKT ?fWKT .
}

Table 9. RDF4J Response to the Sample SPARQL Query

Flight Arrival_Airport
_Code

AirportName FAA_code Geo FWKT

http://www.ope
ngis.net/ont/tes
tbed16/aviation
/activities/flight
#Flight_FID289
8

"KIAD" "WASHINGTON
DULLES INTL"

"IAD" http://www.ope
ngis.net/ont/tes
tbed16/aviation
/infrastructure
#Geo_IAD

Point(-
77.4599444444
444
38.9474444444
444)"

Table 10. Result of Exploring the "Flight" Element in the RDF4J Response

Subject Predicate Object

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight_FID2898

http://www.w3.org/1999/02/22-
rdf-syntax-ns#type

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight_FID2898

http://www.w3.org/2000/01/rdf-
schema#label

"Flight FID2898"

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight_FID2898

http://www.opengis.net/ont/
testbed16/equipment#
operatedBy

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#AircraftOperator_SKQ

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight_FID2898

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#arrival

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Arrival_FID2898

63

http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/equipment#operatedBy
http://www.opengis.net/ont/testbed16/equipment#operatedBy
http://www.opengis.net/ont/testbed16/equipment#operatedBy
http://www.opengis.net/ont/testbed16/aviation/activities/flight#AircraftOperator_SKQ
http://www.opengis.net/ont/testbed16/aviation/activities/flight#AircraftOperator_SKQ
http://www.opengis.net/ont/testbed16/aviation/activities/flight#AircraftOperator_SKQ
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#arrival
http://www.opengis.net/ont/testbed16/aviation/activities/flight#arrival
http://www.opengis.net/ont/testbed16/aviation/activities/flight#arrival
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Arrival_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Arrival_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Arrival_FID2898

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight_FID2898

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#departure

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Departure_FID2898

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#Flight_FID2898

http://www.opengis.net/ont/
testbed16/aviation/activities/
flight#flightNumber

"SKQ74"

Table 11. Result of Exploring the "Arrival_Airport_Code" Element in the RDF4J Response

Subject Predicate Object

http://www.opengis.net/data/
testbed16/aviation/
infrastructure/us_airports#IAD

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#icaoAirportCode

"KIAD"

Table 12. Result of Exploring the "AirportName" Element in the RDF4J Response

Subject Predicate Object

http://www.opengis.net/data/
testbed16/aviation/
infrastructure/us_airports#IAD

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#airportName

"WASHINGTON DULLES INTL"

Table 13. Result of Exploring the "FAA_code" Element in the RDF4J Response

Subject Predicate Object

http://www.opengis.net/data/
testbed16/aviation/
infrastructure/us_airports#IAD

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#faaAirportCode

"IAD"

Table 14. Result of Exploring the "Geo" Element in the RDF4J Response

Subject Predicate Object

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#Geo_IAD

http://www.w3.org/1999/02/22-
rdf-syntax-ns#type

http://www.w3.org/2002/07/owl#
NamedIndividual

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#Geo_IAD

http://www.w3.org/1999/02/22-
rdf-syntax-ns#type

http://www.opengis.net/ont/sf#
Geometry

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#Geo_IAD

http://www.w3.org/2000/01/rdf-
schema#label

"geometry for airport
WASHINGTON DULLES INTL"

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#Geo_IAD

http://www.opengis.net/ont/
geosparql#asWKT

"Point(-77.4599444444444
38.9474444444444)"

http://www.opengis.net/data/
testbed16/aviation/
infrastructure/us_airports#IAD

http://www.opengis.net/ont/
geosparql#hasGeometry

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#Geo_IAD

64

http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#departure
http://www.opengis.net/ont/testbed16/aviation/activities/flight#departure
http://www.opengis.net/ont/testbed16/aviation/activities/flight#departure
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Departure_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Departure_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Departure_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#Flight_FID2898
http://www.opengis.net/ont/testbed16/aviation/activities/flight#flightNumber
http://www.opengis.net/ont/testbed16/aviation/activities/flight#flightNumber
http://www.opengis.net/ont/testbed16/aviation/activities/flight#flightNumber
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#icaoAirportCode
http://www.opengis.net/ont/testbed16/aviation/infrastructure#icaoAirportCode
http://www.opengis.net/ont/testbed16/aviation/infrastructure#icaoAirportCode
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#airportName
http://www.opengis.net/ont/testbed16/aviation/infrastructure#airportName
http://www.opengis.net/ont/testbed16/aviation/infrastructure#airportName
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#faaAirportCode
http://www.opengis.net/ont/testbed16/aviation/infrastructure#faaAirportCode
http://www.opengis.net/ont/testbed16/aviation/infrastructure#faaAirportCode
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#NamedIndividual
http://www.w3.org/2002/07/owl#NamedIndividual
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.opengis.net/ont/sf#Geometry
http://www.opengis.net/ont/sf#Geometry
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/geosparql#asWKT
http://www.opengis.net/ont/geosparql#asWKT
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/data/testbed16/aviation/infrastructure/us_airports#IAD
http://www.opengis.net/ont/geosparql#hasGeometry
http://www.opengis.net/ont/geosparql#hasGeometry
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD

Table 15. Result of Exploring the "FWKT" Element in the RDF4J Response

Subject Predicate Object

http://www.opengis.net/ont/
testbed16/aviation/
infrastructure#Geo_IAD

http://www.opengis.net/ont/
geosparql#asWKT

"Point(-77.4599444444444
38.9474444444444)"

10.3. Challenges and Lessons Learned
• Benefits of using OpenAPI to define APIs: The OGC API - Feature Service was straight forward

to use. This is in contrast with previous uses of WFS 2.0. ASU has used WFS 2.0 in the past. For
WFS 2.0, a web application/machine needs to parse a complex XML document to understand the
capabilities of a specific WFS service. Moreover, XML is also difficult for developers to interpret
its content. The complexity has hindered the widespread use of WFS 2.0 as an open standard for
sharing feature data. Using OpenAPI to define the Feature API was seen by ASU as a modernized
service architecture. The XML-based capability document is no longer needed. Further, the new
feature collection document supports multiple encoding methods, such as GeoJSON, which are
more “friendly” for data comprehension and retrieval for this Testbed work.

• Benefits of the Semantic Registry: The Semantic Registry was implemented without major
drawbacks. The Service has two query building processes: One is the RESTful query to search
the resources of dataset triples, and the other is the SPARQL query on dataset triples to get the
feature collection download links. The RESTful query was straightforward to use because of the
simple syntax of API. The SPARQL query was deemed friendly for the Triple Builder because
triples in TTL format are simple to load and query.

For the purposes of this Testbed, the Semantic Registry provided the Triple Builder with
information that was already known by ASU. The purpose of this exercise was to demonstrate
the service discovery workflow. Future triple builders could query for datasets and services
without knowing about them beforehand, unlocking further triple creation capabilities.

• Lack of WKT Support: Cellfie did not support the well-known text (WKT) literal. ASU solved
this by assigning the asWKT property as the default XSD.xstring, and then replacing it by
geo:wktLiteral (geo is the prefix representing http://www.opengis.net/ont/geosparql#). This
relatively minimum modification ensured the geospatial information to be encoded in WKT
format which was accepted in the RDF4J triple store.

• Geometry Encoding in Triples using WKT: Geospatial queries compliant with GeoSPARQL
require the text-based serializations of geometry data such as well-known text (WKT) and
Geography Markup Language (GML). RDF4J only supports GeoSPARQL functions on top of
geospatial data represented as a WKT literal. The geometry information had to be parsed into
the WKT format before storing it in the triple. Some other triple stores like GraphDB and
GeoSPARQL-Jena support GML as well, which could be explored in future work.

• Lack of Ontologies: Semantic-enrichment requires converting geospatial data into RDF triples
under a well-defined ontological schema. GeoJSON-LD is a good candidate to transmit and store
linked data because it contains both the ontology part for the data and the data itself. Because
GeoJSON-LD is an extension of JSON-LD to deal with geometry, it can be directly stored in triple
stores such as RDF4J. One of ASU’s experiments was to create an ontology based on the message
structure: part of the context section of JSON-LD was challenging to comprehend because no

65

http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/testbed16/aviation/infrastructure#Geo_IAD
http://www.opengis.net/ont/geosparql#asWKT
http://www.opengis.net/ont/geosparql#asWKT
http://www.opengis.net/ont/geosparql#

definitions and explanations were found on numerous message tags. To address this issue, ASU
collaborated with Image Matters to reconstruct a set of aviation-related ontologies based on
existing well-known ontologies. Future work should address this gap in semantics.

• Lack of aviation ontologies and lack of availability of aviation Linked Data: Considerable
time was spent on identifying a subset of data that could be demonstrated and then developing
ontologies to represent them. The integration of non-RDF data (FIXM and AIXM) was initially
done by generating an ontology from the XML schema. The issue was that the linked data
representation of the information was not coherent semantically and no inference could be
performed (using subclass, sub properties, transitivity, and inverse relationship). This showed
having an automated way to convert data to knowledge representation is not possible. Ontology
design requires subject experts and careful crafting of the logical axioms to represent the
information.

Modularization of the ontologies and reuse of existing ontologies (GeoSPARQL features, OWL
Time, QUDT) are also crucial for reusability of the ontologies. Due to the lengthy process, the
triple stores were not able to store enough information to show a compelling scenario
leveraging the full power of the semantics. The goal was to show flight information (including
trajectory) which are 4D points (geospatial+temporal) along with airport and aircraft
information coming from other sources. There is no well-defined ontology to represent
trajectory (OGC Moving Features [https://www.ogc.org/standards/movingfeatures] is not actually an
ontology). This may be a topic for improving GeoSPARQL or define some best practices to
represent spatial-temporal geometry and moving features.

• Source of Datasets for Triple Generation: The flight triples were generated based on SWIM
data retrieved from the SWIM Data Relay API. In contrast, the team was unable to retrieve
airport data through SWIM nor the SWIM Data Relay API. Aircraft data was ultimately found to
be optional in certain SWIM data services. Instead, the team was able to retrieve aircraft data
from static datasets (as was done with the airport data). This challenge could possibly reduce
the potential of fostering semantic enrichment of aviation data. Measures to boost availability
should be considered to foster semantic enrichment endeavors in the future.

10.4. Accomplishments
The following are the key accomplishments of this Testbed-16 task:

• Triples were generated for flight data retrieved from an OGC API - Features service.

• Triples were generated for airport data coming from a data source external to SWIM.

• Federated triples were generated out of the combination of flight and airport triples.

• The aforementioned triples were made available through a SPARQL endpoint to the Semantic
Web Client Component to further demonstrate the use of semantically-enriched aviation data.

66

https://www.ogc.org/standards/movingfeatures

Chapter 11. Aviation Ontologies
To support the creation of aviation triples through the Triple Builder and Triple Store component, a
set of aviation ontologies had to be used. This section describes the process of searching for existing
aviation ontologies, and describes the ontologies that were ultimately built. These ontologies were
created by Image Matters LLC.

11.1. Status Quo
Previous testbeds focused on developing taxonomies encoded in SKOS to support different types of
classifications of SWIM services (see semantics.aero). The concepts of these taxonomies were
referred in XML documents specified by XML Schemas. Two different data representations are used
in the same document: Linked Data and XML document based on XML Schema. Because of this, it is
not possible to leverage the semantic web stack tool to perform linkage of these concepts to other
semantic concepts such as services or datasets, neither leverage the inferences related to logical
axioms defined in ontologies. To enable the integration of different data silos representing different
information such as services, datasets containing flights, airport infrastructure, weather, aircraft
information, a common representation based on Linked Data standards was needed.

In Testbed-10, a set of micro ontologies (also called microtheories) were donated by Image Matters
as a way to "bootstrap" the geospatial semantic web. The set of microtheories provided a set of core
cross-domain ontologies including mereology (part-whole), collections, geometries, spatial relations,
events, topologies, quantities and unit of measures, temporal entities and relations. Since then, a
number of ontologies have been published that overlap with these early microtheories such as
DCAT, OWL Time and QUDT. Testbed 14 included a review of the existing data models currently
used by FAA and the aviation community (OGC 18-035). Testbed-16 was used as an opportunity to
explore the usage of these ontologies to represent a subset of aviation domain (due to time
constraints).

11.2. Requirements Statement
The initial focus of the ontology modeling work was on modeling aircraft, airport infrastructure
and flight information, but also services and datasets from the NSRR Registry.

The starting point for the construction of the ontologies was a set of competency questions (CQ) that
need to be answered by the ontologies created. These CQs helped define the scope of the ontologies.
Conceptually, a good ontology is when what we represent has been represented in the ontology and
answer the competency questions. Yet what is actually represented is very close or only slightly
more than the intention, that is we have maximum coverage and low precision. A less good
ontology is when the ontology represents much more than it should. In this case there is maximum
coverage but bad precision. A bad ontology occurs when it does not contain all the concepts that it
should represent and cannot answer all the competency questions (low precision and low
coverage) [14].

In the Testbed-16 CFP, the goal of the aviation scenario was to address the integration of SWIM data
from various sources to answer complex queries, such as:

67

• Which flights from Washington Dulles Airport (IAD) to any airport in Europe have not been
subject of Ground Delay Program (GDP) Advisories in the last 2 hours?

• What is the closest airport in Florida to land a flight from IAD, given a Temporary Flight
Restriction due to a hurricane?

Due to Testbed time constraints and data availability, a decision was made to initially focus on
representing flight data with information about departure, arrival, airports and aircraft
information.

The following competency questions were outlined to define the scope of the ontologies:

• CQ1: Which flights are between two airports on a given day?

• CQ2: Which aircraft is used for a given flight?

• CQ3: Which aircraft model is used on a given flight?

• CQ4: Who is the manufacturer of a given aircraft?

• CQ5: What is the trajectory of a given flight?

• CQ6: Where is the location of a given airport?

• CQ7: What are the different identifiers for a given airport

• CQ8: What is the duration of a given flight?

• CQ9: What are the runways on a given airport?

• CQ10: How many aircraft are operated by a given air operator?

• CQ11: How many airports are in a given area?

• CQ12: Which airport is the closest to a current position.

Each of these competency questions could be associated with one or several SPARQL queries so
they could then be used to check that the datasets using the ontologies were actually answering the
questions.

11.3. Functional Overview
The first approach was to identify and explore the capabilities of current aviation ontologies. The
NASA Air Traffic Management (ATM) ontologies were explored for this purpose. However, a series
of issues detected (described in Challenges and Lessons Learned) required the creation of the
ontologies from scratch. Overall, a set of six ontologies were developed for this Testbed:

• Equipment Ontology

• Aircraft Ontology, an extension of the Equipment Ontology

• Flight Ontology

• Routing Ontology

• Facility Ontology

• Aviation Infrastructure Ontology

68

To build these ontologies, a number of standards were looked at. First, FIXM and AIXM were
explored as these two data models define the main business objects (flight, airport, airspace) to be
represented by the ontologies. Object names and properties were extracted from these models, and
were formalized as ontologies using linked data standards (OWL and RDF) in order to have
machine-understandable models that can be reasoned on.

Image Matters also looked at the NASA ATM ontologies to find out if there were any reusable
concepts; these ontologies were found not to separate the general equipment model from the
aviation specific equipment. To enhance reusability, a general equipment ontology was defined.
This ontology could be used and extended in other domain such as modeling vessels for water
navigation or cars for road traffic management. The equipment ontology uses some core common
ontologies such as W3C Organization Ontology [https://www.w3.org/TR/vocab-org/] and the W3C Prov-O
ontology. The equipment ontology also uses the Mereology and Identifier Ontologies (provided in
Testbed 10).

NOTE
These ontologies can be found as TTL files in the Aviation Task section of the
Testbed-16 GitLab Repository.

11.3.1. Equipment Ontology

The Equipment Ontology, as represented on Figure 26, describes base information about equipment
and can be further extended into specific types of equipment. This ontology could be used and
extended in other domain such as modeling vessels for water navigation or cars for road traffic
management. For the purposes of this Testbed, this ontology was extended into an Aircraft
Ontology.

Figure 26. Equipment Ontology Module

11.3.2. Aircraft Ontology

The Aircraft Ontology, as represented on Figure 27, defines more specific classes and restrictions on
the equipment model related to aircraft, aircraft model, aircraft types, aircraft manufacturer,
operator and owner.

This ontology was intended to model static data from the FAA Aircraft Registration Database into

69

https://www.w3.org/TR/vocab-org/

aircraft triples in the Triple Builder. The Aircraft Ontology could be further refined by adding
information such as number of seats or wake category.

Figure 27. Aircraft Ontology Module

11.3.3. Flight Ontology

The Flight Ontology was built for the Triple Builder to model FIXM flight data into triples. A Flight
can be seen as an activity bounded by two major events, departure and arrival, which are both
temporal entities. This ontology (as represented on Figure 28) uses W3C OWL Time to model Temporal
Entity, W3C Prov-O to model prov-o:Activity. The latter is refined and extended by the Activity and
Event ontologies provided by Image Matters in Testbed 10.

Leveraging standard ontologies can enable performing temporal and event-based reasoning on any
activities (in this case flight activity). The Flight concept was also related to Aircraft using the
Aircraft Ontology.

70

Figure 28. Flight Ontology

11.3.4. Route Ontology

The Route Ontology (as represented on Figure 29) was developed mainly to be used by the Flight
Ontology. A Route describes the path consisting of a collection of nodes and ordered segments
connecting them; as an example, nodes could represent airports or waypoints, and segments could
represent airways. Routing information was modularized in order to be used in different domains
such as road routing or vessel navigation routing. The classes Route, RouteSegment and RouteNode
were defined as a sub class of a GeoSPARQL SpatialObject class.

71

Figure 29. Route Ontology

11.3.5. Facility Ontology

A general ontology for Facilities, as represented on Figure 30, was modularized in order to support
its use in different domains, such as port facilities or train stations. The Facility class extends
GeoSPARQL Feature, and introduces a subclass of skos:Concept called FacilityType which allows the
classification of Facility using different taxonomies (a modeling technique called soft typing).

Figure 30. Facility Ontology

72

11.3.6. Aviation Infrastructure Ontology

The Aviation Infrastructure Ontology defines two types of infrastructures: Airspaces and airport
infrastructures (including apron, taxiway, runway and heliport). Both types extended the
GeoSPARQL Feature class, allowing users to use standard GeoSPARQL query extension to perform
spatial queries on instances of these classes.

This ontology was used by the Triple Builder to generate the airport triples out of the airport data
retrieved from the FAA website.

Figure 31. Aviation Infrastructure Ontology

11.4. Challenges and Lessons Learned
• Limitations of NASA ATM Ontologies: The NASA Air Traffic Management (ATM) ontology was

identified as a candidate for representing information related to air traffic. While this ontology
covers a broad range of concepts and is built in a modular way, a deeper analysis found several
issues that led to the creation of new ontologies:

◦ ATM ontologies are not modularized enough so as to favor reusability and maintainability.
As an example, a route ontology could be used for both air and maritime navigation.

◦ ATM ontologies do not follow a layered approach of building ontologies, where each layer
represent different levels of abstraction. This improves the quality of ontology modeling by
better structuring the ontologies.

◦ ATM ontologies do not leverage existing ontologies that are already well established such as
OWL-Time, GeoSPARQL, and QUDT for quantity and unit of measures. This is a problem
because existing tools that understand these ontologies cannot be leveraged (such as
GeoSPARQL clients).

• Topology support in GeoSPARQL: Topological objects descriptions, such as nodes or edges, are
not supported by GeoSPARQL. Having GeoSPARQL support topology would facilitate requests
based on the topology and not just geometry thus providing a standardized way of querying
topological features.

11.5. Accomplishments
• A set of ontologies was created that allowed the Triple Builder Component to build triples based

on the aviation data retrieved from the SWIM Data Relay API (FIXM and AIXM) and from the
static data related to aircrafts and airports.

73

Chapter 12. Semantic Web Client
The Semantic Web Client was the component designed to allow end users to request semantically-
enriched information from the Triple Store in the form of complex queries, and display this
information on a graphic interface.

The development of the Semantic Web Client was carried out by Image Matters. The main goals
were to demonstrate the consumption of semantically-enriched aviation data, and to explore the
utilization of GeoSPARQL for this purpose.

12.1. Status Quo
The SPARQL Protocol and RDF Query Language (SPARQL) are the W3C standard query language
and protocol for Linked Data (RDF data). SPARQL 1.0 was published in 2008 and was later extended
in SPARQL 1.1 in 2013 with support of updates and federated query in SPARQL 1.1. The standard
has been widely adopted by RDF database vendors (RDF4J, AllegroGraph, GraphDB, AnzoGraph,
Stardog, Jena, etc.) and a number of SPARQL APIs in different programming languages are readily
available.

In 2011, the OGC published the GeoSPARQL standard, which supports representing and querying
geospatial data on the Semantic Web. GeoSPARQL defines a vocabulary for representing geospatial
data in RDF and defines an extension to the SPARQL query language for processing geospatial data.
In addition, GeoSPARQL is designed to accommodate systems based on qualitative spatial reasoning
and systems based on quantitative spatial computations. GeoSPARQL has also been adopted by a
number of RDF database vendors. Recently, the open source RDF4J (previously named Sesame) has
added GeoSPARQL support to their RDF database This technology was used in this Testbed as the
Triple Store Solution.

A number of OGC Testbeds used GeoSPARQL in the past. For example, in Testbed 10 (OGC 14-029r2),
federated gazetteers (Geonames, GNIS, and WFS-G) were virtualized as Linked Data using semantic
mapping techniques from data to ontologies. GeoSPARQL was used to query these different
databases and queries were rewritten toward the native data store (SQL, WFS Query). Results were
returned following the SPARQL standard. Testbed-11 (OGC 15-066r1) explored the use of Semantic
Linked Data and GeoSPARQL with RDF for National Map NHD and Gazetteer Data. In Testbed 13,
GeoSPARQL was used in the Semantic Portrayal Service to define the rules of application of styling
in feature data.

For this Testbed the use of GeoSPARQL was explored for aviation data stored in an RDF Triple Store
(using RDF4J). A client was built to edit and perform GeoSPARQL queries and showing results in
different visual representations (table, map, graph, charts).

12.2. Functional Overview
The Semantic Web Client provides a SPARQL query editor with syntax highlighter and
autocompletion. The client accesses the endpoint by using the SPARQL protocol. The response of the
request can be SPARQL Results (XML or JSON, CSV, TSV) or RDF/XML (in case of SPARQL Construct
or SPARQL Describe operation).

74

The editor was built integrating the open source YasGUI [https://github.com/TriplyDB/Yasgui], an API
which provides various advanced features for creating, sharing, and visualizing SPARQL queries
and their results. The visualization modes were extended using Apache EChart to render data as
charts, maps and graph relationship views.

The results can be displayed in different modes:

• For SPARQL SELECT response, the data can be visualized as a table (as shown on Figure 32), as
charts (bar charts, pie chart) when applicable, or maps (as shown on Figure 33) if data contains
some geospatial data.

Figure 32. Semantic Web Client Table View

Figure 33. Semantic Web Client Map View

• In the case of RDF data response (SPARQL Construct or Describe request), a graph visualization
is provided (as shown on Figure 34) that supports visualizing the relationship between the

75

https://github.com/TriplyDB/Yasgui

nodes of the RDF model.

Figure 34. Semantic Web Client Graph View

12.3. Challenges and Lesson Learned
• Integration with GeoSPARQL endpoint: This testbed demonstrated the ease of integration of

an off-the-shelf open-source web component with a standard GeoSPARQL endpoint to retrieve
semantically-enriched aviation data.

• Lack of sufficient data for demonstration: In order to perform a comprehensive and
appealing demonstration of usage and integration of linked data, the amount and diversity of
semantically-enriched aviation data is necessary. Unfortunately for this Testbed the data that
was available for the Semantic Web Client was reduced due to the fact that the Triple Builder
lacked sufficient ontologies to build larger sets of triples.

• User-friendliness working with SPARQL: While the SPARQL Editor seemed too advanced for a
non-expert to use, the visualization of results seemed to be understandable by these end-users.
Alternative ways to build queries could be explored in future Testbeds (for example by using
parameterized queries), or a Linked Data REST API focused on features of interests).

• Lack of GeoSPARQL service description: The coordination between ASU and Image Matters
made the existence of a GeoSPARQL service description unnecessary. These descriptions
provide a mechanism by which a client or end user can discover information about the SPARQL
service. There are a number of standards that already exists to describe SPARQL endpoints such
as the W3C SPARQL 1.1 Service Description, VoiD and DCAT. Future work could demonstrate the
feasibility and robustness of adapting one of these standards to accommodate descriptions of
GeoSPARQL endpoints, by defining profiles and best practices.

12.4. Accomplishments
The Semantic Web Client was able to:

• Request from the Triple Store aviation Linked Data using GeoSPARQL queries.

• Display aviation Linked Data on a graphic user interface using different visualizations.

76

Chapter 13. SWIM Data Client
The SWIM Data Client was the component designed to allow end users to request, retrieve and
visualize aviation data coming from SWIM Data Services through an OGC API - Features.

The development of the SWIM Data Client was carried out by Hexagon. The main goals of this
development were to demonstrate the discovery of aviation data services, the connection and data
fetching from an OpenAPI-based API, and the usage of the retrieved SWIM data.

13.1. Status Quo
The SWIM Data Client was based on LuciadRIA [https://www.hexagongeospatial.com/products/luciad-

portfolio/luciadria], a solution for the development of geospatial situational awareness applications
through the display of information in 3D maps running on browser-based environments.
LuciadRIA is part of the Luciad suite of GIS applications focused on aviation, defense and security,
developed by Hexagon. Hexagon has participated in previous OGC innovation initiatives exploring
and demonstrating solutions for the consumption of SWIM data and the support of OGC services
through their suite of Luciad applications.

The desktop version of the Luciad suite, Luciad Lightspeed, is capable of visualizing aviation data.
Currently, LuciadRIA does not officially support AIXM and FIXM standards. Prototypes designed to
decode AIXM and FIXM data directly in the browser were created for LuciadRIA, but are still not
fully compliant with these standards. Previous LuciadRIA versions already supported connecting to
OGC services such as WMS, WMTS, and WFS 1.0/2.0. This was Hexagon’s first experience with OGC
API - Features.

13.2. Functional Overview
To build this component, Hexagon used LuciadRIA version 2020.0. The main LuciadRIA API was not
changed. The functionalities developed for this Testbed were built adding custom code on top of the
API.

13.2.1. Visualization

The application displays aviation data through the 3D map environment of LuciadRIA. When
loaded, collections are listed in a window where users can look them up, focus the map on them,
toggle their visibility or remove them from the application.

Aviation data can be visualized combined with other non-aviation geospatial data. The capabilities
developed in this Testbed were built compatible with LuciadRIA’s map and feature visualization
through its integration with other OGC services. Users are able to connect to a Web Map Service
(WMS) or Web Feature Service (WFS) to retrieve and visualize a preferred base map (such as
satellite imagery or road maps), as well as additional non-aviation data such as administrative
jurisdictions or natural geographic features.

Users can visualize two types of aviation data:

• Aeronautical information supported by AIXM such as airport structures and airspaces

77

https://www.hexagongeospatial.com/products/luciad-portfolio/luciadria

• Flight information supported by FIXM such as flight information, location, and trajectory

Prototypes designed to decode AIXM and FIXM data directly in the browser were created for
LuciadRIA, but are still not fully compliant with these standards. For Testbed 16, these prototypes
were converted into reusable modules to facilitate the integration of this code into the SWIM Data
Client Component. This modularization will also help Hexagon to reuse this code in future projects,
as the company is considering adding full support for AIXM and FIXM in future LuciadRIA versions.

Since the SWIM Data Relay API delivered fully compatible AIXM data, the prototype for AIXM
decoding was fully reused in this Testbed without changes. However, the prototype for FIXM
decoding was not used because the SWIM Data Relay API delivered a FIXM version that is exclusive
to the United States and for which Hexagon’s codec was not compatible. Due to time constraints,
this FIXM version was not used for this Testbed. As a work around, FIXM data was retrieved in
GeoJSON format.

AIXM data is loaded natively in vector format. Features are visualized in the 3D map environment
of LuciadRIA, and its properties can be explored by selecting them on the map and opening a tool
named AIXM Explorer, as seen on Figure 35. This tool displays the feature ID, projection, geometry
type and properties. The AIXM Explorer also supports searching features by layer or feature ID; this
tool also allows users to focus the map on a feature when selecting it from the search results. When
AIXM 5.1 format is used, proper aviation styling is applied following aviation standards, as seen on
Figure 36.

Figure 35. LuciadRIA Display of Airport Structures and its Properties

78

Figure 36. LuciadRIA Search and Display of Airspaces

Visualizing FIXM data loaded with GeoJSON format required adapting the client application: When
an end user flagged a loaded GeoJSON collection as containing FIXM data, the client applied a
specific logic to interpret the properties contained inside those GeoJSON features as FIXM data and
not as generic geographic elements.

Flight data is displayed on the map in the form of flight trajectories and an icon representing the
location of the aircraft at a given time of the flight, as seen on Figure 37. A time control tool allows
users to navigate throughout a given timespan: users are allowed to move forward or backward in
time at different speeds, and aircrafts move accordingly on the map based on the trajectory
included in the loaded FIXM data. Users can also explore feature properties of each flight by right
clicking an aircraft and selecting "show properties" from the context menu.

79

Figure 37. LuciadRIA Display of FIXM Data

13.2.2. Connection and Retrieval of SWIM Data

For the purposes of this Testbed, LuciadRIA fetched aviation data from the SWIM Data Relay API
Component created for this Testbed. The formats retrieved were JSON, FIXM, and AIXM, which
were the ones made available by the SWIM Data Relay API. Two connection and retrieval
methodologies were demonstrated:

• Connecting to an OGC API - Features Endpoint, and downloading collections published from a
the service.

• Connecting to a Semantic Registry to discover services and collections, and downloading
collections from the services discovered by the Semantic Registry.

13.2.2.1. Connecting to an OGC API - Features Endpoint

LuciadRIA allows users to load aviation data through a form designed to connect and retrieve data
from OGC API - Features endpoints. The application also supports the capability to load aviation
data from files by selecting repositories listed in a menu or by drag-&-drop AIXM files into the map
(file needs to have extension .aixm).

Testbed 16 was Hexagon’s first experience with OGC API - Features. The code to connect to this API
was packed in a reusable module to facilitate future implementations that may require this service.
Hexagon is considering officially supporting OGC API - Features in a future release of LuciadRIA
once the standard matures and has wider implementation within the industry.

80

To load from an OGC API - Features endpoint, the user first types the server URL in order to load the
available collections and formats published by the server (Figure 38). The user then selects from a
dropdown menu the collection they want to load and the preferred collection format. Supported
formats include GeoJSON, GML, and AIXM 5.1.

Finally, the form displays the CRS and WFS version, and provides the user with two feature loading
strategies: Load-All and Load-Spatially. Load-All makes the application load all the features
available in the requested collection. Load-Spatially makes the application load only the features
visible on the screen at a given moment. As the user zooms or pans the map, the application loads
new features to make them visible and removes from the memory those not visible. The Limit field
determines the maximum number of features to be loaded at the same time. Loading-Spatially can
be important since certain collections may consist of hundreds of thousands of features, and
loading them concurrently could overload the application memory and crash the application.

The checkbox labeled Interpret as FIXM is used when FIXM data is loaded in GeoJSON format. It
instructs the application to interpret GeoJSON features as FIXM data.

When loaded, the collections are listed in the Map Layers Window, where their visibility can be
toggled on or off.

Figure 38. Connection Form for OGC API - Features

13.2.2.2. Connecting to a Semantic Registry

In order to demonstrate the service discovery capabilities of the Semantic Registry developed in
this Testbed, a Resource Discovery Module was built into LuciadRIA, including a User Interface (UI).

81

The module connects to the Semantic Registry through a GraphQL interface, retrieves information
about the collections discovered by the Semantic Registry, displays them on the UI (as seen on
Figure 39), and allows the user to select which collections to retrieve.

For the purposes of this Testbed, the GraphQL queries were made partially dynamic: The endpoint
was hardcoded to the Semantic Registry, the page size was set to 10, and the type filter was set to
only datasets. The UI gives the user pagination and a textbox to query resources based on a given
title or description.

Figure 39. Service Discovery Module

The Resource Discovery Module displays on a UI the name and description of the discovered
collections. The end user can then load the collections into LuciadRIA by clicking one of the action
buttons included per collection, as seen on Figure 39. There is one action button per supported data
format: users might be able to load collections as FIXM or JSON, based on availability. When loaded,
the collections are listed in the Map Layers Window, where their visibility can be toggled on or off.

A sample GraphQL call and its response has been included in Appendix E.

13.3. Challenges and Lessons Learned
• Benefits of not Loading AIXM as GeoJSON: GeoJSON is a generic format that is not only used

in aviation but also in a large number of other domains. This makes GeoJSON, in principle, an
appropriate standard for the exchange of geospatial information. Nevertheless, during this

82

Testbed a decision was made to use the AIXM format for two main reasons:

◦ AIXM is the native format used in SWIM, which means that once a certain dataset is
identified as AIXM the consumer can safely assume the data (airspaces, runways, navaids)
can be handled and styled following aviation standards. GeoJSON, on the contrary, consists
of abstract geometries that require clients to access additional information in order to
interpret the data. Therefore, using AIXM helped make the component easier and faster to
implement.

◦ AIXM uses GML to define the geometries. Since GML supports more geometries than
GeoJSON, any conversion from AIXM to GeoJSON might require simplifying geometries in
order to make a dataset “fit” the GeoJSON specification. Therefore, using AIXM allowed the
component to work with more complex geometries.

• Downsides of Loading FIXM as GeoJSON: Work on this Testbed demonstrated the downsides
of loading FIXM data as GeoJSON format. When data is loaded as GeoJSON, features are
normally displayed in the map as geometries and no further interpretations are made by the
client application. FIXM data consists of different types of information - including flight
trajectories, flight attributes, and aircraft location based on a timestamp – not supported by
GeoJSON.

Since for this Testbed FIXM data was retrieved in GeoJSON format, the client application required
additional customizations to correctly interpret certain GeoJSON features as actual FIXM data. As
an example, a GeoJSON polyline would normally be displayed on an application without further
interpretations; in the case of FIXM data as GeoJSON, certain polylines actually represented the
flight trajectories and the client application required a customization to handle this.

• Value of the Semantic Registry: Normally, LuciadRIA would have to make a call to one or
several instances of a data service such as SWIM Data Relay API in order to retrieve metadata
before making the calls required to retrieve the actual data. The Semantic Registry provided
enough metadata information to LuciadRIA so as to directly retrieve collections from D100. The
resource discovery module methodology prevented calling the SWIM Data Relay API to request
metadata and instead called D100 only to retrieve the items from specific collections. Future
iterations of this resource discovery module could see several additional capabilities:

1. The Semantic Registry could be connected to multiple instances of APIs such as D100, each
with different data, and instead of interrogating each instance of D100 separately a user
could send a single query to the Semantic Registry in order to return matches from multiple
servers.

2. The UI could have more filtering capabilities and the GraphQL could be more dynamic, thus
allowing users to filter discovered collections and services by more parameters.

• Benefits of using GraphQL: Hexagon decided to make the SWIM Data Client communicate with
Semantic Registry through its GraphQL endpoint and not through its REST endpoint for several
reasons:

◦ The GraphQL interface was found to be well defined and easy to use.

◦ GraphQL queries can specify multiple search parameters making more complex queries
than a REST interface.

◦ GraphQL was found to be more efficient for requesting complex queries to the Semantic
Registry by making them on one HTTP call where a REST endpoint would have required

83

several HTTP calls.

• Ease of use of OGC API - Features: Hexagon was able to easily implement the connection to the
SWIM Data Relay API, thanks in part to the many improvements that OGC API - Features has
over WFS 2.0:

◦ Better and easy-to-find online documentation.

◦ Easiness of connection requiring a lower amount of code.

◦ The human-readable HTML display of data which makes it easier for developers to test API
calls and understand the data being returned.

13.4. Accomplishments
A LuciadRIA application was upgraded to successfully perform the following tasks:

• Connecting to a Semantic Registry through a GraphQL endpoint to retrieve information about
aviation datasets and the endpoints providing it.

• Retrieving AIXM and FIXM data from an OGC API - Features endpoint. FIXM data was received
as GeoJSON.

• Displaying on a 3D map environment both FIXM and AIXM data.

84

Chapter 14. Recommendations and Future
Work
OGC Testbed 16 served as a practical approach to the subject of semantic enrichment and
interoperability of aviation data. Concepts that were described in past OGC Testbeds from a
conceptual perspective were built and interconnected in order to begin understanding how a
semantically-enriched system would operate. Future work should build upon the findings that
emerged from the development and testing of these components and to answer questions that were
left out of scope.

14.1. Fostering the use of OGC API and Linked Data in
aviation
Work in Testbed-16 demonstrated the benefits of using current and emerging OGC APIs but also
outlined several downsides that may require adapting the perspective on how the aviation industry
pretends to leverage their power of interoperability. The generation and consumption of aviation
linked data in this Testbed laid the foundation for future activities that could facilitate the adoption
of linked data in the aviation community.

14.1.1. Implementing OGC API - Features within SWIM Data Services

An aspect of the work in Testbed-16 consisted of demonstrating the value of OGC API - Features for
consuming and relaying SWIM data by acting as a proxy between SWIM Data Services and SWIM
Data Consumers. While this architecture did provide the benefits of using OpenAPI, the SWIM Data
Relay API Component of this Testbed has demonstrated two major disadvantages: On one hand, the
complexities involved in mapping the SWIM pub/sub messages into features, and on the other
hand, the large volume of data being exchanged daily combined with the need to storage this
information in a database inside the proxy.

Future work should explore using OpenAPI-based API descriptions within SWIM Data Services. This
new architecture paradigm, represented in Figure 40, would eliminate the need for the massive
additional storage and transformation logic required on an OpenAPI-based proxy. At the same time
this paves the way for the standardization of SWIM Data Providers. An initial demonstration could
be limited to implementing OGC API - Features on a SWIM Data Service currently based on a WFS
endpoint that distributes a relatively reduced amount of data.

85

Figure 40. Linked Data Value Demonstration Experiment

14.1.2. Demonstrating The Value of Linked Data in Aviation

Transitioning SWIM into using Linked Data is a time - and cost -intensive endeavor. Demonstrating
the benefits that would result from this transition has the potential of speeding up this process by
making the industry understand the return of investment of such a transition. The components
demonstrated in Testbed-16 could be used to perform experiments that evidence the benefits of
linked data within the aviation domain from a practical point of view.

One possible experiment could consist of having two nearly-identical SWIM data clients consuming
the same SWIM dataset, but where one of the datasets is enriched with semantics. By comparing the
resulting capabilities of each client, a case could be made on the exact capabilities that arise from
client applications implementing linked data.

The architecture of such an experiment would resemble part of the architecture of this Testbed. As
seen in Figure 41, OpenAPI-based API With Linked Data Support could resemble Triple Builder and
Triple Store, SWIM Linked Data Client could resemble Semantic Web Client, OpenAPI-based API
could resemble SWIM Data Relay API, SWIM Data Client could resemble SWIM Data Client. The
major differences in the new architecture would consist of making the clients virtually identical,
having both APIs consume the same SWIM dataset, and performing the experiments in a controlled
way.

The research question in this experiment could be: What problem does Client Application A solve

86

compared to Client Application B?

To ensure unambiguity, the only differences the two client applications should have are those
capabilities added to enable the use of linked data. Any external information added through the
semantic enrichment process should also be made available to the client consuming the non-
semantically-enriched data. As an example, the flight triples built throughout Testbed-16 were
enriched with airport information. A comparison between the consumption of these flight triples
and the consumption of the non-enriched flight data would only make sense if the client consuming
the non-enriched flight data also has access to the airport information.

Close work with the industry would help ensure any experiment reflects an actual real industry
case.

Figure 41. Linked Data Value Demonstration Experiment

14.1.3. Exploring Alternatives for a Seamless Transition to Linked Data

SWIM is made up of a large number of servers and clients exchanging aviation information. In
order to transition from a data-centric to a semantics-centric paradigm, these aforementioned
clients and servers would require a transformation which, as mentioned on the previous
recommendation, would be time and cost intensive. Servers should be re-engineered, and clients
would need to adapt to the re-engineered Services in order to keep compatibility and maintain
their operations uninterrupted.

Finding alternatives to make this transition as seamless as possible could provide the aviation
industry with the tools needed to shift into a semantically-enriched paradigm without necessarily
leaving the current data-centric paradigm in the short term. SWIM data providers would be
allowed to steadily increase the availability of semantically-enriched data while continuing to
support the availability of the current data-centric datasets. This would allow existing SWIM data
clients to adopt this new paradigm at their own pace. Furthermore, new SWIM data consumers
would have the option of building their new clients with the new paradigm

This topic is currently the subject of exploration by the Geosemantics Community. The transition
from JSON to JSON-LD by means of an added @context object has been the subject of discussions and
studies to understand the potential of this technology as the one responsible of a smooth transition
into a semantically-enriched paradigm [15]. A similar transition from XML to XML/RDF has also
been subject to demonstrations. Future work could demonstrate Feature Servers advertising SWIM
data through both JSON and JSON-LD or XML and XML/RDF.

87

14.1.4. Demonstrating Interoperability Between Diverse APIs

Testbed-16 demonstrated the behavior of a single OGC API - Features Service as a proxy between
SWIM data providers and SWIM data consumers. In order to demonstrate interoperability, future
work could see two or more diverse APIs be set up to deliver similar data, while one or more clients
seamlessly consume data from the APIs.

This demonstration would test the ability of different organizations, using different technologies, to
deliver similar content that clients can use seamlessly. Interoperability will require OGC API
standards and also standardized data models. This demonstration would help resolve conflicts by
comparing the interactions of the diverse APIs with the diverse API Clients, and provide further
insight on the need to extend the OGC API - Features standard.

Furthermore, a similar experiment could explore in parallel different ways to search, discover and
access linked data (SPARQL endpoint, REST, GraphQL, Linked Data Platform). Contrasting the gains
and pains from these experiments would help the community leverage the value of linked data
technologies.

14.1.5. Exploring Linked Data Support Alternatives for OGC APIs

The new OGC APIs being defined using OpenAPI are based on REST principles and thus can provide
multiple representations for a given resource. Further work should investigate the best practices to
make OGC APIs support Linked Data representations. A number of standards could be looked at,
such as Linked Data Fragments (https://linkeddatafragments.org/), Linked Data Platform (LDP)
(https://www.w3.org/TR/ldp/) and SPARQL Service description (https://www.w3.org/TR/sparql11-
service-description/) and investigate how they can be aligned with OGC APIs.

14.2. Ontology Development
Work in Testbed-16 demonstrated the critical role of ontologies to support information integration
and reasoning by means of search and discovery of assets and support of aviation linked data. The
following recommendations focus on the expansion and improvement of the SRIM Model, Aviation
Ontologies, and GeoSPARQL.

14.2.1. Expanding the Scope of Aviation Ontologies

Work in Testbed-16 demonstrated the need of defining ontologies to work with the different
aviation data objects. In order to advance the process of semantic-enablement of aviation data,
future work should expand the scope of these ontologies. The ontologies used for this testbed and
the one provided by Image Matters during Testbed 10 could be used as a starting point.

The development of the ontologies should be done in a modular and layered way starting with
cross-domain ontologies such as topology, quantity and unit of measures, mereology, geometry,
spatial feature. A set of mid-level ontologies would then need to be developed such as facilities,
equipment, infrastructure, facilities, routing. Finally, domain specific ontologies building on top of
the cross-domain and mid-level ontologies should be developed for aviation such as aircrafts,
flights, traffic, air infrastructure. This approach has been demonstrated during this testbed, but
more work is needed to have a sufficient coverage to demonstrate the value of ontologies for

88

https://linkeddatafragments.org/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/sparql11-service-description/
https://www.w3.org/TR/sparql11-service-description/

aviation domain.

14.2.2. Standardizing the SRIM Model

Currently, there is no well-established standard to describe semantic assets, such as services, maps,
layers, vocabularies, or portrayal information. Since OGC Testbed-12, the data catalog standards
DCAT 2 and GeoDCAT have both gained wide-adoption. The SRIM model, being a superset of DCAT,
has been proposed and applied in three different OGC Testbeds (12, 13, 16). To favor adoption of the
Semantic Registry, the SRIM model should be standardized to represent registry items and assets.
Guidance should be provided on how to define and use application profiles using the W3C SHACL
standard, so registry items can be validated when submitted to the Semantic Registry.

14.2.3. Improving the GeoSPARQL Standard

OGC Testbed-10 identified the need to modularize and simplify GeoSPARQL. So far, advancements
in this subject have been limited. As an example, in Testbed-16 the Route Ontology required
defining topological elements from scratch. Topological objects descriptions (such as nodes or
edges) and topological relations are not supported by GeoSPARQL. Having GeoSPARQL support
topology would have facilitated requests to these topological elements.

The Testbed-10 geospatial ontologies addressed many of these aspects (for example modularization
of spatial relations), and could be used as a starting point for this task. Additions could include:

• Topological objects descriptions and topological relations.

• Extensions to accommodate 2.5D and 3D geometries to represent airspace sections.

• Support for modeling moving features is also needed to model traffic information such as
flights.

• A definition of a more compact representation of bounding boxes with CRS so that metadata can
be used in other standards such as GeoDCAT to represent, for example, the spatial extent of a
dataset.

14.3. Better Understanding the Industry by Engaging
with SWIM Consumers
The SWIM Discovery Service (SDS) Workshop, carried out by the FAA near the end of this Testbed,
provided not only an overview of the status quo on SWIM service discovery, but also served as a
forum for interested members to express their points of view on the subject of consumption of
SWIM data. When discussing the addition of semantics to the SDS, a point was made on the need to
better understand the current requirements of the industry.

A plethora of activities could enhance our understanding of the industry’s needs. Follow-on FAA
workshops could focus on:

• Discussing other SWIM components or concepts, such as semantics itself;

• Industry experts could be invited to a Plugfest where API and client developers explore
solutions to SWIM challenges and experts provide their feedback.

89

A traditional but comprehensive survey could provide a clear understanding of basic questions
about SWIM data consumers such as:

1. What technologies are end users ready to implement?

2. How is the lack of semantics affecting the day-to-day operations of end users?

3. Where do users see bottlenecks or inefficiencies in the retrieval and use of SWIM data?

4. What challenges did newcomers had to go through to implement their systems, and what
would’ve smoothened their implementation processes?

90

Appendix A: SWIM Data Relay API: Sample
FIXM to GeoJSON Mapping
This Annex describes an example of a FIXM message converted into a GeoJSON feature and its
encoding of application/fixm+nas+xml;version=3.0 in OGC API - Features output. Table 16 describes
the origin of the mapped elements.

Table 16. FIXM to GeoJSON Property Mapping

Property Origin

Geospatial position /flight/enRoute/position/positio
n/location/pos

Temporal extent /flight/enRoute/position/@positi
onTime. When isinstime is true,
begintime and endtime are
identical.

gufi /flight/gufi/@codeSpace

flightPlanIdentifier /flight/flightPlan/@identifier

departurePoint /flight/departure/@departurePoin
t

arrivalPoint /flight/arrival/@arrivalPoint

altitude /flight/enRoute/position/targetA
ltitude

speed /flight/enRoute/position/actualS
peed/surveillance

The following snippets represent the same FIXM data encoded in three different formats:

1. The FIXM-NAS (original), which is the original encoding the data comes as from the SWIM Data
Provider

2. The MessageCollection, which is the response in media type of
"application/fixm+nas+xml;version=3.0" from the OGC API - Features Service. The response uses
MessageCollection to wrap up the collection of features (messages) in encoding of FIXM NAS 3.0.
An unique identifier is added as child element <metadata> of each feature (message) for
uniquely identifying each feature.

3. The GeoJSON, which is one of the available outputs provided by SWIM Data Relay API

A.1. FIXM-NAS (original)

<flight centre="ZME" source="TH" system="ATL" timestamp="2020-08-05T21:40:29.319Z"
xsi:type="nas:NasFlightType">
 <arrival arrivalPoint="KDFW" xsi:type="nas:NasArrivalType">
 <runwayPositionAndTime>
 <runwayTime>
 <estimated time="2020-08-05T23:06:00Z"/>

91

 </runwayTime>
 </runwayPositionAndTime>
 </arrival>
 <controllingUnit sectorIdentifier="91" unitIdentifier="ZID" xsi:type=
"fb:IdentifiedUnitReferenceType"/>
 <departure departurePoint="KIND" xsi:type="nas:NasDepartureType">
 <runwayPositionAndTime>
 <runwayTime>
 <actual time="2020-08-05T21:23:00Z"/>
 </runwayTime>
 </runwayPositionAndTime>
 </departure>
 <enRoute xsi:type="nas:NasEnRouteType">
 <boundaryCrossings xsi:type="nas:NasUnitBoundaryType">
 <handoff xsi:type="nas:NasHandoffType">
 <receivingUnit sectorIdentifier="33" unitIdentifier="ZME" xsi:type=
"fb:IdentifiedUnitReferenceType"/>
 </handoff>
 </boundaryCrossings>
 <position positionTime="2020-08-05T21:40:18Z" reportSource="SURVEILLANCE"
targetPositionTime="2020-08-05T21:40:16Z" xsi:type="nas:NasAircraftPositionType">
 <actualSpeed>
 <surveillance uom="KNOTS">450.0</surveillance>
 </actualSpeed>
 <altitude uom="FEET">36000.0</altitude>
 <position xsi:type="fb:LocationPointType">
 <location srsName="urn:ogc:def:crs:EPSG::4326">
 <pos>38.166389 -87.449444</pos>
 </location>
 </position>
 <targetAltitude uom="FEET">36000.0</targetAltitude>
 <targetPosition srsName="urn:ogc:def:crs:EPSG::4326">
 <pos>38.168889 -87.446111</pos>
 </targetPosition>
 <trackVelocity>
 <x uom="KNOTS">-324.0</x>
 <y uom="KNOTS">-312.0</y>
 </trackVelocity>
 </position>
 </enRoute>
 <flightIdentification aircraftIdentification="FDX3764" computerId="426"
siteSpecificPlanId="109" xsi:type="nas:NasFlightIdentificationType"/>
 <flightStatus fdpsFlightStatus="ACTIVE" xsi:type="nas:NasFlightStatusType"/>
 <gufi codeSpace="urn:uuid">060ef6c5-38c4-4582-9c30-e4e11044be15</gufi>
 <operator>
 <operatingOrganization>
 <organization name="FDX"/>
 </operatingOrganization>
 </operator>
 <supplementalData xsi:type="nas:NasSupplementalDataType">
 <additionalFlightInformation>

92

 <nameValue name="MSG_SEQ_NO" value="13875813"/>
 <nameValue name="FDPS_GUFI" value="us.fdps.2020-08-
05T17:53:54Z.000/08/400"/>
 <nameValue name="FLIGHT_PLAN_SEQ_NO" value="3"/>
 </additionalFlightInformation>
 </supplementalData>
 <assignedAltitude>
 <simple uom="FEET">36000.0</simple>
 </assignedAltitude>
 <flightPlan identifier="KI64434400"/>
</flight>

A.2. MessageCollection

<nas:MessageCollection xmlns:nas="http://www.faa.aero/nas/3.0" xmlns:fb=
"http://www.fixm.aero/base/3.0" xmlns:ff="http://www.fixm.aero/foundation/3.0"
xmlns:fx="http://www.fixm.aero/flight/3.0" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <message xmlns:fb="http://www.fixm.aero/base/3.0" xmlns:ff=
"http://www.fixm.aero/foundation/3.0" xmlns:fx="http://www.fixm.aero/flight/3.0"
xmlns:nas="http://www.faa.aero/nas/3.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:type="nas:FlightMessageType">
 <metadata gumi="FID-150061c7-5575-475b-8496-c938019fc8e0-5733" xsi:type=
"nas:MessageMetadataType"/>
 <flight centre="ZME" source="TH" system="ATL" timestamp="2020-08-
05T21:40:29.319Z" xsi:type="nas:NasFlightType">
 <arrival arrivalPoint="KDFW" xsi:type="nas:NasArrivalType">
 <runwayPositionAndTime>
 <runwayTime>
 <estimated time="2020-08-05T23:06:00Z"/>
 </runwayTime>
 </runwayPositionAndTime>
 </arrival>
 <controllingUnit sectorIdentifier="91" unitIdentifier="ZID" xsi:type=
"fb:IdentifiedUnitReferenceType"/>
 <departure departurePoint="KIND" xsi:type="nas:NasDepartureType">
 <runwayPositionAndTime>
 <runwayTime>
 <actual time="2020-08-05T21:23:00Z"/>
 </runwayTime>
 </runwayPositionAndTime>
 </departure>
 <enRoute xsi:type="nas:NasEnRouteType">
 <boundaryCrossings xsi:type="nas:NasUnitBoundaryType">
 <handoff xsi:type="nas:NasHandoffType">
 <receivingUnit sectorIdentifier="33" unitIdentifier="ZME"
xsi:type="fb:IdentifiedUnitReferenceType"/>
 </handoff>
 </boundaryCrossings>

93

 <position positionTime="2020-08-05T21:40:18Z" reportSource=
"SURVEILLANCE" targetPositionTime="2020-08-05T21:40:16Z" xsi:type=
"nas:NasAircraftPositionType">
 <actualSpeed>
 <surveillance uom="KNOTS">450.0</surveillance>
 </actualSpeed>
 <altitude uom="FEET">36000.0</altitude>
 <position xsi:type="fb:LocationPointType">
 <location srsName="urn:ogc:def:crs:EPSG::4326">
 <pos>38.166389 -87.449444</pos>
 </location>
 </position>
 <targetAltitude uom="FEET">36000.0</targetAltitude>
 <targetPosition srsName="urn:ogc:def:crs:EPSG::4326">
 <pos>38.168889 -87.446111</pos>
 </targetPosition>
 <trackVelocity>
 <x uom="KNOTS">-324.0</x>
 <y uom="KNOTS">-312.0</y>
 </trackVelocity>
 </position>
 </enRoute>
 <flightIdentification aircraftIdentification="FDX3764" computerId="426"
siteSpecificPlanId="109" xsi:type="nas:NasFlightIdentificationType"/>
 <flightStatus fdpsFlightStatus="ACTIVE" xsi:type="nas:NasFlightStatusType
"/>
 <gufi codeSpace="urn:uuid">060ef6c5-38c4-4582-9c30-e4e11044be15</gufi>
 <operator>
 <operatingOrganization>
 <organization name="FDX"/>
 </operatingOrganization>
 </operator>
 <supplementalData xsi:type="nas:NasSupplementalDataType">
 <additionalFlightInformation>
 <nameValue name="MSG_SEQ_NO" value="13875813"/>
 <nameValue name="FDPS_GUFI" value="us.fdps.2020-08-
05T17:53:54Z.000/08/400"/>
 <nameValue name="FLIGHT_PLAN_SEQ_NO" value="3"/>
 </additionalFlightInformation>
 </supplementalData>
 <assignedAltitude>
 <simple uom="FEET">36000.0</simple>
 </assignedAltitude>
 <flightPlan identifier="KI64434400"/>
 </flight>
 </message>
</nas:MessageCollection>

94

A.3. GeoJSON

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 38.1664,
 -87.4494
]
 },
 "properties": {
 "gufi": "060ef6c5-38c4-4582-9c30-e4e11044be15",
 "flightPlanIdentifier": "KI64434400",
 "departurePoint": "KIND",
 "arrivalPoint": "KDFW",
 "begintime": "2020-08-05T21:40:18.000+0000",
 "endtime": "2020-08-05T21:40:18.000+0000",
 "isinstime": true,
 "altitude": 10972.8,
 "speed": 833.4,
 "json": {
 "flight": {
 "centre": "ZME",
 "source": "TH",
 "system": "ATL",
 "timestamp": 1596663629319,
 "arrival": {
 "arrivalAerodromeAlternate": [],
 "runwayPositionAndTime": {
 "runwayTime": {
 "estimated": {
 "time": 1596668760000
 }
 }
 },
 "arrivalPoint": "KDFW"
 },
 "controllingUnit": {
 "sectorIdentifier": "91",
 "unitIdentifier": "ZID"
 },
 "dangerousGoods": [],
 "departure": {
 "runwayPositionAndTime": {
 "runwayTime": {
 "actual": {
 "time": 1596662580000
 }
 }

95

 },
 "takeoffAlternateAerodrome": [],
 "departurePoint": "KIND"
 },
 "enRoute": {
 "alternateAerodrome": [],
 "boundaryCrossings": [
 {
 "handoff": {
 "receivingUnit": {
 "sectorIdentifier": "33",
 "unitIdentifier": "ZME"
 }
 }
 }
],
 "controlElement": [],
 "position": {
 "actualSpeed": {
 "surveillance": {
 "value": 450,
 "uom": "KNOTS"
 }
 },
 "altitude": {
 "value": 36000,
 "uom": "FEET"
 },
 "position": {
 "location": {
 "pos": [
 38.166389,
 -87.449444
],
 "srsName": "urn:ogc:def:crs:EPSG::4326"
 }
 },
 "positionTime": 1596663618000,
 "reportSource": "SURVEILLANCE",
 "targetAltitude": {
 "value": 36000,
 "uom": "FEET"
 },
 "targetPosition": {
 "pos": [
 38.168889,
 -87.446111
],
 "srsName": "urn:ogc:def:crs:EPSG::4326"
 },
 "trackVelocity": {

96

 "x": {
 "value": -324,
 "uom": "KNOTS"
 },
 "y": {
 "value": -312,
 "uom": "KNOTS"
 }
 },
 "targetPositionTime": 1596663616000
 }
 },
 "extensions": [],
 "flightIdentification": {
 "marketingCarrierFlightIdentifier": [],
 "aircraftIdentification": "FDX3764",
 "computerId": "426",
 "siteSpecificPlanId": 109
 },
 "flightStatus": {
 "fdpsFlightStatus": "ACTIVE"
 },
 "gufi": {
 "value": "060ef6c5-38c4-4582-9c30-e4e11044be15",
 "codeSpace": "urn:uuid"
 },
 "operator": {
 "operatingOrganization": {
 "organization": {
 "name": "FDX"
 }
 }
 },
 "rankedTrajectories": [],
 "specialHandling": [],
 "supplementalData": {
 "additionalFlightInformation": {
 "nameValue": [
 {
 "name": "MSG_SEQ_NO",
 "value": "13875813"
 },
 {
 "name": "FDPS_GUFI",
 "value": "us.fdps.2020-08-05T17:53:54Z.000/08/400"
 },
 {
 "name": "FLIGHT_PLAN_SEQ_NO",
 "value": "3"
 }
]

97

 }
 },
 "assignedAltitude": {
 "simple": {
 "value": 36000,
 "uom": "FEET"
 }
 },
 "flightPlan": {
 "identifier": "KI64434400"
 }
 }
 }
 },
 "id": "FID-150061c7-5575-475b-8496-c938019fc8e0-5733",
 "links": [
 {
 "href":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items/FID-
150061c7-5575-475b-8496-c938019fc8e0-5733.fixm.nas.xml",
 "rel": "alternate",
 "type": "application/fixm+nas+xml;version=3.0",
 "title": "Feature FID-150061c7-5575-475b-8496-c938019fc8e0-5733"
 },
 {
 "href":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items/FID-
150061c7-5575-475b-8496-c938019fc8e0-5733.geo.json",
 "rel": "self",
 "type": "application/geo+json",
 "title": "Feature FID-150061c7-5575-475b-8496-c938019fc8e0-5733"
 },
 {
 "href":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items/FID-
150061c7-5575-475b-8496-c938019fc8e0-5733.html",
 "rel": "alternate",
 "type": "text/html",
 "title": "Feature FID-150061c7-5575-475b-8496-c938019fc8e0-5733"
 }
]
}

98

Appendix B: Semantic Registry: Sample
Resource and Collection Mapping
This Annex describes an example of how a resource harvested from the NSRR was transformed into
JSON, JSON-LD and TTL using the Semantic Registry.

B.1. Harvesting the NSRR
An instance of the Semantic Registry Harvester was configured to harvest the root index page URL
of the NSRR; this page contains only a brief description of the service (id, title, description) and a
link to the XML document describing a full description of the service. The Harvester extracted these
links from index page (located at https://nsrr.faa.gov/rim/index) and then accessed them in order to
fetch the complete XML service description document.

The following XML contains only two out of all the Services that can be found in the NSRR index
page. The link to the detailed description of the service is found in the xlink:href attribute of the
RegisteredService tag.

NSRR Index XML (Only Two Services Shown)

<Index
 xmlns="http://swim.aero/rim/1.0.0"
 xmlns:xlink="http://www.w3.org/1999/xlink" xlink:title="registryId" xlink:type=
"locator" xlink:href="http://nsrr.faa.gov">

 <RegisteredService xlink:href="http://nsrr.faa.gov/services/acs-dq" xlink:title=
"GRID" xlink:type="locator">
 <Name>Aeronautical Common Services Data Query (ACS-DQ) </Name>
 <Description>The ACS Data Query Service allows a service consumer to submit
queries and returns Special Use Airspace (SUA), SUA Schedules that match the query.
</Description>
 <Created>2020-03-04T08:23:36-05:00</Created>
 <LastModified>2020-03-04T08:23:36-05:00</LastModified>
 <ServiceProductCategory>
 <Taxonomy>http://semantics.aero/service-product</Taxonomy>
 <Code>http://semantics.aero/service-product#aeronautical</Code>
 </ServiceProductCategory>
 <AvailabilityStatusCategory>
 <Taxonomy>http://semantics.aero/availability-status</Taxonomy>
 <Code>http://semantics.aero/availability-status#operational</Code>
 </AvailabilityStatusCategory>
 <InterfaceTypeCategory>
 <Taxonomy>http://semantics.aero/interface-type</Taxonomy>
 <Code>http://semantics.aero/interface-type#method-oriented</Code>
 </InterfaceTypeCategory>
 </RegisteredService>
 <RegisteredService xlink:href="http://nsrr.faa.gov/services/acs-ds" xlink:title=
"GRID" xlink:type="locator">

99

https://nsrr.faa.gov/rim/index

 <Name>Aeronautical Common Services Data Subscription (ACS-DS)</Name>
 <Description>The Aeronautical Common Services Data Subscription (ACS-DS) is a
WS-Notification (WSN) service, which is a standard that describes a publish/subscribe
messaging model implemented over Web Services. The WS-Notification standard is defined
by combining the following OASIS specifications: WS-Topics, WS-BaseNotification, and
WS-BrokeredNotification. The service allows consumers to subscribe to notifications of
updates to aeronautical information. Consumers can use this service to create and
manage their subscriptions. The service allows users to create and manage PullPoints,
which is a resource used to accumulate notification messages, that can later be
retrieved at requested intervals. </Description>
 <Created>2020-03-04T08:23:36-05:00</Created>
 <LastModified>2020-03-04T08:23:36-05:00</LastModified>
 <ServiceProductCategory>
 <Taxonomy>http://semantics.aero/service-product</Taxonomy>
 <Code>http://semantics.aero/service-product#aeronautical</Code>
 </ServiceProductCategory>
 <AvailabilityStatusCategory>
 <Taxonomy>http://semantics.aero/availability-status</Taxonomy>
 <Code>http://semantics.aero/availability-status#operational</Code>
 </AvailabilityStatusCategory>
 <InterfaceTypeCategory>
 <Taxonomy>http://semantics.aero/interface-type</Taxonomy>
 <Code>http://semantics.aero/interface-type#method-oriented</Code>
 </InterfaceTypeCategory>
 </RegisteredService>

</Index>

The following XML contains the complete service description for the ACS-DS service. The Harvester
extracted this information by following the link found in the NSRR index page.

Complete ACS-DS Service XML Description

<Profile xmlns="http://swim.aero/rim/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:title="GRID" xlink:type="locator" xlink:href="http://nsrr.faa.gov/services/acs-
ds">
 <ServiceName xmlns="http://swim.aero/sdm-x/1.0.0">Aeronautical Common Services
Data Subscription (ACS-DS)</ServiceName>
 <ServiceVersion xmlns="http://swim.aero/sdm-x/1.0.0">1.0</ServiceVersion>
 <ServiceDescription xmlns="http://swim.aero/sdm-x/1.0.0">The Aeronautical Common
Services Data Subscription (ACS-DS) is a WS-Notification (WSN) service, which is a
standard that describes a publish/subscribe messaging model implemented over Web
Services. The WS-Notification standard is defined by combining the following OASIS
specifications: WS-Topics, WS-BaseNotification, and WS-BrokeredNotification. The
service allows consumers to subscribe to notifications of updates to aeronautical
information. Consumers can use this service to create and manage their subscriptions.
The service allows users to create and manage PullPoints, which is a resource used to
accumulate notification messages, that can later be retrieved at requested intervals.
 </ServiceDescription>
 <ServiceCategories xmlns="http://swim.aero/sdm-x/1.0.0">
 <Category>

100

 <CategoryName>ATM Service Category</CategoryName>
 <Value>Flight Planning</Value>
 </Category>
 <Category>
 <CategoryName>SWIM Service Product Category</CategoryName>
 <Value>Aeronautical</Value>
 </Category>
 <Category>
 <CategoryName>Lifecycle Status</CategoryName>
 <Value>Deprecated</Value>
 </Category>
 </ServiceCategories>
 <Provider xmlns="http://swim.aero/sdm-x/1.0.0">
 <Name>Aeronautical Information Management Modernization (AIMM)</Name>
 <Description>AIMM's mission is to enhance the safety and efficiency of the NAS
by establishing a single trusted access point of digital Aeronautical Information
(AI). AIMM uses internationally adopted open standards, bringing AI into the FAA's
Service Oriented Architecture (SOA) via System Wide Information Management (SWIM)
compliant services and infrastructure.
 </Description>
 <WebPage>https://www.faa.gov/air_traffic/flight_info/aimm/</WebPage>
 <PointsOfContact>
 <POC>
 <Name>Davy andrew</Name>
 <Function>General Engineer</Function>
 <Phone>(202) 267-9582</Phone>
 <Email>davy.andrew@faa.gov</Email>
 </POC>
 </PointsOfContact>
 </Provider>
 <Functions xmlns="http://swim.aero/sdm-x/1.0.0">
 <Function>
 <Description>Querying and retrieving AI Data</Description>
 <RealWorldEffect>The ACS-DS has operations that aid the consumer in
querying and retrieving AI Data. Services allow the ability to query for AI data
features like SAA, SUA and integrated SAA/SUA data. In addition, this service also
provides a publish/subscribe function that notifies subscribers when there is a change
to the AI Data.
 </RealWorldEffect>
 </Function>
 </Functions>
 <Security xmlns="http://swim.aero/sdm-x/1.0.0">
 <SecurityMechanism>
 <Name>Access Control Mechanisms</Name>
 <Description>The Service will use industry-standard, RBAC. User
authentication is required for each Service call. A username/password combination will
be contained in the SOAP header in each request to the Service. The Service will not
allow for any modification of AI data.
 </Description>
 <RegulatingProtocol>
 <Title></Title>

101

 </RegulatingProtocol>
 </SecurityMechanism>
 </Security>
 <Policies xmlns="http://swim.aero/sdm-x/1.0.0">
 <Policy>
 <Title>Web Services Policy 1.5 - Framework</Title>
 <Location>https://www.w3.org/TR/ws-policy/ws-policy-
framework.pdf</Location>
 </Policy>
 </Policies>
 <QualitiesOfService xmlns="http://swim.aero/sdm-x/1.0.0">
 <QualityOfServiceParameter>
 <Name>Availability</Name>
 <Value>.999 – Essential Service</Value>
 <Definition>Probability that the service is present or ready for immediate
use.</Definition>
 <CalculationMethod>100 * ((24 –Total Outage Time) / 24).Measurements are
taken daily and apply to the preceding 24-hour period.</CalculationMethod>
 <UnitOfMeasure>Percentage, accurate to 3 decimal places</UnitOfMeasure>
 </QualityOfServiceParameter>
 <QualityOfServiceParameter>
 <Name>Capacity</Name>
 <Value>The system will allow a minimum of 3000 concurrent ACS
consumers.</Value>
 <Definition>Number of service requests that the service can accommodate
within a given time period</Definition>
 <CalculationMethod>Simple count</CalculationMethod>
 <UnitOfMeasure>Whole number</UnitOfMeasure>
 </QualityOfServiceParameter>
 <QualityOfServiceParameter>
 <Name>Capacity</Name>
 <Value>The system will maintain subscription services with at least 30,000
users</Value>
 <Definition>Number of service requests that the service can accommodate
within a given time period </Definition>
 <CalculationMethod>Simple count</CalculationMethod>
 <UnitOfMeasure>Whole Number</UnitOfMeasure>
 </QualityOfServiceParameter>
 <QualityOfServiceParameter>
 <Name>ResponseTime</Name>
 <Value>The system will respond to airspace conflict detection requests for
a single airspace in 10 seconds or less</Value>
 <Definition>Maximum time required to complete a service
request.</Definition>
 <CalculationMethod>Measured from the time the service provider agent
receives the request to the time the service provider transmits the
response.</CalculationMethod>
 <UnitOfMeasure>Seconds</UnitOfMeasure>
 </QualityOfServiceParameter>
 <QualityOfServiceParameter>
 <Name>ResponseTime</Name>

102

 <Value>The system will meet an end-toend, one-way message latency within a
500 millisecond time range. The message to be tested will consist of a simple query
(e.g. based on a UUID) for a single AIXM feature element.</Value>
 <Definition>Maximum time required to complete a service
request.</Definition>
 <CalculationMethod>Measured from the time the service provider agent
receives the request to the time the service provider transmits the
response.</CalculationMethod>
 <UnitOfMeasure>Milliseconds</UnitOfMeasure>
 </QualityOfServiceParameter>
 </QualitiesOfService>
 <EnvironmentalConstraints xmlns="http://swim.aero/sdm-x/1.0.0">
 <Constraint>
 <Description>AIMM operates within the FAA Telecommunications
Infrastructure (FTI) and is subject to its performance constraints</Description>
 </Constraint>
 </EnvironmentalConstraints>
</Profile>

The Asset Importer for NSRR Data of the Semantic Registry converted the complete service
description from XML format to JSON. A scrapper built within the Asset Importer extracted the
Related Resources found on the NSRR HTML webpage.

The following JSON Service Representation resulted from the conversion of the harvested ACS-DS
service description from XML to JSON, and the addition of its corresponding scrapped Related
Resources.

ACS-DS JSON Service Representation

{
 "_created": 1602549647665,
 "_modified": 1602549647665,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_versionId": 1,
 "_status": "current",
 "_visibility": "public",
 "type": "regp:Service",
 "id": "b8685040798ddeb678d10f6c4b6dec7b",
 "uri": "https://ogctb16.usersmarts.com/id/service/e2b93bb45a645a02feead3229e836a39",
 "modified": 1602549647665,
 "label": "Aeronautical Common Services Data Subscription (ACS-DS) (v2.0)",
 "title": "Aeronautical Common Services Data Subscription (ACS-DS) (v2.0)",
 "description": "The Aeronautical Common Services Data Subscription (ACS-DS) is a
WS-Notification (WSN) service, which is a standard that describes a publish/subscribe
messaging model implemented over Web Services. The WS-Notification standard is defined
by combining the following OASIS specifications: WS-Topics, WS-BaseNotification, and
WS-BrokeredNotification. The service allows consumers to subscribe to notifications of
updates to aeronautical information. Consumers can use this service to create and
manage their subscriptions. The service allows users to create and manage PullPoints,
which is a resource used to accumulate notification messages, that can later be

103

retrieved at requested intervals.\n",
 "publisher": [
 {
 "_created": 1602549647665,
 "_modified": 1602549647665,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "id": "bd431254e13607887365030f0c40bef2",
 "uri":
"https://ogctb16.usersmarts.com/id/organization/9b80f98051d04aae7edc70872d4a3c35",
 "type": "org:Organization",
 "label": "Aeronautical Information Management Modernization (AIMM)",
 "name": "Aeronautical Information Management Modernization (AIMM)",
 "description": "AIMM's mission is to enhance the safety and efficiency of the
NAS by establishing a single trusted access point of digital Aeronautical Information
(AI). AIMM uses internationally adopted open standards, bringing AI into the FAA's
Service Oriented Architecture (SOA) via System Wide Information Management (SWIM)
compliant services and infrastructure. \n",
 "status": "submitted",
 "resourceType": [
 "foaf:Agent",
 "org:Organization"
],
 "_visibility": "public",
 "modified": 1602549647665,
 "_status": "current",
 "_versionId": 1
 }
],
 "status": "testing",
 "relatedResource": [
 {
 "type": "AuxiliaryResource",
 "uri": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/CDRL_E15_ACSDataSubscription_R3_WSDD_v3.5.pdf",
 "href": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/CDRL_E15_ACSDataSubscription_R3_WSDD_v3.5.pdf",
 "label": "CDRL_E15_ACSDataSubscription_R3_WSDD_v3.5.pdf",
 "title": "CDRL_E15_ACSDataSubscription_R3_WSDD_v3.5.pdf"
 },
 {
 "type": "AuxiliaryResource",
 "uri": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/ACSDataSubscription.zip",
 "href": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/ACSDataSubscription.zip",
 "label": "ACSDataSubscription.zip",
 "title": "ACSDataSubscription.zip"
 },
 {
 "type": "AuxiliaryResource",

104

 "uri": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/DTFAWA_14_C_00049_CDRL_E16_FINAL_ACS_R3_Web_Service_Requirements_Document_V3.4.pd
f",
 "href": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/DTFAWA_14_C_00049_CDRL_E16_FINAL_ACS_R3_Web_Service_Requirements_Document_V3.4.pd
f",
 "label":
"DTFAWA_14_C_00049_CDRL_E16_FINAL_ACS_R3_Web_Service_Requirements_Document_V3.4.pdf",
 "title":
"DTFAWA_14_C_00049_CDRL_E16_FINAL_ACS_R3_Web_Service_Requirements_Document_V3.4.pdf"
 },
 {
 "type": "AuxiliaryResource",
 "uri": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/CONOPS_AIMMS2_20140529_2%200.docx",
 "href": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/CONOPS_AIMMS2_20140529_2%200.docx",
 "label": "CONOPS_AIMMS2_20140529_2 0.docx",
 "title": "CONOPS_AIMMS2_20140529_2 0.docx"
 },
 {
 "type": "AuxiliaryResource",
 "uri": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/ACS_Web_Service_Faults.pptx",
 "href": "https://nsrr.faa.gov/sites/default/files/acs-
dsv2/ACS_Web_Service_Faults.pptx",
 "label": "ACS_Web_Service_Faults.pptx",
 "title": "ACS_Web_Service_Faults.pptx"
 }
],
 "theme": [
 {
 "_created": 1602549647665,
 "_modified": 1602549647665,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_visibility": "public",
 "id": "03dfe8bb1cf2a2b12544a2efa0b2465e",
 "uri": "http://semantics.aero/atm-service-category#Flight_Planning",
 "type": "skos:Concept",
 "label": "ATM Service Category",
 "prefLabel": "Flight Planning",
 "altLabel": [
 "ATM Service Category"
],
 "title": "ATM Service Category",
 "status": "submitted",
 "transitivePath": "http://semantics.aero/atm-service-category#Flight_Planning",
 "modified": 1602549647665,
 "_enriched": true,
 "_status": "current",

105

 "_versionId": 1
 },
 {
 "_created": 1602549647665,
 "_modified": 1602549647665,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_visibility": "public",
 "id": "a1eb5a3c6f7e16f1e0181c4ccc805e74",
 "uri": "http://semantics.aero/service-product#Aeronautical",
 "type": "skos:Concept",
 "label": "SWIM Service Product Category",
 "prefLabel": "Aeronautical",
 "altLabel": [
 "SWIM Service Product Category"
],
 "title": "SWIM Service Product Category",
 "status": "submitted",
 "transitivePath": "http://semantics.aero/service-product#Aeronautical",
 "modified": 1602549647665,
 "_enriched": true,
 "_status": "current",
 "_versionId": 1
 }
],
 "category": [
 {
 "_created": 1602549647665,
 "_modified": 1602549647665,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_visibility": "public",
 "id": "03dfe8bb1cf2a2b12544a2efa0b2465e",
 "uri": "http://semantics.aero/atm-service-category#Flight_Planning",
 "type": "skos:Concept",
 "label": "ATM Service Category",
 "prefLabel": "Flight Planning",
 "altLabel": [
 "ATM Service Category"
],
 "title": "ATM Service Category",
 "status": "submitted",
 "transitivePath": "http://semantics.aero/atm-service-category#Flight_Planning",
 "modified": 1602549647665,
 "_enriched": true,
 "_status": "current",
 "_versionId": 1
 },
 {
 "_created": 1602549647665,
 "_modified": 1602549647665,

106

 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_visibility": "public",
 "id": "a1eb5a3c6f7e16f1e0181c4ccc805e74",
 "uri": "http://semantics.aero/service-product#Aeronautical",
 "type": "skos:Concept",
 "label": "SWIM Service Product Category",
 "prefLabel": "Aeronautical",
 "altLabel": [
 "SWIM Service Product Category"
],
 "title": "SWIM Service Product Category",
 "status": "submitted",
 "transitivePath": "http://semantics.aero/service-product#Aeronautical",
 "modified": 1602549647665,
 "_enriched": true,
 "_status": "current",
 "_versionId": 1
 }
],
 "source": {
 "id": "1f0cc9a8993cb72f71df529bc2d842cd",
 "uri": "https://ogctb16.usersmarts.com/id/source/1cb10a67497705f34108c961562a6091
",
 "type": "Source",
 "ingestionDate": 1602549643610,
 "mediaType": "text/xml",
 "schema": "nsrr",
 "providerName": "Test NSRR",
 "providerUrl": "https://nsrr.faa.gov/rim/index",
 "providerType": "nsrr",
 "tool": "FW Harvester",
 "method": "harvest",
 "md5": "68f68fd0cdef400c7989dbe7e09f51cf",
 "filename": "[B@3fddaea2.xml",
 "byteSize": 3642
 },
 "serviceTypeVersions": [
 "2.0"
],
 "_links": {
 "self": {
 "href":
"https://ogctb16.usersmarts.com/registry/items/b8685040798ddeb678d10f6c4b6dec7b"
 },
 "reg:commits": {
 "href":
"https://ogctb16.usersmarts.com/registry/items/b8685040798ddeb678d10f6c4b6dec7b/versio
ns"
 },
 "reg:source": {

107

 "href":
"https://ogctb16.usersmarts.com/registry/sources/1f0cc9a8993cb72f71df529bc2d842cd"
 },
 "up": {
 "href": "https://ogctb16.usersmarts.com/registry/items"
 },
 "reg:registry": {
 "href": "https://ogctb16.usersmarts.com/registry"
 },
 "curies": [
 {
 "href": "http://www.factweave.com/rels/{rel}",
 "name": "reg",
 "templated": true
 }
]
 }
}

B.2. Harvesting the SWIM Data Relay API
The Asset Importer for SWIM Data Relay API Metadata retrieved service and collection metadata
from the SWIM Data Relay API Component and transformed it into JSON, JSON-LD and Turtle (TTL)
Representations.

The following JSON Service Representation resulted from the conversion of the harvested Heliport
Class description of the SWIM Data Relay API Component.

Sample Collection Metadata Retrieved from OGC API

{
 "_created": 1600792592101,
 "_modified": 1600792592101,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_versionId": 1,
 "_status": "current",
 "_visibility": "public",
 "type": "dcat:Dataset",
 "id": "f6ec05301289230a02c844b341eb936e",
 "uri": "http://ogctb16.usersmarts.com/id/dataset/8822953c20b3fca92d14dd4b782ceb09
",
 "modified": 1600792592101,
 "label": "Class - AirportHeliport",
 "title": "Class - AirportHeliport",
 "description": "<<feature>> A defined area on land or water (including
any buildings, installations and equipment) intended to be used either wholly or in
part for the arrival, departure and surface movement of aircraft/helicopters.",
 "servicedBy_id": [
 "af7ef59349ae6fdeed8213baa95c7857"

108

],
 "servicedBy": [
 {
 "_created": 1600792592101,
 "_modified": 1600792592101,
 "_createdBy": "regp-admin",
 "_lastModifiedBy": "regp-admin",
 "_versionId": 1,
 "_status": "current",
 "_visibility": "public",
 "type": "regp:Service",
 "id": "af7ef59349ae6fdeed8213baa95c7857",
 "uri":
"http://ogctb16.usersmarts.com/id/service/aa332d686432ca245e93c7095da01d66",
 "modified": 1600792592101,
 "label": "A sample API conforming to the draft standard OGC API - Features
- Part 1: Core",
 "title": "A sample API conforming to the draft standard OGC API - Features
- Part 1: Core",
 "description": "This is a sample OpenAPI definition that conforms to the
conformance\nclasses \"Core\", \"GeoJSON\", \"HTML\" and \"OpenAPI 3.0\" of the
draft\nstandard \"OGC API - Features - Part 1: Core\".\n\nThis example differs from
the [other example](ogcapi-features-1-example1.yaml)\nin that each feature collections
is specified explicitly in its own path, not using a path\nparameter. This API
definiton is more verbose, but provides information about the feature\ncollection
'buildings' (paths `/collections/buildings`), the schema of the building features
\n(schema `buildingGeoJSON`) and a filter parameter for building features (parameter
`function`).",
 "accessURL": "https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/wfs3.json",
 "status": "submitted",
 "keyword": [
 "Capabilities",
 "Data"
],
 "source": {
 "id": "eaf029676b7345596a488b0412f14106",
 "uri":
"http://ogctb16.usersmarts.com/id/source/ec4005e77d53c56a58c2ce01eee9bf96",
 "type": "Source",
 "ingestionDate": 1600792587037,
 "schema": "wfs",
 "md5": "cc2804ba9cc8ffc455ebf92b2035499f",
 "sourceUrl":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/wfs3.json",
 "byteSize": 59086
 },
 }
],
 "geographicBoundingBox": {
 "northBoundLatitude": 64.8151111111111,
 "southBoundLatitude": 40.7287777777778,

109

 "westBoundLongitude": -147.856444444444,
 "eastBoundLongitude": -68.8281388888889
 },
 "identifier": [
 "AirportHeliport"
],
 "status": "submitted",
 "source": {
 "id": "eaf029676b7345596a488b0412f14106",
 "uri":
"http://ogctb16.usersmarts.com/id/source/ec4005e77d53c56a58c2ce01eee9bf96",
 "type": "Source",
 "ingestionDate": 1600792587037,
 "schema": "wfs",
 "md5": "cc2804ba9cc8ffc455ebf92b2035499f",
 "sourceUrl": "https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/wfs3.json",
 "byteSize": 59086
 },
 "temporal": {
 "startDate": 1591065000000,
 "endDate": 1591794000000
 },
 "distribution": [
 {
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport with media negotiation (Supported
Media-Types: 'Application/aixm+xml;version=5.1' 'Application/geo+json' 'text/html')",
 "title": "Collection AirportHeliport with media negotiation (Supported
Media-Types: 'Application/aixm+xml;version=5.1' 'Application/geo+json' 'text/html')",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items",
 "mediaType": "application/geo+json"
 },
 {
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport",
 "title": "Collection AirportHeliport",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.aixm.xm
l",
 "mediaType": "application/aixm+xml;version=5.1"
 },
 {
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport",
 "title": "Collection AirportHeliport",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.geo.jso
n",
 "mediaType": "application/geo+json"
 },

110

 {
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport",
 "title": "Collection AirportHeliport",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.html",
 "mediaType": "text/html"
 }
],
 "_links": {
 "self": {
 "href":
"https://ogctb16.usersmarts.com/registry/items/f6ec05301289230a02c844b341eb936e"
 },
 "reg:commits": {
 "href":
"https://ogctb16.usersmarts.com/registry/items/f6ec05301289230a02c844b341eb936e/versio
ns"
 },
 "reg:source": {
 "href":
"https://ogctb16.usersmarts.com/registry/sources/eaf029676b7345596a488b0412f14106"
 },
 "up": {
 "href": "https://ogctb16.usersmarts.com/registry/items"
 },
 "reg:registry": {
 "href": "https://ogctb16.usersmarts.com/registry"
 },
 "curies": [
 {
 "href": "http://www.factweave.com/rels/{rel}",
 "name": "reg",
 "templated": true
 }
]
 }
}

Retrieved collection metadata was encoded in JSON-LD. The following is the JSON-LD
representation of the collection retrieved in the previous example. Note the JSON-LD is inline at the
end of the document. An additional endpoint /context was added on the registry to produce the
JSON-LD context for all the items managed by the registry.

Collection Metadata Encoded in JSON-LD

{
 "@id": "https://ogctb16.usersmarts.com/id/dataset/8822953c20b3fca92d14dd4b782ceb09",
 "@type": "dcat:Dataset",
 "distribution": [

111

 {
 "@type": "dcat:Distribution",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items",
 "mediaType": "application/geo+json",
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport with media negotiation (Supported Media-
Types: 'Application/aixm+xml;version=5.1' 'Application/geo+json' 'text/html')",
 "title": "Collection AirportHeliport with media negotiation (Supported Media-
Types: 'Application/aixm+xml;version=5.1' 'Application/geo+json' 'text/html')"
 },
 {
 "@type": "dcat:Distribution",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.aixm.xm
l",
 "mediaType": "application/aixm+xml;version=5.1",
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport",
 "title": "Collection AirportHeliport"
 },
 {
 "@type": "dcat:Distribution",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.geo.jso
n",
 "mediaType": "application/geo+json",
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport",
 "title": "Collection AirportHeliport"
 },
 {
 "@type": "dcat:Distribution",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.html",
 "mediaType": "text/html",
 "type": "dcat:Distribution",
 "label": "Collection AirportHeliport",
 "title": "Collection AirportHeliport"
 }
],
 "source": {
 "@id": "https://ogctb16.usersmarts.com/id/source/ec4005e77d53c56a58c2ce01eee9bf96
",
 "@type": "rdfs:Resource",
 "type": "Source"
 },
 "servicedBy": [
 {
 "@id":
"https://ogctb16.usersmarts.com/id/service/aa332d686432ca245e93c7095da01d66",

112

 "@type": "regp:Service",
 "keyword": [
 "Capabilities",
 "Data"
],
 "source": {
 "@id":
"https://ogctb16.usersmarts.com/id/source/ec4005e77d53c56a58c2ce01eee9bf96",
 "@type": "rdfs:Resource",
 "type": "Source"
 },
 "accessURL": "https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/wfs3.json",
 "status": "submitted",
 "type": "regp:Service",
 "label": "A sample API conforming to the draft standard OGC API - Features -
Part 1: Core",
 "title": "A sample API conforming to the draft standard OGC API - Features -
Part 1: Core",
 "description": "This is a sample OpenAPI definition that conforms to the
conformance\nclasses \"Core\", \"GeoJSON\", \"HTML\" and \"OpenAPI 3.0\" of the
draft\nstandard \"OGC API - Features - Part 1: Core\".\n\nThis example differs from
the [other example](ogcapi-features-1-example1.yaml)\nin that each feature collections
is specified explicitly in its own path, not using a path\nparameter. This API
definiton is more verbose, but provides information about the feature\ncollection
'buildings' (paths `/collections/buildings`), the schema of the building features
\n(schema `buildingGeoJSON`) and a filter parameter for building features (parameter
`function`)."
 }
],
 "temporal": {
 "@type": "extent:TemporalExtent",
 "startDate": 1591065000000,
 "endDate": 1591794000000
 },
 "geographicBoundingBox": {
 "@type": "extent:GeographicBoundingBox",
 "northBoundLatitude": 64.8151111111111,
 "southBoundLatitude": 40.7287777777778,
 "westBoundLongitude": -147.856444444444,
 "eastBoundLongitude": -68.8281388888889
 },
 "identifier": [
 "AirportHeliport"
],
 "status": "submitted",
 "type": "dcat:Dataset",
 "label": "Class - AirportHeliport",
 "title": "Class - AirportHeliport",
 "description": "<<feature>> A defined area on land or water (including
any buildings, installations and equipment) intended to be used either wholly or in
part for the arrival, departure and surface movement of aircraft/helicopters.",

113

 "@context": {
 "extent": "http://www.opengis.net/ont/spatial/extent#",
 "schema": "http://schema.org/",
 "dct": "http://purl.org/dc/terms/",
 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "regp": "http://www.factweave.com/ont/regp#",
 "eo": "http://www.factweave.com/profile/eo#",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "dcat": "http://www.w3.org/ns/dcat#",
 "distribution": {
 "@id": "dcat:distribution",
 "@type": "dcat:Distribution"
 },
 "downloadURL": { "@id": "dcat:downloadURL", "@type": "@id" },
 "mediaType": { "@id": "dcat:mediaType", "@type":
"http://www.w3.org/2001/XMLSchema#string" },
 "type": { "@id": "rdf:type", "@type": "rdfs:Class" },
 "label": { "@id": "rdfs:label", "@type": "http://www.w3.org/2001/XMLSchema#string"
},
 "title": { "@id": "dct:title", "@type": "http://www.w3.org/2001/XMLSchema#string"
},
 "source": { "@id": "dct:source", "@type": "rdfs:Resource" },
 "servicedBy": { "@id": "regp:servicedBy", "@type": "regp:Service" },
 "keyword": {
 "@id": "dcat:keyword",
 "@type": "http://www.w3.org/2001/XMLSchema#string"
 },
 "accessURL": {
 "@id": "dcat:accessURL",
 "@type": "@id"
 },
 "status": {
 "@id": "regp:status",
 "@type": "http://www.w3.org/2001/XMLSchema#string"
 },
 "description": {
 "@id": "dct:description",
 "@type": "http://www.w3.org/2001/XMLSchema#string"
 },
 "temporal": {
 "@id": "dct:temporal",
 "@type": "dct:PeriodOfTime"
 },
 "startDate": {
 "@id": "schema:startDate",
 "@type": "http://www.w3.org/2001/XMLSchema#date"
 },
 "endDate": {
 "@id": "schema:endDate",
 "@type": "http://www.w3.org/2001/XMLSchema#date"
 },

114

 "geographicBoundingBox": {
 "@id": "extent:geographicBoundingBox",
 "@type": "extent:GeographicBoundingBox"
 },
 "northBoundLatitude": {
 "@id": "extent:northBoundLatitude",
 "@type": "http://www.w3.org/2001/XMLSchema#double"
 },
 "southBoundLatitude": {
 "@id": "extent:southBoundLatitude",
 "@type": "http://www.w3.org/2001/XMLSchema#double"
 },
 "westBoundLongitude": {
 "@id": "extent:westBoundLongitude",
 "@type": "http://www.w3.org/2001/XMLSchema#double"
 },
 "eastBoundLongitude": {
 "@id": "extent:eastBoundLongitude",
 "@type": "http://www.w3.org/2001/XMLSchema#double"
 },
 "identifier": {
 "@id": "dct:identifier",
 "@type": "http://www.w3.org/2001/XMLSchema#string"
 }
 }
}

Retrieved collection metadata was also encoded in TTL. The following is the TTL representation of
the collection retrieved in the previous example. The following example demonstrates the
equivalent representation of the JSON-LD in Turtle, which can be directly ingested in Triple Stores
and used by semantic reasoners to perform logical consistency checking and inferences. The
example shows that the SRIM model is superset of the well-established DCAT standard.

Collection Metadata Encoded in TTL

@prefix schema: <http://schema.org/> .
@prefix extent: <http://www.opengis.net/ont/spatial/extent#> .
@prefix adms: <http://www.w3.org/ns/adms#> .
@prefix pav: <http://purl.org/pav/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix org: <http://www.w3.org/ns/org#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix regp: <http://www.factweave.com/ont/regp#> .
@prefix prm: <http://www.factweave.com/ont/prm#> .
@prefix eo: <http://www.factweave.com/profile/eo#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix gp-regp: <http://www.geoplatform.gov/ont/regp#> .
@prefix dct: <http://purl.org/dc/terms/> .

115

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sdo: <http://schema.org/> .

<https://ogctb16.usersmarts.com/resources/datasets/195cc903903d66781b57f34afdace4fc>
 a dcat:Dataset ;
 rdfs:label "Class - AirportHeliport" ;
 dct:description "<<feature>> A defined area on land
or water (including any buildings, installations and equipment) intended to be used
either wholly or in part for the arrival, departure and surface movement of
aircraft/helicopters." ;
 dct:identifier "AirportHeliport" ;
 dct:source <https://ogctb16.usersmarts.com/resources
/sources/d736654cd8cae042e0fb901639bd9170> ;
 dct:temporal [a extent:TemporalExtent ;
 sdo:endDate "Wed Jun 10 13:00:00 UTC
2020"^^<java:java.util.Date> ;
 sdo:startDate "Tue Jun 02 02:30:00 UTC
2020"^^<java:java.util.Date>
] ;
 dct:title "Class - AirportHeliport" ;
 regp:servicedBy <https://ogctb16.usersmarts.com/resources
/services/e93daabdb04e81f45aee1967db6ca7c9> ;
 regp:status "submitted" ;
 extent:geographicBoundingBox [a
extent:GeographicBoundingBox ;
 extent:eastBoundLongitude "-
68.8281388888889"^^xsd:double ;
 extent:northBoundLatitude
"64.8151111111111"^^xsd:double ;
 extent:southBoundLatitude
"40.7287777777778"^^xsd:double ;
 extent:westBoundLongitude "-
147.856444444444"^^xsd:double
] ;
 owl:sameAs <https://ogctb16.usersmarts.com/id/dataset
/8822953c20b3fca92d14dd4b782ceb09> ;
 dcat:distribution [a dcat:Distribution ;
 rdfs:label "Collection AirportHeliport"
;
 dct:title "Collection AirportHeliport"
;
 dcat:downloadURL <https:/
/geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.aixm.xml> ;
 dcat:mediaType
"application/aixm+xml;version=5.1"
] ;
 dcat:distribution [a dcat:Distribution ;
 rdfs:label "Collection AirportHeliport"

116

;
 dct:title "Collection AirportHeliport"
;
 dcat:downloadURL <https:/
/geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.geo.json> ;
 dcat:mediaType "application/geo+json"
] ;
 dcat:distribution [a dcat:Distribution ;
 rdfs:label "Collection AirportHeliport
with media negotiation (Supported Media-Types: 'Application/aixm+xml;version=5.1'
'Application/geo+json' 'text/html')" ;
 dct:title "Collection AirportHeliport
with media negotiation (Supported Media-Types: 'Application/aixm+xml;version=5.1'
'Application/geo+json' 'text/html')" ;
 dcat:downloadURL <https:/
/geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items> ;
 dcat:mediaType "application/geo+json"
] ;
 dcat:distribution [a dcat:Distribution ;
 rdfs:label "Collection AirportHeliport"
;
 dct:title "Collection AirportHeliport"
;
 dcat:downloadURL <https:/
/geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/AirportHeliport/items.html> ;
 dcat:mediaType "text/html"
] .

<https://ogctb16.usersmarts.com/resources/services/e93daabdb04e81f45aee1967db6ca7c9>
 a regp:Service ;
 rdfs:label "A sample API conforming to the draft standard OGC API -
Features - Part 1: Core" ;
 dct:description "This is a sample OpenAPI definition that conforms to the
conformance\nclasses \"Core\", \"GeoJSON\", \"HTML\" and \"OpenAPI 3.0\" of the
draft\nstandard \"OGC API - Features - Part 1: Core\".\n\nThis example differs from
the [other example](ogcapi-features-1-example1.yaml)\nin that each feature collections
is specified explicitly in its own path, not using a path\nparameter. This API
definiton is more verbose, but provides information about the feature\ncollection
'buildings' (paths `/collections/buildings`), the schema of the building
features\n(schema `buildingGeoJSON`) and a filter parameter for building features
(parameter `function`)." ;
 dct:source <https://ogctb16.usersmarts.com/resources/sources
/d736654cd8cae042e0fb901639bd9170> ;
 dct:title "A sample API conforming to the draft standard OGC API -
Features - Part 1: Core" ;
 regp:status "submitted" ;
 owl:sameAs <https://ogctb16.usersmarts.com/id/service
/aa332d686432ca245e93c7095da01d66> ;
 dcat:accessURL <https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/api/wfs3.json> ;
 dcat:keyword "Data" , "Capabilities" .

117

<https://ogctb16.usersmarts.com/resources/sources/d736654cd8cae042e0fb901639bd9170>
 a rdfs:Resource ;
 owl:sameAs <https://ogctb16.usersmarts.com/id/source
/ec4005e77d53c56a58c2ce01eee9bf96> .

118

Appendix C: Semantic Registry: GraphQL
Schema
This section provides the GraphQL schema implemented for the Semantic Registry during Testbed
16. The schema can be easily extended by adding new item types in the schema by extending the
interface Item. The API contract defined by GraphQL specification remains unchanged.

GraphQL Schema for Semantic Registry

scalar Date
scalar Url
scalar DateTime

type Query {
 getItem(id: ID): Item
 searchItems(query: SearchQuery, page: Int, size: Int, orderBy: [SortInput]):
SearchResults
}

type Mutation {
 saveAgent(input: AgentInput): Item
 savePerson(input: AgentInput): Item
 saveOrganization(input: AgentInput): Item
 saveDataset(input: DatasetInput): Item
 saveService(input: ServiceInput): Item
 saveLocation(input: LocationInput): Item
 saveStandard(input: StandardInput): Item
 saveConcept(input: ConceptInput): Item
 saveLinguisticSystem(input: LinguisticSystemInput): Item
 saveConceptScheme(input: ConceptSchemeInput): Item
 deleteItem(id: ID): Boolean
}

interface Item {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label: String
 title : String
 description:String
}

input ItemInput {
 id : ID
 uri : Url
 type: String
}

119

type Asset implements Item {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label:String
 title : String
 alternativeTitle: [String]
 description:String
 version:String
 versionNotes:String
 currentVersion:Item
 previousVersion: Item
 versions: [Item]
 isRelease: Boolean
 memberOf: [Item]
 hasMember: [Item]
 partOf: [Item]
 hasPart: [Item]
 creator: [Agent]
 publisher: [Agent]
 contributor:[Agent]
 rightsHolder: [Agent]
 usedBy: [Agent]
 attribution: [Attribution]
 credit: [String]
 hasIdentifier: [Identifier]
 identifier: [String]
 keyword:[String]
 contactPoints: [VCard]
 servicedBy: [Service]
 theme: [Concept]
 hasTopic:[Concept]
 productType:[Concept]
 category: [Concept]
 purpose:String
 thumbnail : Thumbnail
 classifiers: Classifiers
 landingPage: Url
 accessURL : Url
 spatial: [Location]
 geographicBoundingBox: GeographicBoundingBox
 temporalExtent: TemporalExtent
 conformsTo: Standard
 license: LicenseDocument
 rights: [RightsStatement]
 accessRights: [RightsStatement]
 languages: [LinguisticSystem]
}

120

type Dataset implements Item {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label:String
 title : String
 alternativeTitle: [String]
 description:String
 version:String
 versionNotes:String
 currentVersion:Item
 previousVersion: Item
 versions: [Item]
 isRelease: Boolean
 contactPoints: [VCard]
 creator: [Agent]
 publisher: [Agent]
 contributor:[Agent]
 rightsHolder: [Agent]
 usedBy: [Agent]
 attribution: [Attribution]
 credit: [String]
 hasIdentifier: [Identifier]
 identifier: [String]
 keyword:[String]
 theme: [Concept]
 hasTopic:[Concept]
 productType:[Concept]
 category: [Concept]
 purpose:String
 thumbnail : Thumbnail
 classifiers: Classifiers
 landingPage: Url
 accessUrl : String
 spatial: [Location]
 geographicBoundingBox: GeographicBoundingBox
 temporalExtent: TemporalExtent
 license: LicenseDocument
 conformsTo: Standard
 rights: [RightsStatement]
 accessRights: [RightsStatement]
 languages: [LinguisticSystem]
 distribution: [Distribution]
}

input DatasetInput {
 id : ID
 uri : Url
 type: String
 resourceType: [String]

121

 label:String
 title : String
 alternativeTitle: [String]
 description:String
 version:String
 versionNotes:String
 currentVersion:ItemInput
 previousVersion: ItemInput
 versions: [ItemInput]
 isRelease: Boolean
 memberOf: [ItemInput]
 hasMember: [ItemInput]
 partOf: [ItemInput]
 hasPart: [ItemInput]
 creator: [AgentInput]
 publisher: [AgentInput]
 contributor:[AgentInput]
 rightsHolder: [AgentInput]
 usedBy: [AgentInput]
 attribution: [AttributionInput]
 credit: [String]
 hasIdentifier: [IdentifierInput]
 identifier: [String]
 keyword:[String]
 contactPoints: [VCardInput]
 servicedBy: [ServiceInput]
 theme: [ConceptInput]
 hasTopic:[ConceptInput]
 productType:[ConceptInput]
 category: [ConceptInput]
 purpose:String
 thumbnail : ThumbnailInput
 classifiers: ClassifiersInput
 landingPage: String
 accessUrl : Url
 spatial: [LocationInput]
 geographicBoundingBox: GeographicBoundingBoxInput
 temporalExtent: TemporalExtentInput
 conformsTo: StandardInput
 license: LicenseDocumentInput
 rights: [RightsStatementInput]
 accessRights: [RightsStatementInput]
 languages: [LinguisticSystemInput]
 distribution: [DistributionInput]
}

input ServiceInput {
 id : ID
 uri : Url
 type: String
 resourceType: [String]

122

 label:String
 title : String
 alternativeTitle: [String]
 description:String
 version:String
 versionNotes:String
 currentVersion:ItemInput
 previousVersion: ItemInput
 versions: [ItemInput]
 isRelease: Boolean
 memberOf: [ItemInput]
 hasMember: [ItemInput]
 partOf: [ItemInput]
 hasPart: [ItemInput]
 creator: [AgentInput]
 publisher: [AgentInput]
 contributor:[AgentInput]
 rightsHolder: [AgentInput]
 usedBy: [AgentInput]
 attribution: [AttributionInput]
 credit: [String]
 hasIdentifier: [IdentifierInput]
 identifier: [String]
 keyword:[String]
 contactPoints: [VCardInput]
 operatesOn: [ItemInput]
 theme: [ConceptInput]
 hasTopic:[ConceptInput]
 productType:[ConceptInput]
 category: [ConceptInput]
 purpose:String
 thumbnail : ThumbnailInput
 classifiers: ClassifiersInput
 landingPage: String
 accessUrl : String
 spatial: [LocationInput]
 geographicBoundingBox: GeographicBoundingBoxInput
 temporalExtent: TemporalExtentInput
 conformsTo: StandardInput
 license: LicenseDocumentInput
 rights: [RightsStatementInput]
 languages: [LinguisticSystemInput]
 accessRights: [RightsStatementInput]
}

type Service implements Item {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label:String

123

 title : String
 alternativeTitle: [String]
 description:String
 version:String
 versionNotes:String
 currentVersion:Item
 previousVersion: Item
 versions: [Item]
 isRelease: Boolean
 memberOf: [Item]
 hasMember: [Item]
 partOf: [Item]
 hasPart: [Item]
 creator: [Agent]
 publisher: [Agent]
 contributor:[Agent]
 rightsHolder: [Agent]
 usedBy: [Agent]
 attribution: [Attribution]
 credit: [String]
 hasIdentifier: [Identifier]
 identifier: [String]
 keyword:[String]
 contactPoints: [VCard]
 operatesOn: [Item]
 theme: [Concept]
 hasTopic:[Concept]
 productType:[Concept]
 category: [Concept]
 purpose:String
 thumbnail : Thumbnail
 classifiers: Classifiers
 landingPage: Url
 accessUrl : Url
 spatial: [Location]
 geographicBoundingBox: GeographicBoundingBox
 temporalExtent: TemporalExtent
 conformsTo: Standard
 license: LicenseDocument
 rights: [RightsStatement]
 accessRights: [RightsStatement]
}

type VCard {
 organization_name: String
 address: Address
 fn:String
 hasEmail: String
 tel: String
 fax:String
 landingPage: Url

124

 positionTitle: String
}

input VCardInput {
 organization_name: String
 address: AddressInput
 fn:String
 hasEmail: String
 tel: String
 fax:String
 landingPage: Url
 positionTitle: String
}

type Address {
 locality:String
 region: String
 country_name:String
 postal_code: String
}

input AddressInput {
 locality:String
 region: String
 country_name:String
 postal_code: String
}

type Classifiers {
 community: [Concept]
 topic:[Concept]
 primarySubject:[Concept]
 secondarySubject: [Concept]
 primaryTopic: [Concept]
 secondaryTopic: [Concept]
 purpose: [Concept]
 place : [Concept]
 audience: [Concept]
 category: [Concept]
 function: [Concept]
 event: [Concept]
 assumption: [Concept]
}

input ClassifiersInput {
 community: [ConceptInput]
 topic:[ConceptInput]
 primarySubject:[ConceptInput]
 secondarySubject: [ConceptInput]
 primaryTopic: [ConceptInput]
 secondaryTopic: [ConceptInput]

125

 purpose: [ConceptInput]
 place : [ConceptInput]
 audience: [ConceptInput]
 category: [ConceptInput]
 function: [ConceptInput]
 event: [ConceptInput]
 assumption: [ConceptInput]
}

type Attribution {
 type: String
 agent: Agent
 role: Url
}

input AttributionInput {
 type: String
 agent: AgentInput
 role: Url
}

type Thumbnail {
 url: Url
 label: String
 description: String
 mediaType: String
 title: String
}

input ThumbnailInput {
 url: Url
 label: String
 description: String
 mediaType: String
 title: String
}

type Identifier {
 name:String
 codeSpace:String
}

input IdentifierInput {
 name:String
 codeSpace:String
}

type GeographicBoundingBox {
 northBoundLatitude : Float
 southBoundLatitude : Float
 westBoundLongitude : Float

126

 eastBoundLongitude : Float
}

input GeographicBoundingBoxInput {
 northBoundLatitude : Float!
 southBoundLatitude : Float!
 westBoundLongitude : Float!
 eastBoundLongitude : Float!
}

type TemporalExtent {
 startDate : Date
 endDate : Date
}

input TemporalExtentInput {
 startDate : Date
 endDate : Date
}

type Location implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
 prefLabel: String
 altLabel: [String]
 inScheme : ConceptScheme
 placeName: String
 geographicBoundingBox : [GeographicBoundingBox]
}

input LocationInput {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
 prefLabel: String
 altLabel: [String]
 inScheme : ConceptSchemeInput
 placeName: String
 geographicBoundingBox : [GeographicBoundingBoxInput]
}

type Standard implements Item {

127

 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
 availableVersions: [String]
}

input StandardInput {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
 availableVersions: [String]
}

type LicenseDocument {
 uri : Url
 type: String

 label : String
 title : String
 description:String
}

input LicenseDocumentInput {
 uri : Url
 type: String
 label : String
 title : String
 description:String
}

type RightsStatement {
 id : ID!
 uri : Url
 type: String
 label : String
 title : String
 description: String
 thumbnail: Thumbnail
 juridictiom: [Concept]
 category: [Concept]
}

input RightsStatementInput {

128

 id : ID
 uri : String
 type: String
 label : String
 title : String
 description: String
 thumbnail: ThumbnailInput
 juridiction: [ConceptInput]
 category:[ConceptInput]
}

type Distribution {
 type: String
 contentId : ID
 label: String
 title : String
 description:String
 accessURL : Url
 downloadURL: Url
 mediaType:String
 byteSize: Int
 conformsTo:Standard
 license: LicenseDocument
 rights: RightsStatement
 accessRights: RightsStatement
 accessLevel: String
 page: Document
 format: FileFormat
 language: LinguisticSystem
 representationTechnique: Url
}

input DistributionInput {
 type: String
 contentId : ID
 label: String
 title : String
 description:String
 accessURL : Url
 downloadUrl: Url
 mediaType:String
 byteSize: Int
 conformsTo:StandardInput
 license: LicenseDocumentInput
 rights: RightsStatementInput
 accessRights: RightsStatementInput
 accessLevel: String
 page: DocumentInput
 format: FileFormatInput
 language: LinguisticSystemInput
 representationTechnique: Url

129

}

type Document {
 uri: Url
 label: String
 title : String
 description:String
 conformsTo: Standard
 format:String
}

input DocumentInput {
 uri: Url
 label: String
 title : String
 description:String
 conformsTo: StandardInput
 format:String
}

type FileFormat {
 uri : Url
 type: String
 label : String
 title : String
 description: String
 version: String
}

input FileFormatInput {
 uri : Url
 type: String
 label : String
 title : String
 description: String
 version: String
}

type LinguisticSystem implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
}

input LinguisticSystemInput {

130

 id : ID!
 uri : Url
 type: String
 label : String
 title : String
 description:String
}

type Agent implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label:String
 title : String
 name: String
 description:String
}

type Organization implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label: String
 title : String
 name: String
 description:String
}

type Person implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label: String
 title : String
 name: String
 description:String
}

input AgentInput {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 title : String
 name: String
 description:String

}

131

type Concept implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
 prefLabel: String
 altLabel: [String]
 inScheme : ConceptScheme
}

input ConceptInput {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title : String
 description:String
 prefLabel: String
 altLabel: [String]
 inScheme : ConceptSchemeInput
}

type ConceptScheme implements Item {
 id : ID!
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title: String
 description : String
}

input ConceptSchemeInput {
 id : ID
 uri : Url
 type: String
 resourceType: [String]
 label : String
 title: String
 description : String
}

enum Op {
 "Equal operator" EQ,
 "Greater than operator" GT,
 "Greater than or equal operator" GTE,

132

 "Less than operator" LT,
 "Less than or equal operator" LTE,
 "Exists operator" EXISTS,
 "Not operator" NOT,
 "From operator" FROM,
 "To operator" TO
}

enum Aggregator {
 "Count Aggregator" COUNT,
 "Minimum Aggregator" MIN,
 "Maximum Operator" MAX,
 "Average Operator" AVG
}

input SearchQuery {
 "Text search"
 q:String
 "Filter constraints"
 filter: [FieldConstraintInput]
 aggregations: [AggregationInput]
}

input FieldConstraintInput {
 "Field path"
 field:String!
 "value constraints"
 constraints: [ConstraintInput]
}

input ConstraintInput {
 "operator"
 op:Op
 "values of constraints"
 values: [String]
}

input AggregationInput {
 "field path (use . notation) to aggregate"
 field:String!
 "aggregator operator"
 aggregator: Aggregator
 "Size of the aggregation"
 size: Int
 "Minimum count for aggregation to select"
 minDocCount: Int
}

"""
Search Results
"""

133

type SearchResults {
 items: [Item]
 aggregations: [AggregationResults]
 orderBy: [Sort]
 page: PageInfo
}

type AggregationResults {
 name : String!
 metrics: Metrics
 buckets: [Bucket]
}

type Bucket {
 key:String
 label: String
 metrics: Metrics
 aggregations: [AggregationResults]
}

type Metrics {
 count : Int
 sum : Float
 max :Float
 min :Float
 mean :Float
 sumOfSquares :Float
 variance :Float
 stdDeviation :Float
}

type PageInfo {
 number : Int
 pageSize : Int
 totalElements : Int
 totalPages : Int
}

type Sort {
 "field to sort by"
 by: String!
 "direction of sorting"
 dir: SortDirection,
 "Null handling hints"
 nullHandling: NullHandling
}

input SortInput {
 "field to sort by"
 by: String!
 "direction of sorting"

134

 dir: SortDirection,
 "Null handling hints"
 nullHandling: NullHandling
}

enum SortDirection {
 "Ascending order"
 ASC,
 "Descending order"
 DESC
}

enum NullHandling {
 NULLS_FIRST,
 NULLS_LAST
 NATIVE
}

135

Appendix D: Triple Builder: Sample Triple
Generation
This annex describes the data pieces of a sample triple generation carried out by the Triple Builder.
For a description of the triple creation process, please refer to Triple Builder and Triple Store.

This annex describes a sample flight feature retrieved from SWIM Data Relay API, the ontologies
combined with the flight features to build the flight triples, and the resulting generated triples.

D.1. Sample Flight Feature
The following is a sample flight feature retrieved from SWIM Data Relay API.

{
 "type":"Feature",
 "geometry":{
 "type":"Point",
 "coordinates":[
 -78.1819,
 38.07
]
 },
 "properties":{
 "uid":"FID2898",
 "acid":"SKQ74",
 "begintime":"2020-06-05T05:54:00.000+0000",
 "endtime":"2020-06-05T05:54:00.000+0000",
 "isinstime":true,
 "altitude":2133.6,
 "json":{
 "sensitivity":"A",
 "cdmPart":false,
 "airline":"SKQ",
 "sourceFacility":"KZDC",
 "sourceTimeStamp":1591336440000,
 "flightRef":133602467,
 "acid":"SKQ74",
 "msgType":"TRACK_INFORMATION",
 "fdTrigger":"HCS_TRACK_MSG",
 "depArpt":"KBUY",
 "arrArpt":"KIAD",
 "trackInformation":{
 "qualifiedAircraftId":{
 "aircraftId":"SKQ74",
 "computerId":{
 "facilityIdentifier":"KZDC",
 "idNumber":"078"
 },

136

 "gufi":"KT03496600",
 "igtd":1591333200000,
 "departurePoint":{
 "airport":"KBUY"
 },
 "arrivalPoint":{
 "airport":"KIAD"
 }
 },
 "speed":265,
 "reportedAltitude":{
 "assignedAltitude":{
 "simpleAltitude":{
 "value":"070C"
 }
 }
 },
 "position":{
 "latitude":{
 "latitudeDMS":{
 "degrees":38,
 "minutes":4,
 "seconds":12,
 "direction":"NORTH"
 }
 },
 "longitude":{
 "longitudeDMS":{
 "degrees":78,
 "minutes":10,
 "seconds":55,
 "direction":"WEST"
 }
 }
 },
 "timeAtPosition":1591336440000,
 "ncsmTrackData":{
 "eta":{
 "timeValue":1591337416000,
 "etaType":"ESTIMATED"
 },
 "rvsmData":{
 "equipped":true,
 "currentCompliance":true,
 "futureCompliance":true
 },
 "nextEvent":{
 "latitudeDecimal":38.42958,
 "longitudeDecimal":-78.00816
 }
 }

137

 }
 }
 }
 }

D.2. Flight Ontology
A Flight Ontology, as seen on Figure 42, was used to build flight triples. The ontology has several
subclasses, such as the Arrival and Departure classes, as seen on Figure 43 and Figure 44,
respectively. For a detailed overview of these ontologies, please review the [Ontologies] section of
this ER.

Flight Ontology, Visualized with a TTL Viewer

Arrival Class From Flight Ontology, Visualized with a TTL Viewer

Departure Class From Flight Ontology, Visualized with a TTL Viewer

138

D.3. Flight Triples
The Triple Builder created flight triples by combining flight features with the flight ontology. The
following is a sample generated flight triple:

Sample Flight Triple

baseURI: http://www.opengis.net/ont/testbed16/aviation/activities/flight
imports: http://www.opengis.net/ont/activity
imports: http://www.opengis.net/ont/common/identifier
imports: http://www.opengis.net/ont/testbed16/aircraft
imports: http://www.opengis.net/ont/testbed16/aviation/infrastructure
imports: http://www.opengis.net/ont/testbed16/route
prefix: flight
@prefix : <http://www.opengis.net/ont/testbed16/aviation/activities/flight#> .
@prefix activity: <http://www.opengis.net/ont/activity#> .
@prefix aircraft: <http://www.opengis.net/ont/testbed16/aircraft#> .
@prefix equipment: <http://www.opengis.net/ont/testbed16/equipment#> .
@prefix flight: <http://www.opengis.net/ont/testbed16/aviation/activities/flight#> .
@prefix identifier: <http://www.opengis.net/ont/common/identifier#> .
@prefix infrastructure: <http
://www.opengis.net/ont/testbed16/aviation/infrastructure#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix route: <http://www.opengis.net/ont/testbed16/route#> .
@prefix spin: <http://spinrdf.org/spin#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://www.opengis.net/ont/testbed16/aviation/activities/flight>
 a owl:Ontology ;
 spin:imports <http://topbraid.org/spin/owlrl-all> ;
 spin:imports <http://topbraid.org/spin/rdfsplus> ;
 owl:imports <http://www.opengis.net/ont/activity> ;
 owl:imports <http://www.opengis.net/ont/common/identifier> ;
 owl:imports <http://www.opengis.net/ont/testbed16/aircraft> ;
 owl:imports <http://www.opengis.net/ont/testbed16/aviation/infrastructure> ;
 owl:imports <http://www.opengis.net/ont/testbed16/route> ;
 owl:versionInfo "Created with TopBraid Composer" ;
.

139

flight:AircraftOperator_SKQ
 a aircraft:AircraftOperator ;
 rdfs:label "Aircraft operator SKQ" ;
.
flight:Airport_KIAD
 a infrastructure:Airport ;
 rdfs:label "Airport KIAD" ;
.
flight:Airport_arrArpt_FID2898
 a infrastructure:Airport ;
 infrastructure:icaoAirportCode "KIAD" ;
 rdfs:label "Airport arr arpt FID2898" ;
.
flight:Airport_depArpt_FID2898
 a infrastructure:Airport ;
 infrastructure:icaoAirportCode "KBUY" ;
 rdfs:label "Airport dep arpt FID2898" ;
.
flight:Arrival
 a owl:Class ;
 rdfs:label "Arrival" ;
 rdfs:subClassOf activity:Event ;
 rdfs:subClassOf <http://www.w3.org/2006/time#Instant> ;
 rdfs:subClassOf <http://www.w3.org/ns/prov#End> ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:airport ;
] ;
.
flight:Arrival_FID2898
 a flight:Arrival ;
 flight:airport flight:Airport_arrArpt_FID2898 ;
 rdfs:label "Arrival FID2898" ;
.
flight:Arrival_KIAD
 a flight:Arrival ;
 rdfs:label "Arrival KIAD" ;
.
flight:Departure
 a owl:Class ;
 rdfs:label "Departure" ;
 rdfs:subClassOf activity:Event ;
 rdfs:subClassOf <http://www.w3.org/2006/time#Instant> ;
 rdfs:subClassOf <http://www.w3.org/ns/prov#Start> ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:airport ;
] ;
.

140

flight:Departure_FID2898
 a flight:Departure ;
 flight:airport flight:Airport_depArpt_FID2898 ;
 rdfs:label "Departure FID2898" ;
.
flight:Flight
 a owl:Class ;
 rdfs:label "Flight" ;
 rdfs:subClassOf activity:Activity ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:allValuesFrom aircraft:AircraftOperator ;
 owl:onProperty equipment:operatedBy ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:arrival ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:departure ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:flightCategory ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:flightNumber ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty route:actualRoute ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty route:plannedRoute ;
] ;
 rdfs:subClassOf [
 a owl:Restriction ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty flight:aircraft ;
] ;
.
flight:FlightCategory

141

 a owl:Class ;
 rdfs:label "Flight category" ;
 rdfs:subClassOf <http://www.w3.org/2004/02/skos/core#Concept> ;
.
flight:Flight_FID2898
 a flight:Flight ;
 flight:arrival flight:Arrival_FID2898 ;
 flight:departure flight:Departure_FID2898 ;
 flight:flightNumber "SKQ74" ;
 equipment:operatedBy flight:AircraftOperator_SKQ ;
 rdfs:label "Flight FID2898" ;
.
flight:aircraft
 a owl:ObjectProperty ;
 rdfs:label "aircraft" ;
 rdfs:range aircraft:Aircraft ;
 rdfs:subPropertyOf <http://www.w3.org/ns/prov#entity> ;
.
flight:airport
 a owl:ObjectProperty ;
 rdfs:label "airport" ;
 rdfs:range infrastructure:Airport ;
 rdfs:subPropertyOf <http://www.w3.org/ns/prov#atLocation> ;
.
flight:arrival
 a owl:ObjectProperty ;
 rdfs:label "arrival" ;
 rdfs:subPropertyOf activity:hasEndEvent ;
.
flight:departure
 a owl:ObjectProperty ;
 rdfs:label "departure" ;
 rdfs:subPropertyOf activity:hasStartEvent ;
.
flight:flightCategory
 a owl:ObjectProperty ;
 rdfs:label "flight category" ;
 rdfs:range flight:FlightCategory ;
.
flight:flightNumber
 a owl:DatatypeProperty ;
 rdfs:label "flight number" ;
 rdfs:range xsd:string ;
 rdfs:subPropertyOf identifier:identifier ;
.

142

Appendix E: SWIM Data Client: Sample
GraphQL Call to the Semantic Registry
This section provides a sample GraphQL call made by the SWIM Data Client to the Semantic
Registry to discover SWIM datasets and services.

143

Sample GraphQL Call to the Semantic Registry

query SearchItemFunction($searchText: String!, $page: Int!, $pageSize: Int!) {
 searchItems(
 query: {
 q: $searchText
 filter: [
 { field: "type", constraints: [{ op: EQ, values: ["dcat:Dataset"] }] }
]
 }
 page: $page
 size: $pageSize
 orderBy: { by: "title" }
) {
 page {
 number
 pageSize
 totalElements
 totalPages
 }
 items {
 id
 uri
 label
 title
 description
 type
 ... on Dataset {
 identifier
 distribution {
 label
 title
 mediaType
 downloadURL
 }
 geographicBoundingBox {
 northBoundLatitude
 southBoundLatitude
 westBoundLongitude
 eastBoundLongitude
 }
 }
 }
 }
}

variables: {page: 0, pageSize: 10, searchText: "fixm"}

Sample GraphQL Response from the Semantic Registry

144

{
 "data": {
 "searchItems": {
 "page": {
 "number": 0,
 "pageSize": 10,
 "totalElements": 1,
 "totalPages": 1,
 "__typename": "PageInfo"
 },
 "items": [
 {
 "id": "d8b154b545d85b5981ecfda628626165",
 "uri": "http://localhost/id/dataset/1ac83546f5621dae3190f847fa95765e",
 "label": "Flight Message in FIXM US Extensiion",
 "title": "Flight Message in FIXM US Extensiion",
 "description": "FIXM - Flight information with US Extension. Shcema are
available at https://www.fixm.aero/download.pl?view=e .",
 "type": "dcat:Dataset",
 "identifier": [
 "NasFlightMessage"
],
 "distribution": [
 {
 "label": "Collection NasFlightMessage with media negotiation (Supported
Media-Types: 'application/fixm+nas+xml;version=3.0' 'application/geo+json' 'text/html'
)",
 "title": "Collection NasFlightMessage with media negotiation (Supported
Media-Types: 'application/fixm+nas+xml;version=3.0' 'application/geo+json' 'text/html'
)",
 "mediaType": "application/geo+json",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items",
 "__typename": "Distribution"
 },
 {
 "label": "Collection NasFlightMessage",
 "title": "Collection NasFlightMessage",
 "mediaType": "application/fixm+nas+xml;version=3.0",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items.fixm.n
as.xml",
 "__typename": "Distribution"
 },
 {
 "label": "Collection NasFlightMessage",
 "title": "Collection NasFlightMessage",
 "mediaType": "application/geo+json",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items.geo.js
on",

145

 "__typename": "Distribution"
 },
 {
 "label": "Collection NasFlightMessage",
 "title": "Collection NasFlightMessage",
 "mediaType": "text/html",
 "downloadURL":
"https://geobrain.csiss.gmu.edu/gmuwfs3/wfs3/collections/NasFlightMessage/items.html",
 "__typename": "Distribution"
 }
],
 "geographicBoundingBox": {
 "northBoundLatitude": 78.89470006182776,
 "southBoundLatitude": -122.929722,
 "westBoundLongitude": -179.40216862479724,
 "eastBoundLongitude": 50.088333,
 "__typename": "GeographicBoundingBox"
 },
 "__typename": "Dataset"
 }
],
 "__typename": "SearchResults"
 }
 }
}

146

Appendix F: Revision History
Table 17. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

May 28, 2020 S. Taleisnik .1 all Initial Version

August 6, 2020 S. Taleisnik .4 all Outline,
Background,
Task
Architecture

October 21, 2020 S. Taleisnik .8 all Draft
Engineering
Report

November 6,
2020

S. Taleisnik .9 all Review

147

Appendix G: Bibliography
[1] Fellah, S.: OGC Testbed-14: Semantically Enabled Aviation Data Models Engineering Report.
Open Geospatial Consortium, http://docs.opengeospatial.org/per/18-035.html (2019).

[2] Fellah, S.: Testbed-12 Semantic Portrayal, Registry and Mediation Engineering Report. Open
Geospatial Consortium, https://docs.ogc.org/per/16-059.html (2017).

[3] Kok, E., Fellah, S.: OGC Testbed-15: Semantic Web Link Builder and Triple Generator. Open
Geospatial Consortium, http://docs.opengeospatial.org/per/19-021.html (2019).

[4] https://www.w3.org/standards/semanticweb/data, (2015).

[5] Berners-Lee, T.: Linked Data, https://www.w3.org/DesignIssues/LinkedData.html, (2009).

[6] Percivall, G.: OGC Open Geospatial APIs - White Paper. Open Geospatial Consortium,
http://docs.opengeospatial.org/wp/16-019r4/16-019r4.html (2017).

[7] Simmons, S.: OGC APIs and the evolution of OGC standards, https://www.ogc.org/blog/2996,
(2019).

[8] OGC API - Features, https://ogcapi.ogc.org/features/.

[9] OGC API - Records, https://ogcapi.ogc.org/records/.

[10] Chen, C.: Testbed-12: Aviation Architecture ER. Open Geospatial Consortium,
http://docs.opengeospatial.org/per/16-018.html (2017).

[11] Wilson, D., Painter, I.: OWS-8 Aviation: Guidance for Retrieving AIXM 5.1 data via an OGC WFS
2.0. Open Geospatial Consortium, https://portal.opengeospatial.org/files/?artifact_id=46666 (2012).

[12] Matthews, M.: SWIM Cloud Distribution Service, https://www.faa.gov/air_traffic/flight_info/
aeronav/atiec/media/Presentations/Day%201%20PM%20009%20Melissa%20Matthews%20SCDS.pdf,
(2019).

[13] Assessment and benchmarking of spatially enabled RDF stores for the next generation of
spatial data. Presented at the (2019).

[14] Keet, M.: An Introduction to Ontology Engineering. (2018).

[15] Spatial Data on the Web Best Practices - W3C Working Group Note, https://www.w3.org/TR/sdw-
bp/, (2017).

148

http://docs.opengeospatial.org/per/18-035.html
https://docs.ogc.org/per/16-059.html
http://docs.opengeospatial.org/per/19-021.html
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/DesignIssues/LinkedData.html
http://docs.opengeospatial.org/wp/16-019r4/16-019r4.html
https://www.ogc.org/blog/2996
https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/records/
http://docs.opengeospatial.org/per/16-018.html
https://portal.opengeospatial.org/files/?artifact_id=46666
https://www.faa.gov/air_traffic/flight_info/aeronav/atiec/media/Presentations/Day%201%20PM%20009%20Melissa%20Matthews%20SCDS.pdf
https://www.faa.gov/air_traffic/flight_info/aeronav/atiec/media/Presentations/Day%201%20PM%20009%20Melissa%20Matthews%20SCDS.pdf
https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/sdw-bp/

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. What does this ER mean for the Geosemantics Working Group and the OGC in general
	2.2. Document contributor contact points
	2.3. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Background
	6.1. Semantic-Enablement
	6.2. OpenAPI-based Web APIs

	Chapter 7. Technical Architecture
	7.1. Status Quo
	7.2. Problem Statement
	7.3. Functional Overview
	7.3.1. Frontend Component Interactions
	7.3.2. Backend Component Interactions

	Chapter 8. SWIM Data Relay API
	8.1. Status Quo
	8.2. Functional Overview
	8.2.1. Harvester
	8.2.2. Feature Handler
	8.2.3. Database
	8.2.4. OGC API - Features Implementation

	8.3. Challenges and Lessons Learned
	8.4. Accomplishments

	Chapter 9. Semantic Registry
	9.1. Status Quo
	9.2. Functional Overview
	9.2.1. Harvester
	9.2.2. Asset Importer
	9.2.3. Asset Importer for NSRR
	9.2.4. Asset Importer for SWIM Data Relay API

	9.3. Semantic Registry API
	9.3.1. Linked Data support
	9.3.2. Semantic Registry GraphQL API

	9.4. Challenges and Lessons Learned
	9.5. Accomplishments

	Chapter 10. Triple Builder and Triple Store
	10.1. Status Quo
	10.2. Functional Overview
	10.2.1. Triple Builder
	10.2.2. Triple Store

	10.3. Challenges and Lessons Learned
	10.4. Accomplishments

	Chapter 11. Aviation Ontologies
	11.1. Status Quo
	11.2. Requirements Statement
	11.3. Functional Overview
	11.3.1. Equipment Ontology
	11.3.2. Aircraft Ontology
	11.3.3. Flight Ontology
	11.3.4. Route Ontology
	11.3.5. Facility Ontology
	11.3.6. Aviation Infrastructure Ontology

	11.4. Challenges and Lessons Learned
	11.5. Accomplishments

	Chapter 12. Semantic Web Client
	12.1. Status Quo
	12.2. Functional Overview
	12.3. Challenges and Lesson Learned
	12.4. Accomplishments

	Chapter 13. SWIM Data Client
	13.1. Status Quo
	13.2. Functional Overview
	13.2.1. Visualization
	13.2.2. Connection and Retrieval of SWIM Data

	13.3. Challenges and Lessons Learned
	13.4. Accomplishments

	Chapter 14. Recommendations and Future Work
	14.1. Fostering the use of OGC API and Linked Data in aviation
	14.1.1. Implementing OGC API - Features within SWIM Data Services
	14.1.2. Demonstrating The Value of Linked Data in Aviation
	14.1.3. Exploring Alternatives for a Seamless Transition to Linked Data
	14.1.4. Demonstrating Interoperability Between Diverse APIs
	14.1.5. Exploring Linked Data Support Alternatives for OGC APIs

	14.2. Ontology Development
	14.2.1. Expanding the Scope of Aviation Ontologies
	14.2.2. Standardizing the SRIM Model
	14.2.3. Improving the GeoSPARQL Standard

	14.3. Better Understanding the Industry by Engaging with SWIM Consumers

	Appendix A: SWIM Data Relay API: Sample FIXM to GeoJSON Mapping
	A.1. FIXM-NAS (original)
	A.2. MessageCollection
	A.3. GeoJSON

	Appendix B: Semantic Registry: Sample Resource and Collection Mapping
	B.1. Harvesting the NSRR
	B.2. Harvesting the SWIM Data Relay API

	Appendix C: Semantic Registry: GraphQL Schema
	Appendix D: Triple Builder: Sample Triple Generation
	D.1. Sample Flight Feature
	D.2. Flight Ontology
	D.3. Flight Triples

	Appendix E: SWIM Data Client: Sample GraphQL Call to the Semantic Registry
	Appendix F: Revision History
	Appendix G: Bibliography

