
OGC Testbed-16
Federated Security

Publication Date: 2021-01-13

Approval Date: 2020-12-15

Submission Date: 2020-11-19

Reference number of this document: OGC 20-027

Reference URL for this document: http://www.opengis.net/doc/PER/t16-D019

Category: OGC Public Engineering Report

Editor: Craig A. Lee

Title: OGC Testbed-16: Federated Security

OGC Public Engineering Report
COPYRIGHT

Copyright © 2021 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t16-D019
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 6

2. Executive Summary. 7

2.1. Document contributor contact points . 9

2.2. Foreword. 9

3. References . 11

4. Terms and Definitions. 12

4.1. Abbreviated Terms. 12

4.2. Definitions . 13

5. Overview . 17

6. Introduction. 18

7. A Quick Review of Security and Trust. 19

7.1. Authentication. 19

7.2. Authorization. 19

7.3. Privacy. 19

7.4. Integrity . 20

7.5. Non-repudiation . 20

7.6. Trust. 21

8. Federation Security and Trust Requirements: A Threat Analysis . 22

8.1. Threat Modeling Methods, Tools, and Mitigations . 22

8.2. A Federation Service Threat Model and Analyses . 25

8.2.1. A Threat Analysis of Authentication to a Federation Service. 28

8.2.2. A Threat Analysis of FedAdmin and ResOwner Interactions . 30

8.2.3. A Threat Analysis of User Interactions . 31

8.2.4. A Threat Analysis of FS-FS Interactions. 32

8.3. Threat Analysis Observations . 33

9. Emerging Security Technologies . 35

9.1. Identity and Credential Management . 35

9.1.1. Identity Proofing . 35

9.1.2. Authentication . 35

9.1.3. Federated Credential Management . 36

9.1.4. Attribute Release and Verifiable Credentials . 38

9.2. Trust. 40

9.2.1. Defining Trust . 40

9.2.2. Trust Frameworks . 41

9.2.3. Trust Framework Approaches. 46

9.2.4. The OIDC Federation Specification . 51

9.2.5. Hardware Roots of Trust . 53

9.2.6. Blockchain in Federated Environments . 56

4

9.3. Zero Trust . 58

9.3.1. The Zero Trust Architectural Concepts . 58

9.3.2. The Microservice Mesh ZTA Approach . 61

9.3.3. Zero Trust Federations. 63

9.4. Data-Centric Security. 66

9.5. Trusted Data Format . 68

9.6. Attribute-Based Encryption . 69

9.7. Trusted Execution Environments. 69

9.8. Homomorphic Computing . 71

9.9. Quantum Key Distribution . 71

10. Possible Development and Adoption Strategies . 73

10.1. An Assessment for Viability, Relevance, and Maturity . 73

10.2. A Federation Development Roadmap . 75

10.2.1. Roadmap Phase 1: Near-term Tasks. 75

10.2.2. Roadmap Phase 2: Subsequent Tasks . 76

10.2.3. Roadmap Phase 3: Longer-term Tasks. 76

11. Final Comments . 78

Appendix A: Threat Dragon Report . 79

Appendix B: Revision History . 114

Appendix C: Bibliography . 115

5

Chapter 1. Subject
This OGC Testbed 16 Engineering Report (ER) examines all aspects of security and trust in federated
computing environments as defined in the NIST Cloud Federation Reference Architecture
cite:[CFRA2020]. The security and trust requirements are identified. Then possible approaches for
achieving security and trust are examined. These approaches range from traditional methods for
securing just the basic communications among federated entities to the use of emerging security
technologies including federated roots of trust, trust frameworks, blockchain, data-centric security,
and zero trust architectures.

6

https://doi.org/10.6028/NIST.SP.500-332

Chapter 2. Executive Summary
A federation is a set of organizations that wish to collaborate at a level beyond simply using
document sharing web sites. A federation enables stakeholders to identify which services and
resources are to be shared, who can access them, and the joint policies governing their use. A
federation can be considered a virtual administrative domain that can span multiple physical
organizations.

As defined in the NIST Cloud Federation Reference Model (CFRA) cite:[CFRA2020], federated
systems can be deployed using one or more Federation Managers. For consistency with the current
work of the IEEE P2302 WG cite:[P2302], this ER uses the term Federation Hosting Services (FHS) as
a synonym to Federation Manager. For brevity, Federation Hosting Service will be shortened to just
Federation Service.

These Federation Services can host multiple federation instances, i.e., virtual administrative
domains. To accomplish this, these FHSs must exchange resource information, user credentials, and
enable access decisions to be made across the stakeholder organizations. Hence, if a FHS was
compromised in a security breech, the security of resources across multiple federations could be
put in jeopardy. The business value of this Engineering Report is to identify the vulnerabilities
of possible federation implementations, suggest mitigations, and examine emerging security
approaches that can be integrated to achieve the highest possible levels of trust and security.

After a brief review of basic security and trust terminology, a threat analysis is done for a specific
CFRA-based federation deployment. As noted in the CFRA, many deployment and governance
models are possible. Hence, this analysis is against one specific deployment that is expected to be
widely used. This deployment model uses OpenID Connect (OIDC) as the identity providers. The
threat analysis is done using Threat Dragon, an open source threat analysis tool wherein the major
system components are defined in a graphical format, trust boundaries are identified, and
interactions catalogued. Threat Dragon does not identify specific threats nor does it recommend
remedies. However, Threat Dragon provides a framework for reasoning about possible threats,
where to look for them, and how they could be mitigated. Four interaction scenarios were
examined and the following number of threats and mitigations were identified:

Table 1. Identified Threats.

Number of Identified Threats Interaction Scenario

29 Authentication to a Federation

10 FedAdmin/ResOwner Interactions

16 User Interactions

18 FS-FS Interactions

The ER notes that many of these identified threats were multiple instances of the same kind of
threat. For example, all communication links were vulnerable to man-in-the-middle attacks that are
mitigated by the use of TLS.

The take-away message from this threat analysis is that the vulnerabilities of a federation are
derived from the vulnerabilities of the tools they are built on. In addition to using TLS on every

7

https://doi.org/10.6028/NIST.SP.500-332
https://standards.ieee.org/project/2302.html

communication link, federations built on OIDC inherit the vulnerabilities of OIDC. In turn, OIDC
vulnerabilities arise from the specific implementation approach used. For example, OIDC uses two
HTTP redirections during the authentication process. To prevent various attacks, the redirection
URIs must be full with no parameters and registered with the OIDC server. These URIs must
checked on every redirection to prevent Cross-Site Request Forgery attacks. Hence, any federation
threat analysis must do a threat analysis of every tool used in a specific implementation. What is
different about federations are the possible impacts of a compromise. If a compromise does occur,
then federation tooling must be designed to contain and limit any adverse impacts.

The need for enhanced security is certainly not specific to federations. There are many emerging
security technologies that could be integrated and utilized in federation systems Many emerging
technologies are reviewed in this ER.The Executive Summary only reviews the technologies that are
recommended for further investigation and investment. These emerging security technologies can
be broadly categorized as follows:

• Identity and Credential Management:
Not only is OpenID Connect (OIDC) gaining in popularity, the OpenID Foundation is also
building out support for federations. Specifically the OIDC Federation Specification enables
OIDC installations to establish trust and secure communications. This is done using a protocol to
find common trust anchors and subsequently exchange JSON Web Key Sets whereby all
communication can be encrypted and signed. Work is also being done on shared signaling
between OIDCs. These tools can be directly used in CFRA-based Federation Hosting Services.

• Trust and Zero Trust:
All federation tooling will directly depend on establishing shared data that is trusted. Hence,
blockchain could be employed to establish trust for service catalogs, roles and attributes,
policies, etc. This would entail evaluating different consensus algorithms, block sizes, and
scalability in federated environments. As an alternative approach, the Zero Trust Architecture
(ZTA) concept is based on defining zones of implicit trust that are protected by Policy
Enforcement Points. These zones of implicit trust are also made as small as possible. The ZTA
concept has strong parallels with the CFRA-based federation approach which can use Web
Service API Gateways that provide Policy Enforcement Points at the RESTful service level.
Hence, the ZTA concept can be directly extended to that of Zero Trust Federations.

• Data Security Methods:
When sharing data, data leakage is always a concern. After data is shared with a partner, how
can the partner be prevented from sharing the data with a third-party that should not have the
data? The Next Generation Access Control (NGAC) paradigm supports dynamic policy
management. As an example, this means that if User X is given permission to read Data Q, User
X can no longer write Data Q, i.e., copy it to any third-party. The Data-Centric Security (DCS)
model being pursued in Testbed-16 is based on using a DCS Service and a separate Key
Management Service (KMS). The DCS only serves encrypted data. Any data recipient must also
contact the KMS to retrieve the necessary decryption keys. These services can be managed in a
federation — as any other kind of services. This dovetails with the ZTA and ZTF concepts of
encrypting all data between trust zones. The Trusted Data Format (TDF) approach takes this a
step farther. A Trusted Data Object actually incorporates a Policy Enforcement Point that can
contact a remote authorization service to authorize a user’s access. Finally, Trusted Execution
Environments (TEEs) actually provide hardware support whereby data is only decrypted when
it is copied into special memory regions that can only be accessed by authorized processes. TEE

8

use cases include cloud computing where a remote cloud user can ensure their data is
encrypted until it gets installed in the TEE, and that no one else can see it — not even the
hypervisor or host OS. While more investigation needs to be done, it might be possible to utilize
TEEs are part of federated environments.

All of these topics are organized in a simple, three-phase, roadmap.

• Phase 1 consists of near-term tasks.

• Phase 2 consists of subsequent tasks that build on Phase 1.

• Phase 3 consists of tasks that will have a longer development cycle.

Specifically, Phase 3 includes a review of the NIST SP 800-53 catalog of security controls to identify
controls directly relevant to federations, and to identify any possible federation-specific controls
that should be added. (This could ultimately be part of any FedRAMP process granting federated
systems Authorization to Operate.) A formal method for defining federations is also a longer-term
project. Formal definitions for federation requirements and semantics would enable more aspects
of federation management to be automated. This could include compliance assessment for security
purposes in Federation Trustmark Frameworks.

A final take-home message is that the governance of a CFRA-based federation is purpose-defined. It
does not federate existing environments that were not intended nor designed with federation in
mind. These could be called purpose-built federations. This approach makes the actual federation
governance much easier. However, requiring organizations to agree on how to run their joint
federations may force them to face and resolve significant organizational differences.

Since federation is inherently cross-organizational, some type of umbrella organization could
greatly facilitate the development and adoption of federations, and the resolution of cross-
organizational issues. By analogy with the Internet, in the 1970s the Advanced Research Projects
Agency (ARPA) created ARPANET. ARPANET was essentially an umbrella environment whereby
many universities, corporations and government agencies could bring their resources to the table
and work together in the nascent field of computer networking. We argue that a similar type of
umbrella organization would greatly benefit all stakeholders in the development of federation.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Craig A. Lee Federation Partners LLC Editor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

9

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

10

Chapter 3. References
The following normative documents are referenced in this document.

• IETF: Hypertext Transfer Protocol Version 3 (HTTP/3).

• IETF: RFC 2818, HTTP Over TLS.

• IETF: RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format.

• IETF: RFC 7517, JSON Web Key (JWK).

• IETF: RFC 7519, JSON Web Token (JWT).

• IETF: RFC 6749, The OAuth 2.0 Authorization Framework.

• OpenID Foundation: OpenID Connect Core 1.0.

• OpenID Foundation: OpenID Connect Federation 1.0 - draft 12.

• OpenID Foundation: OpenID Authentication 2.0 - Final.

• OASIS: PKI (Public Key Infrastructure) Technical Standards.

• OASIS: Security Assertion Markup Language (SAML) V2.0 Technical Overview.

• DNI: XML Data Encoding Specification for Trust Data Format, Version 3.

• IETF: RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3.

• IETF: RFC 8705, OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access
Tokens.

• W3C: Verifiable Credentials Data Model 1.0.

• OASIS: eXtensible Access Control Markup Language (XACML) Version 3.0.

11

https://quicwg.org/base-drafts/draft-ietf-quic-http.html
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/std90
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-federation-1_0.html
https://openid.net/specs/openid-authentication-2_0.html
http://www.oasis-pki.org/resources/techstandards
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://www.dni.gov/files/documents/CIO/ICEA/India/IC-V3-TDF-Public.zip
https://www.rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/rfc8705
https://datatracker.ietf.org/doc/rfc8705
https://www.w3.org/TR/vc-data-model
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Chapter 4. Terms and Definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 shall apply. In addition, the following terms and definitions
apply.

4.1. Abbreviated Terms
• ABAC: Attribute-Based Access Control

• ABE: Attribute-Based Encryption

• CA: Certificate Authority

• CFRA: Cloud Federation Reference Architecture

• CSP: Credential Service Provider

• DCS: Data-Centric Security

• DoS: Denial of Service

• DFD: Data Flow Diagram

• DDoS: Distributed Denial of Service

• FHS: Federation Hosting Service

• FS: Federation Service

• IdAM: Identity and Access Management

• IdP: Identity Provider

• JWKS: JSON Web Key Set

• JWT: JSON Web Token

• KMS: Key Management Service

• NIST: National Institute of Standards and Technology

• OIDC: OpenID Connect

• OP: OIDC Provider

• MFA: Multi-Factor Authentication

• mTLS: Mutual Transport Layer Security

• ODNI: Office of the Director of National Intelligence

• OWASP: Open Web Application Security Project

• P2P: Peer-to-Peer

• PAP: Policy Administration Point

• PDP: Policy Decision Point

• PEP: Policy Enforcement Point

• PKI: Public Key Infrastructure

12

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• QKD: Quantum Key Distribution

• RBAC: Role-Based Access Control

• REST: REpresentational State Transfer

• RP: Relying Party

• RP: Resource Provider

• SAML: Security Assertion Markup Language

• SEAL: Simple Encrypted Arithmetic Library

• SP: Service Provider

• STRIDE: Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation
of privilege

• TDF: Trusted Data Format

• TDO: Trusted Data Object

• TEE: Trusted Execution Environment

• TLS: Transport Layer Security

• TPM: Trusted Platform Module

• XACML: eXtensible Access Control Markup Language

• ZTA: Zero Trust Architecture

• ZTF: Zero Trust Federation

4.2. Definitions
● API Gateway

A centralized point for exposing APIs to backend resources while abstracting the architectural
details from the client. An API Gateway maintains a consistent interface to the requesting clients.
It may also support middleware functionality such as security, governance, and monitoring.

● Data-Centric Security | DCS

Data-centric security is an approach that underlines the security of the data itself rather than the
security of communication infrastructure such as networks, servers, or applications. See Data
Centric Security Engineering Report, OGC 20-021, cite:[DCS-TB16].

● Federation Administrator | FedAdmin

The entity that has the authorization to configure and operate a Federation Instance. This entity
may be distributed depending on the governance model. See NIST Cloud Federation Reference
Architecture, Appendix A cite:[CFRA2020].

● Federated Identity Management

The process of asserting an identity across different systems or organizations. This is a key
enabler of Single Sign On and managing IdAM in cloud computing. See NIST Cloud Federation
Reference Architecture, Appendix A cite:[CFRA2020].

13

https://www.opengis.net/doc/PER/t16-D011
https://www.opengis.net/doc/PER/t16-D011
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332

● Federation

An organization of self-governing entities that have common policies, administrative controls,
and enforcement abilities governing the use of shared resources among members. A virtual
administrative domain wherein multiple participating organizations/sites can define, agree
upon and enforce resource discovery, access and usage policies for the sharing of a subset of
their resources. See NIST Cloud Federation Reference Architecture, Appendix A cite:[CFRA2020].

● Federation Hosting Service|Federation Service

The entity that provides the essential federation management functions described in the CFRA
for potentially multiple federations over their lifespans. In the CFRA, this entity is called the
Federation Manager. For consistency with the current IEEE P2302 WG, this engineering report
uses the term Federation Hosting Service as a synonym for Federation Manager. Federation
Service is used as a short form of Federation Hosting Service. See NIST Cloud Federation
Reference Architecture, Appendix A cite:[CFRA2020].

● Federation Operator

The entity that deploys, configures and maintains one or more Federation Hosting Services. See
NIST Cloud Federation Reference Architecture, Appendix A cite:[CFRA2020].

● Federation Service

See Federation Hosting Service.

● Gateway

See API Gateway.

● Identity Proofing

The process by which a CSP collects, validates, and verifies information about a person. See NIST
Digital Identity Guidelines cite:[NIST800-63-3].

● IEEE P2302 WG

The Standard for Intercloud Interoperability and Federation (SIIF) Working Group cite:[P2302].

● InCommon

A federation-based collaboration system cite:[InCommon] that is run as part of Internet2
cite:[Internet2].

● Microservice

An application functional component that is implemented in its own container. A set of
microservice containers can work together to compose an application. See NIST Application
Container Security Guide cite:[NIST800-190].

● Microservice Mesh Architecture

An architectural approach where multiple microservices are managed by a control plane. The
control plane can associated sidecars with each microservice to enable fine-grained control. The
control plane also controls all ingress/egress to and from the mesh of microservices.

● P2302 WG

See IEEE P2302 WG.

14

https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://standards.ieee.org/project/2302.html
https://www.incommon.org
https://www.internet2.edu
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

● Resource Owner | ResOwner

The entity that is accountable and authorizes use and governance of a resource. See NIST Cloud
Federation Reference Architecture, Appendix A citey:[CFRA2020].

● Root of Trust

Roots of trust are highly reliable hardware, firmware, and software components that perform
specific, critical security functions. Because roots of trust are inherently trusted, they must be
secure by design. As such, many roots of trust are implemented in hardware so that malware
cannot tamper with the functions they provide. Roots of trust provide a firm foundation from
which to build security and trust cite:[NIST_RoT].

● Threat Dragon

An open-source threat analysis tool from OWASP cite:[OWASP].

● Trust Anchor

An authoritative entity for which trust is assumed. In a PKI, a trust anchor is a certification
authority, which is represented by a certificate that is used to verify the signature on a certificate
issued by that trust-anchor. The security of the validation process depends upon the authenticity
and integrity of the trust anchor’s certificate. Trust anchor certificates are often distributed as
self-signed certificates. See Recommendation for Key Management cite:[NIST800-57].

● Trust Boundary

See Trust Domain.

● Trust Domain

The context in which trust has been established. This context can be established by enterprise
boundaries. These boundaries can be hardware-defined or software-defined, i.e., virtual. See
NIST Cloud Federation Reference Architecture, Appendix A cite:[CFRA2020].

● Trust Framework

The “rules” underpinning federated identity management, typically consisting of: system, legal,
conformance, and recognition. See Developing Trust Frameworks to Support Identity
Federations cite:[NIST_Trust_Frameworks].

● Trusted Platform Module

A hardware root of trust as defined by the Trusted Computing Group. See Trusted Platform
Module cite:[TPM2020].

● Trustmark

A cryptographically signed document that signifies compliance to a desired requirement or
property. Trustmarks can be linked to a root of trust, such as a PKI Certificate Authority. See
Developing Trust Frameworks to Support Identity Federations cite:[NIST_Trust_Frameworks].

● Verifiable Credentials

A credential management system from W3C that allows users to directly manage their own
identity credentials. See Verifiable Credentials Data Model 1.0 cite:[W3C_VCs].

15

https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://csrc.nist.gov/projects/hardware-roots-of-trust
https://owasp.org/www-project-threat-dragon
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.IR.8149
https://doi.org/10.6028/NIST.IR.8149
https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://doi.org/10.6028/NIST.IR.8149
https://www.w3.org/TR/vc-data-model

● X.509

The X.509 public-key certificate or the X.509 attribute certificate, as defined by the ISO/ITU-T
X.509 standard. An X.509 certificate refers to the X.509 public-key certificate. See
Recommendation for Key Management cite:[NIST800-57].

● Zero Trust Architecture

An architectural approach where there is no implicit trust granted to systems based on their
physical or network location (i.e., local area networks v. the Internet). The ZTA design philosophy
is to make trust zones as small as possible, i.e., to make protection as fine-grained as possible.
This design philosophy is embodied in a set of ZTA design tenets cite:[Rose2019].

● Zero Trust Federation

Federation deployments that satisfy the tenets of Zero Trust Architecture design.

16

https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-207/final

Chapter 5. Overview
Section 6 provides an introduction to the topic of security and trust in federated computing
environments as defined by the NIST Cloud Federation Reference Architecture (CFRA)
cite:[CFRA2020].

Section 7 provides a quick overview of the main security and trust concepts. This is a quick "level
set" on the terminology that is used throughout this ER.

Section 8 reviews the NIST CFRA to establish the necessary security and trust requirements. The
CFRA is composed of a number of conceptual actors that have various interactions. By considering
these actors and interactions, and how they may be mapped into concrete implementations, the
security and trust requirements can be identified.

Once the requirements are established, Section 9 examines a number of approaches for satisfying
those requirements. These range from common methods for securing the communication among
federated entities, to the use of Zero Trust Architectures.

While a number of security and trust approaches exist for federations, actually realizing them will
require socialization and the investment of organizational resource. Hence, Section 10 discusses a
number of development and adoption strategies.

Section 11 provides final comments concerning the field of federation security and trust.

17

https://doi.org/10.6028/NIST.SP.500-332

Chapter 6. Introduction
A federation is a set of organizations that wish to collaborate through their IT systems. The desired
level of collaboration, however, goes beyond simply making web sites available to each other, or
sharing documents on a third-party, such as Google Docs. In a federation, the stakeholders can
identify which services or resources are to be shared, who from the organizations can access them,
and what the policies are for the resource’s joint use. A federation can be thought of as a virtual
administrative domain that can span multiple physical organizations. In the cloud computing era,
processors, storage, networks, and many other resource types have all been virtualized.
Virtualizing the administrative domains for sets of these resources is being recognized as the
natural next step in this progression.

To this point, NIST published the NIST Cloud Federation Reference Architecture cite:[CFRA2020] in
February 2020. As a reference architecture, the CFRA is inherently conceptual as it organizes the
entire federation design space, yet it also presents several implementation approaches. Federation
can be explained in a nutshell by Figure 1 from the CFRA.

Figure 1. Federation in a Nutshell.

Modern administrative domains are all based on the notion of having an independent Identity
Provider (IdP) that issue identity credentials to Users. When requesting service from a Service
Provider (SP), the SP validates the User’s credentials with the issuing IdP. Different Identity and
Access Management (IdAM) systems may have a slightly different sequence of operations, and may
involve HTTP redirections, but having an independent, third-party IdP is fundamental.

Now consider two organizations, A and B, that are each in their own "identity silo". A federated
environment will enable a User A to able to discover (find) a SP B at another site, and enable SP B to
make a proper access decision based on User A’s credentials. The are many implementation
approaches that can realize these fundamental operations.

Any implementation approach, however, has serious security responsibilities. Since a federation
system is necessarily spanning organizational trust boundaries, and is managing identity
credentials and resource access, any compromise could have serious consequences. If a Federation
Hosting Service was compromised, resources at multiple sites could be jeopardized. Hence, the
purpose of this Engineering Report is to examine the threats and vulnerabilities of federation
systems, and how emerging security approaches can be integrated to achieve the highest level of
trust and security possible.

18

https://doi.org/10.6028/NIST.SP.500-332

Chapter 7. A Quick Review of Security and
Trust
Security and trust are broad terms that cover a number of constituent concepts. These concepts are
briefly reviewed here to provide a "level set" for their meanings.

7.1. Authentication

Authentication: Verifying the identity of a user, process, or device, often as a
prerequisite to allowing access to resources in an information system.①

① NIST Security and Privacy Controls for Federal Information Systems and Organizations
cite:[NIST800-53]

Informally, authentication is the process of verifying that a person or entity is who they say they
are. In IT systems, this means validating a user’s identity credentials with the Identity Provider (IdP)
that issued them. Identity credentials can be represented in many different formats and the
protocols for verifying them can also vary. Nonetheless, identity credentials will carry a number of
identity attributes about the credential holder. These can be simple items, such as first and last
name or more organization-specific items, such as one’s role or position in an organization chart.

7.2. Authorization

Authorization: The process of verifying that a requested action or service is
approved for a specific entity.①

① Guide to Industrial Control Systems (ICS) Security cite:[NIST800-82r2]

Once a person or non-person entity has been authenticated, and their identity credentials have
been validated, any requests that are being made to access resources can be validated as well, i.e.,
they can be authorized to access the resource. This is typically done by evaluating a person’s
identity attributes against the resource’s access policy and making an access decision.

Note that authorization does not have to be a yes/no binary decision. Authorization can involve
how a service or resource can be used and also the context in which the resource is being used. For
example, some users may get access to high-resolution imagery, while others may only get low-
resolution imagery. Similarly, a user may have full access while at work in the office, but the same
user may be denied access after-hours when using a Starbuck’s Wi-Fi.

7.3. Privacy

Privacy: Preserving authorized restrictions on information access and disclosure,
including means for protecting personal privacy and proprietary information.①

19

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf

① NIST Security and Privacy Controls for Federal Information Systems and Organizations
cite:[NIST800-53]

Privacy entails both making proper access decisions as well as preventing unwanted and
unintended disclosure while data is at rest or in-transit. This can mean preventing cyberattacks that
compromise a system, and also encrypting data when in transmission. These data do not have to be
just personal or proprietary, but could be any information that an organization wishes to control
the dissemination of.

Privacy is often equated with confidentiality but a distinction can be drawn between the two terms.
Privacy typically means controlling the disclosure of any information. Confidentiality can mean the
willingness to disclose information to a second party with the expectation that the information will
not be disclosed to a third party. A typical example is a client disclosing information to an attorney.
In both cases the goal is to control the disclosure of information.

7.4. Integrity

Integrity: Guarding against improper information modification or destruction, and
includes ensuring information non-repudiation and authenticity.①

① NIST Security and Privacy Controls for Federal Information Systems and Organizations
cite:[NIST800-53]

In some cases, an organization may not care who sees a particular data set. At the same time
knowing that the data is correct and that the data has not be corrupted, changed or tampered with
in any way is critical. Data could be corrupted due to non-malicious events, such as a software or
hardware failure. Data can also be corrupted due to malicious events, such as a cyberattack. In
operational environments, integrity can mean preventing any corruption from happening for any
reason. This could also mean simply mean being able to detect that data has been corrupted.

A simple example of data that is public but requires integrity is government-produced weather
data. Such data is often produced for the personal use of citizens, but is also produced to promote
the economic activity of organizations. Therefore, "monkey-wrenching" weather data could have
serious impact on organizations that use the weather data to make business decisions.

7.5. Non-repudiation

Non-repudiation: Protection against an individual falsely denying having performed a
particular action. Provides the capability to determine whether a given individual
took a particular action such as creating information, sending a message, approving
information, and receiving a message.①

① NIST Security and Privacy Controls for Federal Information Systems and Organizations
cite:[NIST800-53]

Non-repudiation may be less familiar to many people as a security term, but is actually quite
commonplace. Non-repudiation means that two parties to a transaction of some sort (e.g.,

20

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf

exchanging information) cannot later deny that it took place. A simple example is that of going to a
grocery store and getting a receipt. If you meant to buy a can of baked beans but bought refried
beans my mistake, the grocery store will probably want to see the receipt before allowing an
exchange. The receipt makes disputing the transaction difficult. In IT systems, enforcing non-
repudiation is somewhat more complicated, but can nonetheless be critical.

7.6. Trust

Trust: The willingness to take actions expecting beneficial outcomes, based on
assertions by other parties.①

① Guide to Secure Web Services cite:[NIST800-95]

The definitions provided in this section of the ER are intended to be as concise and to-the-point as
much as possible. While the above definition captures the essence of what trust is, it nonetheless
has immense implications for what trust means in the context of IT systems. The first step in
establishing any trust relationship is establishing the identity of the entity with whom you are
communicating. The second step could simply be ensuring that the communication between the
two entities is secure. While these aspects of trust are necessary, they are by no means sufficient.
Even after identity and communication integrity have been established, trust will also depend on
some type of assurances that the other entity will act in a trustworthy manner.

Many tools and security controls to achieve these requirements are already cataloged in NIST
Security and Privacy Controls for Federal Information Systems and Organizations cite:[NIST800-53].
In the following pages, additional methods to achieve these properties in federated environments
will be discussed. This suggests that the security controls in cite:[NIST800-53] should ultimately be
reviewed and revised to include any federation-specific controls that are needed.

21

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-95.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf

Chapter 8. Federation Security and Trust
Requirements: A Threat Analysis
With a basic understanding of security and trust concepts, understanding how they are needed in
federated environments and how they can be addressed is the next step. At the conceptual level,
CFRA-based federations will be hosted by one or more Federation Managers that interact with Users
and other Federation Managers. At the implementation level, a Federation Manager will be
implemented as a Federation Service. A Federation Service (FS) will be functionally similar to any
web server. A web server can host multiple web sites and serve all manner of web content. A FS
will be able to host multiple federations and serve all manner of federation content.

By standing up a FS that is listening on one or more ports, a commensurate number of attack
surfaces will be opened up. The attack surface of a software environment is the sum of the different
points where an unauthorized user can try to enter data to or extract data from an environment
(Wikipedia). These federation attack surfaces will share many vulnerabilities present in other types
of servers, but will also present new, federation-specific vulnerabilities.

To hopefully identify these shared and new vulnerabilities, this section will develop a federation
threat model on which a threat analysis will be done. The large body of work has been researched
and published in threat modeling and analysis is leveraged in the following discussion. A number
of threat modeling tools exist that provide a modeling structure in which to do an analysis. These
tools and evaluation paradigms are briefly reviewed here.

Note that any threat analysis is only as good as the threat model on which it is based. That is to say,
threat models should be based — as much as possible — on a specific, concrete implementation. The
less specific or concrete that a model is, the harder it becomes for a threat analysis to identify
specific or concrete threats.

This makes doing "a" federation threat analysis problematic. There are clearly multiple ways a
CFRA-based Federation Service could be implemented. The CFRA also identifies a range of
deployment and governance models that could be used. To do any analyses, a number of
implementation assumptions and deployment scenarios have to be made. As such, an exhaustive
analysis is not be possible. Furthermore, an authoritative threat analysis can be a sizeable effort.
This leads us to a note of caution:

This threat analysis should not be considered complete, definitive,
nor authoritative. This analysis is just an initial threat model
and analysis that can point the way to more thorough efforts that
are properly funded and resourced.

Given this caution, available modeling tools are now discussed.

8.1. Threat Modeling Methods, Tools, and Mitigations
Each threat modeling tool is based on some threat modeling method. A useful review of twelve
methods is presented in Threat Modeling: A Summary of Available Methods cite:[Shevchenko18].

22

https://resources.sei.cmu.edu/asset_files/WhitePaper/2018_019_001_524597.pdf

The authors emphasize that no one method is inherently better than the others. Some methods
focus on risk and privacy concerns, while others focus on people issues. Some methods operate on
high-level abstractions, while others strive for finer granularity. For the threat analysis in this
engineering report, the STRIDE model cite:[MS-STRIDE] will be used. STRIDE was developed over
twenty years ago and has been adopted by Microsoft. STRIDE is an acronym based on the following
threat categories:

Table 2. STRIDE Categories

Category Description

Spoofing The deliberate deceiving of a user and tricking them into
disclosing sensitive information, such as username and
password(s), that is then used the user’s knowledge or consent.
Spoofing can be done through using bogus email addresses,
websites, or even IP addresses.

Tampering The malicious modification of data, either when at-rest, such as in
a database, or in-transit over a network.

Repudiation When a party that observed an event or engaged in a transaction
later denies that the event or transaction took place. What is
desired is non-repudiation: no one can deny that the event or
transaction took place.

Information
Disclosure

The exposure of information to individuals who are not supposed
to have access to it, either when at-rest (e.g., reading a file) or
when in-transit (e.g., snooping on the network).

Denial of Service Denial of Service (DoS) attacks deny service to valid users by
overloading the service with unnecessary requests for service.
Distributed Denial of Service (DDoS) attacks can be especially
difficult to deal with.

Elevation of Privilege An unprivileged user gains privileged access and thereby has
sufficient access to compromise the entire system.

STRIDE and other threat modeling methods have been built into a variety of threat modeling tools
cite:[ThreatTools]. These tools likewise have different scopes, ranging from security requirements
management to identifying risk patterns throughout the software development lifecycle. Three
identified tools are based on STRIDE:

• The Microsoft Threat Modeling Tool cite:[MTMT]

• Open Weakness and Vulnerability Modeller cite:[Schaad2019OpenWA,OVVL], and

• Open Web Application Security Project (OWASP) Threat Dragon cite:[OWASP,ThreatDragon]

The threat analysis in this engineering report will use OWASP Threat Dragon. Threat Dragon is an
open source tool based on STRIDE. Threat Dragon can be downloaded as a stand-alone, desktop
application, or run through an on-line application that is integrated with GitHub. This integration
with GitHub means that Threat Dragon can be used to do threat analyses on code as it is being built
in a GitHub repository. Since a CFRA-based Federation Service is not actually being built (yet), the
desktop version of Threat Dragon (version 1.2.0) will be used.

23

https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach
https://en.wikipedia.org/wiki/Threat_model
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://ovvl.org
https://owasp.org/www-project-threat-dragon

Mitigations for the STRIDE threats cite:[ThreatMigs] can be categorized as follows:

Table 3. Mitigation Categories

Category Description

Auditing and
Logging

Who did what and when? Application logging of security-related
events enables subsequent auditing to possibly identify malicious
events.

Authentication Who are you? Unequivocally establishing the identity of an entity
is critical for establishing who did what when.

Authorization What can you do? Authorization is determined by evaluating
identity credentials against the discovery and access policies for
specific resources.

Communication
Security

The privacy and integrity of data as it is in-transit must be
ensured.

Configuration
Management

All systems are composed of multiple components that must be
deployed and managed as a whole. Properly managing the
configuration of these components is central to reducing threat
vulnerabilities, such as making sure software versions are
current, ensuring that credentials are properly handled, ensuring
that components only communicate with other authorized
components, and so forth.

Cryptography Cryptographic methods to encrypt/decrypt and sign data are
commonly used to provide confidentiality and integrity. Is
cryptography being properly used in the system under review?

Exception
Management

When something in a system fails, and an exception is raised, is
the failure handled properly? First, does the system fail
gracefully? Second, does the exception capture essential
information about the failure? Third, is the information passed
back to the user both useful but at the same time restricted to a
need-to-know?

Input Validation Validating input data when it is received by a system component
can prevent many security issues. Is the data from a trusted
source? Has the data been corrupted or modified in-transit? Is the
data in the right format and within expected bounds? Does the
input data contain any extraneous information?

Sensitive Data Systems may have data that is considered to be more sensitive
and must be appropriately protected. This includes when data is
in memory, at-rest in a data store, or in-transit over a network.

Session Management A session refers to a series of related interactions between a user
and an application. Sessions are often used to establish a security
environment that is used for the duration of the session. This can
provide performance benefits, yet must be properly managed to
avoid security vulnerabilities.

24

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-mitigations
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-mitigations

These STRIDE categories and mitigation approaches will be used in a threat analysis of a CFRA-
based Federation Service using Threat Dragon. Threat Dragon works by providing a palette on
which Data Flow Diagrams (DFDs) can be built describing how a system works. These DFDs are
based on Processes, Stores (Storage), Actors, Data Flows and Trust Boundaries. For each of the
elements, threats can be identified and added to the overall model. Threat Dragon also provides a
rule engine that can auto-generate basic threats for each element.

What the Threat Dragon tool actually provides is a way to (a) describe how a system is built and
how it works, and (b) catalog possible threats. As such, Threat Dragon does not tell the user exactly
what the specific system vulnerabilities are, nor how to mitigate them. Rather it gives the
knowledgeable system builder a systematic organization and structure in which to do such an
analysis.

8.2. A Federation Service Threat Model and Analyses
With an understanding of threat modeling and analysis, a likely Federation Service
implementation, deployment and governance model are chosen to analyze. As stated above,
specific threats and mitigations can only be identified for specific system implementations. Given
the range of possible implementations, and the range of deployment and governance models, it is
simply not be possible to exhaustively analyze all of them in this document. Hence, a few strategic
examples that are considered to be attractive and likely are chosen for analysis.

This approach requires that a number of specific architectural assumptions be made. First the case
of a single Federation Service being used in a Third-Party deployment is considered. As only one
Federation Service is involved, this is the simplest deployment identified in the NIST CFRA. Based
on established software engineering practices, we will assume that the FS implementation will be:

• Based on RESTful services,

• Integrated with Open ID Connect, and

• Based on a Web Service API Gateway approach.

Figure 2. An Object Model for a single CFRA-based Federation Service.

25

This overall implementation is illustrated in Figure 2. Several other very important architectural
features are identified. RESTful tools are often built with multiple endpoints that serve different
purposes. This Federation Service has two endpoints: the FS Endp and the FSO Endp.

The FSO Endp is used exclusively by the Federation Service (FS) Operator. The FS Operator is the
entity that "spins-up" the Federation Service — just like any other service. The FS Operator is
primarily concerned with the general health and status of the server’s operation, and does not get
involved with the operation of any federation instances that the server is hosting. As such, the FSO
Endp can be assigned to an internal subnet that is not accessible to the "outside world". This is an
important security feature that eliminates many security threats.

The FS Endp is the endpoint exposed to all federation Members that wish to use a federation being
hosted on this server. This includes all types of Members that have different roles, such as
FedAdmin, ResOwner, ordinary Users, or any other federation-specific roles or authorizations that
may be defined. With regards to this threat analysis, however, it must be assumed that this
endpoint is accessible by malicious actors.

Likewise, as defined by the OIDC standard, the OIDC service has three endpoints. These endpoints
are used in different ways, according to several different defined flows that are defined. This
analysis is done using the Authorization Code Grant Flow, which is the typical and most secure way
that OIDC can be used. In this flow, when a Member makes a request to the FS, the Member must
first be authenticated. This is done by a redirect to the AuthZ Endp on the OIDC Service. Since this
endpoint must be accessible to any federation members, it must also be assumed that this endpoint
is accessible by malicious actors.

The OIDC service also uses the Token Endp and the UserInfo Endp. These endpoints, however, are
only used by the FS API Server. For this reason, these endpoints could also be assigned to an
internal subnet where they are not accessible by the outside world.

The Federation Service has two other critical components that need to be mentioned. The
Federation Database contains the state for all federations that currently being hosted. For each
federation, this includes:

• Who is a member,

• What roles and authorization attributes have been defined,

• The assignment of these roles and attributes to members,

• Which services have been registered for use, along with their metadata, discovery policies, and
access policies.

This database function for a Fed Service could be provided by an Oracle database or a simple
MongoDB server. In any case, this database function could be on an internal subnet such that it is
only accessible by the FS API Server.

Auditing and Accounting is another very important function. This is primarily implemented as a
logging service. Multiple commercial logging tools are available that manage log formats,
timestamping, and the disk space used by log files. Such a service can likewise be on an internal
subnet.

Finally, we note that this Federation Service incorporates the basic OASIS eXtensible Access Control

26

Markup Language (XACML) security architecture through the use of a Policy Administration Point
(PAP), Policy Decision Point (PDP), and one or more Policy Enforcement Points (PEP). After
authenticated, when a Member makes a service request, the FS API Server forwards the request to
a PEP, which asks the PDP to make an access decision based on the access policy for that service. If
allowed, the request is finally forwarded to the service. Clearly the PAP/PDP/PEP machinery can be
internal to the Federation Service. However, when a PEP forwards a request to an arbitrary
federation service, it must be assumed that the request can be threatened by malicious actors.

While a single Federation Service is completely sufficient for running multiple federations, larger
scale federations will require multiple Federation Services that are peers. This will be necessary not
only for scalability reasons, but also due to possible desirable deployment models. It is anticipated
that many organizations will want to deploy their own Federation Service that "peers" to the
Federation Services in other organizations. This is illustrated in Figure 3.

Figure 3. A FS-FS Interaction Threat Model.

The only addition to this model are the FS-FS Endpoints on the two Federation Services, and the link
connecting them. As discussed in the CFRA, when two or more Federation Services peer, a major
design decision is how this link is used: Which federation information is replicated among the
Federation Services, which information is partitioned, and what queries must be passed among
them. For the analysis described in this ER, this issue is out of scope. What data flow over this link
would change what impacts a compromise might have, but the potential threat methods are the
same.

These static architectural concerns must be considered in conjunction with the dynamic lifecycle of
a federation and how those architectural components are used. To this end, the following
interaction scenarios are examined:

• Authentication to a Federation Service

• FedAdmin/ResOwner Interactions

• User Interactions, and

• FS-FS Interactions.

All federation members must first authenticate to a Federation Service. This scenario exercises the
entire OIDC Authorization Code Flow. As defined in the NIST CFRA, there are three fundamental,
pre-defined roles that any federation member may have: FedAdmin, ResOwner, and User. The

27

FedAdmin can administer a federation, i.e., grant/revoke membership, roles, or attributes. A
ResOwner can register services to be available in a federation, along with defining their discovery
and access policies. For the purposes of this analysis, the FedAdmin and ResOwner threat analyses
are combined since the threat models are structurally the same. Finally, a User is something of a
default role that is able to invoke services, but not to administer the federation or register services.
Hence, each of these fundamental roles exercises different functional capabilities in a Federation
Service.

Based on the object model given in Figure 2 and Figure 3, separate Threat Dragon analyses can be
performed for the four scenarios identified above. These four analyses that can be performed are
part of one ThreatDragon analysis project. After completing an analysis, ThreatDragon can write
the entire project results to a pdf report file. That final report file is given in Appendix A: Threat
Dragon Report. A summary and discussion of each scenario analysis is presented here.

8.2.1. A Threat Analysis of Authentication to a Federation Service

Figure 4 shows the architecture defined in Figure 2 cast into a data flow diagram. This diagram
identifies all actors and interactions when a Federation Member authenticates to a Federation
Service using OIDC.

Figure 4. A Fed Service OIDC Authentication Threat Model.

Following the configuration shown in Figure 2, the Federation Service is shown behind the Fed
Service Trust Boundary, along with the OIDC Server, Fed State, and the Fed Operator. A Member (and
their browser) and a Service are shown behind their own Trust Boundaries. All dashed items are
considered to be out-of-scope for the analysis documented in this ER. The Service, the Service
Request and Response arrows are shown as out-of-scope since they are not involved in the
authentication process. All other dashed actors and interactions are considered to be secure
because they are behind the Fed Service Trust Boundary.

28

While this assumption may be flawed, it is based on currently established and accepted security
practices, such as "securing" service endpoints by operating them on a different, internal subnet.
Newer architectural approaches that do not require such assumptions are reviewed in Emerging
Security Technologies.

As per the OIDC specification, the numbered arrows indicate the OIDC Authorization Grant Flow,
the primary flow used by most applications to achieve authentication. (While this flow is called
authorization, the first step is to establish identity, i.e., authentication.) When a Member asks to be
authenticated (1), the Fed Service redirects the request (2) to the OIDC Server. The OIDC Server
challenges the Member to authenticate (3) which the Member responds to (4). On success, the OIDC
Server redirects back to the Fed Service (5) with a short-lived Authorization Code and a "state"
value. The Fed Service uses this code to request an Access Token from the OIDC Server (6). The
Access Token and ID Token are returned (7). These are JSON Web Tokens (JWTs). JWT is an open
standard (RFC 7519) that defines a compact and self-contained way for securely transmitting
information between parties as a JSON object (jwt.io). The Access Token can be used to request
further information about the Member (8 and 9). Finally, the results of the authentication are
returned to the Member (10).

There are two very important security aspects to this protocol. First, the Member does not divulge
any secrets to the Fed Service. That is to say, the Member authenticates directly with OIDC. This
could be simply by using account name and password, multi-factor authentication, biometrics, or
other methods. Second, no tokens or other credentials are divulged to the Member. The Access and
ID Tokens are exchanged directly between OIDC and the Fed Service. By having OIDC act as a
trusted, third-party, the Member and Fed Service do not have to directly exchange any secret
information.

A threat analysis of this protocol is not trivial. However, an extensive threat analysis has been
performed for OAuth 2.0 cite:[OAuthThreatModel]. Since OIDC is essentially an integration of
OpenID and OAuth 2.0, this threat analysis can be applied here. Threats and mitigations identified
in cite:[OAuthThreatModel] are cited as such in the Threat Dragon report.

Threat Analysis Summary and Discussion:

The analysis described focuses solely on those actors that have externally accessible endpoints and
the interactions between them. That is to say, this analysis focuses on interactions that cross trust
boundaries. For the purposes of this analysis, the endpoints and interactions that are completely
behind a trust boundary, i.e. within a trust zone, are considered to be secure.

Also, while some Denial of Service (DoS) attacks are considered here, DoS attacks against the
communication bandwidth between a Member and any part of the Fed Service are considered out-
of-scope. There is nothing federation-specific about such attacks. Such attacks can be mitigated
without requiring any structural or behavioral changes to a Fed Service.

With these ground rules in mind, the threat analysis recommendations can be summarized as
follows:

• All redirection URIs should be completely defined with no parameters and registered with the
OIDC Server.

• Registered URIs should be checked to avoid Cross-Site Request Forgery (CSRF). CSRF is an attack

29

https://tools.ietf.org/html/rfc6819

that forces an end user to execute unwanted actions on a web application in which they’re
currently authenticated.

• Use stronger authentication methods, such as multi-factor authentication (MFA), random
questions, CAPTCHAs etc.

• Only browsers that support the X-FRAME_OPTION should be allowed such that click-jacking
using transparent iFrames can be avoided.

• The binding of an entity’s externally accessible API endpoint to the entity’s domain name
should be validated, such as the Fed Service.

• Use TLS on all communication links.

• Rate-limit requests to avoid DoS attacks to the Fed Service or OIDC Server.

While very insightful, these threats and mitigations emphasize the fact that such analyses must be
done by individuals that have a first-hand knowledge and understanding of how RESTful web
services are built and how they work. For example, understanding the Cross Site Request Forgery
vulnerability means knowing exactly how the redirection protocol works, and more importantly,
how the protocol could be misused. Also, a threat analysis for any system should be done against
specific implementations. Different implementations of the same standard could have different
vulnerabilities. For example, under extreme malicious loading conditions, a service may commit a
synchronization error that allows a response to be returned to the wrong requestor. For all these
reasons, any serious analysis to identify threats and effective mitigations must be done for a
specific implementation and deployment, staffed by knowledgeable persons, and properly funded.

8.2.2. A Threat Analysis of FedAdmin and ResOwner Interactions

In this scenario, a federation Member has already been authenticated to the Fed Service. As
illustrated in Figure 5, Members are being considered that are FedAdmins and ResOwners as they
perform administrative functions. Only the Member Browser and the Federation Service are
involved with a single pair of request and response interactions. This threat analysis applies to both
FedAdmins and ResOwners since the threat model is structurally the same. A FedAdmin makes
requests to the FedService to manage a federation’s members, e.g., to grant or revoke authorization
attributes. A ResOwner makes requests to register service endpoints and manage the associated
discovery and access policies.

30

Figure 5. A FedAdmin and ResOwner Threat Model.

Threat Analysis Summary and Discussion:

This threat scenario is clearly much simpler than the authentication process. Since the members
are already authenticated, the enables the FedService to associate the member with a trusted set of
authorization attributes. Aside from mitigating possible DoS attacks on either the Member or the
Fed Service, the key security goal is to mutually secure the communications between them, e.g., to
use mTLS. While this is an entirely reasonable approach, the next question is what are the threat
vulnerabilities of TLS and mTLS? This is discussed in Threat Analysis Observations.

8.2.3. A Threat Analysis of User Interactions

In Figure 6, members that are general Users are considered. Again, these Users have already been
authenticated to the Fed Service for a specific federation.

General members can perform two functions: (1) query the federation’s Service Catalog, and (2)
invoke a Service. A federation’s Service Catalog is maintained by the Fed Service. In response to a
query, the Fed Service first applies the discovery policies defined by the ResOwners. The Fed
Service then replies with a set of service metadata that (a) the User is authorized to discover and
invoke, and (b) meets the User’s query parameters.

The User can then invoke one of these services. In this deployment model, the Fed Service proxies
the call thereby allowing the Fed Service to apply the Service’s access policy. Upon granting access,
the request is sent to the Service. The Service processes the request and sends a response which is
forwarded to the User.

31

Figure 6. A User Interaction Threat Model.

Threat Analysis Summary and Discussion:

Threats to the interactions between general Users and the FedService are essentially the same as
they are for FedAdmins and ResOwners. In this threat analysis, however, Services finally come into
the picture. Services never ask the Fed Service for anything. Services simply respond to requests. As
before, while DoS attacks are possible and can be mitigated, the key security goal is to mutually
secure the communications between the Service and the Fed Service.

8.2.4. A Threat Analysis of FS-FS Interactions

The previous three threat scenarios have all dealt with a single Federation Service and its
interactions with Members and Services. Figure 7 presents a final scenario that illustrates the
interactions between two Federation Services.

32

Figure 7. A Fed Service to Fed Service Threat Model.

As noted, each Fed Service can make requests to the other. As before, doing this securely depends
on securing the communication channel. Fed Services do not authenticate to each other in the same
way that Members authenticate to a specific federation. However, there does have to be a trust
relationship between them, as part of the trust relationship between the organizations involved.
Once this trust relationship has been established, the Fed Service Operators can configure their
respective Fed Services to accept a connection from each other.

Threat Analysis Summary and Discussion:

As part of this simple deployment model, the identity of the Fed Services involved is being
established out-of-band. Aside from mitigating possible DoS attacks, as before, the key security goal
is to mutually secure the communication link between the two Fed Services.

8.3. Threat Analysis Observations
This structural approach to threat analysis emphasizes several points:

• Authentication is critical. Once a trusted identity has been established, the identity can be
associated with authorization attributes that determine what an entity can do. In many ways
"Who you are" is "What you can do".

• Communications must be protected at all times. Whenever communication must cross a trust
boundary, it must transit a zone of implicit distrust. The common security practice today is to
secure the communication channel as it crosses that zone of distrust. However, to assume that
everything within a trust boundary is, in fact, secure carries its own risk. This is the central
motivation for developing Zero Trust Architectures.

• Many security threats are "idiosyncratic" to specific implementations. That is to say, many
exploits exploit an implementation flaw or oversight, such as failing to check a registered

33

redirection URL. A structural threat model for a specific system deployment can identify which
tools are being relied upon. Once that is done, the threat analyst must look for threats against
those specific tool implementations. The actual tool implementers are in the best position for
doing such analyses.

Threats can also arise from how a standard is defined. TLS was cited repeatedly as a mitigation
strategy for communication threats. However, the POODLE (Padding Oracle On Downgraded
Legacy Encryption) attack cite:[TLSAlert2014] is considered to be fault of the protocol. When a
client initiates a TLS handshake, it sends a list of supported SSL/TSL versions. A Man-in-the-Middle
attacker could impersonate the server and try to get the client to agree to downgrade to SSL 3.0. SSL
3.0 has a vulnerability in the Cipher Block Chaining mode. Cipher blocks can have padding to reach
a fixed length that an attacker can manipulate. By watching the server responses to this padding,
the attacker can eventually determine how to decode the encrypted block. Since the POODLE attack
was considered to be inherent in the protocol, the recommended mitigation was to simply disable
the use of SSL 3.0.

This one threat analysis made definite assumptions about the deployment structure, and
specifically where the trust boundaries were. This clearly affects what vulnerabilities might exist.
In OIDC, impersonation attacks are possible if the ID Tokens are not validated. (ID Tokens are used
in OIDC, but are not part of the OAuth standard.) When OIDC is within a trust boundary, there is no
problem. However, if outside the trust boundary, then the client (i.e., the Fed Service) must validate
that the ID Tokens are properly signed by the OIDC Issuer. Hence, mitigations must always be in
place concerning trust boundaries.

The above comments serve to emphasize the threat analysis presented here should not be
considered complete, definitive nor authoritative. This analysis does, however, point to many
places where "recursive" threat analyses could be done on all tools and standards used in a
federation deployment. The limitations of these threat analyses to identify and mitigate
vulnerabilities are also motivating the development of new architectural approaches that will
simply eliminate some vulnerabilities, while making others more manageable. This is the topic of
the next chapter.

34

https://www.us-cert.gov/ncas/alerts/TA14-290A
https://www.us-cert.gov/ncas/alerts/TA14-290A

Chapter 9. Emerging Security Technologies
The previous chapter examined the security threats and mitigations of a specific deployment of a
CFRA-based federated environment using established security approaches and tools. That approach
was essentially based on (a) establishing identity, and (b) securing communications channels,
specifically when trust boundaries had to be crossed. The need to establish a trusted identity was
critical since identity was associated with authorizations. Securing communications channels at the
network level is the established thing to do because it is the obvious thing to do. This is a
manageable, infrastructure-based, security approach. However, are there other ways of establishing
identity and secure communications that are less dependent on a particular infrastructure and
generally more secure — especially in distributed, federated environments? To this end, other
approaches to managing identity and trust are examined.

9.1. Identity and Credential Management
All security architectures share some fundamental requirements. Federated environments inherent
all of these, while introducing additional considerations. These fundamental requirements are
nicely organized in the NIST Digital Identities Guidelines, SP 800-63-3 cite:[NIST800-63-3]. These are
briefly reviewed here prior to discussing federation-specific concerns.

9.1.1. Identity Proofing

Identity proofing is the process of verifying who a subject or applicant is when first establishing
them as a valid subscriber in an identity system. To be more concrete, this is when a Credential
Service Provider (CSP) associates an applicant with a digital identity that is documented with one or
more digital credentials.

The NIST Digital Identities Guidelines cite:[NIST800-63-3] defines three Identity Assurance Levels:

• IAL1: "There is no requirement to link the applicant to a specific real-life identity." That is to say,
the applicant can self-identify and self-assert any attributes about themselves. This is a common
approach for many on-line services, such as chat rooms.

• IAL2: "Evidence supports the real-world existence of the claimed identity and verifies that the
applicant is appropriately associated with this real-world identity." This requires some type of
independent verification of the applicant’s identity claims.

• IAL3: "Physical presence is required for identity proofing." The applicant must appear in person
and have their identity claims independently verified by an authorized and trained
representative of the CSP.

These Identity Assurance Levels can all be applied in federated systems.

9.1.2. Authentication

When authenticating a user or claimant, the claimant must demonstrate that they possess and
control one or more authenticators, such as a username, credential, token, etc., that are used to
prove their identity. The use of a single authenticator, such as account name and password, has
been common for decades. However, stronger security can be achieved by using multiple

35

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf

authenticators in conjunction, such as Multi-Factor Authentication (MFA).

Authenticators can be broadly categorized into:

• Something you know: This could be an account name and password, an RSA passcode, or some
other type of digital challenge.

• Something you have: This can be an ID badge, a Common Access Card, an RSA SecurID Hardware
Token, a cryptographic key, or even a mobile device for presentation of a challenge.

• Something you are: This can be a fingerprint, retina scan, facial recognition, or some other
biometric data.

A common MFA approach uses account name and passcode, in conjunction with an RSA fob that
presents a PIN code with limited time validity, for example 60 seconds.

The NIST Digital Identities Guidelines cite:[NIST800-63-3] defines the following Authenticator
Assurance Levels:

• AAL1: "AAL1 provides some assurance that the claimant controls an authenticator bound to the
subscriber’s account. AAL1 requires either single-factor or multi-factor authentication using a
wide range of available authentication technologies. Successful authentication requires that the
claimant prove possession and control of the authenticator through a secure authentication
protocol."

• AAL2: "AAL2 provides high confidence that the claimant controls authenticator(s) bound to the
subscriber’s account. Proof of possession and control of two distinct authentication factors is
required through secure authentication protocol(s). Approved cryptographic techniques are
required at AAL2 and above."

• AAL3: "AAL3 provides very high confidence that the claimant controls authenticator(s) bound
to the subscriber’s account. Authentication at AAL3 is based on proof of possession of a key
through a cryptographic protocol. AAL3 authentication SHALL use a hardware-based
authenticator and an authenticator that provides verifier impersonation resistance; the same
device MAY fulfill both these requirements. In order to authenticate at AAL3, claimants SHALL
prove possession and control of two distinct authentication factors through secure
authentication protocol(s). Approved cryptographic techniques are required."

While all of these authentication methods and Authenticator Assurance Levels can be applied in
federated environments, federation raises the additional possibility of federated identity
management. Federated identity entails the ability of a user to use identity credentials issued by an
Identity Provider (IdP) in one domain to access resources in another domain. Doing this, however,
depends on credential management and trust. This leads to the next discussion topic.

9.1.3. Federated Credential Management

Managing the use of credentials across identity domains, and the identity attributes that might be
carried on them, i.e., released, is a significant issue in federation. To give some structure to this
issue, the NIST Digital Identity Guidelines cite:[NIST800-63-3] define three Federation Assurance
Levels. These refer to the strength of an identity assertion issued by an Identity Provider (IdP) in a
federated environment when communicating that information to a Relying Party (RP):

36

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf

• FAL1: "Allows for the subscriber to enable the RP to receive a bearer assertion. The assertion is
signed by the IdP using approved cryptography."

• FAL2: "Adds the requirement that the assertion be encrypted using approved cryptography such
that the RP is the only party that can decrypt it."

• FAL3: "Requires the subscriber to present proof of possession of a cryptographic key referenced
in the assertion in addition to the assertion artifact itself. The assertion is signed by the IdP and
encrypted to the RP using approved cryptography."

While these assurance levels are useful, the added dimension of federation that must be
emphasized is that the RP and IdP will be in different identity domains.

A key function of a federated environment is to enable an RP in one domain to trust and understand
the credentials issued by an IdP in another domain. The RP must trust that the credential:

a. Legitimately "belongs" to the subject,

b. Has integrity — it has not been maliciously modified, and

c. If privacy is desired, cannot be snooped to determine the identity attributes being released from
the IdP to the RP.

Once this trust is established, the RP must have a common understanding about what the identity
attributes mean, such as how they can be used to evaluate an access policy and make a valid access
decision. A fourth requirement can be added from the User’s perspective:

d. Only the minimal identity attributes are released to enable the RP to make a valid access
decision.

Item (a) above requires a credential belongs to a user. Please note, however, FAL1 is based on the
concept of a bearer assertion. This is something the user or subscriber (the bearer) presents to the
Relying Party as sufficient proof of identity. Bearer assertions, or bearer tokens, are vulnerable to
man-in-the-middle or snooping attacks, and simple device theft. If an attacker acquires a bearer
token, by any means, they attain all the rights of the legitimate user.

The need to avoid the limited security offered by bearer tokens and achieve the three trust
requirements described above has motivated the development of various security architectures,
such as Public Key Infrastructure (PKI) cite:[PKI]. PKI utilizes a Certificate Authority that issues
signed and encrypted certificates that are only valid for the intended subject. PKI is widely used
with the established X.509 certificate format cite:[X509]. When a User requests service and presents
a certificate, the RP can verify the certificate with the Certificate Authority. Importantly, this type of
approach also addresses Items (b) and (c).

While PKI is widely used and considered quite secure, another design concept that increases
security even further is to not divulge credentials directly to the user at all. PKI certificates can be
directly installed on a user’s browser or device. As discussed in A Threat Analysis of Authentication
to a Federation Service, OpenID Connect (OIDC) cite:[OIDC] avoids doing this. When a User requests
service from an RP, the RP can redirect the User to authenticate directly to an OIDC Provider (OP).
On successful authentication, the User is redirected back to the RP with an authorization code. The
RP uses this code to get an ID Token and Access Token directly from the OP. The User never sees
their ID and Access Tokens, and has no control over them.

37

http://www.oasis-pki.org/resources/techstandards
https://tools.ietf.org/html/rfc5280
https://openid.net/connect

This architectural approach for OIDC, however, was actually developed to support Federated
Identity Management (FIM). On the surface, the goal of FIM is to enable a User A from Organization
A to access resources at Organization B using their identity credentials from Organization A.
However, the market-driven usage scenarios that motivated this, however, were quite limited in
scope. One example is enabling a User’s Facebook account to access photographs on the User’s
Snapchat account. This does require that Snapchat trusts the User’s IdP and having the User
authenticate to approve the access by Facebook.

While there is certainly a mass-market use of federated identities, it is far from a general federation
capability. First, it assumes that a User knows about and can invoke any service that is available on
the Internet. There is no notion of a Service Owner being able to manage the discovery of their
services through policy. The Service Owner must determine where the User is coming from, and who
is the User’s IdP. The Service Owner must then determine if they know and trust the IdP. Usually
this means that Service Owner must maintain a list of IdPs that they trust. When making a service
request, the User must select an IdP from the Service Provider’s approved list — which hopefully
includes the User’s IdP. Even when this is done, there is no guarantee that the User’s IdP can
provide the attributes necessary for the Service Owner to make an access decision. This may be
because the IdP does not know or understand what type of attributes are being requested, or
because the IdP does not wish to release those attributes for some organizational reasons. For all of
these reasons, simple FIM is insufficient for managing general federations.

The NIST CFRA addresses all these issues by enabling "purpose built" federations to be defined and
instantiated. By considering a federation to be a virtual administrative domain, it is possible to
manage membership in a federation, along with the roles, attributes and policies necessary to
manage its operation. That is to say, defining the "rules of the road" for members and establishing
an expectation of what it means to be a member in good standing is possible. There is no question
about what the roles and attributes mean, or how they are used by the federation’s service owners.
What the NIST CFRA does is provide a scoping mechanism whereby existing authentication and
authorization tools can be leveraged to instantiate any number of federation instances. These
instances can be independently managed according to their own governance requirements.

9.1.4. Attribute Release and Verifiable Credentials

The issue of attribute release — Item (d) above — has already been mentioned several times. This is
a significant issue for many existing federation systems and is examined here in more depth.

While thinking of a credential as documenting everything there is to know about a User is easy, an
RP may only need one or two attributes to make a decision. Aside from not sending extraneous
information, there may be attributes that a User (or their organization’s IdP) may not want to
divulge to an RP that does not need to know. In a single domain, attribute release is less of a
problem since information is "all within the family", i.e., the same trust domain. In a federated
environment, however, attribute release becomes more of an issue and must be explicitly managed.

When an organization is must managing their own environment, the attributes used and how they
are encoded into credentials is typically not an issue. However, if such an organization — or some
subset of their users — later wishes to federate with another organization for any purpose, their IT
security architecture was probably not designed with this use case in mind. From an organizational
governance perspective, they may have been unprepared to share identity attributes with other
organizations, of rather, undecided about how to do so. Organizational IdP administrators may be

38

faced with competing requirements concerning how to expose attributes to external RPs. The only
tractable solution for many administrators will be to release nothing.

The NIST CFRA avoids this problem by defining a virtual administrative domain where attribute
release is simply not a problem. The goals and purpose of a federation are well-defined. Hence, the
attributes and how they are used are well-defined. The necessary attributes to make discovery and
access decisions are well-defined. This means their release can also be well-defined.

There are, however, other ways of addressing the attribute release issue that could also be used in
federated environments. The approach taken by W3C Verifiable Credentials cite:[W3C_VCs] enables
the user to directly control their credentials and how attributes are released. This design approach
is illustrated in Figure 8.

Figure 8. The W3C Verifiable Credential Model.

While Issuers (IdPs) continue to issue credentials to Holders (Users), the Holder maintains all of
their credentials in a repository that can be called a wallet (not illustrated). Credentials are only
valid for a specific subject, which may the Holder but could be another entity associated with the
Holder. When requesting service from a Verifier (Relying Party), the Holder creates a custom
credential presentation built from any of the credentials in their wallet. Hence, the Holder has
complete control over their attribute release when interacting with Service Providers. The
credentials and presentations are constructed and signed such that they can be verified through a
Verifiable Data Registry. Hence, Verifiable Credentials are not bearer tokens, even though they can be
used as bearer tokens by leaving the subject field in a credential presentation empty.

Verifiable Credentials (VCs) handle credentials in a way that is very different from third-party IdPs.
VCs were deliberately patterned to work the same way as physical credentials. A typical person will
have a wallet with physical credentials, such as a Driver’s License, credit cards, auto club card and
so forth that can be presented for identification and receive services. Of course, all this depends on
a set of public Issuers that can be consulted to verify credentials. Hence, VCs are a close parallel to
how humans go about their business right now. For this simple reason, VCs might gain market
adoption in the coming years.

However, this design approach also makes it difficult for controlling how a user may use their
credentials in subsequent presentations. For many application domains, after granting a credential,
the Credential Issuer may wish to stipulate that the User may only use the credential in
presentations to entities on an approved "white list", and must never use them in presentations to
entities on a "black list". Such requirements are not known to be handled at this time.

39

https://www.w3.org/TR/vc-data-model

The VC approach to credential management is actually quite compatible with the NIST CFRA
approach to federations. A fundamental tenet of the CFRA model is that a federation is a virtual
administrative domain whose governance should be defined and agreed upon by the potential
members prior to instantiation. That is to say, the policies used to manage resource discovery and
access are defined over a set of common, well-known attributes. In the VC case, these attributes can
be provided by public issuers. The members simply need to agree on the Issuers and attributes to
be used. A Federation Service, however, will still need to maintain a service catalog for each
federation whereby discovery policies can be enforced. Likewise, some form of Policy Decision
Points and Policy Enforcement Points would have to be used whereby access policies can be
enforced.

These architectural concerns for managing identity, credentials, and the attributes they carry, are
certainly important. However, these mechanisms must be deployed in conjunction with trust and
understanding, i.e., semantic interoperability.

9.2. Trust
Trust is an immense subject cite:[Cho2015,Braga2019]. As a concept, trust is relevant across many
fields of human endeavor, such as sociology, psychology, economics, game theory, business,
philosophy, international relations, and jurisprudence, just to name a few. For this reason, trust is
examined in a little more depth than in the top-level Trust definition.

9.2.1. Defining Trust

Trust can be broadly categorized in a hierarchy cite:[Braga2019]:

• Cognitive Trust: Trust derived from the mental processes of an intelligent entity.

• Social Trust: Trust derived from a human social network built on pair-wise relationships.

• Information Trust: Trust that information shared over an information network is trustworthy;
i.e., meets some definition of objectivity, reliability, integrity, accuracy, fairness, etc.

• Communication Trust: Trust that a system of nodes and links will demonstrate a set of
quantifiable metrics, such as connectivity, capacity, latency, fault tolerance, etc.

The bottom two layers in this hierarchy can be termed computational trust. For most systems,
establishing computational trust means that a set of requirements have been satisfied. Depending on
the use case scenario and the stakeholders' risk tolerance, that necessary set of requirements will
vary. In any case, trust can be said to be a binary, yes/no decision. (While reputation systems have
been devised to manage varying degrees of trust, these are out of scope for this engineering report.)
This ER chapter explores what trust requirements may be for federated systems and how they can
be realized.

The hierarchy above can be further refined into the concept of trust models
cite:[OASIS_Trust_Guidelines]. Linn, et al., define the notions of Business Anchor and Trust Anchor.
A business anchor "represents an entity with which its holder has a direct business relationship."
That is to say, some type of business agreement has already been established between two human
organizations. A trust anchor "represents an entity and key that the anchor’s holder has
determined to trust directly for cryptographic authentication purposes." This allows two

40

https://doi.org/10.1145/3236008
https://www.oasis-open.org/committees/download.php/6158/sstc-saml-trustmodels-2.0-draft-01.pdf

organizations "connected" by a business agreement to establish trusted electronic communications
based on cryptographic methods. Human organizations can maintain Business Anchor Lists and
Trust Anchor Lists whereby sets of trust relationships can be managed. Based on these concepts,
trust models can be categorized as follows:

• Pair-wise Trust is based exclusively on bilateral business agreements. While fundamental, pair-
wise trust has limited scalability.

• Brokered Trust relies on active intermediaries that can construct a path of trust relationships
from one entity to another. While certainly more scalable, brokered trust implies that all parties
must agree to a set of rules governing the use of transitive trust relationships.

• Community Trust is based on a shared membership in a community. This implies a common,
well-known set of rules whereby trust can be said to be established. In essence, establishing
community trust implies, that an all-to-all set of pair-wise trust relationships has been
established among the community members.

In practical scenarios, these trust models need to be managed in the context of a trust framework.
This is especially true for brokered/transitive trust and community trust where establishing paths
of trust chains or community trust requirements must be managed.

9.2.2. Trust Frameworks

To this end, Temoshok and Abruzzi present a guide for developing trust frameworks for identity
federations cite:[NIST_Trust_Frameworks]. While focusing on identity federations, this guide is
directly relevant to general federations, as defined by the NIST CFRA. As the basis of authentication,
this work takes the approach of OIDC (as illustrated in the Threat Dragon models). When a User
requests service from a Relying Party, a pair of redirections is used whereby the User authenticates
to the IdP, and the IdP provides the authentication status directly to the RP. The NIST CFRA
augments such identity federation by integrating it with resource federation. That is to say, the
resources in a federation are managed according to discovery and access policies based on the
identity roles and attributes that are well-known within a federation. Hence, this ER section extends
the trust framework approach presented in cite:[NIST_Trust_Frameworks] to general, CFRA-based
federations.

NIST Trust Frameworks govern the interactions among three main actors:

• Federation Administrators (aka, IdPs or Credential Providers),

• Relying Parties (aka Resource Providers), and

• Users (aka, Members).

A Trust Framework encompasses a set of rules governing how:

• Identity management responsibilities are conducted,

• Identity information is shared,

• Shared identity information is used,

• Identity information is secured and protected,

• Specific roles in the federation are performed, and

41

https://doi.org/10.6028/NIST.IR.8149
https://doi.org/10.6028/NIST.IR.8149

• Legal and liability issues are managed.

To accomplish this, a Trust Framework is comprised of four components:

• System Rules (above) which govern members,

• A Legal Structure which identifies the rights, responsibilities, and liabilities of membership and
participation in a federation;

• A way of Establishing Conformance of individual members; and

• A way of Recognizing that Conformance and communicating the fact of conformance among the
federation members.

In cite:[NIST_Trust_Frameworks], these components are discussed specifically for identity
federations. Their implications for general federations are now considered.

9.2.2.1. System Rules

System Rule includes issues of member registration, identity proofing and credential management.
These have already been extensively discussed. The issue of privacy is clearly related to the issue of
attribute release, which was discussed concerning credential management. Aside from mechanisms
for managing the exposure of member’s attributes to resource providers, different federations may
have different privacy concerns and requirements. As noted in cite:[NIST_Trust_Frameworks], a
federation should have a clearly defined privacy policy concerning how member attributes are
handled. This emphasizes the importance of CFRA-based general federations being able to define
their own set of attributes. These do not have to include any personal information about a member
and may only have meaning within the federation. Of course, a link from a member’s federation
identity to their "home" or "personal" identity would always have to be maintained.

Temoshok and Abruzzi raise the issue of federation members being tracked, allowing a Credential
Service Provider to "build a narrative" about a user that the user did not consent to. Note that this is
another potential benefit of Verifiable Credentials. A credential Holder may use a credential, such
as presenting the credential to a Verifier, without the Issuer necessarily knowing about the
credential usage. While Verifiers could track their customers, a Credential Issuer would not be able
to track Holders across multiple Verifier interactions. With CFRA-based federations, we note that
even if a credential system such as OIDC is being used, the Credential Issuer should only be able to
track the federation member within a given federation. From a technical perspective, it would be
possible for a single CFRA-based Federation Service to track a member’s behavior across multiple
federations if those federations were being hosted on the same Fed Service. This is a distinct policy
issue concerning CFRA-based implementation that should be addressed. Outside of a federation, for
a Federation Service to track a member’s behavior would certainly not be possible.

Security and Data Handling requirements for identity federations are how discussed. General
federation clearly inherits these requirements. The mechanisms to achieve communication security
are extensively discussed in the Threat Dragon analyses. In addition to handling identity data,
general federation need to securely manage and minimize the volume of service data is exchanged,
such as service endpoints, metadata, discovery and access policies.

The final System Rules topic is Technical Specifications. Having a "common set of technical
protocols and standards" is beneficial and even necessary for all distributed systems. Developing

42

and establishing standards for CFRA-based federations is the goal of the IEEE P2302 WG
cite:[P2302]. While this is still work-in-progress, P2302 has defined a core API single, Third-Party
CFRA deployments, and simple peer-to-peer deployments.

Beyond the API and protocol work, P2302 is also working on the notion of a formal definition
methodology for federations. A formal federation definition would include information such as the
"Rules of the Road" for participation: What the purpose and goals of the federation are, what types
of services and data are to be shared, what type of attributes will be needed and available to
manage discovery and access policies, how the federation will be governed, who will be the
FedAdmins, and so forth. This would be similar to an Acceptable Use Policy that defines the roles
and responsibilities of federation membership. While this is also work-in-progress, candidate
approaches could be Fed-ML or an OWL-Fed. These could all be part of the System Rules for a
general federation Trust Framework.

9.2.2.2. Legal Structure

Small-scale federations can be quite informal requiring nothing more than verbal agreements
among friends. This is true for both identity federations and general federations. However, as
federations become larger and involve more significant amounts of resources, the participants may
feel that legal agreements are a necessary part of the federation trust framework. When a
federation represents a significant investment of time, money and people, then the rights and
obligations of federation members must become legally binding. These rights and obligations could
include an Acceptable Use Policy, as discussed above, but could involve much more.

All federations must be in regulatory compliance. Federations operate within governmental
jurisdictions that may define legally binding compliance requirements. Examples include the Child
Online Privacy Protection Act, the Financial Services Modernization Act, and the Health Insurance
Portability and Accountability (HIPPA) Act, which all govern how data must be protected and how it
can be used. Such compliance requirements must be reflected and observed as part of a
federation’s legally binding System Rules.

Something that is explicit in a general federation, and not in an identity federation, is the potential
financial cost of the deployment and use of a service with a federation. If the cost of operating a
federated service is not covered "by other means", then the service owner may wish to establish a
pricing model whereby costs can be recouped, or even a profit made. Any such pricing models must
be part of the System Rules in a Trust Framework. This must be done in conjunction with an
accounting mechanism. Such a mechanism must log and collate all the necessary transaction events,
such that an itemized bill can be presented at the end of a billing period. While identity federations
may enable services to be used, costing and billing is simply out of scope for them.

Legal agreements typically address the issue of risk and liability allocation: Who is responsible if
something goes wrong. In an identity federation, if an identity credential is mishandled or identity
attributes are erroneously associated with the wrong credential, then an erroneous access decision
could be made. Access could be granted when it should not have, or a legitimate access request
could be denied. In either case, one party or another could feel they have suffered a loss. This loss
could be financial or exposure of private, sensitive information.

This is certainly an issue in general federation, as well. In addition, though, a general federation is
managing service endpoints, metadata, and discovery/access policies. If these are mishandled, these

43

https://standards.ieee.org/project/2302.html

could also result in an erroneous discovery or access decision, and some party could feel they have
suffered a loss. While every precaution to be taken to ensure that a Federation Service does not
"make mistakes", a Federation Trust Framework should clearly identify what happens when one
does.

The final legal topic is Multilateral Agreements. One of the fundamental tenets of a federation is that
rather than having a set of differing, potentially conflicting, bilateral trust agreements, there is a
single, multi-party agreement that all participants agree to. When agreeing to such a contract, all
parties have a consistent understanding of the "Rules of the Road" for participating in a federation.
In a general federation, the scope of such agreements is expanded beyond that of just an identity
federation. Beyond the handling of identities, a legal, multilateral agreement for a general
federation can include the types of services to be shared, their metadata, and roles and attributes
governing how the services can be used.

9.2.2.3. Establishing Conformance

While defining a trust framework that members must agree to is essential, some federation
scenarios will demand that actual compliance to those System Rules must be established through a
concrete assessment process. The need for such assessments is the same for both identity and
general federations, although the scope of such assessments will be greater for general federations.
Temoshok and Abruzzi identify three aspects of assessing conformance:

• Self-Assessment: Self-assessment is the first step beyond simply having a signed membership
agreement. As an internal process, this can require the least overhead.

• Third-Party Assessment: Third-party assessment raises the level of confidence in the assessment
results. A third-party assessor should be independent of the organization being assessed and the
federation itself, such that the assessor has no motivation to bias any results one way or the
other. While such independence is valuable, it does require a greater investment of resources.

• Formal Audit: A formal audit is a standardized compliance evaluation method. While a
federation’s System Rules may define the trust criteria, a formal audit defines how compliance
will actually be assessed. A Trust Framework that requires formal audits could also define when
and how often audits are done, and with how much notice.

While assessing compliance is certainly important, any assessment method must be driven by
specific criteria. Hence, a formal method of defining all aspects of a federation needs to be
developed whereby a formal method of assessing conformance can also be defined.

9.2.2.4. Recognizing Conformance

Once compliance has been assessed, there must be a trusted mechanism whereby the results of that
assessment can be communicated to, and thereby recognized by, other stakeholders in the
federation. General federations use the same mechanisms as just identity federations. Temoshok
and Abruzzi identify the following:

• Registries and Listing Services: This can be as simple as maintaining a web site where
assessment results are reported. Reported results should also identify the assessment
methodology and whether it was a self-assessment or third-party assessment.

• Compliance Marks: A compliance mark is a visually recognizable image or icon that denotes the

44

satisfaction of a specific set of compliance requirements under a known methodology. The use
of a compliance mark is strictly controlled because of the achievement it is meant to represent.

• Electronically Verifiable Marks: Beyond simply a visual icon, an electronically verifiable mark
can have an embedded URL that links to a registry or the organization that issued the
compliance mark.

• Cryptographically Signed Compliance Marks: Called Digital Certificates or Trustmarks by
Temoshok and Abruzzi, these compliance marks are cryptographically signed and can be linked
to a root of trust, such as a PKI Certificate Authority. While offering the highest level of
trustworthy recognition, such compliance marks have the highest overhead in terms of the
necessary infrastructure that must be operated.

An important distinction in these recognition methods is whether they are done at the human
organization level, or whether they are automated somehow as part of the IT infrastructure.
Identity federations enable a Relying Party to trust credentials from different IdPs. While both the
RPs and IdPs may want to know that all entities are in compliance with a set of requirements that
denote trust, identity federations do not have an integral mechanism verifying signed compliance
marks. On the other hand, a set of CFRA-based Federation Services supporting general federations
could also be used to manage sets of signed compliance marks that could be requested and
inspected on-demand. Federation Services could also be used to help automate the assessment
process, but this raises the issue of how much independent, third-party humans should be "in the
loop".

9.2.2.5. Examples of Federation Trust Frameworks

One direct benefit of Temoshok and Abruzzi’s work identifying and organizing the components of
trust frameworks is that this organization can be used to evaluate existing trust frameworks that
have been developed. These trust frameworks have been developed in an ad hoc manner to serve
their user communities. Nonetheless, they represent pioneering work in this area.

• Interoperable Global Trust Federation (IGTF): IGTF cite:[IGTF] started as the International Grid
Trust Federation in 2004, during the heyday of grid computing. The goal of grid computing was
to enable international science projects to share data and resources. Trust among the
participants was established by self-audit and peer review. Once a participant demonstrated that
their PKI Certificate Authorities were configured and operated according to IGTF guidelines,
other participants would trust certificates signed by their CA.

• Federal Bridge Certificate Authority (FBCA): The FBCA cite:[FBCA] developed some years later,
provides a very similar capability. The FBCA provides a way to link or bridge CAs in the Federal
PKI (FPKI) network that may operate under different certificate policies. FBCA can map
certificate policies thereby enabling them to be validated with the Federal Common Policy
Certificate Authority (FCPCA) root certificate. CAs with certificates signed by the FBCA 2016 are
said to be cross-certified and have a trust relationship established with the FPKI. This
relationship is audited annually for conformance to the certificate policies.

• InCommon: Starting around the same time as IGTF, InCommon cite:[InCommon] is a federation-
based collaboration systems that is run as part of Internet2 cite:[Internet2]. Beyond just
enabling trust among PKI certificate authorities, InCommon maintains a federation metadata
file. This is an XML file of identity providers and service providers from different universities
and organizations, enabling these organizations to collaborate. InCommon operates a

45

https://www.igtf.net
https://fpki.idmanagement.gov/ca/#federal-bridge-certification-authority
https://www.incommon.org
https://www.internet2.edu

Registration Authority that vets IdP and SP information before adding it to the metadata.
InCommon also has a resolution process whereby disputes between participants can be
addressed.

Other trust framework examples are possible. However, the above sampling serves to illustrate
some differences. Each has a different scope for what they are providing, and have a different level
of automation, albeit scant, for dealing with their System Rules and Conformance processes. IGTF is
more of a loose federation with self-audit and peer review. FBCA actually operates a root CA that
serves as the trust anchor for the entire trust federation. InCommon goes beyond this by
maintaining a flat file of IdPs and SPs from which different federated environments can be built,
but without any inherent mechanisms for keeping those environments separate and private.

Such differences underscore the need to develop general federations whose governance and trust
frameworks are based on standards and automation as much as possible. Furthermore, it must be
possible to tailor such deployments to various federation profiles that meet the different
collaboration requirements of the participants. Further discussion about these systems and issues
can be found in cite:[CFRA2020,Chadwick2014,Lee2019].

9.2.3. Trust Framework Approaches

Trust is an immense subject. Trust frameworks and their approaches are an equally immense
subject. There are, however, several tools and efforts being developed. These directly support the
formal definition of general federations, their legal structure, and the establishment and evaluation
of conformance. Such tools are necessary for creating secure and trustworthy federations.

9.2.3.1. Trustmarks

Trustmarks were originally developed for e-commerce, such as BBBOnline cite:[BBBOnline],
VeriSign cite:[VeriSign], and TRUSTe cite:[TRUSTe]. Since these were targeted for e-commerce, they
have a specific, fixed scope. The BBBOnline trustmark denotes compliance for advertising
standards. To combat fraudulent use, the trustmark is clickable and links to a registry where the
company’s trustmark issuance is documented. VeriSign offers a similar clickable trustmark, but
issuance denotes the recipient is authentic and that VeriSign does daily malware scanning. TRUSTe
also provides clickable trustmarks, but for a variety of different purposes, such as the U.S. Health
Insurance Portability and Accountability Act (HIPAA), the EU General Data Protection Regulation
(GDPR), and the Asia-Pacific Economic Cooperation (APEC) Privacy Framework.

While these efforts are commendable, how do trustmarks relate to federations? Trustmarks are
intended to denote confidence bestowed by a trusted third-party, but how can they be used in
federations that can have a wide variety of requirements for very different application domains?
Besides meeting technical requirements of operation, can they be used to manage legal
requirements? These were the goals of the Trustmarks project cite:[Moyer2016] at the Georgia Tech
Research Institute (GTRI).

In the GTRI approach,

46

https://www.bbb.org/calgary/for-businesses/bbbonline
https://trustarc.com/consumer-info/privacy-certification-standards
https://trustarc.com/consumer-info/privacy-certification-standards
https://trustmark.gtri.gatech.edu/wp-content/uploads/2017/09/trustmark-white-paper.pdf

"A trustmark is a machine-readable, cryptographically signed digital artifact
representing that a specific named entity conforms to a well-scoped set of
requirements, as attested by a trusted, third-party assessor."

Such trustmarks enable the "componentization of trust characteristics and requirements at an
arbitrary level of granularity". That is to say, with this approach, trustmarks can be defined for any
aspect of a federation where compliance needs to be maintained. Since trustmarks are machine-
readable, this enables automated reasoning about their requirements and conformance criteria.
This means that trustmarks can be created, managed and validated in a trustmark framework. This
includes trustmark policies that are managed in a trustmark legal framework. GTRI even envisioned
a trustmark marketplace where trustmarks could be cataloged with metadata, and reused in a wide
array of application domains.

Figure 9. The Basic Trustmark Framework.

Figure 9 illustrates the GTRI Trustmark Framework. (This is Figure 1 from cite:[Moyer2016]
redrawn.) A Trustmark Defining Organization that represents a Stakeholder Community defines
various Trustmark Definitions. A Trustmark Provider can issue various trustmarks based on those
definitions to Trustmark Recipients that satisfy the trustmark requirements. A recipient can
assemble these issued trustmarks into a Trust Interop Profile. When a recipient wishes to interact
with a Trustmark Relying Party, such as various end-users or organizations, the trustmark profile
must be presented. The Relying Party will verify that the trustmarks are signed by a Trustmark
Provider that is trusted.

This arrangement of trusted Trustmark Providers that issue cryptographically signed trustmarks
that are relied upon by end-users and organizations is clearly patterned after Public Key
Infrastructure (PKI). Trustmark Providers are analogous to Certificate Authorities, while trustmarks
are analogous to X.509 certificates. Relying Parties can validate these trustmarks/certificates with a
trusted Trustmark Provider, in the same way that X.509 certificates can be validated with
Certificate Authority.

47

Figure 10. The Trustmark Legal Framework. (Used by permission.)

Trustmarks can also be used to denote legal agreements. However, since a legal agreement is
between two or more parties, there is an added twist, as illustrated in Figure 10. (This is Figure 2
from cite:[Moyer2016].) A legal contract is denoted as a Trustmark Policy. A Trustmark Recipient
Agreement (TRA) includes a Trustmark Policy by reference. When both a Trustmark Provider and
Trustmark Recipient "sign" a TRA, then a trustmark is issued to the Recipient. This represents an
explicit legal agreement between the Provider and Recipient. A similar arrangement occurs with a
Trustmark Relying Party. A Trustmark Relying Party Agreement represents a legal agreement, i.e.,
the explicitly referenced Trustmark Policy. However, in the GTRI framework, this is a "click-
through" agreement that does not need to be "signed" since the TRP is relying on the trustmark
issued by the Trustmark Provider.

Extending this kind of trust framework to federations is actually quite straightforward. Moyer, et
al., make the point that bilateral trust agreements can be extended into multilateral trust
agreements. Moyer, et al., contend that a problem with multilateral trust agreements is the
assumption that trust requirements and policies must be homogeneous across all participants. They
make the point that a framework can still specify a "core" or "minimal" Trust Interoperability
Profile. Participants can then add trust requirements to build a customized trust profile.

While the flexibility to customize can be important, having a "core" profile that everybody agrees
on is equally important. This is especially true in federations. While it may be possible for a
federation to grow "organically" in an ad hoc manner, one of the great strengths of a federation is
for the participants to agree on the purpose and need of a federation to achieve common goals. This
includes the requirements and expectations of membership, what kinds of resources are to be
shared, and the policies governing their use.

As discussed in System Rules, this is essentially the definition of a federation. Such a definition could
be cast as a set of trustmarks, including any legal requirements for membership. This set could be
considered a trustmark profile that defines the minimal, core necessities of a federation. The IEEE
P2302 WG has only begun to investigate such definitional elements. These could include:

• Federation Name

• Federation Mission Statement

• Description of expected data and service types

◦ Description of input/output arguments and semantics

48

◦ Any classification into categories

• Description of member types

◦ Description of roles and responsibilities of each type

◦ Description of data and services types they are allowed to access, how, and for what
purposes

• Set of role/attribute names

◦ Must support the definition of all necessary Discovery and Access policies

• Definition of:

◦ How the Fed_Admin role will be fulfilled,

◦ How many Fed_Admins there will be, and

◦ How they will be coordinated

• Definition of:

◦ How new members are on-boarded,

◦ How roles/attrs will be granted, suspended or revoked,

◦ How membership will be suspended or revoked, and

◦ If #Fed_Admins > 1, any necessary or desired coordination process must be defined for the
above administrative functions

The exact elements and how they are formally expressed is an open question. This represents a
large field for future work and standardization.

The notion of a federation definition can be used in a Federation Trust Framework, as illustrated in
Figure 11 for a hypothetical Federation Foo. As noted above, a federation definition constitutes a
trustmark profile. Federation members must satisfy all of the trustmark requirements, including
legal agreements, if any, to be issued a trustmark profile by a Federation Trustmark Profile Provider.
Significantly here, all federation members are both recipients and relying parties of these trustmark
profiles. Besides passing the Trustmark Provider’s assessment for trustmark compliance, each
member must be able to verify at any time that other members possess the same trustmark profile.

49

Figure 11. A Federation Trustmark Framework.

Moyer, et al., make a point of clearly establishing the parallels between PKI and trustmarks. These
parallels can be extended to federation trustmarks, as listed in Table 4. In most cases, the parallel
terminology is clear. However, as noted, federation members are both trustmark recipients and
relying parties. For legal contracts, the recipient agreement and relying party agreements are both
member agreements. Trustmark definition and interoperability profile both constitute the
federation definition. Finally, we note that the creation of a Federation Framework Technical
Specification is another outstanding area for future work and standardization.

Table 4. Parallels between PKI, Trustmarks, and Federations

PKI Trustmarks Federations

Certificate Trustmark Federation Trustmark

Certificate Authority Trustmark Provider Federation Trustmark
Provider

Subscriber Trustmark Recipient
Federation Member

Certificate Relying Party Trustmark Relying Party

Certificate Policy Trustmark Policy Federation Policy

Subscriber Agreement Trustmark Recipient
Agreement Federation Member

AgreementsCertificate Relying Party
Agreement

Trustmark Relying Party
Agreement

N/A Trustmark Defining
Organization

Federation Defining
Organization

N/A Trustmark Definition

Federation DefinitionList of Trusted Certificate
Authorities

Trust Interoperability
Profile

50

PKI Trustmarks Federations

X.509 Specification Trustmark Framework
Technical Spec.

Federation Framework
Technical Spec. (TBD)

As Moyer, et al., point out, this analogy can also be made between trustmarks and ABAC. An IdP
issues an attribute to a recipient. A relying party that trusts the IdP subsequently uses the attribute
to make an access decision concerning the recipient. This commonality among PKI, ABAC,
trustmarks (also federation trustmarks) simply serves to underscores the fact that having three,
independent parties in any security transaction is a fundamental feature of modern security
architectures.

Trustmarks have been under development at GTRI since 2013 and are becoming more mature. GTRI
is currently partnering with SAFECOM cite:[SAFECOM] and NCSWIC cite:[NCSWIC] to achieve a
nationwide, federated Identity and Access Control (ICAM) capability to enable secure disaster
response communications that are cross-disciplinary and cross-jurisdictional. To achieve these real-
world goals of SAFECOM and NCSWIC, eleven formal trustmarks have been defined
cite:[Trustmark_Def_List]. These cover a number of related topics, such as SAML and OIDC
requirements for Relying Parties and Identity Providers. Trustmarks are included for further
support and development by CISA cite:[SAFECOM_FY20_Guidance] in FY20.

While the GTRI approach to Trustmarks does provide a promising technical approach for defining
the components of federation trust and assessing compliance, note that the wide-scale adoption of
trustmarks will depend on many non-technical issues. As noted in this EU report cite:[Kool2012],
existing commercial trustmarks "vary on scope, business model, quality and enforcement". Four
main problems with trustmark adoption in Europe were identified: "there are too many, they are
poorly regulated, they vary in quality, enforcement and credibility and they are national". As
trustmarks and trustmark frameworks get developed for wider applications — such as federated
environments — concomitant efforts should be pursued to minimize these non-technical challenges
that may cause divergence and impede their effective adoption.

9.2.4. The OIDC Federation Specification

An example of how OIDC could be integrated into an API Gateway as a candidate implementation
approach for the NIST CFRA was given in Appendix B.2 of the CFRA cite:[CFRA2020]. This model
was also used for the CFRA threat analysis presented in A Federation Service Threat Model and
Analyses which was, in a large part, a threat analysis of OIDC. This development was motivated by
the increased use and market adoption of OIDC. In recognition of the increased importance of
federation, the OpenID Foundation has also developed the OIDC Federation Specification, v1
cite:[OIDC_Fed].

The OIDC Federation Specification enables two OIDC Providers (OPs) to establish a trust
relationship. This is done by enabling the two OPs to determine that they have a common Trust
Anchor, which is simply a trusted third-party. This determination is made by resolving a Trust
Chain.

Since the OIDC Federation Specification is an additional capability that can be added to existing
OIDC Providers, it perfectly dovetails with the API Gateway/OIDC example of a Federation Service
(Federation Manager) as presented in cite:[CFRA2020]. Figure 12 illustrates how the OIDC

51

https://www.cisa.gov/safecom
https://www.cisa.gov/safecom/NCSWIC
https://safecom.gtri.gatech.edu/artifacts/trustmark-definitions
https://www.cisa.gov/sites/default/files/publications/fy_2020_safecom_guidance_on_emergency_communications_grants_final.pdf
http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?doc_id=1816&usg=AOvVaw2B_RbDeLBrZ3IvZtWkn-TI
https://doi.org/10.6028/NIST.SP.500-332
https://openid.net/specs/openid-connect-federation-1_0.html

Federation Specification can be used to support NIST CFRA-based federations.

Figure 12. Using the OIDC Federation Specification.

Here we see that the OIDC Fed Spec adds two new endpoints to the OIDC protocol: The federation
API endpoint and the federation registration endpoint. In this example, Site B wishes to federate with
Site A. OP A’s federation API endpoint is initially discovered using the site’s well-known OIDC URI.
Site B uses the federation API endpoint to fetch an entity statement containing metadata about Site
A. This statement will contain a list of intermediate entities. At this point, Site A and Site B may
negotiate trust. This simply means that Site A (the OP) may tell Site B (the RP) what operations,
scopes and claims the Site B would be allowed use if a specific Trust Anchor was used.

Site B will make a sequence of such calls to intermediate federation API endpoints until a Common
Trust Anchor is found, all possible intermediates have been examined, or a maximum path length
of intermediates has been hit. This is illustrated by the sequence of (1), (2), and (3) arrows. At each
step of this process, JSON Web Key Sets (JWKSs) are exchanged whereby the entities in the trust
chain can be validated. If no Common Trust Anchor has been found, trust has not been established.
If more than one Common Trust Anchor has been found, then Site B must choose one to use.

Once this is done, the Trust Anchor can be used to exchange JWKSs allowing each side to encrypt
and sign messages. Upon receipt of a message, the recipient has the proper keys to verify the
identity of the sender and decrypt the message. One of the first such interactions is for Site B to
register with the Site A OP as a client using the federation registration endpoint. This will enable Site
B to verify the credentials of a Site A federation member when that member is requesting access to
a Site B resource.

As extensively described in the NIST CFRA, Federation Managers (Federation Services) must
exchange information through their CFRA FM endpoints. This is to ensure a consistent presentation
and operation of hosted federations to the members regardless of which Federation Managers the
member is using to access the federation. The OIDC community has recognized a very similar need
for OPs to exchange information for a variety of reasons. Developing a standard capability for this
is the charter of the OIDC Shared Signals and Events (SSE) Working Group cite:[OpenID_SSE_WG].
This kind of signaling capability could be directly adopted in Federation Service implementations.

The SSE WG is developing an Event Stream Management API cite:[Scurtescu2018] whereby an Event

52

https://openid.net/wg/sse
https://bitbucket.org/openid/risc/src/master/openid-risc-profile-1_0.txt

Receiver can control how an Event Transmitter generates events. This is a straight-forward API
enabling a Receiver to:

• Configure how a stream of events are delivered from the Transmitter,

• Query the status of a stream,

• Add and remove subjects from an event stream, and

• Request verification events allowing the Receiver to determine that the stream is configured
properly, including encryption and signature verification.

This basic API was developed to support several specific requirements:

• Enable information to be updated in federated environments to ensure that access decisions are
not being based on stale information,

• Preventing malicious actors from gaining access to unauthorized resources, and

• Mitigate the impact of account compromise through Risk & Incident Sharing and Collaboration
(RISC).

These are all capabilities that could be used in CFRA-based implementations. Moreover, as
mentioned above, the Federation Services must exchange information on all the hosted federations
to ensure their proper and consistent operation. Hence, such a signaling capability could be used to:

• Update service catalogs,

• Update discovery and access policies, and

• Update the roles and attributes defined with a federation.

Other uses could be possible, depending on how the FSs are implemented and how the federation
semantics must be managed. While this Event Stream Management API was developed to support
identity operations in an OIDC Provider, it clearly had broader applicability. An outstanding issue
then is to determine how such a signaling capability could be properly integrated to support both
the OIDC Provider and the Federation Service requirements as a unified whole.

9.2.5. Hardware Roots of Trust

While the Common Trust Anchors in the OIDC Federation Specification are implemented as
software services, the same concept of a root of trust can be implemented in hardware. As defined
by the Trusted Computing Group cite:[TPM2020], the Trusted Platform Module (TPM) has an
Endorsement Key (EK) which is burned into the hardware by the manufacturer. This Endorsement
Key consists of a public and private key pair. There can also be an EK certificate that is issued for
the EK public key. Either the EK public key or the EK certificate is used to establish trust with a
Certificate Authority.

TPMs have multiple functions, such as performing cryptographic operations, computing hash
functions, key management, but also integrity measurement and attestation. At load-time, the TPM
can use a hash function to uniquely identify a binary executable, and even its input data. That is to
say, the TPM can establish code identity.

This capability can be used to build Attestation Architectures. In an Attestation Architecture, a

53

https://trustedcomputinggroup.org/work-groups/trusted-platform-module

remote relying party wishes to verify that a target system is intact, i.e., it has not been modified
from a known, trusted state, and hence, is trustworthy. Upon an attestation request, the target
system TPM will generate a certificate identifying the state of the software that is currently
running. If this is not identical to the load-time certificate, a change has occurred.

Such attestation architectures can be used in virtualized, cloud environments. A cloud will have
multiple virtual machines running on one physical machine. While there is only one hardware TPM
on the physical machine, each virtual machine can be supplied with a virtual TPM (vTPM)
cite:[Lauer2016]. As far as the VM is concerned, the vTPM behaves exactly like a hardware TPM.
Hence, it is possible to make an attestation request for just the VM. However, it is also possible to do
a deep attestation that assesses the state of the VM, its hypervisor, and the host OS — all the way
down to the hardware TPM.

Attestation can also be done for containers. The TapCon system cite:[TapCon2017] is an attesting
container manager built on Docker. This solution can provide source-based attestations of the
containers it launches. TapCon can also provide attestations of container provenance back to a
trusted container repository.

TapCon supports layered attestation in cloud environments from containerized services, to virtual
machines, to hypervisors, etc. Technically speaking, TapCon can use a TPM hardware root of trust,
but can also root trust in a software-based cloud provider or a code repository.

Figure 13. The RATS Conceptual Data Flow.

The fact that such attestation architectures are based on a relying party that is remote from the
target system has prompted the development of a Remote Attestation Procedures Architecture
(RATS) cite:[RATS2020].

The RATS conceptual architecture is shown in Figure 13. Here, an Attester provides evidence to a
Verifier. The Verifier can also take endorsements from an Endorser. In practice, such endorsements
could simply be the manufacturer vouching for the device’s signing capability. The Verifier Owner
defines the appraisal policy for the evidence, on which the Verifier bases the attestation results.
Such appraisal policies might include recognizing the manufacturer’s endorsement of the device
and verifying the format of the evidence received, but ultimately results is a decision of compliance
or non-compliance. Finally, the Relying Party Owner defines the appraisal policy whereby the
Relying Party can evaluate the attestation results. While this appraisal policy might be simply based
on the code’s compliance status, it might also involve more detailed information about the Attester
and the attestation environment, such as who the manufacturer is.

54

https://tools.ietf.org/id/draft-ietf-rats-architecture-05.html
https://tools.ietf.org/id/draft-ietf-rats-architecture-05.html

This high-level architecture is further developed for different target environments and attestation
environments, along with different topological models. In the Passport Model, the Verifier provides
the attestation results to the Attester, which the Attester can present to the Relying Party, i.e., as a
"passport". In the Background-Check Model, the Attester provides all evidence to the Relying Party,
who then passes the evidence to the Verifier. The Verifier does a "background-check" and returns
the attestation results to the Relying Party. The format for all message exchanged in an attestation
can include JWTs, CWTs, X.509 certificates. The root of trust for these tokens/certificates can be
software or hardware-based, i.e., TPM.

Figure 14. A Federation Attestation Flow.

Hardware Roots of Trust enable a specific version of software to be given a unique identifier, i.e.,
an identity. Attestation is the process of verifying that identity. This is not unlike that of establishing
a user’s identity in order to make an access decision.

Figure 14 illustrates how attestation evidence might be collected in a federated environment. Here,
a Service A is running on some physical server with a TPM. Service A could be running in a VM (as
illustrated here with a Host OS and Hypervisor), but could also be in a container. Service A has been
registered in the Service Catalog of Federation K by Service A’s owner. Service A’s owner also has a
Service A Attester running on the same physical machine that is also registered in the Service
Catalog.

In this example, the Verifier is a member of Federation K that has the authorization to make
attestation requests of Federation K services. That is to say, the Verifier can discover all attestation
services in the Federation K Service Catalog and invoke each one to verify the service’s code
identity. Such an attestation is illustrated by the red line in Figure 14.

Note that the Service A Attester could attest for any other services hosted in that VM. Also, a Verifier

55

could have the authorization to request attestations at any site in the federation. Furthermore,
there could be multiple Federation K members that have the authorization to do attestations.

Once the Verifier has collected the evidence, there are other entities and steps involved. In the RATS
model, the Verifier might receive Endorsements, typically from the manufacturers. The Evidence
Appraisal Policy might be defined for the entire federation or might be Attester-specific. This is
another governance issue that could be decided on a federation-by-federation basis. The Relying
Parties could possibly be any other federation member that wishes to verify the integrity of a
service before using it, including a Fed_Admin. The Relying Party Owners could certainly define
their own Appraisal Policies for the attestation results.

Trust is the final issue that must be addressed. In the typical attestation architecture, the Verifier
trusts the attestation evidence because it is signed by a TPM whose key is certified by a trusted PKI
Certificate Authority. In this example, when the Service A Attester is registered in the Service
Catalog, the OIDC Provider could also issue an ID Token for the Attester and the TPM the Attester
uses. When an attestation is done, the Verifier validates the TPM ID token with the issuing OIDC.

This conceptual architecture indicates that attestation could be done in federated environments.
The next question is how federation could leverage the significant adoption that Trusted Computing
has had in the marketplace. Major chip manufacturers, such as Intel and AMD, include TPM
hardware. Microsoft Trusted Computing includes TPM support in Windows 10, Windows Server
2016 and Windows Server 2019. Microsoft’s IOT Hub Device Provisioning Service supports TPM-
based attestation. Google Compute Engine can provide Shielded VMs that have an attached vTPM.
All of this implies that if general, standards-based federation tools were adopted, then existing
hardware-based attestation mechanisms could be brought to bear within federations.

9.2.6. Blockchain in Federated Environments

The definition of non-repudiation essentially says two parties to a transaction cannot later deny
that the transaction took place. In IT systems, such transactions are always the exchange of
information. Federations are clearly dependent on the exchange of information that is understood
to be shared and trusted.

Blockchain is a technology whereby such trusted information can be established with non-
repudiation. Rather than rely on securing the channels and sessions between partners, the
Blockchain approach creates an unforgeable record of the data and the data exchange transactions
among users. A Blockchain cite:[Yaga2018] is a replicated ledger that uses cryptographic techniques
and consensus algorithms to build trustworthy systems in an otherwise trustless world.

56

https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf

Figure 15. The Blockchain Replicated Ledger.

Figure 15 illustrates the Blockchain concept. A Blockchain is simply a chain of blocks, or data
structures. Each block contains a cryptographic link to the previous block. The beginning block is
the root block. Each block consists of a header and content. The header contains a link to the
previous block, a time stamp, and a Merkle hash value. This Merkle hash value is the value of the
Merkle hash tree. This is a tree of one or more application messages. The Merkle hash value is
cryptographically linked to the entire contents of the tree. The upshot is that by cryptographically
replicating the ledger among participants, fraudulent information and transactions can be
identified and rejected.

The Blockchain "magic" happens in how new blocks are added to the chains; i.e., how a consensus
algorithm is used to establish agreement among participants for adding a new block. Proof of Work
is the most common consensus mechanism used in Blockchain implementations. This proof of work
in early Blockchain implementations required Blockchain miners to experimentally determine
which cryptographic nonce makes the hash of its current header fit the current target. Proof of Stake
gives advantage to those miners that have a larger stake in the Blockchain ecosystem. The Practical
Byzantine Fault Tolerance (PBFT) algorithm provides a lower latency mechanism where arriving
messages are signed, and if enough identical messages are received, then consensus is achieved. As
such, these consensus algorithms as well as others have very different performance characteristics.

So how can a Blockchain be used in federations, and specifically CFRA-based federations? The
answer to this question depends on the federation deployment model used. The deployment model
that is expected to be commonly used entails P2P Federation Services where the Service Catalog,
service discovery policies, and authorization attributes are replicated among the FSs. Service
Owners have the authority to make a resource available in a federation. This includes all metadata
concerning the resource, e.g., the URL, structure of the request/response data, and resource
discovery policies. Authorization attributes can be defined by the Fed Admin(s). All of this
information must be replicated and trusted among the Federation Services. This could be
accomplished by posting any changes to the Service Catalog or attributes to a Blockchain. The
Federation Services could even run their own private Blockchains for this purpose. Federation
Services could even offer private Blockchain services to the federation instances they are hosting,
to be used by the federation members to establish trusted information within any given federation.
Hence, the use of Blockchains in federation is a very interesting possibility, but does entail the

57

resolution of many issues, including consensus algorithms, performance, and block data size.

9.3. Zero Trust
A very different approach to trust is taken in the Zero Trust Architecture (ZTA) concept
cite:[Rose2019]. A large segment of current enterprise security models is based on network security.
Entire enterprise networks and network segments are protected by firewalls. Point-to-point
communication channels are secured by using tools such as TLS. This approach to trust and
security is very coarse-grained and network-centric. As such, the protection is at a very low level in
the system stack, i.e., the network. This makes it more difficult to use this approach to protect
specific system components, since it relies on the network configuration. As such, this network-
centric approach is not very agile.

9.3.1. The Zero Trust Architectural Concepts

The ZTA approach is to enable a "protection boundary" to be placed around any set of enterprise
resources, large or small. Any such set of resources is called a zone of implicit trust. Everything
between such implicit trust zones is considered to be untrusted, including the network, regardless
of whether it is the local, enterprise network or the Internet. The ZTA design philosophy is to make
these trust zones as small as possible, i.e., to make protection as fine-grained as possible.

These concepts are embodied in a set of ZTA design tenets in cite:[Rose2019]. Each of these tenets
has distinct implications for the implementation, deployment and use of ZTAs. Hence, we follow
each of these tenets with an Interpretation and discussion of Implications (I&I):

ZTA Tenet 1: All data sources and computing services are considered resources.

I&I 1: This enables system designers to identify any number of system components or groups of
components and protect them individually. How big or small these groups are depends on the
system designer’s decision as to what needs protection and the overall risk tolerance.

ZTA Tenet 2: All communication is secured regardless of network location.

I&I 2: All data must be encrypted when it exits a trust zone. Since all communication outside a trust
zone is assumed to be untrusted, the assumption is that anybody can see the data. However, only
legitimate recipients can decrypt the data and validate the identity of the sender. From an
implementation perspective, this implies that any recipient must have the proper keys to decrypt
the data and validate the signature. This implies that there must be a method for secure key
distribution.

ZTA Tenet 3: Access to individual enterprise resources is granted on a per-session
basis.

I&I 3: This implies that access decisions need to be made. Making access decisions also implies that
there are access policies for each resource, and a mechanism for evaluating these policies. Rose, et

58

https://csrc.nist.gov/publications/detail/sp/800-207/final
https://csrc.nist.gov/publications/detail/sp/800-207/final

al., use the common term Policy Enforcement Point (PEP) to denote this mechanism.

The credentials/tokens and policies must have semantic interoperability. That is to say, the
attributes in the credentials/tokens must be understandable and have a well-known meaning when
applied to a policy to make an access decision.

Access decisions can be made either by: (a) Submitting a credential or token with each request, or
(b) Using the credential or token to authenticate a session between the requestor and the resource.
If a session is established, there must be some way for the user to terminate the session when it is
no longer needed. Sessions must also have a limited period of validity after which they expire, but
with the possibility of re-validation. Resources or IdPs must be able to revoke a session at any time.

ZTA Tenet 4: Access to resources is determined by dynamic policy—including the
observable state of client identity, application, and the requesting asset, and may
include other behavioral attributes.

I&I 4: This implies that policies may also include contextual or environmental information. For
example, access may be declined if a user on a mobile device using a coffee shop Wi-Fi at 10 PM.
This implies that there must be a way to determine the user’s device and physical location when
requests are being made.

ZTA Tenet 5: The enterprise ensures that all owned and associated devices are in the
most secure state possible and monitors assets to ensure that they remain in the most
secure state possible.

I&I 5: Ideally this implies that there is a formal definition of what the "secure state" is and also an
audit mechanism that can automatically evaluate compliance to that secure system state. If there is
any deviation from the desired secure state, an alarm can be raised and actions taken to rectify the
deviation. If the deviation is associated with an actual compromise, then actions should be taken to
mitigate and contain any negative impact.

ZTA Tenet 6: All resource authentication and authorization are dynamic and strictly
enforced before access is allowed.

I&I 6: If not authenticating on each call, a user must be periodically re-authenticated. Any
authentication session must have a finite period of validity, but with the possibility of being
refreshed. There must also be a way of revoking authentication and authorization at any time.

ZTA Tenet 7: The enterprise collects as much information as possible about the current
state of network infrastructure and communications and uses it to improve its security
posture.

I&I 7: One could argue that this tenet is not specific to ZTAs, and could be applied in all architectural
philosophies. However, since the ZTA tenets imply the use of fine-grained PEPs, this gives ZTAs a
place to monitor and harvest as much network and communication information as possible. This

59

information could be used by a range of cybersecurity tools to improve the security posture. Such
tools could include Artificial Intelligence and Deep Learning-based approaches.

While all of the tenets are important in the overall ZTA concept, Tenet 3 is the one that clearly
points to the need for some type of Policy Enforcement Point. This is clearly called out by Rose, et
al., cite:[Rose2019] and Kerman, et al., cite:[Kerman2020] as illustrated in Figure 16.

Figure 16. The ZTA High-Level Architecture.

This high-level architecture is partitioned into a Control Plane and a Data Plane. The Policy
Enforcement Point (PEP) resides in the Data plane and is used to control access from the external
(untrusted) world to a protected Enterprise Resource in a Zone of Implicit Trust. The PEP is
controlled by a Policy Administrator that uses a Rule Engine to make access decisions. The rule set
evaluated by the Rule Engine is informed by a host of supporting components, such as Data Access
Policy and Threat Intelligence.

This is a straight-forward repurposing of the terms first used in the OASIS eXtensible Access Control
Markup Language (XACML) standard cite:[XACML]. XACML defines far more than just a protocol
for exchanging access control assertions. It defines a general security architecture based on Policy
Enforcement Points (PEPs), Policy Decision Points (PDPs) and Policy Administration Points (PAPs). In
Figure 16, the Policy Administrator is serving the function of the PDP.

While the ZTA approach is sound, this presentation glosses over critical interactions needed to
make the architecture work. First, while it is implicitly there, Figure 16 does not explicitly identify
the entity that manages the Access Policies being enforced by the Rule Engine and its Rule Set.
Second, while both PKI and Identity Management are called out, how identity credentials
containing authorization attributes are granted and revoked for Users and Devices is a critical
function. While this is certainly manageable in a local Identity Silo, how is a ZTA managed over a
large, distributed environment with multiple organizations and stakeholders? Also note that while
PKI will certainly be of interest to many stakeholders, other credential systems exist. While the
User-managed wallet approach of W3C Verifiable Credentials is very different from the third-party
PKI Certificate Authorities, the OIDC approach shares this design element.

60

https://csrc.nist.gov/publications/detail/sp/800-207/final
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://csrc.nist.gov/publications/detail/white-paper/2020/03/17/implementing-a-zero-trust-architecture/draft
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

Figure 17. A Basic PEP-based Security Architecture.

Figure 17 illustrates the interactions that must take place to enable a PEP to do its job. It is clear that
this PEP-based approach is tantamount to Software-Defined Boundaries and has strong similarities
to the NIST CFRA model.

9.3.2. The Microservice Mesh ZTA Approach

While Kerman, et al., cite:[Kerman2020] is silent about Microservice Mesh Architectures, this is the
initial approach that NIST is taking to ZTA implementations. This is well-documented by the
presentations at the NIST Identity Management & Access Control in Multiclouds Workshop and
Conference cite:[NIST_IMAC_2020].

Figure 18. A Microservice Mesh Architecture.

The Microservice Mesh Architecture concept is illustrated in Figure 18 (after Chandramouli and
Butcher cite:[Mouli2020]).

61

https://csrc.nist.gov/publications/detail/white-paper/2020/03/17/implementing-a-zero-trust-architecture/draft
https://www.nist.gov/news-events/events/2020/01/identity-management-access-control-multiclouds-workshop-and-conference
https://www.nist.gov/news-events/events/2020/01/identity-management-access-control-multiclouds-workshop-and-conference
https://csrc.nist.gov/publications/detail/sp/800-204a/final
https://csrc.nist.gov/publications/detail/sp/800-204a/final

This is also partitioned into a Control Plane and Data Plane. The Control Plane manages many
microservices that are running in the Data Plane. Every microservice, however, is paired with a
Sidecar. These Sidecars give the Control Plane a uniform way to manage all microservices. Besides
managing all "east-west" communication among microservices, Sidecars can be used to implement
PEPs that are controlled from the Control Plane. The Control Plane can also provide monitoring,
accounting and auditing services for the entire set of microservices. Finally, the Control Plane
manages all ingress and egress of data and requests, i.e., all "north-south" communication, from
Admins, Service Owners and common Users.

The specific ZTA implementation approach that NIST is taking is to integrate the Istio microservice
mesh system with Next Generation Access Control (NGAC) previously developed at NIST. Istio
cite:[Istio] is an open-source project. Tetrate cite:[Tetrate] is the main Istio contributor that is
working with NIST. NGAC was started at NIST as the Policy Machine cite:[Ferraiolo2015] in 2003 and
evolved into a set of INCITS standards under the NGAC name.

The Istio tool suite includes Envoy, a Sidecar implementation. Istiod comprises the Istio control
plane, which includes:

• Galley for configuration management,

• Pilot that abstracts platform-specific service discovery mechanisms,

• SW that provides microservice telemetry, and

• Citadel, a certificate authority that provides TLS certificates to Envoys, whereby all data is
encrypted in-transit.

As an access control mechanism, NGAC has fundamental differences from other established, rule-
based access control systems, such as XACML. Based on the comparisons made by Ferraiolo, et al.
cite:[Ferraiolo2016], the main NGAC differences are:

• The use of Relational Graphs rather than logical rule sets,

• Administrative requests are handled in-band with access requests,

• Administrative governance is handled through assignments and graph associations, the same
way that other access policies are handled,

• Obligations are only handled after a successful access request,

• Environmental/contextual attributes are not handled,

• NGAC can dynamically change access policies to prevent data leakage,

• NGAC’s relational graph approach makes administrative review a linear process, and

• NGAC can support discovery of resources in the association graphs, but this is not a general
resource discovery mechanism.

Implementing a ZTA at the microservice level is a very fine-grained approach. Doing so will raise
performance concerns. In recognition of this, Istio can utilize very simple, lightweight checks that
do not use multiple rules with multiple predicates. While this will have a smaller performance
impact, it limits the expressiveness of policies that can be defined and enforced.

62

https://istio.io
https://tetrate.io
http://dx.doi.org/10.6028/NIST.IR.7987r1
https://csrc.nist.gov/publications/detail/sp/800-178/final

9.3.3. Zero Trust Federations

While the microservice mesh approach does enable very fine-grained protection of zones of
implicit trust, this is not the only possible approach. The PEP function illustrated in Figure 16 and
Figure 17 are directly supported in API Gateways. The use of PEPs, and specifically the XACML
model, in a Federation Manager is explicitly described in the CFRA, Appendix B.2 cite:[CFRA2020].
The integration of the OIDC Federation Specification into a Gateway-based Federation Service
illustrated in Figure 12 was derived from this example. While an "ordinary" implementation of a
ZTA may be in an Identity Silo, the NIST CFRA model specifically manages the semantic
interoperability of credentials, resources, and policies across distributed, multi-organizational
environments, i.e., federations.

So what would a Zero Trust Federation actually look like? We review how the NIST CFRA relates to
and can address the ZTA design tenets:

ZTA Tenet 1: All data sources and computing services are considered resources.

ZTF Approach: This is already an integral part of the CFRA, albeit at the service endpoint level for
arbitrary, application-level services that can be handled in an API Gateway.

ZTA Tenet 2: All communication is secured regardless of network location.

ZTF Approach: The ZTA approach is to encrypt data when in-transit between any two trust zones.
ZTFs can take the same approach. However, this approach must be done between Users, Services,
and the Federation Services. This could be done using mTLS or adding an endpoint for retrieving
JWKSs.

ZTA Tenet 3: Access to individual enterprise resources is granted on a per-session
basis.

ZTF Approach: Access control on a per-request or per-session basis is already an integral part of the
NIST CFRA.

ZTA Tenet 4: Access to resources is determined by dynamic policy -— including the
observable state of client identity, application, and the requesting asset, and may
include other behavioral attributes.

ZTF Approach: This is already an integral part of the NIST CFRA.

ZTA Tenet 5: The enterprise ensures that all owned and associated devices are in the
most secure state possible and monitors assets to ensure that they remain in the most
secure state possible.

ZTF Approach: While not explicitly addressed in the NIST CFRA, the notion of monitoring

63

https://doi.org/10.6028/NIST.SP.500-332

compliance to a desired system state or set of operating principles is, in fact, addressed by the
Trustmark concept. Clearly, though, practical tooling to automatically monitor for compliance will
require extensive development. Please note, however, that API Gateways already provide local
logging and monitoring services. The challenge for Gateway-based Federation Services is how to do
this across a distributed federation.

ZTA Tenet 6: All resource authentication and authorization are dynamic and strictly
enforced before access is allowed.

ZTF Approach: This is already an integral part of the NIST CFRA.

ZTA Tenet 7: The enterprise collects as much information as possible about the current
state of network infrastructure and communications and uses it to improve its security
posture.

ZTF Approach: This tenet is strongly related to Tenet 5 in that it requires monitoring, interpretation,
and improvement. The logging and monitoring done by API Gateways could be used for this
purpose.

From this quick review, it is evident that gateway-based federations are quite compatible with the
ZTA approach. Tenets 1, 3, 4 and 6 are already central to the NIST CFRA. To show how the NIST
CFRA can address the other Tenets, we can further develop the concepts of (a) the encryption of all
data in-transit to address Tenet 2, and (b) an effective, distributed monitoring and analysis
capability to address Tenets 5 and 7.

Figure 19. A High-Level Zero Trust Federation Architecture.

Without loss of generality, we can say that the implicit zones of trust in a federation are (a) the
Users, (b) the Services, and (c) the Federation Services. This is illustrated in Figure 19 where each
organization operates its own Gateway-based Federation Service in a peer-to-peer deployment
mode. All of the communication between these entities is encrypted. While the Gateway-to-Gateway
communication could be encrypted using mTLS, piggy-backing on the secure signaling between
OIDC Providers would be even more secure. This is due to the fact that the OIDC Federation
Specification requires the identification of a Common Trust Anchor. This Trust Anchor facilitates
the exchange of JWKSs whereby messages can be encrypted and signed.

When on-boarding a new User, or perhaps the first User from a new Organization, the User and the
Gateway Federation Service must be able to establish each other’s identity. Depending on the

64

federation’s security requirements, this could be done simply using mTLS. However, ZTFs requiring
stronger identity proofing could require the use of an independent third-party — much like a Trust
Anchor — to establish mutual trust prior to establishing the encrypted communication.

Services are always registered in a Gateway Federation Service by a User that has the
Service_Owner authorization. When registering a service, the Service_Owner essentially acts as the
trusted third-party introducing the Service to the Gateway Federation Service. Once this
introduction is made, the encrypted communication can be established.

Figure 20. Alternate invocation paths in a ZTF.

While Figure 19 illustrates a basic ZTF, Figure 20 illustrates several, possible invocation paths to be
considered. If only the dark green connections are available in a Zero Trust configuration, then for
any User that invokes a Service, the Gateway Fed Services must proxy that invocation. This is Path 1.
That is to say, User A invokes the Service through their local Gateway Fed Service, which routes the
invocation through a peer network of Gateways, which ultimately invokes Service B itself. As per
the ZTA tenets, the Gateway Fed Service (presumably closest to the Service) will validate User A’s
credentials to make an access decision prior to forwarding the request to Service B.

While this invocation path is certainly possible, it does mean that all request traffic is being proxied
over the Gateway Fed Service peering network. First, this could represent many "hops" and layers
of software that will introduce significant latency to response times. Furthermore, if the Gateway
peering network is not capable of supporting that traffic, then the peering network would become a
performance bottleneck. This can be avoided if alternate routes are considered.

Path 2 avoids the Gateway Fed Service peering network by establishing another encrypted
connection between User A’s Gateway and the remote Service B. However, this requires that User
A’s local Gateway makes the access decision. That is at odds with the common deployment
approach of each organization deploying and operating their own Gateway Fed Service, thereby
retaining control of the Gateway Fed Service that is making final access decisions to their resources.
Path 2 would require that Organization B trust all other organizations running Gateways when
making an access decision for a service in Organization B.

This brings us to Path 3. Here a different encrypted connection is established between User A and
Service B’s Gateway Fed Service. This avoids the Gateway peering network, yet allows Organization
B to retain control of the final access decision process for their services. Path 3 does increase the
number of encrypted connections but will significantly reduce response latencies while avoiding
potential network bottlenecks.

Note that Path 4 is possible where a direct connection is established between a User and a Service,

65

after being authorized through the Gateways. This would avoid the Gateways altogether, along with
their overhead. If this direct connection is handled as a session that has a time-to-live and can
refreshed, terminated or revoked, then such an invocation path technically satisfies ZTA Tenet 3.

With regards to these different path options, while these paths may be logically distinct at Layer 7
in the OSI network model, they may, in fact, be mapped to the same physical network links at
Layers 2 and 3. That is to say, all four paths may put the same bandwidth demand on the physical
links that are used for routing traffic between Organizations A and B. However the routing is
configured, it is always the case that the available bandwidth between organizations should be
adequately provisioned to meet demand. Also note that organizational security policy may prohibit
the use of some path options, e.g., anything other than Path 1. This ER must identify and
acknowledge all such issues, however, resolving them is unfortunately beyond this ER’s scope.

9.4. Data-Centric Security
The OGC has been pursuing the concept of Data-Centric Security (DCS) for several years which is
definitely related to the ZTA concept. In DCS, data is always encrypted, either at rest or in transit,
and decryption keys are only issued to legitimate recipients of the data. Hence, DCS could directly
support ZTA implementations. Here we examine how DCS could be used in Zero Trust Federations.

Figure 21. Testbed-16 DCS Components. (Figure 2 from OGC 20-021.)

The current DCS prototype in Testbed-16 is illustrated in Figure 21. This is Figure 2 from OGC 20-021
cite:[DCS-TB16] which includes a full explanation of the interactions shown by arrows (i), (ii), (A),
(B), ©, (D), (1) and (2). In brief, when the Client requests data from the DCS Server, the DCS Server
registers a decryption key with the Key Management Server (KMS). The DCS Server then returns the
encrypted data with a key_id. The Client can then retrieve the decryption key from the KMS using
the key_id.

The DCS and KMS can actually be deployed and used in different configurations and scenarios. The
DCS can store data encrypted and register the decryption key with the KMS. Whenever the DCS
provides encrypted data to a Client, the Client can retrieve the decryption key from the KMS. The
DCS can also store data unencrypted, and only encrypt the data on-the-fly when the data is being
returned to the Client. Immediately prior to this, the DCS will register the encryption key with the
KMS for later retrieval by the Client. In addition, each DCS does not have to be colocated with its

66

https://www.opengis.net/doc/PER/t16-D011

own KMS. A DCS could be remotely located and store data from multiple different sources. Hence,
the DCS could serve various, encrypted data sets, and the Clients may have to retrieve the
decryption keys from various different KMSs.

Figure 22. DCS and KMS services registered in a federation.

It is a definite possibility that the DCS and KMS can be managed in a federated environment in the
same way as any other services. Figure 22 illustrates such an environment derived from the CFRA,
Appendix B.2 cite:[CFRA2020]. (The example in Appendix B.2 show many more steps that are
omitted here for brevity.) Federation Services A and B both use OIDC, as does the DCS prototype.
Without loss of generality, assume that a DCS and KMS are both deployed at Site B. These service
endpoints and associated metadata have been registered in the Federation K Service Catalog at Site
B, and this information has been propagated to the Federation K Service Catalog at Site A.

The numbered arrows jump ahead in the example several steps where User A has authenticated to
Federation K, and looked-up the DCS and KMS servers in the Site A Service Catalog. User A invokes
the DCS with the following sequence of operations:

• Steps 1-2: User A (the Client) requests access to the Site B DCS (corresponding to Arrow (A) in
Figure 21).

• Steps 3-7: The Site B FS validates User A’s credentials with OP A.

• Steps 8-9: The Site B PEP enforces the access decision.

• Steps 10-11: The DCS registers a decryption key with the KMS (corresponding to Arrows (B) and
(C) in Figure 21).

• Steps 12-15: The encrypted data and key_id are returned to User A (corresponding to Arrow (D)
in Figure 21).

Having retrieved the encrypted data, User A must now have their authorizations checked to
retrieve the decryption key in the following, similar sequence:

• Steps 1-2: User A (the Client) requests access to the Site B KMS (corresponding to Arrow (1) in
Figure 21).

• Steps 3-7: The Site B FS validates User A’s credentials with OP A.

67

https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332

• Steps 8a-9a: The Site B PEP enforces the access decision.

• Steps 10a,11a,14,15: The decryption key is returned (corresponding to Arrow (2) in Figure 21).

This exercise indicates that a Data-Centric Security model could be employed in federated
environments. As noted, DCSs could be located at different sites and store data that have different
data owners. In a common governance model it is expected that even if the encrypted data is stored
on a DCS that is not under direct control of the data owner, the KMS will be. The different usage
scenarios that are anticipated for data-centric security imply that different trust relationships must
be established. Nonetheless, these should be supportable in federated environments, possibly as
part of Zero Trust Federations.

9.5. Trusted Data Format
A common use case for federations will be to manage the secure sharing of data. The Office of the
Director of National Intelligence (ODNI) has developed a relevant approach. The Trusted Data
Format cite:[TDF] is a mechanism to control how data can be accessed after it has been
disseminated.

Figure 23. Trusted Data Objects and Collections.

The basic TDF concept is illustrated in Figure 23 (Figure 5 from cite:[TDF]). A Trusted Data Object
(TDO) consists of one or more Assertions about a Data Payload. An Assertion consists of a
Statement, Statement Metadata, and a cryptographic Binding of the Assertion to the Payload. The
Assertions can include information such as the responsible party for the data, access rights,
information security marking, time of creation, etc. TDOs can be collected into a Trusted Data
Collection (TDC) which has their own sets of Assertions.

TDF is used to provide selective access control for all manner of files, such as PDFs, email
attachments, multimedia files, etc. When a user attempts to open a TDO, the TDO “wrapper”
contacts an external server to verify if the user is authorized to decrypt, read, and use the data.

While an interesting concept, it appears that TDF has not found much use outside of ODNI. Two
immediate concerns are that opening a TDO, the location of the verifying external server must be
known and accessible. While the location can be defined in the Assertion, there is the possibility
that it may not be accessible from the user’s network. Likewise, the user must have a well-known
identity credential and authorization attributes that the verifying server must understand. The
verifying server must also know and trust the IdP that issued the credentials. We note that the TDO
approach is to protect data after it has been disseminated, whereas the CFRA approach is to protect
data before it has been disseminated. It might be possible to integrate both of these approaches in a

68

https://www.dni.gov/files/documents/CIO/ICEA/India/IC-V3-TDF-Public.zip
https://www.dni.gov/files/documents/CIO/ICEA/India/IC-V3-TDF-Public.zip

federated environment. However, specific use cases should be worked out to identify the
constraints and benefits of their joint use.

9.6. Attribute-Based Encryption
After trust relationships have been established, federations require secure communication among
the participants. While traditional data security approaches involve securing communication
channels, another approach is to always encrypt the data at the time of creation and issue
decryption keys to only the authorized recipients. This approach is supported by Attribute-Based
Encryption (ABE) cite:[Sahai2005]. ABE is a type of public-key encryption where the keys used to
encrypt and decrypt a ciphertext are generated from the desired access policy defined over a set of
attributes. (In cryptography, ciphertext or cyphertext is the result of encryption performed on
plaintext using an algorithm, called a cipher.) ABE can be implemented as Key-Policy ABE (KP-ABE)
cite:[Goyal2006], where ciphertexts are simply labeled with a set of attributes. An authorized
consumer’s private key is associated with an access tree structure that defines which types of
ciphertexts the key can decrypt. This access structure consists of nodes that are gates and leaves
that are attributes that, in effect, define an access policy.

Figure 24. Cyphertext-Policy Attribute-Based Encryption.

However, in Ciphertext-Policy ABE (CP-ABE) cite:[Beth2007] this is reversed – a consumer’s keys are
associated with a set of attributes, while the encrypter can define the access tree structure
associated with the encrypted data, essentially defining its access policy. That is to say, a data
object’s access policy is encrypted with the data object itself. This is illustrated in Figure 24. Here a
Data Owner instructs a Data Producer to encrypt its data according to a specific policy defined over
a set of attributes. In this example, the policy is simply i AND j which is used to define the access
tree structure.

Clearly what the ABE approach does is exchange a data channel security requirement for a key
distribution security requirement. However, we can argue that secure key distribution is easier to
achieve since it can be a short event (a channel does not have to be secured for an indefinite period
of time), and could even be done by out-of-band methods. One secure key distribution mechanism
for Virtual Organizations was demonstrated in cite:[Lee2018], albeit within a Named Data Network
environment. Nonetheless, the same approach could be implemented in TCP/IP-based networks.

9.7. Trusted Execution Environments
While Trusted Execution Environments (TEEs) may not be directly related to federations, the
development and strong interest in TEEs as a hardware-based security mechanism merits further

69

http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://doi.acm.org/10.1145/1180405.1180418
http://dx.doi.org/10.1109/SP.2007.11

consideration. The question is: Can TEEs be integrated and used in federated environments to achieve
even greater security in federations.

A TEE is a region of memory that is protected by specialized hardware in the processor and
managed through additional instructions in the processor’s instruction set
cite:[Shepherd2018,LeeD2020]. Data and code are only decrypted when they are placed into a TEE.
Code running in the TEE can access all parts of memory, including data that is also in the TEE.
Applications outside the TEE, however, cannot read nor write any memory locations within the
TEE. This is enforced by processor hardware.

TEEs are offered on several chipsets cite:[LeeD2020]. The Intel Software Guard eXtensions (SGX) to
the x86-64 instruction set enables applications to create secure memory enclaves. The
GlobalPlatform TEE in an ARM TrustZone maintains two separate environments for all trusted and
untrusted applications. Each environment has its own virtual core. The physical processor has an
extra CPU bit that determines which environment is being serviced. The AMD Secure Encrypted
Virtualization (SEV) enables memory in a virtual machine to be encrypted. The SEV can compute a
signature for the encrypted data that the (potentially remote) data owner can use for attestations of
integrity.

These vendor-specific TEEs are all quite different in their approach and capabilities. This has
prompted work to develop hardware security primitives whereby customizable TEEs
cite:[LeeD2020] can be constructed. Other efforts are underway to virtualize TEEs for mobile
devices cite:[Li2019], such as cellphones. Since TEEs could be used in cloud environments where a
data owner is hosting their data on somebody else’s hardware, work is also being done on
managing TEE-to-TEE communication with remote credential management cite:[Shepherd2018].

This strong interest and wide range of efforts has prompted the establishment of the Confidential
Computing Consortium (CCC) cite:[CCC] that is being hosted under the Linux Foundation with the
goal of accelerating the development and adoption of TEE technologies through open source
projects and eventually standards. To this end, the Consortium leadership has identified many use
cases for TEEs cite:[CCC_WP]. The Multi-Party Computing use case is called out to support federated
analytics, where data confidentiality and integrity can be ensured when the data is shared across
platforms. In this use case, encrypted data can be sent to a remote TEE where it is decrypted. The
data can be analyzed, possibly in conjunction other data, without exposing the data or analytical
code to entities outside the TEE. When processing is complete, the results are encrypted and
returned. The CCC emphasized that this capability will "help drive the advancement of a global
data-sharing playing field" for "collaborative analysis and exchange".

This Multi-Party Computing use case has obvious similarities with federated environments. Can the
discovery and use of remote TEEs be managed as a service in a federation? One possible approach
is for a remote user to containerize and encrypt their code and data for execution in a remote TEE.
As with other mobile code applications, the owner of the hosting TEE may want to vet the container
to prevent malicious activity. Other mechanisms should be in place whereby the owner of the
hosting TEE can limit and control what other data or resources the container hosted within the TEE
can access. These are interesting possibilities that need to be resolved. A more in-depth
investigation, however, must be left for future work.

70

https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3313808.3313810
https://doi.org/10.1145/3313808.3313810
https://confidentialcomputing.io
https://confidentialcomputing.io
https://confidentialcomputing.io/white-papers
https://confidentialcomputing.io/white-papers

9.8. Homomorphic Computing
Homomorphic computing is the ability to compute on encrypted data. This is not a new concept, but
offers a clear benefit in the age of cloud computing. Homomorphic computing enables data to be
sent to "the cloud", processed, and returned without ever being decrypted when in "the cloud". The
same could be said for computing in a federated environment where data is being shared among
federation members across different organizations.

The concept of homomorphic encryption was first proposed in 1978 and it was not clear if any
solutions existed. Several partial solution algorithms were eventually developed, but the first
algorithm that was considered fully homomorphic was not developed until 2009. This led to
Microsoft developing the Simple Encrypted Arithmetic Library (SEAL) 1.0 Cryptonets in 2015. SEAL
cite:[Kannepalli2019] was open-sourced in 2018.

While a full review of the use of lattice-based cryptography to produce a homomorphic encryption
scheme is outside of the scope of this Engineering Report, what is directly relevant here is the
performance of these algorithms. While the reduction in processing times for homomorphic
computing has been impressive, it’s still prohibitive for most application domains. Current
implementations impose a ~1000x increase in processing time, and a ~6x increase in storage
requirements cite:[Kannepalli2019a]. The overhead of homomorphic encryption can be amortized
by doing multiple operations on the data once encrypted, but the overhead is still very significant.

While this seems daunting, it may be attractive in some application domains, such as healthcare
informatics, where the need for privacy is paramount. To this end, work is being done to reduce
process times further. This includes the use of GPUs, FPGAs, and ASICs cite:[roy2019fpga], and
investigating specific application domains where the structure of data can be exploited to reduce
processing times cite:[foltz2019erp]. Further development on Microsoft SEAL is being documented
at https://sealcrypto.org and work on standardization is being documented at
https://homomorphicencryption.org.

At some point, progress on reducing the overheads may "tip the scales" in favor of using
homomorphic computing when the need for privacy makes the trade-off worthwhile. However, in a
cloud environment, the overhead of homomorphic encryption translates not only into longer
compute times but also into additional costs. If running on a cloud, compute times that are 1000x
longer will translate into a bill that is 1000x larger at the end of the month. Even at a factor of 10x,
this may still be prohibitive for many application domains. For these reasons, it is safe to conclude
at this time that homomorphic computing is not generally practical or applicable for security in
federated environments.

9.9. Quantum Key Distribution
We mention Quantum Key Distribution (QKD) since there is wider interest in quantum computing
in DoD and other government agencies. As mentioned elsewhere, federation depends on
establishing common, trusted knowledge across the participants of a federated environment. This
can be facilitated by the distribution of cryptographic keys among those participants.

When two parties share a random, secret key, this key can be used to encrypt and decrypt
messages. QKD enables such keys to be shared in such a way that any eavesdropping or corruption

71

https://openresearchcloud.app.box.com/s/2e1pdn3suaf8w8ywv38ib6hpb3oq8ynb
https://sealcrypto.org
https://homomorphicencryption.org

of the keys being distributed can be detected. When using quantum entanglement to transmit keys
in quantum states, any measurement of those quantum states disturbs the system. Hence, any
eavesdropping or corruption of the keys could be detected.

While a fascinating communication technology, QKD only addresses a small portion of the overall
security problem cite:[QKD]. QKD only addresses the distribution of keys, but does not address the
communication of messages themselves. As such, QKD does not address verifying identities, data
integrity, or access control. These functions must still be done by traditional symmetric key
cryptography. QKD also has the drawbacks of currently having a short range of transmission, and
the hardware is simply expensive. For these reasons, we conclude that QKD is not a practical option
for managing federations at this time.

72

https://www.ncsc.gov.uk/whitepaper/quantum-key-distribution
https://www.ncsc.gov.uk/whitepaper/quantum-key-distribution

Chapter 10. Possible Development and
Adoption Strategies
Out of all of these security concepts and approaches, which ones are the most relevant for
supporting federations? Which approaches are viable? What are the pros and cons? How do they
rank in terms of market interest and/or investment of resources?

Where possible, any federation development plan should clearly leverage, where possible, current
efforts that have significant interest and investment. To this end, this section provides a review of
the security concepts and technologies reviewed to assess their viability, relevance, and maturity.
This assessment will be used to construct a possible federation development roadmap with the
implicit assumption that the target architecture is based on the NIST CFRA concepts.

10.1. An Assessment for Viability, Relevance, and
Maturity
To assess the possible approaches to enhance security in federated environments, these factors will
be taken into account:

● Viability: Some technologies may have some very interesting properties but their practical
application is just not feasible. While this may change over time, technologies that can be used
sooner than later have a clear advantage.

● Relevance: Technologies that embody fundamental concepts will be more impactful, and thus
relevant. That is to say, fundamental technologies are broadly applicable across a wide range of
application domains.

● Maturity: A mature technology is gaining interest, adoption and investment from stakeholders in
the marketplace. Any relevant technology that already has broad interest and investment should be
leveraged for the development of federations.

From these considerations, three categories can be defined to assess technologies and guide their
organization into a roadmap.

● Not Ready: As interesting as some technologies may be, many are just not ready for practical
applications, and specifically for OGC testbed tasks.

● Established: Many relevant technologies are already well-established. Because of their wide use,
such technologies should be considered in federation tooling.

● Emerging: The development of technologies and their adoption in the marketplace occurs over
years. However, technologies that are viable and relevant may be clearly gaining maturity. These
technologies merit special consideration for federations.

There are several technologies that are established, widely used, and trusted by many OGC
stakeholders. These include PKI and SAML. However, OIDC is gaining more traction and the OpenID
Foundation is facilitating the use of OIDC in distributed environments through the development of

73

OIDC Federation and also the OIDC Shared Signals an Events concept. These are sizeable
investments that federated environments should leverage.

Since Verifiable Credentials (VCs) enables users to manage their own credentials, VCs may gain
adoption in the wider commercial marketplace. However, controlling how a user may use their
credentials in presentations is currently problematic. For this reason, VCs are considered not ready.
While PKI and SAML will certainly remain to be widely used, OIDC and OIDC Federation are
considered to be emerging for the purposes of future work to leverage the federation support that is
being developed in the OIDC community.

Being able to handle legal agreements and assess regulatory compliance with cryptographically
signed documents will be an immense milestone for the adoption of federations. Being able to do so
in an automated fashion will be an even larger milestone. Federation trustmark frameworks are
certainly a method to accomplish this. However, while trustmark frameworks are definitely
foundational, the organizational and cultural adoption challenges will be significant. Hence,
trustmark frameworks are emerging but with a developmental timeline that is expected to be quite
long.

Blockchain is certainly an interesting technology that has public recognition owing to its use in
cryptocurrency. The ability to record transactions in a way that is exceedingly hard to deny or
corrupt has broad applicability. For example, blockchain could be used to establish shared, trusted
information across federated environments. This could also include establishing the provenance of
data and resources being shared. However, work needs to be done to better understand the
potential blockchain behavior with regards to different consensus algorithms, block data size, and
overall performance in different application use cases in federated environments. For these
reasons, Blockchain is considered emerging.

In contrast, Zero Trust Architectures provide an alternative security approach through data
confinement. The Zero Trust concept is gaining recognition in many sectors, including US
government agencies that have strong security requirements. This is driving the investment by
NIST and others in this technology. From the discussion in Zero Trust Federations, the integration of
this concept into federations appears to be viable and relevant. Hence, ZTFs are emerging.

The investment in Data-Centric Security (DCS) that OGC has made in Testbeds and standards work
indicates relevance and impact that should be leveraged in the near-term. Since possible
integration approaches have already been identified, DCS is emerging. The OGC Security DWG and a
significant set of OGC stakeholders have also expressed an interest in Trusted Data Formats (TDFs).
TDFs represent another approach to managing data confinement and preventing data leakage.
While TDFs may not have wide adoption in the general marketplace, they have been deployed in
operational government systems. Given the high relevance of data confinement in federated
environments, TDFs are considered established.

While Attributed-Based Encryption (ABE) has strong similarities with TDF, it does have a drawback.
While encoding the access policies with the data may be advantageous in some scenarios, this does
mean that changing the policy after the ABE-encoded data has been disseminated will be
problematic. Unless specific use cases can be identified that directly benefit from the ABE approach,
ABE are considered to be not ready for now.

Trusted Execution Environments (TEEs) are gaining interest in the wider marketplace, as

74

demonstrated by the creation of the Confidential Computing Consortium. Its relevance to federations
is clearly indicated by the Multi-Party Computing use case. Since TEEs represent yet another
approach to data confinement with significant interest to be leveraged, it is considered emerging.
Since TEEs involve Hardware Roots of Trust and can support attestation, Hardware Roots of Trust is
considered to be emerging, as well.

The overhead of Homomorphic Computing is still quite prohibitive. Since there are several other,
more viable approaches to data security and confinement, Homomorphic Computing is considered
to be not ready for now. Progress in this field can still be monitored to determine if the overheads
can be reduced to an acceptable point for application domains that have a strong requirement for
this type of security.

Finally, Quantum Key Distribution (QKD) is considered not ready. QKD is far too complicated for the
partial benefits it can provide in the foreseeable future. As with all interesting technologies, QKD
should be monitored for any significant progress being made.

10.2. A Federation Development Roadmap
Based on this review, a basic roadmap consisting of three phases can be defined. Phase 1 Tasks can
be undertaken immediately to develop federations with greatly enhanced security. Phase 2 Tasks
are quite important but need to build on Phase 1. Phase 3 Tasks are important but involve
foundational concepts that will need time to development and mature with the benefit of
experience. The nomenclature of Task Px.y to denote Task y in Phase x is used.

10.2.1. Roadmap Phase 1: Near-term Tasks

• Task P1.1: Develop Gateway-based Federation Hosting Services
Based on the FHS design concepts incorporating OIDC as described in the NIST CFRA
cite:[CFRA2020], the the IEEE P2302 WG cite:[P2302] had developed a core API set. This includes
APIs for Operator-to-FHS, Member-to-FHS, and FHS-to-FHS interactions. As part of P2302’s
planned API roadmap, at the time of this writing, monitoring support is being added to the API.
Subsequent work includes support for accounting, auditing, legal agreements, and regulatory
compliance, i.e., all other capabilities necessary for commercially viable and sustainable
federations. OGC Stakeholders could gain valuable experience by building a prototype to the
currently existing IEEE P2302 API as part of Testbed-17. This would also provide a platform on
which to base further testbed development in support of larger OGC goals, such earth
observation.

• Task P1.2: Develop the Use of Blockchain in Federations
Given that federations directly depend on shared, trusted information, the applicability of
blockchain is clear. Near-term work could be done to evaluate consensus algorithms and
scalability in the operation of Federated Hosting Services. Studies could also be done to compare
the blockchain consensus approach with other data confinement approaches, such as Zero
Trust Federations.

• Task P1.3: Establish Trust Using the OIDC Federation Specification
If a gateway-based FHS incorporating OIDC is available, then the OIDC Federation Specification,
v1 cite:[OIDC_Fed], could also be integrated. As discussed in the The OIDC Federation
Specification section, this can be used to establish trust and secure communication between

75

https://doi.org/10.6028/NIST.SP.500-332
https://standards.ieee.org/project/2302.html
https://openid.net/specs/openid-connect-federation-1_0.html
https://openid.net/specs/openid-connect-federation-1_0.html

multiple FHSs. There are at least three implementations underway, and implementation
feedback is being incorporated into subsequence drafts of the standard.

• Task P1.4: Integrate Data-Centric Security
The Data-Centric Security task in Testbed-16 has created a capability to manage key distribution
for encrypted data objects. As discussed in the Data-Centric Security section, there are multiple
scenarios for using the DCS approach in a federated environment. Doing so would greatly
increase the security posture of federations.

• Task P1.5: Develop Zero Trust Federations
Integrating a DCS capability within FHS-managed federations would be an integral part of
developing Zero Trust Federations. As discussed in the Zero Trust Federations section, this
would be done in conjunction with making the implicit trust zones as small as possible at the
gateway level. To achieve even finer-grained protection, an FHS could be deployed "on top of" a
Microservice Mesh Control Plane. While certainly workable, a longer range question is how the
two could be integrated into a whole. For example, how to federate microservice control planes,
and how to integrate arbitrary, external resources into a control plane federation. These are
interesting questions but are not recommended for Phase 1.

10.2.2. Roadmap Phase 2: Subsequent Tasks

• Task P2.1: Integrate Trusted Data Formats
Given that Trusted Data Formats are known to a user base with significant security
requirements, the integration of TDFs into federated environments would provide an additional
security mechanism. This will involve methods to establish trust and accessibility between a
Trusted Data Object and an external verifier.

• Task P2.2: Develop Policy-Based Data Confinement Methods
The use of NGAC’s graph-based approach to policies could be used to manage federations, and
specifically to prevent intentional third-party data leakage, also called data confinement. NGAC
addresses this through the use of obligations to dynamically change policies. When the event
"User reads datatype Y" occurs, the User’s access policy is dynamically changed to include "User
can no longer write datatype Y". The use of such dynamic policy management should be
investigated for wider use in federations.

• Task P2.3: Integrate Trusted Execution Environments
TEEs offer another method for data confinement. The strong industry interest in TEEs, and the
Confidential Computing Consortium’s focus on Multi-Party Computing, is a potential area of
synergy with federations. Work in this area would focus on enabling TEEs to be accessed
through an API Gateway and making credentials compatible or interoperable in some way.

• Task P2.4: Integrate Hardware Roots of Trust
TEEs involve a hardware root of trust and can also be used to do software stack attestations.
Hence, if TEEs are integrated into federations, it should also be possible to do attestations.

10.2.3. Roadmap Phase 3: Longer-term Tasks

• Task P3.1: Review/Expand NIST SP 800-53
The NIST Security and Privacy Controls for Federal Information Systems and Organizations
cite:[NIST800-53] is a large document that catalogs 20 families of security controls. There are 278
security controls and an even greater number of control enhancements. NIST SP 800-53 is used

76

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5-draft.pdf

extensively in US Government systems to define the controls used in their security posture.
Different subsets of the NIST SP 800-53 controls are used to define the different levels of
FedRAMP certification. This NIST document should be reviewed to identify all security controls
relevant to federations, and to identify any new, federation-specific, security controls that
should be added.

• Task P3.2: Develop Formal Federation Definitions
A method of formal definitions for federations would be a major step towards the automation of
many federation management functions. This task would involve the investigation, comparison,
and possible development of a Fed-ML or OWL-Fed. Such an effort could be codified in a
standard or best practices document that identifies the properties of different "types" or "levels"
of federations, in much the same way that NIST SP 800-53 is used to define different levels of
FedRAMP certification.

• Task P3.3: Develop Federation Trust Frameworks
If formal definition methods are available, these could be used to build federated trust
frameworks. Trust frameworks would greatly enable the commercial adoption of federations
where firm legal agreements and regulatory compliance would have to be in place. While
possible from a technical perspective, the organizational and cultural adoption challenges of
federated trustmark frameworks will definitely make this a long-term goal.

77

Chapter 11. Final Comments
In February 2020, NIST officially published the NIST Cloud Federation Reference Architecture
(CFRA) cite:[CFRA2020]. The CFRA approach is to support "purpose-built" federations - federations
whose operation and governance is agreed upon by the stakeholders prior to creation. This avoids
problems of trying to federate existing environments that were not intended nor designed with
federated collaboration in mind. By taking this approach, many issues of policy, attribute release,
and manageability can be avoided entirely.

Nonetheless, any federation approach, including the CFRA, has tremendous security concerns since
the whole purpose of a federation is to span trust zones and expose users and resources from
different organizations to one another. Hence, this OGC Engineering Report took a broad look at
many developing trust security concepts to determine how federations could be made as secure as
possible. The work began by reviewing the basics of trust and security, followed by a threat analysis
based on possible implementation approaches This analysis demonstrated that the vulnerabilities
of federations depend on the vulnerabilities of the underlying tools that are used to implement
federations, i.e., tools such as TLS and OpenID Connect. What is different is the impact of any
compromises.

To address these issues, emerging trust and security approaches were reviewed and evaluated for
use in federated environments. A basic roadmap for further development was identified. However,
this roadmap has a technical focus. What organizational and cultural adoption issues will dominant
the development and adoption of federation currently are to be understated. The fact that the CFRA
approach focuses on agreed-upon governance highlights the many differences that many
organizations will have. Hence, concomitant efforts should be undertaken to promote
organizational adoption. This can mean developing support tooling and demonstrations that
unequivocally illustrate the broad value of federation for mission and societal benefits.

Doing so will require more than a single organization. Since federation is inherently cross-
organizational, some type of umbrella organization is needed to facilitate development and
adoption. By analogy with the Internet, in the 1970s the Advanced Research Projects Agency (ARPA)
created ARPANET. ARPANET was essentially an umbrella environment whereby many universities,
corporations and government agencies could bring their resources to the table and work together
in the nascent field of computer networking. A similar type of umbrella organization would greatly
facilitate federation development. The OGC will work to achieve this larger goal.

78

https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332

Appendix A: Threat Dragon Report
Threat Dragon can produce a PDF report file for any analysis that has been done. This report file
essentially presents all of the information stored in the JSON project file in a nice, human-readable
format. Included below is the report generated for the four threat analysis scenarios of the NIST
CFRA-based Federation Service.

79

Threat model report for CFRA Threat Models

High level system description

Authentication to a Federation

OIDC (Process)

Owner:
Craig Lee
Reviewer:
Contributors:

Initial threat model for a Federation Service (FS) based on the NIST Cloud Federation
Reference Architecture. The Deployment & Governance model is one, third-party FS with one
FedAdmin per federation instance. Four threat model diagrams are given: Member
Authentication, FedAdmin, ResOwner, and User Interactions.

Fed State: Members,
Attrs, Svc Catalog

OIDC

Fed Service

Member Browser

Member Trust
Boundary

1: AuthN Req

5: Redirect w/ AuthZ
Code & State

2: Redirect to AuthZ
Endpoint

Fed State Query

Fed State Response

7: JWT Access Token
& ID Token

Fed Operator

Service Trust
Boundary

Service Req

FedOp Req

FedOp Resp

Service Resp

4: User Authenticates

3: AuthN Req

6: Use AuthZ Code to
Req Access Token

8: UserInfo Req
9: UserInfo

Service

Fed Service Trust
Boundary

10: AuthN Resp

Description:

[11] Section 4.4.1.4, Malicious client obtains authorization
Spoo�ng, Mitigated, High Severity

[11] 4.1.5, Open Redirectors on client
Tampering, Mitigated, High Severity

Repudiation of Authentication
Repudiation, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, High Severity

Description:
Malicious client pretends to be a valid client.

Mitigation:
Authorization server must validate client's redirection URI against pre-registered
URI. Use of CAPTCHAs, Multi-factor authentication, random questions, etc.

Description:
An open redirector is an endpoint using a parameter. This allows an attacker to
construct a URI that passes validation but returns the access code or access token to
an endpoint under control of the attacker.

Mitigation:
Require clients to register full redirection URIs.

Description:
The Access and ID tokens delivered from the OIDC server to the Fed Service provide
integrity and non-repudiation. The Fed Service could repudiate a Member's
authentication only if the Fed Service was compromised.

Mitigation:
This illustrates how the mitigation of an internal threat depends on the mitigation
of external threats, i.e., the prevention of an external malicious actor compromising
a Fed Service.

Description:
Attacker could eavesdrop on the redirections from the Fed Service or the
interaction with the Member.

Mitigation:
Use transport-layer security mechanisms such as TLS.

[11] 4.4.1.11, Exhaustion of resources attack
Denial of service, Mitigated, Medium Severity

[11] 4.4.1.12, DoS using manufactured authorization codes
Denial of service, Mitigated, Medium Severity

Fed Service (Process)

Description:

[11] 4.1.4, End-user credentials phished
Spoo�ng, Mitigated, High Severity

[11] 4.1.5, Open Redirectors on client
Tampering, Mitigated, High Severity

Description:
Attacker issues excess requests that exhaust the pool of authorization codes.

Mitigation:
Rate-limit the access codes issued per user. Rate-limit should be related to the
entropy in authorization codes, i.e., the length.

Description:
If an attacker can locate a client's redirection URI that listen on HTTP, then large
numbers of random authorization codes on HTTPS connections can concentrate on
the authorization server.

Mitigation:
Cross-Site Request Forgery (CSRF) tokens and 'state' parameters should be
validated. After invalid requests exceed a limit, the Authorization Server should
send an error to the client and rate-limit or disallow further connections.

Description:
Credentials, such as passwords, could be phished using a compromised or
embedded browser.

Mitigation:
OAuth (and OIDC) are designed such that the Fed Service should never see Member
passwords. Members should be educated to recognize phishing attacks.

Description:

Repudiation of Authentication
Repudiation, Mitigated, High Severity

[11] 4.1.1, 4.1.2, 4.1.3, Obtain client secrets.
Information disclosure, Mitigated, High Severity

Exhaustion of resource attacks
Denial of service, Mitigated, Medium Severity

An open redirector is an endpoint using a parameter. This allows an attacker to
construct a URI that passes validation but returns the access code or access token to
an endpoint under control of the attacker.

Mitigation:
Require clients to register full redirection URIs.

Description:
While the Member is "authenticating" to the Fed Service, it is actually redirected to
the OIDC server for authentication. The Access and ID tokens for the Member are
subsequently delivered directly from the OIDC server to the Fed Service. These
tokens must be protected and the Fed Service must not be compromised.

Mitigation:
The signed Access and ID tokens that the OIDC delivers to the Fed Service provide
authentication with integrity and non-repudiation. These tokens are stored in a
separate store that is not accessible to external actors. To mitigate repudiation of
authentication, all other methods to compromise a Fed Service must be mitigated.

Description:
In this deployment model, the Fed Service is the OIDC client. This means the Fed
Service is storing the Access and ID Tokens for all Members using this Fed Service.

Mitigation:
These tokens are stored in secure local storage, and never in binary or source code.
Standard web server protection should be applied. Token scope should be limited
to only the necessary authorizations. Token lifetime should be limited. If a token is
compromised, the OIDC Server should immediately revoke the token to prevent any
further abuse.

Description:
Similar to [11] 4.4.1.11, a malicious actor (member or not) could send excessive
requests to a Fed Service.

Mitigation:
Fed Service should rate limit the number of requests per requestor, member or not.
Distributed Denial of Service attacks are more problematic.

Elevation threat
Elevation of privilege, Mitigated, High Severity

Disclosure of client information during transmission
Information disclosure, Mitigated, High Severity

Member Browser (External Actor)

Description:

[11] 4.4.1.9, Click-jacking attack against authorization
Spoo�ng, Mitigated, Medium Severity

Repudiation of Authentication
Repudiation, Mitigated, High Severity

Description:
Similar to [11] 4.2.4, an open redirector could allow a current member to maliciously
obtain authorization codes intended for another member, and elevate their own
privilege.

Mitigation:
Require the Fed Service to register full redirection URIs that can be validated on
each redirection.

Description:
Similar to [11] 4.3.3, an attacker could eavesdrop on communications.

Mitigation:
Data in transmission should be protected using transport-layer mechanisms such as
TLS.

Description:
An attacker loads the target site (a Fed Service) in a transparent iFrame constructed
to look just like the target site, allowing the attacker to intercept keystrokes and
button clicks, thus allowing the attacker to steal authentication credentials.

Mitigation:
Only allow the use of newer browsers that support the X-FRAME-OPTION header.
This enables iFrames to be completely denied, allowed only from the same origin, or
from a list trusted origins.

Description:

1: AuthN Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

2: Redirect to AuthZ Endpoint (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

If a Fed Service repudiates that a Member has successfully authenticated, this
indicates that the Fed Service, OIDC Server, the Fed State, or the FM Operator has
been compromised, or any combination thereof.

Mitigation:
The mitigation of this threat depends on the mitigation of any compromise threats
to these internal actors. Attestation based on hardware Trusted Computing
Modules could be used to ensure that these software stacks have not been
modi�ed. Log �les could be constantly monitored to detect any unusual or
unexpected activities. All threats to externally accessible endpoints must be
identi�ed and mitigated.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Member should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Member and the Fed
Service.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

[11] 4.4.1.8, Cross-Site Request Forgery against redirection URI
Elevation of privilege, Mitigated, High Severity

5: Redirect w/ AuthZ Code & State (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Fed Service should validate the binding of the OIDC Server's AuthZ endpoint to
its domain name. Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop this redirection.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
After [11] 4.4.1.8: an attacker could authorize an authorization code to their own
protected resources on an authorization server. The attacker then aborts the
redirect �ow back to the Fed Service and tricks the victim Member into executing
the redirect back to the Fed Service. The Fed Service receives the redirect, fetches
the token(s) from the authorization server, and associates the victim Member's
session with the resources accessible using the token. This allows the attacker to
access data from the Member's resources in this federation.

Mitigation:
The state parameter should be used to link the authorization request with the
redirection URI. See [11] 5.3.5.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

[11] 4.4.1.8, Cross-Site Request Forgery against redirection URI
Elevation of privilege, Mitigated, High Severity

3: AuthN Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

The OIDC Server should validate the binding of the Fed Service's externally
accessible Member API Endpoint to its domain name. Transport-layer security
mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop this redirection.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
After [11] 4.4.1.8: an attacker could authorize an authorization code to their own
protected resources on an authorization server. The attacker then aborts the
redirect �ow back to the Fed Service and tricks the victim Member into executing
the redirect back to the Fed Service. The Fed Service receives the redirect, fetches
the token(s) from the authorization server, and associates the victim Member's
session with the resources accessible using the token. This allows the attacker to
access data from the Member's resources in this federation.

Mitigation:
The state parameter should be used to link the authorization request with the
redirection URI. See [11] 5.3.5.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The OIDC Server should validate the binding of the Member to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

4: User Authenticates (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

10: AuthN Resp (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Description:
An attacker could eavesdrop on communication between a Member and the OIDC
Server.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Member should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Member and the OIDC
Server.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

Fed State: Members, Attrs, Svc Catalog (out of scope Data Store)

Description:
Members, Attributes, Service Catalog

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

Fed State Query (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

Fed State Response (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

7: JWT Access Token & ID Token (out of scope Data Flow)

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Member should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Member and the Fed
Service.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

Fed Operator (out of scope External Actor)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

Service Req (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in initial authentication.

FedOp Req (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

FedOp Resp (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

Service Resp (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in initial authentication.

8: UserInfo Req (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

6: Use AuthZ Code to Req Access Token (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

9: UserInfo (out of scope Data Flow)

Description:

Out of scope reason:
Considered to be secure behind the Fed Service Trust Boundary.

Service (out of scope Process)

Description:

Out of scope reason:
Not involved in initial authentication process.

FedAdmin/ResOwner Interactions

OIDC

Fed Service

Member Browser
(FedAdmin or ResOwner)

Member Trust
Boundary

FA/RO Req

Ser ice Req

FedOp Req

FedOp Resp

Service Resp

Refresh Token Req

S i

Refresh Token
FA/RO Resp

Fed Service (Process)

Description:

[11] 4.1.4, End-user credentials phished
Spoo�ng, Mitigated, High Severity

Repudiation of Authentication
Repudiation, Mitigated, High Severity

[11] 4.1.1, 4.1.2, 4.1.3, Obtain client secrets.
Information disclosure, Mitigated, High Severity

Fed State: Members,
Attrs, Svc Catalog

Fed State Query

Fed State Response Fed Operator

Service Trust
Boundary

Service ReqService

Fed Service Trust
Boundary

Description:
Credentials, such as passwords, could be phished using a compromised or
embedded browser.

Mitigation:
OAuth (and OIDC) are designed such that the Fed Service should never see Member
passwords. Members should be educated to recognize phishing attacks.

Description:
When a Member authenticates to the Fed Service, the Access and ID tokens for the
Member are subsequently delivered directly from the OIDC server to the Fed
Service. These tokens must be protected and the Fed Service must not be
compromised.

Mitigation:
The signed Access and ID tokens that the OIDC delivers to the Fed Service provide
authentication with integrity and non-repudiation. These tokens are stored in a
separate store that is not accessible to external actors. To mitigate repudiation of
authentication, all other methods to compromise a Fed Service must be mitigated.

Description:
In this deployment model, the Fed Service is the OIDC client. This means the Fed
Service is storing the Access and ID Tokens for all Members using this Fed Service.

Mitigation:

Exhaustion of resource attacks
Denial of service, Mitigated, Medium Severity

Disclosure of client information during transmission
Information disclosure, Mitigated, High Severity

Member Browser (FedAdmin or ResOwner) (External Actor)

Description:

Repudiation of Authentication
Repudiation, Mitigated, High Severity

These tokens are stored in secure local storage, and never in binary or source code.
Standard web server protection should be applied. Token scope should be limited
to only the necessary authorizations. Token lifetime should be limited. If a token is
compromised, the OIDC Server should immediately revoke the token to prevent any
further abuse.

Description:
Similar to [11] 4.4.1.11, a malicious actor (member or not) could send excessive
requests to a Fed Service.

Mitigation:
Fed Service should rate limit the number of requests per requestor, member or not.
Distributed Denial of Service attacks are more problematic.

Description:
Similar to [11] 4.3.3, an attacker could eavesdrop on communications.

Mitigation:
Data in transmission should be protected using transport-layer mechanisms such as
TLS.

Description:
If a Fed Service repudiates that a Member has successfully authenticated, this
indicates that the Fed Service, OIDC Server, the Fed State, or the FS Operator has
been compromised, or any combination thereof.

Mitigation:
The mitigation of this threat depends on the mitigation of any compromise threats
to these internal actors. Attestation based on hardware Trusted Computing
Modules could be used to ensure that these software stacks have not been

FA/RO Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

FA/RO Resp (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

modi�ed. Log �les could be constantly monitored to detect any unusual or
unexpected activities. All threats to externally accessible endpoints must be
identi�ed and mitigated.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Member should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Member and the Fed
Service.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo ng attacks could occur.

Mitigation:
The Member should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Information disclosure threat
Information disclosure, Mitigated, High Severity

Fed State: Members, Attrs, Svc Catalog (out of scope Data Store)

Description:
Members, Attributes, Service Catalog

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

OIDC (out of scope Process)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed State Query (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed State Response (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed Operator (out of scope External Actor)

Description:
An attacker could eavesdrop on communication between a Member and the Fed
Server.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

Service Req (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in administrative process.

FedOp Req (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

FedOp Resp (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

Service Resp (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in administrative process.

Refresh Token Req (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Service (out of scope Process)

Description:

Out of scope reason:
Not involved in administrative process.

Refresh Token (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

User Interactions

Fed Service (Process)

Description:

[11] 4.1.4, End-user credentials phished
Spoo�ng, Mitigated, High Severity

Fed State: Members,
Attrs, Svc Catalog

OIDC

Fed Service

Member Browser (User)

Member Trust
Boundary

User Req

Fed State Query

Fed State Response Fed Operator

Service Trust
Boundary

Service Req

FedOp Req

FedOp Resp

Service Resp

Refresh Token Req

Service

Fed Service Trust
Boundary

Refresh Token
User Resp

Repudiation of Authentication
Repudiation, Mitigated, High Severity

[11] 4.1.1, 4.1.2, 4.1.3, Obtain client secrets.
Information disclosure, Mitigated, High Severity

Exhaustion of resource attacks
Denial of service, Mitigated, Medium Severity

Description:
Credentials, such as passwords, could be phished using a compromised or
embedded browser.

Mitigation:
OAuth (and OIDC) are designed such that the Fed Service should never see Member
passwords. Members should be educated to recognize phishing attacks.

Description:
When a Member authenticates to the Fed Service, the Access and ID tokens for the
Member are subsequently delivered directly from the OIDC server to the Fed
Service. These tokens must be protected and the Fed Service must not be
compromised.

Mitigation:
The signed Access and ID tokens that the OIDC delivers to the Fed Service provide
authentication with integrity and non-repudiation. These tokens are stored in a
separate store that is not accessible to external actors. To mitigate repudiation of
authentication, all other methods to compromise a Fed Service must be mitigated.

Description:
In this deployment model, the Fed Service is the OIDC client. This means the Fed
Service is storing the Access and ID Tokens for all Members using this Fed Service.

Mitigation:
These tokens are stored in secure local storage, and never in binary or source code.
Standard web server protection should be applied. Token scope should be limited
to only the necessary authorizations. Token lifetime should be limited. If a token is
compromised, the OIDC Server should immediately revoke the token to prevent any
further abuse.

Description:
Similar to [11] 4.4.1.11, a malicious actor (member or not) could send excessive
requests to a Fed Service.

Mitigation:

Disclosure of client information during transmission
Information disclosure, Mitigated, High Severity

Member Browser (User) (External Actor)

Description:

Repudiation of Authentication
Repudiation, Mitigated, High Severity

User Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Fed Service should rate limit the number of requests per requestor, member or not.
Distributed Denial of Service attacks are more problematic.

Description:
Similar to [11] 4.3.3, an attacker could eavesdrop on communications.

Mitigation:
Data in transmission should be protected using transport-layer mechanisms such as
TLS.

Description:
If a Fed Service repudiates that a Member has successfully authenticated, this
indicates that the Fed Service, OIDC Server, the Fed State, or the FS Operator has
been compromised, or any combination thereof.

Mitigation:
The mitigation of this threat depends on the mitigation of any compromise threats
to these internal actors. Attestation based on hardware Trusted Computing
Modules could be used to ensure that these software stacks have not been
modi�ed. Log �les could be constantly monitored to detect any unusual or
unexpected activities. All threats to externally accessible endpoints must be
identi�ed and mitigated.

Description:

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

Service Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

Service Resp (Data Flow)

Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Member should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Member and the Fed
Service.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
An attacker could eavesdrop on communication between a Service and the Fed
Service.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

Service (Process)

Description:
This is an arbitrary service being made available to the federation members.

Disclosure of information during transmission
Information disclosure, Mitigated, High Severity

Exhaustion of resource attacks
Denial of service, Mitigated, Medium Severity

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Service should validate the binding of the Fed Service to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Service and the Fed
Service.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
Similar to [11] 4.3.3, an attacker could eavesdrop on communications.

Mitigation:
Data in transmission should be protected using transport-layer mechanisms such as
TLS.

Description:
Similar to [11] 4.4.1.11, a malicious actor (member or not) could send excessive
requests to a Service.

User Resp (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

Fed State: Members, Attrs, Svc Catalog (out of scope Data Store)

Description:
Members, Attributes, Service Catalog

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

OIDC (out of scope Process)

Description:

Out of scope reason:

Mitigation:
Service should rate limit the number of requests per requestor, member or not.
Distributed Denial of Service attacks are more problematic.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Fed Service should validate the binding of the Member to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between a Member and the Fed
Server.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Considered secure behind the Fed Service Trust Boundary.

Fed State Query (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed State Response (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed Operator (out of scope External Actor)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

FedOp Req (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

FedOp Resp (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

Refresh Token Req (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Refresh Token (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

FS-FS Interactions

Fed Service B (Process)

Description:

[11] 4.1.4, End-user credentials phished
Spoo�ng, Mitigated, High Severity

Fed State B: Members,
Attrs, Svc Catalog

Fed State A: Members,
Attrs, Svc Catalog

OIDC B

Fed Service BFed Service AFed Operator A

Fed Op A Req

OIDC A Req
OIDC B Req

Fed State B Query

Fed State B Resp

Fed Operator B

Fed Service A Trust
Boundary

Fed State A Query

FedOp Req

FedOp Resp

Fed State A Resp

OIDC A

OIDC B RespOIDC A Resp

Fed Service B Trust
Boundary

Fed Op A Resp

FS A to B Req

FS A to B Resp

FS B to A Resp

FS B to A Req

Repudiation of Authentication
Repudiation, Mitigated, High Severity

[11] 4.1.1, 4.1.2, 4.1.3, Obtain client secrets.
Information disclosure, Mitigated, High Severity

Exhaustion of resource attacks
Denial of service, Mitigated, Medium Severity

Description:
Credentials, such as passwords, could be phished using a compromised or
embedded browser.

Mitigation:
OAuth (and OIDC) are designed such that the Fed Service should never see Member
passwords. Members should be educated to recognize phishing attacks.

Description:
When a Member authenticates to the Fed Service, the Access and ID tokens for the
Member are subsequently delivered directly from the OIDC server to the Fed
Service. These tokens must be protected and the Fed Service must not be
compromised.

Mitigation:
The signed Access and ID tokens that the OIDC delivers to the Fed Service provide
authentication with integrity and non-repudiation. These tokens are stored in a
separate store that is not accessible to external actors. To mitigate repudiation of
authentication, all other methods to compromise a Fed Service must be mitigated.

Description:
In this deployment model, the Fed Service is the OIDC client. This means the Fed
Service is storing the Access and ID Tokens for all Members using this Fed Service.

Mitigation:
These tokens are stored in secure local storage, and never in binary or source code.
Standard web server protection should be applied. Token scope should be limited
to only the necessary authorizations. Token lifetime should be limited. If a token is
compromised, the OIDC Server should immediately revoke the token to prevent any
further abuse.

Description:
Similar to [11] 4.4.1.11, a malicious actor (member or not) could send excessive
requests to a Fed Service.

Mitigation:
Fed Service should rate limit the number of requests per requestor, member or not.
Distributed Denial of Service attacks are more problematic.

Disclosure of client information during transmission
Information disclosure, Mitigated, High Severity

Fed Service A (Process)

Description:

[11] 4.1.4, End-user credentials phished
Spoo�ng, Mitigated, High Severity

Repudiation of Authentication
Repudiation, Mitigated, High Severity

[11] 4.1.1, 4.1.2, 4.1.3, Obtain client secrets.
Information disclosure, Mitigated, High Severity

Description:
Similar to [11] 4.3.3, an attacker could eavesdrop on communications.

Mitigation:
Data in transmission should be protected using transport-layer mechanisms such as
TLS.

Description:
Credentials, such as passwords, could be phished using a compromised or
embedded browser.

Mitigation:
OAuth (and OIDC) are designed such that the Fed Service should never see Member
passwords. Members should be educated to recognize phishing attacks.

Description:
When a Member authenticates to the Fed Service, the Access and ID tokens for the
Member are subsequently delivered directly from the OIDC server to the Fed
Service. These tokens must be protected and the Fed Service must not be
compromised.

Mitigation:
The signed Access and ID tokens that the OIDC delivers to the Fed Service provide
authentication with integrity and non-repudiation. These tokens are stored in a
separate store that is not accessible to external actors. To mitigate repudiation of
authentication, all other methods to compromise a Fed Service must be mitigated.

Exhaustion of resource attacks
Denial of service, Mitigated, Medium Severity

Disclosure of client information during transmission
Information disclosure, Mitigated, High Severity

FS A to B Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Description:
In this deployment model, the Fed Service is the OIDC client. This means the Fed
Service is storing the Access and ID Tokens for all Members using this Fed Service.

Mitigation:
These tokens are stored in secure local storage, and never in binary or source code.
Standard web server protection should be applied. Token scope should be limited
to only the necessary authorizations. Token lifetime should be limited. If a token is
compromised, the OIDC Server should immediately revoke the token to prevent any
further abuse.

Description:
Similar to [11] 4.4.1.11, a malicious actor (member or not) could send excessive
requests to a Fed Service.

Mitigation:
Fed Service should rate limit the number of requests per requestor, member or not.
Distributed Denial of Service attacks are more problematic.

Description:
Similar to [11] 4.3.3, an attacker could eavesdrop on communications.

Mitigation:
Data in transmission should be protected using transport-layer mechanisms such as
TLS.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

FS A to B Resp (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

FS B to A Resp (Data Flow)

Description:

Man-in-the-Middle

Fed Service B should validate the binding of Fed Service A to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between the Fed Services.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
The Fed Service B should validate the binding of Fed Service A to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between the Fed Services.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

FS B to A Req (Data Flow)

Description:

Man-in-the-Middle
Tampering, Mitigated, High Severity

Information disclosure threat
Information disclosure, Mitigated, Medium Severity

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
Fed Service A should validate the binding of Fed Service B to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between the Fed Services.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Description:
Man-in-the-Middle attacks could occur. DNS or ARP spoo�ng attacks could occur.

Mitigation:
Fed Service B should validate the binding of Fed Service A to its domain name.
Transport-layer security mechanisms, such as TLS, should be used.

Description:
An attacker could eavesdrop on communication between the Fed Services.

Mitigation:
Use transport-layer security mechanisms such as TLS.

Fed State B: Members, Attrs, Svc Catalog (out of scope Data Store)

Description:
Members, Attributes, Service Catalog

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed State A: Members, Attrs, Svc Catalog (out of scope Data Store)

Description:
Members, Attributes, Service Catalog

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

OIDC B (out of scope Process)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed Operator A (out of scope External Actor)

Description:

Out of scope reason:
Not involved in FS-FS interactions.

OIDC B Req (out of scope Data Flow)

Description:

Out of scope reason:
Considered security behind trust boundary.

OIDC A Req (out of scope Data Flow)

Description:

Out of scope reason:
Considered security behind trust boundary.

Fed Op A Req (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FS-FS interactions.

Fed State B Query (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed State B Resp (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed Operator B (out of scope External Actor)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

Fed State A Query (out of scope Data Flow)

Description:

Out of scope reason:
Not Involved in FS-FS interactions.

FedOp Req (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

FedOp Resp (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FedAdmin interactions.

Fed State A Resp (out of scope Data Flow)

Description:

Out of scope reason:
Not involved in FS-FS interactions.

OIDC A (out of scope Process)

Description:
This is an arbitrary service being made available to the federation members.

Out of scope reason:
Not involved in FS-FS interactions.

OIDC A Resp (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

OIDC B Resp (out of scope Data Flow)

Description:

Out of scope reason:
Considered secure behind the Fed Service Trust Boundary.

Fed Op A Resp (out of scope Data Flow)

Description:

Out of scope reason:

Not involved.

Appendix B: Revision History
Table 5. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

April 10, 2020 C. Lee 0.1 all initial structure
defined

June 1, 2020 C. Lee 0.2 Sec. 8 Authn threat
model and
analysis

November 14,
2020

C. Lee 1.0 all Final version 1.0

114

Appendix C: Bibliography
bibliography::[]

115

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and Definitions
	4.1. Abbreviated Terms
	4.2. Definitions

	Chapter 5. Overview
	Chapter 6. Introduction
	Chapter 7. A Quick Review of Security and Trust
	7.1. Authentication
	7.2. Authorization
	7.3. Privacy
	7.4. Integrity
	7.5. Non-repudiation
	7.6. Trust

	Chapter 8. Federation Security and Trust Requirements: A Threat Analysis
	8.1. Threat Modeling Methods, Tools, and Mitigations
	8.2. A Federation Service Threat Model and Analyses
	8.2.1. A Threat Analysis of Authentication to a Federation Service
	8.2.2. A Threat Analysis of FedAdmin and ResOwner Interactions
	8.2.3. A Threat Analysis of User Interactions
	8.2.4. A Threat Analysis of FS-FS Interactions

	8.3. Threat Analysis Observations

	Chapter 9. Emerging Security Technologies
	9.1. Identity and Credential Management
	9.1.1. Identity Proofing
	9.1.2. Authentication
	9.1.3. Federated Credential Management
	9.1.4. Attribute Release and Verifiable Credentials

	9.2. Trust
	9.2.1. Defining Trust
	9.2.2. Trust Frameworks
	9.2.3. Trust Framework Approaches
	9.2.4. The OIDC Federation Specification
	9.2.5. Hardware Roots of Trust
	9.2.6. Blockchain in Federated Environments

	9.3. Zero Trust
	9.3.1. The Zero Trust Architectural Concepts
	9.3.2. The Microservice Mesh ZTA Approach
	9.3.3. Zero Trust Federations

	9.4. Data-Centric Security
	9.5. Trusted Data Format
	9.6. Attribute-Based Encryption
	9.7. Trusted Execution Environments
	9.8. Homomorphic Computing
	9.9. Quantum Key Distribution

	Chapter 10. Possible Development and Adoption Strategies
	10.1. An Assessment for Viability, Relevance, and Maturity
	10.2. A Federation Development Roadmap
	10.2.1. Roadmap Phase 1: Near-term Tasks
	10.2.2. Roadmap Phase 2: Subsequent Tasks
	10.2.3. Roadmap Phase 3: Longer-term Tasks

	Chapter 11. Final Comments
	Appendix A: Threat Dragon Report
	Appendix B: Revision History
	Appendix C: Bibliography

