OGC Testbed-16

OpenAPI Engineering Report

Publication Date: 2021-01-13

Approval Date: 2020-12-15

Submission Date: 2020-11-19

Reference number of this document: OGC 20-033

Reference URL for this document: http://www.opengis.net/doc/PER/t14-D020
Category: OGC Public Engineering Report

Editor: Sam Meek

Title: OGC Testbed-16: OpenAPI Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2021 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t14-D020
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

Table of Contents

. Subject

. Executive Summary

2.1. Document contributor contact points

2.2. Foreword

. References

. Terms and definitions

4.1. Abbreviated terms

. Overview

. Introduction

. Background

7.1. Previous work

7.2. OpenAPI

7.3. Model Driven Architecture (MDA)

7.4. ShapeChange

. OpenAPI Modeling

8.1. OpenAPI UML Models

8.2. OpenAPI UML metamodel
8.2.1. OpenAPI Main view
8.2.2. OpenAPI Paths views
8.2.3. OpenAPI Maps views
8.2.4. Association classes

8.3. OGC API - Features - Part 1: Core
8.3.1. Paths
8.3.2. Components
8.3.3. References

. ShapeChange Implementation

9.1. Initial Configuration

9.2. Target Generation Rules

9.3. Association Classes

9.4. Results

10. Discussion

10.1. Recommendations
10.2. Future Work

11. Conclusion
Appendix A: OGC API - Feature Part1:Core initial input document (YAML)
Appendix B: OGC API Features Part1:Core output (JSON)

Appendix C: OpenAPI Extension task

C.1. Recap of issues to be addressed

© 00 00 N O

10
10
11
12
13
14
16
16
17
18
19
19
20
21
21
22
24
25
27
30
32
32
33
37
38
39
39
40
42
43
73
98
98

C.2. Addressing the shortcomings
C.2.1. UML model Changes
C.2.2. ShapeChange implementation
C.2.3. Testing
C.2.4. Results
C.2.5. Conclusion
Appendix D: Revision History
Appendix E: Bibliography

98

98
102
102
102
111
112
113

Chapter 1. Subject

This OGC Testbed 16 Engineering Report (ER) documents the two major aspects of the Testbed 16
OpenAPI Thread. These are:

* A Unified Modeling Language (UML) metamodel that describes OpenAPI and a profile of that
model to describe OGC API - Features - Part 1: Core [http://docs.opengeospatial.org/is/17-069r3/17-
069r3.html];

* An implementation of a transformation procedure in the ShapeChange [https://shapechange.net/]
open source software. This procedure was designed to transform a UML representation of the
OGC API - Features - Part 1: Core model into an OpenAPI 3.0 [http:/spec.openapis.org/oas/v3.0.3]
document.

The process for creating the model and doing the transformation relied upon the Model Driven
Architecture [https://www.omg.org/mda/] (MDA) approach. MDA takes a platform independent model
(PIM) and transforms that model into a platform specific model (PSM).

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://shapechange.net/
http://spec.openapis.org/oas/v3.0.3
https://www.omg.org/mda/
https://www.omg.org/mda/

Chapter 2. Executive Summary

The OGC Testbed-16 OpenAPI thread and work items were focused on utilizing the Model Driven
Architecture (MDA) approach for generating OpenAPI documents. The approach required a
Platform Independent Model (PIM) to be transformed into a target Platform Specific Model (PSM) to
create the physical artifacts. For Testbed-16 these were a JavaScript Object Notation (JSON)
representation of an OpenAPI definition.

OpenAPI is constructed as a specification and has no official UML representation. Therefore the
UML model describing OpenAPI including relationships, constraints, attributes and classes, was
constructed using the specification [https://swagger.io/specification/] as guidance. The OpenAPI
specification was modeled in full. However, Application Programming Interface (API) requirements
specified in OGC API standards were not explicitly modeled during this Testbed. This approach
provides other interested parties with the broadest interpretation of the requirements for an
OpenAPI based specification. In the future, business rules may be implemented for OGC API -
Common to control the building blocks of new OGC APIs. Another approach for future work is to
implement OGC API - Common as the metamodel, rather than the full OpenAPI specification.

The modeling aspect of the project required two separate models to be created: The OpenAPI
metamodel and a specialization of that model to describe an existing OGC Standard. The latter is the
UML model that was used in the ShapeChange experimentation. At the time of Testbed-16, the only
ratified OGC API Standard was OGC API - Features - Part 1: Core. Therefore, OGC API - Features was
used as an example standard to transform using the ShapeChange software.

The approach to using the metamodel-model construct was to invoke a UML specialization
relationship. The metamodel provides the generalized versions of each of the OpenAPI constructs
created from the specification. This was done to provide the user with rules to describe what
should be included as part of any class specialization as well as providing the ShapeChange
implementation with a set of supertypes that rules can be implemented against. Therefore, any
class specializing from the metamodel is treated the same as part of the ShapeChange
implementation. As the OpenAPI specification is not designed in UML, design decisions were made
throughout the modeling process as to how to represent relationships and group attributes into
classes. This resulted in a highly complex model that fully represents the OGC API - Features Part
1:Core standard. However, the utility of generating APIs using this approach is questionable.

The implementation was completed in ShapeChange with a specific goal of creating a pipeline for
converting the UML model into a JSON representation of the interface. The approach taken was to
create a first pass for converting the UML model into the JSON representation. The lessons learned
from the ShapeChange implementation will be used in future Testbeds, potentially involving extra
components such as a rules engine.

The recommendations from the project are as follows:

* The project demonstrated that an MDA approach can be used to model APIs using the
metamodel/model approach. However, the process is complex and models can quickly become
very large. Work should be undertaken to simplify the modeling process. This could be done by
creating blocks of modeling artifacts that can be reused when creating new standards and
simplify the process for the modeler and model generation process.

https://swagger.io/specification/

* Currently, the only target considered for the modeling work is OpenAPI. A wider consideration
for the OGC is whether OpenAPI is the only target worth considering, or whether other targets
should be implemented.

 This project raised the question whether there should be a separation between a Standard and
an encoding. Currently the OGC API work is heavily invested in OpenAPI, but there will come a
time when some other encoding, language or approach may be more suitable. A
recommendation is that conceptual models for new standards are the ideal starting point and
the encoding aspect is secondary. This observation also highlights the concept of domain
knowledge, which is captured in the standard definition process, but expressed in the encoding.
Requirements for standards captured in domain knowledge does not change very often, but
technologies do. By keeping the domain knowledge aspect of a standard separate from the
encoding may enable more forward interoperability with future versions of the standard.

» ShapeChange is an excellent piece of software. However, there are some changes that could be
made to make the experience of developing with it more palatable. ShapeChange seems reliant
on SCXML, which means that any transformations are reliant on the contents of the SCXML. A
salient example of this is the association class, where the class information is captured but the
relationship between the association class and the relationship it describes is omitted.

2.1. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Sam Meek Helyx SIS Editor

Dan Bala Helyx SIS Contributor
Anneley Hadland Helyx SIS Contributor

2.2. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 3. References

The following normative documents are referenced in this document.

OGC: OGC 06-121r9, OGC® Web Services Common Standard (2010) [https://portal.opengeospatial.org/
files/?artifact id=38867&version=2]

OGC: OGC 17-069r3, OGC API - Features - Part 1: Core 1.0 (2019) [http://docs.opengeospatial.org/is/17-
069r3/17-069r3.html]

OGC: OGC API - Common - Part 1: Core (draft) [http://docs.opengeospatial.org/DRAFTS/19-072.html]

OGC: OGC API - Common - Part 2: Geospatial Data (draft) [http:/docs.opengeospatial.org/DRAFTS/20-
024.html]

JSON Schema [https://json-schema.org/understanding-json-schema/reference/combining.htmi]

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/DRAFTS/19-072.html
http://docs.opengeospatial.org/DRAFTS/20-024.html
https://json-schema.org/understanding-json-schema/reference/combining.html

Chapter 4. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

e metamodel

a metamodel or surrogate model is a model of a model

4.1. Abbreviated terms

e COTS Commercial Off The Shelf

JSON JavaScript Object Notation
MDA Model Driven Architecture

OGC Open Geospatial Consortium

00 Object-oriented

SCXML ShapeChange Extensible Markup Language

UML Unified Modeling language

XML Extensible Markup Language

10

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 5. Overview

The rest of this ER is structured accordingly: Chapter 6 introduces the ER and provides an overview
of the Testbed-16 OpenAPI thread objectives.

Chapter 7 provides the background to this ER including relevant work in previous Testbeds and
Pilots as well as the MDA approach, OpenAPI and ShapeChange.

Chapter 8 discusses the OpenAPI modeling aspect of the project including the metamodel and the
derived OGC API - Features model.

Chapter 9 documents the implementation of the ShapeChange extension and process.

Chapter 10 discusses the work and includes recommendations, future work and conclusions for the
ER and the project.

11

Chapter 6. Introduction

This Engineering Report (ER) provides the documentation for the OpenAPI thread in the Open
Geospatial Consortium (OGC) Testbed-16 interoperability initiative. The thread consists of two
official work items:

1. A UML model and ShapeChange extension to enable transformation of a UML API model to an
OpenAPI JSON representation.

2. This document.

The work documented in this ER is a follow-on to the work done in the UML-to-GML Application
Schema (UGAS2020) Pilot [http://docs.opengeospatial.org/DRAFTS/20-012.html] (completed November 2020)
[1]. UGAS2020 had four main work items, two of which are the foundation for the work described
in this Testbed-16 ER. These two work items are: Rules for conversion of UML to JSON schema and
initial considerations for using the MDA approach to transforming a UML model of an OpenAPI
interface to a JSON representation. The work on JSON schemas is relevant to this ER as the OpenAPI
specification uses JSON schema in several places throughout the interface specification.

A UML representation of both the OpenAPI specification and OGC API - Features - Part 1: Core was
created. The OpenAPI model is used as a metamodel for creating models of OGC standards. The
metamodel is a UML representation of the OpenAPI specification. However, some design decisions
were made to fit a JSON representation into an Object Oriented (OO) modeling language. This was
done because JSON encodings do not utilize OO concepts such as inheritance. Details regarding this
can be found in both the related Testbed-14 ER [2] and the UGAS-2020 Pilot ER [1].

Development of the metamodel was done for two main reasons: 1.) Understanding the process for
modeling the specification in UML, and 2.) Creating a model to specialize implementations from. As
the implementations are specialized, it is possible to enforce the conversion to JSON in
ShapeChange using rules defined at the metamodel level. For example, the OGC definition of a
Landing Page is a specialized version of OpenAPI [https://swagger.io/specification/#openapi] type defined
in the specification.

OGC API - Features - Part 1: Core was modeled via specialization of the metamodel and using
ShapeChange to produce a JSON representation of the API definition. This approach was chosen
because at the time of Testbed-16, Part 1 of the Features API was the only OGC standard from the
OGC APIs suite approved as an official OGC Standard. The Features API also contains many of the
building blocks specified in the draft OGC API - Common. A drawback to the approach of modeling
an OGC standard is that it is complex in MDA terms and utilizes much of the OGC API specification.
In retrospect, first attempting using the MDA process on a simple OpenAPI implementation and at a
later date attempting complex models would have been prudent.

12

http://docs.opengeospatial.org/DRAFTS/20-012.html
http://docs.opengeospatial.org/DRAFTS/20-012.html
https://swagger.io/specification/#openapi

Chapter 7. Background

OGC has adopted OpenAPI as the basis for its resource based suite of standards that are being
developed in parallel with the XML based web services standards. The first OGC standard using
OpenAPI was OGC API - Features. This new OGC Web API complements the OGC Web Feature
Service (WFS) standard and may be used as a replacement. Alternatively, a facade between the OGC
API -Features instance and the OGC WFS endpoint can be implemented.

OpenAPI utilizes REST endpoints and well-known HTTP verbs including:

* GET
* POST
* PUT

OPTIONS

HEAD

DELETE

The development of OGC Web APIs to JSON based OGC APIs is a major shift in the work of the OGC
and has ramifications beyond simply defining and standardizing REST endpoints. For example,
many of the return types for geospatial data are XML based, such as GML, as well as the ISO
standards that form the basis of defining "returns" from metadata catalogs. Therefore, moving to an
API based structure involves having sensible return types and schemas while maintaining the
domain knowledge of the standard.

In addition to OGC API - Features, there are other emerging standards being developed to
complement the OWS approach. There is also a foundation API standard named OGC API -
Common that is being developed. At the time Testbed 16 was being executed, the following new
OGC Web APIs were in development:

¢ OGC API - Common - Part 1: Core

* OGC API - Features — Part 2: Core (approved on November 2nd, 2020)

* OGC API - Coverages — Part 1: Core

e OGC API - Records — Part 1: Core

¢ OGC API - Processes — Part 1: Core

e OGC API —Tiles — Part 1: Core

* OGC API - Maps - Part 1: Core

* OGC API - Styles — Part 1: Core

¢ OGC API - Environmental Data Retrieval
The draft OGC API - Common contains common requirements across each of the emerging Web API
standards. This standard was particularly important for this Testbed 16 activity as it helps define

the rules that go beyond what is supported in the OpenAPI specification. The specification of
standards within the OGC is performed in Standards Working Groups (SWGs), with input from the

13

Domain Working Groups (DWGs). These groups are responsible for generating new standards or
contributing to existing standards based on a particular domain of interest. The process of
contributing to domains or standards varies across the different working groups and therefore the
process of creating new standards is also different across the groups. Some groups start with an
existing standard and adapt it based on requirements defined from use cases, others are created
from first principles such as in an OGC Innovation Program initiative, and some are brought into
the OGC from external communities.

Using the Model Driven Architecture (MDA) process is one approach to attempt to standardize
generation of artifacts from conceptual and logical principles. MDA has been mainly used to
generate data models for specific platforms from a common logical base. An oft-used strategy is to
create a logical model, usually in the form of a UML Class diagram, and then put that model
through a piece of software to generate a target output. An advantage to this approach is that the
logical model is created once and maintained in a single place and the updated artifacts can be
generated automatically for each physical model or implementation. However, the modeling can be
complex and therefore unwieldy for all but a few experts with knowledge of the approach and
process. Additionally, a typical MDA process starts with a UML class diagram.

This makes the assumption that the platform independent model is object-oriented (0O). In
principle, the MDA approach can be used to save time and resources. However, MDA does require
development upfront to generate the artifacts for a particular platform. Additionally, if there are
changes to the target technology the code to generate the artifact for that platform may also have to
be modified. One of the bottlenecks in MDA is the availability of code to generate suitable targets.
Additionally, there are usually exceptions to generic rules in MDA. Therefore, targets have to be
modified before they can be used.

7.1. Previous work

Using UML to model data structures and interface definitions is the original purpose of the MDA
approach to architectures. This section does not provide a history of the use of MDA in geospatial
technologies as this ER assumes that the reader is familiar with MDA.

This section presents the recent work done within OGC Testbeds and Pilots to provide a grounding
for the decisions made in the OpenAPI Thread of Testbed-16.

The UML to GML Application Schema (UGAS) Pilot is the work that directly precedes the Testbed-16
OpenAPI activity. The output of that Pilot was an Engineering Report (https://portal.ogc.org/files/?
artifact_id=95469&version=1) and a version of ShapeChange that was used in the OpenAPI thread
of Testbed-16.

The UGAS Pilot sought to address four key issues with respect to JSON schemas:

1. Refine the UML to JSON rules for the NSG wide UML application schema first established in
OWS-9.

2. Create JSON encodings for relevant conceptual schemas such as the ISO 19100 series of
standards.

3. Understand the utility of the Shapes Constraint Language (SHACL) for Resource Description
Framework (RDF) documents and the transformation process from UML to JSON.

14

https://portal.ogc.org/files/?artifact_id=95469&version=1
https://portal.ogc.org/files/?artifact_id=95469&version=1

4. A preliminary investigation into the utility of deriving OpenAPI 3.1 conformant JSON schemas
using the MDA approach.

Points 1 and 4 are all relevant to the work done in Testbed-16 and are reviewed in the following
paragraphs.

The UML application schema to JSON schema rules are primarily defined to convert application
schemas, that is, a data model for a particular application to a JSON representation. The conversion
rules are designed for a direct mapping between UML classes to JSON fragments without
implementing inheritance in an object-oriented manner. The authors correctly point out that JSON
schemas do not directly support the concept of inheritance, which can be managed through a
virtual inheritance approach described in the ER. Additionally, as rules are enforced at the
supertype level, but not the subtype level, JSON schema does not support class specialization. The
approach to class specialization used in this (or UGAS?) was to extend a class data type to and
include both in the JSON schema as both are part of the model. A different approach taken is to use
a metamodel, model construct where the metamodel is abstract and the model and classes
specialized from the generalized metamodel. This ER describes the completed initial work into
deriving OpenAPI based interfaces from UML and identifies the building blocks that are required to
produce a successful UML model. However, the participants in the UGAS activity did not attempt to
produce a UML model to define the interface due to that work item being included in Testbed-16.

In Testbed 14, the participants in the application schema-based ontology development work activity
attempted to express Web Ontology Language (OWL) in UML that could then be translated via an
MDA process and ShapeChange into an Application Schema. This is a similar problem to the
OpenAPI work described in this Testbed 16 ER but with a different target based upon different
encoding rules. Essentially, the participants had similar challenges with how to express out of
bounds information, much in the same way that conformance classes are used in OpenAPI to
describe conformance to clients.

The Testbed-14 participants also wrote an ER that describes conversion of UML application
schemas to JSON and JSON-LD (http://docs.opengeospatial.org/per/18-091r2.html). The authors
identified several issues with conversion of application schemas to JSON that included: Lack of
support of typical object-oriented concepts in JSON such as inheritance, lack of methods to verify
schemas in JSON - notably the lack of the ability within JSON to identify its parent schema, and lack
of support for other validation mechanisms such as namespaces. The MDA approach requires many
of these concepts to either be directly available or to be virtualized. Therefore, many design
decisions made in the modeling process were made to make up for these short comings.

One of the recommendations of this ER was to develop an extension to ShapeChange with the JSON
schema target. Although this project was not designed to realize that goal, it did provide some
lessons learned for would-be implementers that are discussed in a future section. The second
recommendation was to develop JSON schemas for ISO schemas. This is a broader question that
needs to be better understood. ISO separates their conceptual model standards from their encoding
standards (ISO 19115-1:2014 and ISO/TS 19115-3:2016). JSON potentially needs the same treatment,
which would have real-world implications for emerging OGC standards such as OGC API - Records
as that in development API will serve metadata that is largely ISO derived.

OGC API - Features was the first OGC Web API Standard to be approved that uses OpenAPI to
document the API based on the resource paradigm. As OGC API - Features was the first Web API to

15

http://docs.opengeospatial.org/per/18-091r2.html

be approved by the OGC membership, it provides a template for other, new OGC API standards.
OGC API - Features has several parts. At the time of Testbed 16, only OGC API - Features - Part 1 was
approved. Therefore, Part 1 was considered in this Testbed 16 project as a case study. The structure
of the Features API provides a foundation for other standards in the emerging OGC API suite. For
example, OGC API - Records has the same structure as OGC API - Features but instead contains
conformance classes such as FullTextQuery that allows for operations such as searching metadata
records. An additional reason for using API Features is that the draft OGC API - Common uses many
of the conformance classes in Features. Therefore, these classes will likely form the basis of the
building blocks for future work in the OGC API suite of standards.

7.2. OpenAPI

The OpenAPI Specification (formerly Swagger Specification) is an API description format for APIs
that implement principles of Representational State Transfer (REST). An OpenAPI file allows the
developer to describe an entire API including: Available endpoints (/users) and operations on each
endpoint (GET /users, POST /users), Operation parameters, and input and output for each operation,
and so forth. The use of OpenAPI was experimented with during the development of OGC API
Features. Based on that experience, the OGC Membership approved recommending the use of
OpenAPI to document any OGC API standard either in development or in the future. OpenAPI
provides a well-defined specification for documenting a structure and conformance rules to be
adhered to when implementing an API. Additionally, there are many developer tools for generating
an API document or stubbing code from an existing API document.

However, OpenAPI is not object-oriented and therefore modeling the OpenAPI specification within
the UML class construct requires compensating for this issue. Many of the relationships between
OpenAPI objects are straight forward, and can be represented using a simple composition or
aggregation depending on the relationship. However, OpenAPI does contain more difficult
constructs such as map types (aka dictionary - https://swagger.io/docs/specification/data-models/
dictionaries/) in which key/value pairs are both variable. This is slightly more difficult to model in a
UML class diagram that relies more upon simple attribute names and variable of fixed type.
Additionally, OpenAPI contains arrays of types that need to be ordered, which also are difficult to
represent.

Another feature of OpenAPI is that it inherits and extends JSON Schema in an object-oriented
manner, but does not explicitly define JSON schema types in the specification. Therefore, a true
UML model would also include all of the aspects of JSON schema and all of its extensions. While
possible, this was considered out of scope in Testbed 16.

7.3. Model Driven Architecture (MDA)

MDA has been a recognized approach to artifact design and generation for decades. One of the
motivating principles behind MDA is the approach to design and the ability to remain technology
agnostic. MDA involves creating an initial model, called the Platform Independent Model (PIM) and
then generating Platform Specific Models (PSM) automatically from the model. This provides
several advantages including: Standardized documentation of artifacts, ability to change
implemented technologies without changing the underlying model and the ability to extend the
underlying model and quickly generate the artifacts required for implementation.

16

https://swagger.io/docs/specification/data-models/dictionaries/
https://swagger.io/docs/specification/data-models/dictionaries/

Generation of OGC API standards using the MDA approach is sensible as the new suite of OGC API
standards utilize the same underlying model. Changes and extensions to the model are allowed.
However, this can be done in a consistent and therefore controlled manner. The modeling language
for the MDA approach is often UML class diagrams as they describe the class attributes,
relationships and methods. This combination of entities allows the model to express both structure
and behavior and is therefore suited to modeling APIs and associated data schemas.

MDA can also be used for interface definitions. However, MDA has also been used for data
structure definitions using UML class diagrams. When employed for data definitions, the
transformations are rather simplistic as it involves taking the PIM and transforming it into
different versions of SQL rather than enforcing encoding rules used for an interface definition.

7.4. ShapeChange

To transform a UML representation of a model into a configuration file for a target platform,
software is used to perform the translation and transformation. ShapeChange [
https://shapechange.net/] was the choice of software for this job in Testbed-16 as it has been utilized in
previous Testbeds and Pilots and is mature enough to enable a lot of the functionality required.
ShapeChange supports JSON schemas through the work completed in UGAS2020 Pilot and the
version used in this project was the development branch taken from the recently concluded UML to
GML Pilot as this Testbed thread essentially picks up where that piece of work left off.

ShapeChange connects directly to an Enterprise Architect (EA) model created using the EA
(https://sparxsystems.com/) software. Through some configuration, it then takes the UML model and
transforms it into ShapeChange XML (SCXML). The SCXML is the starting point for the development
effort to convert the UML model into the chosen target, that is, the developer works only on the
XML and manipulates it into the format required for the target. The target is then output from
ShapeChange according to the rules applied to the SCXML.

17

https://shapechange.net/
https://sparxsystems.com/

Chapter 8. OpenAPI Modeling

The OpenAPI component delivery has two main aspects to it: The UML model and the ShapeChange
implementation. This section covers these aspects in turn with an initial focus on the design
decisions made for the UML modeling exercise, and the ShapeChange implementation.

bilities UML Conformance

ShapeChange Capa

Model usability

Figure 1. The OpenAPI Main View

Overall, the design decisions were made to manage the trade-off between certain aspects of the
project. These are as follows:

* UML conformance - UML models are governed by an ISO standard and the usage of the
different aspects of the modeling language is defined and controlled by said standard.
Therefore, UML conformance is a requirement of the model, else it is not understandable by
would-be users or ShapeChange.

* Model usability - The model described was created with usability in mind, this includes aspects
such as; consistency, readability, traceability and reuse of elements. This aspect was potentially
the most challenging, as the OpenAPI specification is complex at times and geared towards JSON
encodings that do not support typical OO constructs such as inheritance.

» ShapeChange capabilities - UML models ingested in ShapeChange are converted to SCXML prior
to being worked on by any implemented code and extension to ShapeChange. Therefore,
implementing an extension to ShapeChange uses the SCXML representation as a baseline and

18

any further implementation to ShapeChange’s capabilities starts with the SCXML representation
of the UML model. An example of a shortcoming in ShapeChange is that whilst is recognizes
association classes as entities, it does not recognize the connection that is made between the
association class and the relationship it refers to. Therefore, any use of an association class is a
challenge because SCXML does not specify the relationship it refers to.

* Implementation time - OGC Testbeds are designed to understand ideas and produce proof of
concept software as well as making recommendations for future work. The Minimum Viable
Product (MVP) for this work is to create a UML model and ShapeChange implementation to
produce a JSON encoding and representation of an OpenAPI interface. There are several out-of-
scope items that include:

o Validating models (beyond the model-metamodel relationship).
- Enforcing OGC conventions such as conformance classes.

o Producing a generic solution that covers all eventualities.

8.1. OpenAPI UML Models

As mentioned in the introduction, there is no authoritative UML model for OpenAPI that was
suitable for the needs of the project. Therefore, a UML model was created from the OpenAPI
documentation. Although the model represents the OpenAPI standard and guidance in the most
accurate way possible, there is a trade-off between the following factors:

* UML 'correctness' - the model is built in UML and should be compliant with the standard.

» ShapeChange requirements and access to internal variables - ShapeChange needs access to the
internal variables expressed in the UML model in order to implement them.

» Aesthetic quality - the model needs to be logical and readable to encourage use.
The UML modeling described and completed in this thread is two-fold:

* An OpenAPI metamodel created from the specification using the relationships and classes
described.

* a model that implements the metamodel, OGC API - Features - Part 1 Core.

This approach was chosen to provide future implementers with a metamodel that they could use as
a reference for further OGC standard development and documentation.

8.2. OpenAPI UML metamodel

The OpenAPI metamodel was created from the OpenAPI specification [https:/github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md] version 3.0.2 and is presented as a set of classes that interact
via relationships. OpenAPI is prescriptive about the majority of the OpenAPI objects and
relationships. However it is not strictly OO. Therefore, interpretations and design decisions were
made to represent OpenAPI as closely as possible whilst adhering to UML convention. An additional
factor that influences the design of the model was the requirement to implement a plugin to
ShapeChange to produce the OpenAPI document from the UML model using an MDA approach. This
has a direct influence on the use of methods within UML, as ShapeChange currently does not

19

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

recognize methods, therefore the operation call within OpenAPI would naturally sit as a method in a
class diagram, but has been included as an attribute due to the shortcomings of ShapeChange. This
section shows the views of the UML model as well as some of the design decisions taken.

The metamodel was designed with consistency as a key factor for determining success. For
example, the Reference object could be presented as a String type with the name $ref and the value
as the variable. From a ShapeChange implementation perspective, this would be the simplest
option, as it would follow the typical key/value pairing. However, many reference objects are
reused throughout the model and have rules enforced upon them. Therefore, from a UML
perspective, implementing a Reference class is prudent so that the specializations of the Reference
class can be acted upon accordingly. A similar approach was taken for the Map class, which is
discussed later in this section.

The metamodel design process included the entire OpenAPI specification and was done as a
reference for implementing classes and as a hook for the ShapeChange implementation. The OGC
API - Features - Part 1: Core specialization only uses a subset of the metamodel, but the full model is
available in the accompanying Enterprise Architect project.

8.2.1. OpenAPI Main view

Figure 2. The OpenAPI Main View

The OpenAPI main view in Figure 2 shows the OpenAPI class as an entry point for the specification,
it sits at the top level of the resultant OpenAPI document tree. The model follows the OpenAPI
specification with relationships between the classes as compositions as the conceptual relationship
between the classes is strong; in JSON when encapsulating brackets are destroyed, the inner
contents of those brackets is also destroyed. This maybe a heuristic for modeling JSON in UML
generally. The OpenAPI type is also straightforward in terms of its variables with each having a

20

simplistic key, value or key and array of values paring.

8.2.2. OpenAPI Paths views

Figure 3. The OpenAPI Paths View

The Paths view is an extension of the main view but separated out for readability. As mentioned
previously, the paths class is where the path of a resource is located. These paths lend themselves to
be UML operations. However, ShapeChange does not process operations and the path would
therefore not appear in the output SCXML. Therefore, operations are described as attributes with
the value representing the operation body and an association class used to inject the path variable.

The types of operations that can be performed are restricted to the HTTP verbs and marked as
optional. If operations were represented as methods in the UML diagram, then restricting the
vocabulary of an operation would be simple but still making it mandatory so that at least one
exists. This was more difficult to show using the attribute construct as it requires attributes to have
knowledge of each other. Another way to represent it is to have an operation attribute with a
restricted vocabulary or enumeration as the value and the multiplicity of 1..* This would ensure
that an operation exists. However, more work would have to have been done in ShapeChange to
correctly format any operation variable within a Path class.

8.2.3. OpenAPI Maps views

21

s)

Map.

Map Parameters volue is:

P ‘ Ary 1 xession

+ na
+ value: Any

Main Types::Callback

«aPIProperty»
+ callback: Path item [0.1]

Figure 4. The OpenAPI Maps View

The OpenAPI standard contains a Map type, which is a typical key, value pair_. However, the map is
specialized according to the value type is can contain, for example, a Map Object that maps
responses to the Components class has a String, Response Object or Reference as its acceptable
types. These Maps were specialized to control the data type allowed for each Map type, for
example, a Response Map contains a name (the response code) and a value that must be of type
Response. Another method to represent this is to have a single Map type and enforce the value type
arguments at another point in the process such as within ShapeChange or via a separate process.

Another issue with the Map type and other types across the specification was control for variable
types in attribute values. For example, all Map types have a defined class at their value, or a
Reference type. In UML, this could have been done by simply including a pipe (|) in the attribute
value. However, this is not strictly allowed in UML and the ShapeChange implementation would
have to control for pipes in the attribute values to enforce the associated type. Map types with
multiple attribute value types were controlled using a double specialization to show extension of a
Map type with an Object type as its value.

8.2.4. Association classes

Use of association classes has been minimized as Map types usually account for a name and a
value. However, there are certain instances within the OpenAPI specification when this is not the
case. The main examples are in the Paths Object and the Schema object, the Callbacks object also

22

contains an association class. The use of the association class was deemed suitable as it has the
same meaning whenever it is used. From a UML persepctive this happens when the OpenAPI
specification records the attribute name as a variable type and the value is an encapsulated class
often with a controlled vocabulary. For example, the response type in the paths object records the
following:

* The response code as the attribute name.

» The instance of the response class or reference as the attribute value.
This translates in UML to:

* Default is the default response as an attribute name.
» The type is Response to indicate that it a response type.
» The association class consists of a variable called code controlled by an HTTP response code as

an enumeration.

This approach has shortcomings in that rules need to be encoded in ShapeChange to interpret the
variables in the association class to produce the correct output document.

8.2.4.1. Association in Paths objects

Main Types::Paths

«APIProperty=
+ Path Item: Path Item [0.¥]

Main Types::Path

_— «APIProperty=»
- + Path: String

0.*

Main Types::Path Item

#APIProperty=
+ Sref: String [0..1]
+ summary: String [0..1]
+ description: String [0..1]
+ operation: [Http Verbs, Operation] [0..%]

Figure 5. Use of Path association

The Paths Object in the OpenAPI specification contains a Field Pattern as an input variable name,
therefore the specification is using a variable name as a typical variable with a Path Item Object as
its type. This pattern does not map to the UML class diagram in the same way as the standard
variable name and pattern. Association classes specialized from Path object (created for the model)
allow for a path to be inserted into the model and document while maintaining the document

23

hierarchy.

8.2.4.2. Association in Schema objects

Main Types::Schema

«APIProperty»
nullable: Boolean [0..1] =false
discriminator: Discriminator [0..1]
readOnly: Boolean [0..1] = false
writeOnly: Boolean [0.1] =false
externalDocs: External Documertation [0.1]
example [0..1]
deprecated: Boolean [0..1]
properties: Schema [0..7]
title: String [0..1]
multipleOF: String
exclusiveMaximum: String
minimum: String [0..1]
exclusiveMinimum: String [0.1]
maxLength: String [0..1]
minlength: String [0.1]
pattern [0..1]
maxltems: String [0..1]
minltems: String [0.1]
uniqueltems: String [0..%]
maxProperties: String [0.1] - Main Types::
minProperties: String [0..1] Schema Path
required: String [0..1] 3 Reference

enum: String [0.7]

type: String [0..1] = string «APIProperty»
allOf: Schema [0.1] + name: String
oneOf: Schema [0..1]

anyOf: Schema [0..1]

not: Schema [0.1]

items: Schema [0..%]
additionalProperties: Schema [0.7]
description: String [0..1]
format: String [0..1]

default: String [0.1]

L I S . T T T e i S T T o e e e A

Figure 6. Use of Schema self-referencing association

The Schema object is self-referential in multiple variables, for example, the properties variable is
also an array of Schema objects. In other words, Schema Objects can have properties that are
Schema Objects that can also have properties that are also schema objects. If a Schema Object is
referenced from the Schemas aspect of the Components Object, then there is a typical name, value
attribute entry to hold the schema name and the specific Schema Object class. However, when the
schema is self-referencing, there is no place (in UML) to hold this information. Therefore, an
Association Class is used to rectify this shortcoming. This is particularly salient in the Properties
and Items variables. Another complication to this is that all Schema Objects can also hold
References and any mixture of the two.

Schemas in OpenAPI rely on JSON schema as a base standard with a list of extensions relayed in the
specification. Therefore, the UML representation of the schema object contains the JSON schema
variables but with the OpenAPI constraints included.

8.2.4.3. Association in Callbacks objects

The association class is in callback objects to account for the attribute name linking callback to Path
Item object being a variable in the specification named {expression}. An association class is used to
intercept the relationship and insert a String type conforming to an expression. This item in the
metamodel is not used in the implementation as it is not used explicitly in OGC API - Features, but
remains for reference.

8.3. OGC API - Features - Part 1: Core

The approach to implementing the OGC API - Features standard is to utilize the metamodel via

24

specialization of classes. This strategy provides ShapeChange with a generalized class to apply
business rules to. For example, ShapeChange knows that the LandingPage class is a specialization of
OpenAPI Object and therefore should be placed as the entry and top-level class for the model.
Likewise, a class that inherits from a Map type will have a name/value pair. The name should be
inserted at the appropriate place in the target document with the aspects of the type mapped to
value placed as nested attributes. As the map type is specialized, the business rules can also be used
control the vocabulary of the value type.

The OGC API - Features - Part 1: Core model follows the metamodel as closely as possible and all
classes included are specializations of the metamodel classes. The class names are irrelevant to the
modeling process and ShapeChange does not use them. However, the classes are named according
to a convention that provides the class type initially and then naming according to where the class
sits in the hierarchy, this is done for traceability purposes.

class Landing Page /)

serviceBase does not
appearinthe
specification, i Is include d

Contact| Openapl|

Contact Features | OpenAPI Landing Page

entation Features [0.*]

n es Core [0.1]

contact: Contact Features Core [0..1]

paths: Path [0.%]

components: Features Core Components [0..%]
Base: String [0..1] = ogc/features

4+ description: String = WFS Specification
+ wrl:String = "https://github.

x
10.70.1 0.1

Server|

Server Features Core ° ‘

4 url:String ="http//ows geo.
+ description: String =This server

+paths|0.1 +paths
i —

0.1

Paths::Path Features Core Conformance

Tags + Path ltem: Path Features Core

Path item: Path Item [0.] ‘

o~ ipaths +paths|0.1

+ name: String = Capabilities
+ description: String = essential chara.

Paths Paths.

Paths::Path Features Core Filter

0.1

Paths::Path Features Core

+components 1

+ Path Iltem: Path Features Core ltem + Path Item: Path Features Cure Filter

+ description: String = access todda ...

Figure 7. Landing Page

The entire model is very large containing many classes and was built using EA.

8.3.1. Paths

Paths have been split into two diagrams for readability. The collections-based paths are separated
into a different diagram.

25

dlass Paths /)

These association classes are inserted to provide a path String
as the variable name encapsulate d the variable value rather
than the name (se< https://github.com/OAl/OpenAPI-

«enumeration

Data Types::HTTP
Vverbs

hence the need fora

Operation. It allows

response (which s
cptional) see

nsesObject

Operation Objectuses the
Responses Object and
Components aecess the
Response Objects directly,

responses object in the

definition of a default

https://github. com/OAl

Specffication/blob/master
fversions/3.0.2 mdérespo

i Path
Path Features Core

1|+ Path:String=/

Paths Paths

Path Features Core Conformance Path Features Core Filter

+ Path item: Path Features Core Confrmence Path Item: Path Features Core Filter

Path Features Core
Conformance

Path: String = /conformance.

+

Operation Features Core HTTP.

+responses 1 +responses 1
L

Responses

Responses Features Core Operation

+ responses: Response [1.%]

+Path item +Path item |0.1
+path item 0.1
Path ftzm Path item)
patkieg Path ftem Features Core Conformance Path item Features Core Filter
Path Features Core tem
+ get: Operation Features Core Conformance ‘ + et Operation Features Core Filter |
0.1 01
+get 0.1 et (0.1 +get 0.1
Operation Operation Operation
Operation Features Core Operation Features Core Confarmance. Operation Features Core Filter

+ tags:Tag [0.*] = Capabilties + tags:Tag[0.%] + tagsiTag[0.7]

+ summary: String [0..1] = landing page + summary: String [0.1] = information abo. + summary: String = information abo.

+ deseription: String [0..1] =The Ianding pag. 4+ description: String [0.1] = A list of all c. + description: String= A list of

+ operationid: String = JelaNTIAgPage + operationld: String = getConformanceD. + operationid: String = getFilterCapab

4 responses: Responses Features (e Operation | 01 |+ responses: Features Core Operation Responses + responses: Features Core Filter Operation Resparses

+tags ‘0.1
Ll Ay 0.1 0.1 01 0.1 0.1
+tags
Tag Features Core capab o1
+ name: string =- Capebilities | og +responses 1
01 Responses: Features Core

Filter Operation Responses
HTTP Response Codel
Operation HTTP Status Code
Features Care Filter

+ responses: Response [1.%]

HITP Response Code,
Operation HITP Status Code
Features Core Filter

These are incuded to get.

+content|0.1

+content|0.1 +content|0.1

0.1 0.1 the “cstatus code>"
insertedinto the code: HTTR Status Codes = 200
document.
+responses 0.1
|
Reference
Responses::Response 500 serverEror T
Reference
HTTP Response Code $ref: Reference = '#/components/r.
HTTP Response Code| + Sref:Reference ='#/components/r.
Operation HTTP status Code
Features Core
Status Code A —
P + code: HTTP Status Code = 500
+responses|0..1
Response|
Response Features Core Operation 200
+ content: Map Content [1.%]
S
e
1
1 1 1

+content[0.1

Map Content|
Maps::Map Content YAML

Map Content]
Maps:

lap Content CBOR

Maps::Map Content ISON

Map Content] Map Content|

Maps::Map Content HTML

>
+

name: String = application/x-yaml
value: Generic Media Type

+ name: String =application/char
+ value: Generic Media Type

+ name: String =application/char
+ value: Generic Media Type

+ name: String = text/html
+ value: HTML Media Type

0.1

value (0.1

Wedia Type
Media Type HTML

schema: Schema HTML

+schema| 1

Schema.
‘Schema HTML

type: String = string

Figure 8. Paths

8.3.1.1. Collections

Collections form the bulk of the paths, therefore they have been included separately.

26

Figure 9. Collections

8.3.2. Components

The components aspect is a major part of the OpenAPI hierarchy as components contain all of
structures and definitions required to build API queries from building blocks as well as the
response type the client should expect. Many of the response types and parameters can now be
defined as references, thus removing the complex structure from the model.

8.3.2.1. Responses

The responses are mapped out and sit in the Components aspect of the OpenAPI document. The
responses, schemas and parameters are linked from their component definitions to their
instantiations via a reference object. The Figure 10 provides the top level responses and their
relationships to their Map object.

class Responses Overview /

Map Response

Maps::Map LandingPage

Response Components Map Response

+responses))
Landing page::C Features Core Invalid

+ name: String =LandingPage [0 e
= >
+ value: Response LandingPage + schemas: Map Schemas [0..%] 01 0.1
+responses + responses: Map Responses [0.%] name: String = InvalidParameter
57|+ parameters: Map Parameters [0.7] value: Response InvalidParameter
> ———

-

-

Map Response |01 o
Maps::Map Collections
Response 01 0.1 0.1{) 01 0.1) 0.1
tresponses Map Response
+ name: String = Collections . .,
N Maps::Map FilterCapabilities
+ value: Response Cdlectios ta 0.1

Maps::Map Collection 0.1
Response

+ name: String = Collection
- value: Response Collection

‘ Map Response

+ name: String = FilterCapabilities
value: Response Filter Capehilities

-

‘ Map Response Response

+responses 0.1
|

+responses|0..1

Maps::Map ConformanceDelaration +respanses| 0.1 Map Response

Response Mops: e R
e laps::Map Queryables
+ name:String = ConformanceDecl S Response
japs::Map Feature
+ value: Response ConformanceDeclaration o "
Response + name:String = Queryables +responses|0..1
+ value: Response Queryailes
+ name: String = Feature Map Response
+ wvalue: Response Feature +responses 0.1 Maps::Map Features
|

Map Response -

Maps::Map ServerError
Response

+ name: String = Features
+ value: Response Features

+ name: String = ServerError
+ value: Response ServerEmar

Figure 10. Responses Overview

27

Figure 11 provides the detail for each of the responses. The responses are instantiated in the
Operation aspect of the Paths class.

Figure 11. Responses Detail

As mentioned previously, the Map object is specialized to a Response Map object to control for the

value type. Many of the response returns rely on references that are re-used throughout the
Responses classes.

8.3.2.2. Parameters

Parameters are components that often contain schemas, again they are tied to the Paths aspect via a
Reference. The schemas are self-referential and contain schemas within schemas. This was the
most difficult aspect of the standard to model due to multiple nested schemas.

28

Figure 12. Parameters

The Parameter objects are far simpler than the Response objects as they simply define the inputs
for each parameter. A geospatially relevant parameter is the BBOX, where the maximum and
minimum number of entries that are valid are 4 and 6 respectively to reflect the standardized
manner that BBOXs are defined.

8.3.2.3. Schemas

Schemas are by far the most complex and numerous of the components and are split into 9
diagrams, there is one included for reference here.

")

Figure 13. Schemas example

Schemas become more complex as the parameters that are included also contain attributes of type
schemas. This potentially means that attributes within the main schema types contain schemas
with further schemas nested further down the tree. Although conceptually easy in JSON, this does
make for a sizable UML model when fully modeled.

29

Figure 14. Schemas example

The schema type is a prime example of use of an association class to intercept relationships. At the
top level of schema, when instantiated via the Schemas object, the relationship calls for a Schema
Map object, which allows for a name, value pairing. However, when a Schema Object is instantiated
within a higher Schema Object through, for example the Properties Object, another Schema object
is called for without the use of the Schema Map type. Therefore, there is no place to model the
attribute name (properties), the schema name (queryables, for example) and the schema class
being referred to (Schema queryables property). Therefore, an association class is inserted into the
relationship between the attribute properties and the class Schema queryables property.

8.3.3. References

As mentioned previously, references tie definitions of components to instantiations.

30

Figure 15. References

The reference type was included to utilize entries across the entire UML model. For example, the
reference to conformance classes provides the modeler with the ability to hold the references in a
separate pool for implementation across aspects of the model and across other standards should
they be modeled in the future. A stripped-down version of OGC API - Features could contain
references instead of formal definitions of most schemas and parameters.

31

Chapter 9. ShapeChange Implementation

ShapeChange is a software application that converts UML models to different target outputs. These
targets could be XML, JSON or a different format with validation and encoding rules applied at the
point of conversion. ShapeChange already has many targets and at the time Testbed 16 was
completed also had a preliminary implementation for JSON schema on a separate branch.
However, ShapeChange does not have a target configured for OpenAPI interfaces. Therefore, the
primary development work documented here was concerned with developing the software to
address the OpenAPI target.

The purpose of using ShapeChange in the OpenAPI Thread of Testbed-16 was to convert a UML
representation of an OpenAPI definition into the JSON encoding. In a real-world environment, the
user could then take the generated JSON document and stub the required classes for
implementation. The test dataset for the implementation was the OGC API - Features - Part 1: Core
(described in previous sections). The changes to ShapeChange are also not designed to solve for the
generic standard case as the development work in the Testbed was largely a research exercise to
understand the process of using the MDA approach for defining interfaces.

ShapeChange connects to an EA file and creates a ShapeChange internal representation of the
model in SCXML and uses this as a baseline to access the variables from the UML model. The
structure of the SCXML enables all relevant relationships, classes, attributes and variables to be
captured for transformation into the target apart from where mentioned. The development delta is
manipulation of SCXML to produce the correct target. Modifying ShapeChange’s core code and
functionality is out of scope.

9.1. Initial Configuration

The ShapeChange configuration can be complex, to keep the configuration simple, the following
variables were set:

* The SCXML input file name.
» The home package, i.e. the entry point into the model.

* The output Path for the OpenAPI JSON file.

In a real world scenario, one could use more of the configuration variables to control for
vocabularies and other, extended aspects of JSON schema.

Below is the configuration file.

32

<?xml version="1.0" encoding="1S0-8859-1"7>
<ShapeChangeConfiguration xsi:schemalocation="http://www.interactive-
instruments.de/ShapeChange/Configuration/1.1
config/schema/ShapeChangeConfiguration.xsd" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xmlns:sc="http://www.interactive-
instruments.de/ShapeChange/Configuration/1.1" xmlns="http://www.interactive-
instruments.de/ShapeChange/Configuration/1.1" xmlns:xi=
“http://www.w3.0rg/2001/XInclude">
<input id="model">
<parameter name="1inputModelType" value="SCXML"/>
<parameter name="1inputFile" value=".\results\modelexport\INPUT\schema_export.xml
"/
<parameter value="true" name="publicOnly"/>
<parameter value="disabled" name="checkingConstraints"/>
<parameter value="true" name="sortedSchemaOutput"/>
<xi:include href="http://shapechange.net/resources/config/StandardAliases.xml"/>
<packages>
<PackageInfo packageName="0GC API - Features - Part 1: Core" nsabr="app"
xsdDocument="http://shapechange.net/resources/schema/ShapeChangeConfiguration.xsd"
version="0.01"/>
</packages>
</input>
<log>
<parameter value="INFO" name="reportLevel"/>
<parameter value="test/SCXML/log.xml" name="logFile"/>
</log>
<targets>
<Target class=
"de.interactive_instruments.ShapeChange.Target.HelyxOpenApi.OpenAPIEntry" mode=
"enabled" inputs="model">
<targetParameter name="outputDirectory" value="results/openapi"/>
<targetParameter name="outputFilename" value="openapi_instantiable.json"/>
</Target>
</targets>
</ShapeChangeConfiguration>

9.2. Target Generation Rules

The plugin to ShapeChange enables generation of OpenAPI 3.0 targets from the UML Class diagram
described in this ER. However, generation of targets using UML required design decisions made in
the modeling phase. One of the heuristics applied to the SCXML representation of the UML model
was that attributes and values were treated as key:value pairs. This heuristic solves many of the
issues with the ShapeChange implementation, with exceptions created on a meta-class basis.

33

OpenAPl
OpenAPI Landing Page

components: Features Core Components [0..%]
contact: Contact Features Core [0..1] K
externalDocs: External Document ation Featurss [0..%]
info: Info Features Core [0..1]

openapi: 5tring = 3.0.2

paths: Path [0..%]

servers: Server Features Core [0..%]

serviceBase: 5tring [0..1] = ogc/features

tags: Tag [0..%]

Figure 16. UML representation of Landing Page class

{

+ 4+ o+ 4+ + +

|

"openapi”: "3.0.2",

Figure 17. JSON representation of the OpenAPI attribute

As is often the case that the attribute value is another class the class name makes up the Key aspect
of the relationship and the class contents is the value. As mentioned previously, this is not the
suggested solution for an operational version of this software. Business rules should be based upon
the meta-class. This approach solves many of the cases, with a notable exception of the schemas,
which has many recursive relationships. In this instance, the name is ignored and the relationship
is defined through the association class attribute value. In a second iteration of the implementation,
the class name would not be used and the generation rules would be derived using a rules engine
linked to the generalized classes and thus the specification

The current version of the model uses the convention of name and value as a key/value pair. Where
this is the case, the JSON has the key aspect equal to the name and the contents of the value field is
made of the value attribute in the UML.

34

Map Content
Maps::Map Content HTML

+ name: String = text/htm
+ wvalue: HTML Media Typef

0..1

+value |0..1

Media Type
Media Type HTML

+ schema: Schema HTML

’ 0..1

+schema |1

Schema

Schema HTML

+ type: String =string

Figure 18. UML representation of a name/value pair

"text/html™: {
"schema™: {
"type”: "string”
¥
¥

Figure 19. JSON representation of a name/value pair as a key/value pair

35

However, if there is an attribute with a name field, then it is treated as either a simple attribute, or
a class as described in the previous paragraphs.

Many of the classes contain an aggregation property role for several classes related to a single class
at a higher level. When this is the case, the contents of the associated classes all appear at the same
level in the output JSON.

Response Features Core Operation 200

Figure 20. UML representation of multiple classes aggregated to a single class

"200": {
"content": {
"application/x-yaml": {
"schema": {
“type": "string®;,
"format": "binary"
¥
Fs
"application/json": {
"schema": {
"type": "string",
"format™: "binary”
¥
by
"application/cbor"”: {
"schema": {
"type": "string",
"format": "binary"
¥

s
"text/html": {

"schema™: {
"type": "string"
b
}

Figure 21. JSON representation of multiple classes aggregated to a single class

The described approach works as a general rule except in certain circumstances, for example if the
association property role is equal to parameters then the output JSON content will be inside a JSON
array if there is more than class with the same association property role name to a higher level

36

class.

Map Content|

Parameters::Parameter filter

Reference
+refr ST =" ComponeTS/pr
toperation 0.1 L
" Map Content
Operation

. ’ . 0.1 Parameters::Parameter limit
Operation Features Core Collections Collectionid Items. i
Reference

i

-

description: String [0..1] = Fetch features...
9 tring - geteaat

01 0.1+ |sref: string = '#/componems/p...

parameters: Map Cntent [0..%]

responses: Featurel Core Collections Collecti onid ftems Resporses T
summary: String [0J1] = fetch features +parameters| Map Content
tags: Tag [0..%] bbox
WS .1 RETETENE

0.1 0.1 + Sref: string = '#/components/p...

‘ +parameters
L

F—

0.1 Map Content

dateTime

Reference

+ Sfef: String = "#/componerts/p. ...

+parameters0..1°

Map Content]

Parameters::Parameter filter-lang

ing= P P

Ry

[
Figure 22. UML representation the parameters class

"parameters”: [

"$ref": "#/components/parameters/collectionId”
+s
"$ref": "#/components/parameters/limit"
s
{
"$ref": "#/components/parameters/bbox"
bs
"$ref": "#/components/parameters/datetime”
bs
"$ref": "#/components/parameters/filter”
s
{
"$ref": "#/components/parameters/filter-lang”
¥
1

Figure 23. JSON representation of the parameters class

Enumerations are dealt with by creation of a JSON array to contain the values and the responses
and currently the response codes are extracted from the text of a class joining a response.

There are several other general rules that are implemented as part of the ShapeChange conversion
process. For example, the ShapeChange configuration defines four classes to search through in
sequence; LandingPage, Paths, Components and Schemas. This approach generates an output that
resembles an OpenAPI document with minor errors.

As described in Testbed-14 JSON schemas ER, inheritance is managed within the schema aspect
using the JSON Schema type allof (https://json-schema.org/understanding-json-schema/reference/
combining.html#allof). This mechanism for managing this is well defined in the JSON schema,
Testbed-14 and the recently concluded UGAS Pilot.

9.3. Association Classes

Association classes are used in the UML model to inject text into the JSON document. Examples
include schemas where the term schema is not used, paths where the attribute name is also a
variable, and responses where the attribute name is a controlled vocabulary. ShapeChange

37

https://json-schema.org/understanding-json-schema/reference/combining.html#allof
https://json-schema.org/understanding-json-schema/reference/combining.html#allof

recognizes the association classes, but it does not recognize the relationship that the association
class is used to intercept. Therefore, approaches such as looking for the response code in a class
name, mentioned in the previous section, were adopted to create the OpenAPI JSON output.
Another approach to this is to use a name/value pair relationship via a qualifier, or to split the
association class into a normal class with two separate relationships.

e R L a8 £ A A e s e Ll ek Eed A

+ responses: Map Responses [0..%] I

Project | Context Diagram Element + schemas: Map Schermt (08)

4 [B] OpenaAPI30 -
4 £ 0GC API - Features - Part 1: Core
4 51 Components
p £ Parameters
i £1 Responses
4 53 Sehemas
p B
p B2
401

Schemas 1

Schemas 2

Schemas 3

5 Schemas 3

Schema extent

Schema extent bbox item prop
Schema extent bbox property

Schema extent bbox property i

0.1
+schemas [0..1

Map Schema

schema extent Map

+ name: String = extent
+ value: Schema extent

+value [0..1

chema Path Reference
Schema extent bbox
temporal trs property

‘ Schema

Schema extent

+ name: String=trs

+ description: Sting [0..1] =>-
+ properties: Schema [0..*]
+ type: JSON Data Types = object

Schema extent bbox spatial prc ‘

Schema extent bbox spatial prc

0.1

Schema Path Reference
0..1
Schema extent bbox spatial property

Schema Path Reference

Schema extent bbox

Schema extent bbox temporal temportal property
+ name: String = spatial 1

+ value: Schema extent bbox spatial propsty

Schema extent bbox temporal + name: String = temporl

+properties 0.1
1 ~—+properties

Schema extent bbox temporal
Schema

YT T Y YV WYY YW
T [0 E EE G GO0 GO0 ED G ED

Schema extent bbox temporal

Schema extent bbox spatial property

Crhnmn auvtant by tnmmaral

Figure 24. UML representation of relationship using an association class

Schema

Schema extent

Schema Path Reference [1properties + The...

description: Sting [0..1] = =

Schema extent bbox spatial property ——<_>{ + properties: Schema [0..*]
0.1 0.1+ type:ISON Data Types=object
name: String = spatial
value: Schema extent bbox spatial popaty
{) 0.1
+uralueTﬂ..1
Schema

Schema extent bbox spatial property

description: Sting [0..1] ==>-
minltems: String=1
properties: Schema [0..%]
type: String = object

chema Path Reference

+ + + +

Schema extent crs
property

‘ath Reference ™ [1

Figure 25. UML representation of a relationship using a class with separate connectors

(a8

9.4. Results

The results of the MDA process including the UML models and implementations are not perfect.
Much of the generated OpenAPI document is conformant and the base structure is correct.
However, there are issues with the more complex aspects of the model including schemas.
Additionally, the system was only tested using an implementation of OGC API - Features — Part 1:
Core. There are bound to be more issues with the output of the MDA process, should the entire
specification be under scrutiny. The output XML document can be found in the appendix OGC API
Features Part1:Core output (JSON).

38

Chapter 10. Discussion

Using the MDA approach to generate OpenAPI documents, specifically for OGC API Standards, was
successful. The tested process produced a JSON-encoded OpenAPI definition document from a UML
model. However, there are lessons to be learned from the exercise, and the focus of future work
should shift from ability to utility.

OGC Standards and OpenAPI documents can be represented using a UML model and the approach
described in this ER. Design decisions were made and documented throughout the exercise.
However, questions remain as to whether representing an interface as a UML model is a desirable
course of action. One aspect of the process that is immediately apparent is the complexity, size and
time investment required to produce UML models for these interfaces. Using the MDA approach
seems to enforce rigor at the detriment of speed. This is certainly true when creating a model from
scratch.

Another consideration is a wider OGC concern: OGC is a standards body that produces open
standards that are designed to be implemented as simply as possible with a view to remaining
stable and interoperable over time. The current suite of approved and emerging OGC API Standards
are documented using OpenAPI. This may not be true in perpetuity. There may come a time when
standards development and definition will migrate to another chosen framework, specification or
encoding. Therefore, standards could potentially be designed using a conceptual approach rather
than an encoding based approach. A typical example of this is the relationship between the ISO
19115-1:2014 Geographic Metadata standard and ISO 19115-3:2016 the associated XML schema for
the metadata standard. Both of the documents are standards. However an alternative encoding of
ISO 19115 is feasible.

Perhaps the OGC should focus more on agreeing on a core conceptual model for a given standard.
This could be done by starting with a conceptual model based on the requirements for a feature
service and then look to derive implementable standards from that conceptual architecture. This is
opposed to starting with a specification/encoding and translating older standards to have the same
functionality. An additional observation is that the conceptual requirements for processing,
disseminating and visualizing geospatial data over time remain the same within domains.
However, the technology changes rapidly. MDA represents an approach to defining standards
where the domain work remains reasonably static and the physical implementation of the
conceptual model changes frequently.

The separation of conceptual aspects of a standard and their encoding is likely to become more
salient as the OGC API suite of standards develop. An example of this is OGC API - Records, which is
an emerging draft standard that is very similar to OGC API - Features though supporting access to
metadata records. The conformance classes defined in the draft reflect those in the draft of OGC API
— Common. However, it currently does not make a provision for typical metadata standards such as
ISO 19115, nor does it define a JSON encoding for the standard, which would be in keeping with the
rest of the OGC API suite.

10.1. Recommendations

The project largely verified the MDA approach to producing OpenAPI documents from UML. The
recommendations from the work performed in Testbed-16 are:

39

* The modeling process is very complex. Reducing the complexity is necessary if the OGC
wishes to pursue the MDA approach to generating APIs. Creation of the metamodel was very
time consuming and may need to be reevaluated each time a new version of the OpenAPI
specification is released. This also raises questions about versioning and different targets for
different versions of the specification. A method for simplifying the modeling process is to
create modeling artifacts that can be used in the definition of new standards or to update older
standards when there is a version change. These building blocks should be created from OGC
API - Common.

* Consider other targets for generation. For documenting OGC Web APIs, at this time OpenAPI
is the specification/tool of choice. However, future interoperability could be improved through
the MDA approach. This recommendation is an extension of thoughts expressed in the
discussion section: De-coupling the conceptual aspects of a standard from an encoding while
utilizing an automated process to generate artifacts directly from models is key to maintaining
standards overtime. Once established the conceptual aspects of a standard do not change very
frequently. It is the encoding or the presentation more widely of the conceptual aspects that
changes frequently. Therefore, the MDA approach allows for maintenance of the conceptual
requirements of the domain and generation into many artifacts. A typical example of this is
OGC API - Processes, which at one point was a direct translation of Web Processing Service
(WPS) version 2. The conceptual requirements of a processing interface have not changed, but
the presentation has.

* Understand the relationship between a standard and an encoding. OpenAPI is a
specification for machine-readable interface files for describing, producing, consuming, and
visualizing RESTful web services. A standard represents what is required in a domain. The OGC
APIs should reflect this separation. Related to the previous recommendation, this suggests that
the OGC should understand the relationship between a standard’s domain and the standard’s
encoding.

* The OpenAPI thread only considers going from OpenAPI to UML. A converter should be
written to generate UML from OpenAPI documents. This would help the OGC document all of
their emerging standards in a recognized manner. The reverse translation from OGC API to
UML would be useful for not only documentation purposes but also for verification and
validation. Reverse engineering API documents to UML models would also allow for
visualization of the API to determine the suitability of the interface to the domain and its
compliance to OGC API rules.

10.2. Future Work

The aim of the Testbed-16 OpenAPI work was to understand the feasibility of the MDA approach to
generating OpenAPI documents. The UML models generated using this process along with
ShapeChange extension have largely validated this assumption. The UML models created in this
project represent the API as faithfully as possible given that the specification is not based on UML.
Likewise, the ShapeChange implementation takes the raw, unverified UML model and generates a
JSON representation using the UML as is with some modifications in the ShapeChange code.
However, further work is required to move the approach and demonstrator up the Technology
Readiness Levels (TRL) where it could feasibly be used in the general case. Some ideas for future
work are as follows:

40

Investigate and implement a suitable way to record and apply the rules from the specification.
The current approach makes some modifications to the input XML in order to achieve an output
approaching a JSON representation of an OpenAPI document. However, future iterations should
implement the rules of the specification for the generalized metamodel. A rules engine would
potentially be able to perform these tasks.

Add the OGC constraints to the process. The Testbed-16 work was interested in the OpenAPI
specification. OGC standards have their own set of requirements and constraints beyond the
OpenAPI specification that should be represented in the transformation aspect of the system.

Investigate abstracting the approach to generating OpenAPI documents that include all JSON
schemas. Only OpenAPI interface definitions have been considered in this project. However, the
same approach can be applied to data models and other uses of JSON schemas.

Create UML building blocks to represent common components of an OpenAPI interface. OGC
API - Common is a good place to start with this work as it should contain the components
common to OGC APIs. These building blocks would provide an interface designer with the
required aspects of an OGC API and remove repetition and complexity from the design process.

Create best practices for UML modeling to represent JSON schemas/OpenAPI interfaces.
Although UML is a ratified standard with rules, the application of OpenAPI to UML can be done
in several ways that are compliant with the UML standard. A best practices document would
codify the recommended way to model OpenAPI documents and JSON more widely. This would
simplify the implementation of the OpenAPI target transformation software as it would have to
deal with fewer design methodologies.

41

Chapter 11. Conclusion

This project sought to use the MDA approach to generate OpenAPI interface definitions from UML
class diagrams. The project was largely successful in that the process from start to finish was
completed with much of the OpenAPI structure generated from a UML model. There were some
shortcomings of the approach, notably some aspects of the UML document did not generate
correctly as the objects within the specification required rules to validate and organize the
information captured within the model to produce a compliant output. Overall, the project
highlights the difference between domain knowledge, held within the UML model, and encoding,
which is completed when the model is transformed into a particular target.

42

Appendix A: OGC API - Feature Partl:Core
initial input document (YAML)

openapi: 3.0.2
info:
title: Features 1.0 server
contact:
name: "'
version: 2.17-SNAPSHOT
externalDocs:
description: WFS specification
url: "https://qithub.com/opengeospatial/WFS_FES'
servers:
- url: "http://ows.geo-solutions.it/geoserver/ogc/features’
description: This server
tags:
- name: Capabilities
description: essential characteristics of this API
- name: Data
description: access to data (features)
paths:
/:
get:
tags:
- Capabilities
summary: landing page
description: |-
The landing page provides links to the API definition, the conformance
statements and to the feature collections in this dataset.
operationId: getlandingPage
responses:
'200":
content:
application/x-yaml:
schema:
type: string
format: binary
application/json:
schema:
type: string
format: binary
application/cbor:
schema:
type: string
format: binary
text/html:
schema:
type: string

44

$ref: '#/components/responses/LandingPage’
'500":
$ref: '#/components/responses/ServerError’
/conformance:
get:
tags:
- Capabilities
summary: information about specifications that this API conforms to
description: |-
A list of all conformance classes specified in a standard that the
server conforms to.
operationId: getConformanceDeclaration
responses:
'200':
content:
application/x-yaml:
schema:
type: string
format: binary
application/json:
schema:
type: string
format: binary
application/cbor:
schema:
type: string
format: binary
text/html:
schema:
type: string
$ref: '#/components/responses/ConformanceDeclaration’
500" :
$ref: "#/components/responses/ServerError'
/filter-capabilities:
get:
tags:
- Capabilities
summary: information about filters supported in the CQL filter extension
description: A list of supported filters and functions.
operationld: getFilterCapabilities

responses:
'200":
$ref: '#/components/responses/FilterCapabilities’
'500":
$ref: "#/components/responses/ServerError’
/collections:
get:
tags:
- Capabilities

summary: the feature collections in the dataset
operationId: getCollections

responses.

200" :
content:
application/x-yaml:
schema:
type: string
format: binary
application/json:
schema:
type: string
format: binary
application/cbor:
schema:
type: string
format: binary
text/html:
schema:

type: string
$ref: '#/components/responses/Collections’
'500":
$ref: "#/components/responses/ServerError’
"/collections/{collectionId}":
get:
tags:
- Capabilities

summary: describe the feature collection with id ‘collectionId®

operationId: describeCollection
parameters:
- $ref: '#/components/parameters/collectionld’
responses:
200" :
content:
application/x-yaml:
schema:
type: string
format: binary
application/json:
schema:
type: string
format: binary
application/cbor:
schema:
type: string
format: binary
text/html:
schema:
type: string
$ref: '#/components/responses/Collection’
"404":
$ref: '#/components/responses/NotFound’
'500":

45

$ref: '#/components/responses/ServerError'
"/collections/{collectionId}/queryables"':

get:
tags:
- Capabilities
summary: >-
lists the queryable attributes for the feature collection with id
‘collectionId®
operationId: getQueryables
parameters:
- $ref: '#/components/parameters/collectionId’
responses:
200" :
$ref: "#/components/responses/Queryables’
404" :
$ref: '#/components/responses/NotFound’
'500":

$ref: "#/components/responses/ServerError'
"/collections/{collectionId}/items":
get:
tags:
- Data
summary: fetch features
description: |-
Fetch features of the feature collection with id ‘collectionId".

Every feature in a dataset belongs to a collection. A dataset may
consist of multiple feature collections. A feature collection is often a
collection of features of a similar type, based on a common schema.

Use content negotiation to request HTML or GeoJSON.
operationId: getFeatures
parameters:
- $ref: "#/components/parameters/collectionld’
- $ref: '#/components/parameters/limit’
- $ref: '#/components/parameters/bbox’
- $ref: '#/components/parameters/datetime’
- $ref: '#/components/parameters/filter’
- $ref: "#/components/parameters/filter-lang’
responses:
'200':
content:
text/html:
schema:
type: string
application/vnd.google-earth.kml+xml:
schema:
type: string
format: binary
application/geo+json:
schema:

type: string
format: binary
application/stac+json:
schema:
type: string
format: binary
application/gml+xml;version=3.2:
schema:
type: string
format: binary
application/json:
schema:
type: string
format: binary
application/cbor:
schema:
type: string
format: binary
$ref: '#/components/responses/Features’

400" :

$ref: "#/components/responses/InvalidParameter’
404" :

$ref: "#/components/responses/NotFound’
'500":

$ref: '#/components/responses/ServerError'
'/collections/{collectionId}/items/{featureld}":
get:

tags:
- Data

summary: fetch a single feature

description: |-
Fetch the feature with id ‘featureId' in the feature collection
with id ‘collectionId".

Use content negotiation to request HTML or GeoJSON.
operationId: getFeature
parameters:
- $ref: '#/components/parameters/collectionId’
- $ref: "#/components/parameters/featureld’
responses:
'200':
content:
text/html:
schema:
type: string
application/vnd.google-earth.kml+xml:
schema:
type: string
format: binary
application/geo+json:
schema:

47

48

type: string
format: binary
application/stac+json:
schema:
type: string
format: binary
application/gml+xml;version=3.2:
schema:
type: string
format: binary
application/json:
schema:
type: string
format: binary
application/cbor:
schema:
type: string
format: binary
$ref: '#/components/responses/Feature’

"404" :
$ref: '#/components/responses/NotFound’
'500":
$ref: "#/components/responses/ServerError'
components:
schemas:
queryables:
required:
- queryables
type: object
properties:
queryables:
type: array
description: list of queryable properties
items:

$ref: '#/components/schemas/queryable’
queryable:

required:

- name

- type
type: object
properties:

id:

type: string

description: identifier of the attribute that can be used in CQL filters

example: address
type:
type: string
description: the property type
enum:
- string
- uri

- number
- integer
- date
- dateTime
- boolean
- geometry
collection:
required:
- id
- links
type: object
properties:
id:
type: string
description: 'identifier of the collection used, for example, in URIs'
example: address
title:
type: string
description: human readable title of the collection
example: address
description:
type: string
description: a description of the features in the collection
example: An address.
links:
type: array
example:
- href: 'http://data.example.com/buildings’
rel: item
- href: 'http://example.com/concepts/buildings.html’
rel: describedBy
type: text/html

items:
$ref: '#/components/schemas/link’
extent:
$ref: '#/components/schemas/extent’
itemType:

type: string

description: >-
indicator about the type of the items in the collection (the default
value is 'feature').

default: feature

crs:
type: array
description: the list of coordinate reference systems supported by the
service

example:
- 'http://www.opengis.net/def/crs/06C/1.3/CRS84"
- "http://www.opengis.net/def/crs/EPSG/0/4326'

items:
type: string

49

50

default:
- 'http://www.opengis.net/def/crs/06C/1.3/CRS84"
collections:
required:
- collections
- links
type: object
properties:
links:
type: array
items:
$ref: '#/components/schemas/link’
collections:
type: array
items:
$ref: '#/components/schemas/collection’
confClasses:
required:
- conformsTo
type: object
properties:
conformsTo:
type: array
items:
type: string
exception:
required:
- code
type: object
properties:
code:
type: string
description:
type: string
description: >-
Information about the exception: an error code plus an optional
description.
extent:
type: object
properties:
spatial:
type: object
properties:
bbox:
minItems: 1
type: array
description: >-
One or more bounding boxes that describe the spatial extent of
the dataset.

In the Core only a single bounding box is supported. Extensions

may support

additional areas. If multiple areas are provided, the union of
the bounding

boxes describes the spatial extent.

items:
maxItems: 6
minItems: 4
type: array

description: >-
Each bounding box is provided as four or six numbers,
depending on

whether the coordinate reference system includes a vertical
axis

(height or depth):

*

Lower left corner, coordinate axis 1

*

Lower left corner, coordinate axis 2

* Minimum value, coordinate axis 3 (optional)

*

Upper right corner, coordinate axis 1

* Upper right corner, coordinate axis 2

* Maximum value, coordinate axis 3 (optional)

The coordinate reference system of the values is WGS 84
longitude/latitude

(http://www.opengis.net/def/crs/06C/1.3/CRS84) unless a
different coordinate

reference system is specified in ‘crs'.
For WGS 84 longitude/latitude the values are in most cases the
sequence of

minimum longitude, minimum latitude, maximum longitude and
maximum latitude.

However, in cases where the box spans the antimeridian the
first value

31

32

(west-most box edge) is larger than the third value (east-most
box edge).

If the vertical axis is included, the third and the sixth
number are

the bottom and the top of the 3-dimensional bounding box.

If a feature has multiple spatial geometry properties, it is
the decision of the

server whether only a single spatial geometry property is used
to determine

the extent or all relevant geometries.
example:
- -180
- -90
- 180
- 90
items:
type: number
crs:
type: string
description: >-
Coordinate reference system of the coordinates in the spatial
extent

(property ‘bbox‘). The default reference system is WGS 84
longitude/latitude.

In the Core this is the only supported coordinate reference
system.

Extensions may support additional coordinate reference systems
and add

additional enum values.
enum:
- "http://www.opengis.net/def/crs/06C/1.3/CRS84'
default: 'http://www.opengis.net/def/crs/0GC/1.3/CRS84"
description: The spatial extent of the features in the collection.

temporal:
type: object
properties:
interval:
minltems: 1
type: array

description: >-

One or more time intervals that describe the temporal extent of
the dataset.

The value ‘null‘ is supported and indicates an open time
intervall.

In the Core only a single time interval is supported. Extensions
may support

multiple intervals. If multiple intervals are provided, the
union of the

intervals describes the temporal extent.
items:
maxItems: 2
minltems: 2
type: array
description: >-
Begin and end times of the time interval. The timestamps

are in the coordinate reference system specified in “trs'. By
default

this is the Gregorian calendar.
example:
- '2011-11-11712:22:117"
- null
items:
type: string
format: date-time
nullable: true
trs:
type: string
description: >-
Coordinate reference system of the coordinates in the temporal
extent

(property ‘interval'). The default reference system is the
Gregorian calendar.

In the Core this is the only supported temporal reference
system.

Extensions may support additional temporal reference systems and
add

additional enum values.
enum:
- 'http://www.opengis.net/def/uom/IS0-8601/0/Gregorian’
default: 'http://www.opengis.net/def/uom/IS0-8601/0/Gregorian’
description: The temporal extent of the features in the collection.

description: >-
The extent of the features in the collection. In the Core only spatial
and temporal

extents are specified. Extensions may add additional members to
represent other

extents, for example, thermal or pressure ranges.
featureCollectionGeoJSON:
required:
- features
- type
type: object
properties:
type:
type: string
enum:
- FeatureCollection
features:
type: array
items:
$ref: '#/components/schemas/featureGeoJSON'
links:
type: array
items:
$ref: '#/components/schemas/link’
timeStamp:
$ref: "#/components/schemas/timeStamp'
numberMatched:
$ref: "#/components/schemas/numberMatched’
numberReturned:
$ref: '#/components/schemas/numberReturned’
featureGeoJSON:
required:
- geometry
- properties
- type
type: object
properties:
type:
type: string
enum:
- Feature
geometry:
$ref: '#/components/schemas/geometryGeo]SON'
properties:
type: object
nullable: true
id:
oneOf:
- type: string

- type: integer
links:
type: array
items:
$ref: '#/components/schemas/link’
geometryGeoJSON:
oneOf:
- $ref: "#/components/schemas/pointGeo]SON'
- $ref: '#/components/schemas/multipointGeo]SON'
- $ref: "#/components/schemas/linestringGeoJSON'
- $ref: '#/components/schemas/multilinestringGeo]SON'
- $ref: '#/components/schemas/polygonGeo]SON'
- $ref: "#/components/schemas/multipolygonGeoJSON'
- $ref: '#/components/schemas/geometrycollectionGeoJSON'
geometrycollectionGeoJSON:
required:
- geometries
- type
type: object
properties:
type:
type: string
enum:
- GeometryCollection
geometries:
type: array
items:
$ref: '#/components/schemas/geometryGeo]SON'
landingPage:
required:
- links
type: object
properties:
title:
type: string
example: Buildings in Bonn
description:
type: string
example: >-
Access to data about buildings in the city of Bonn via a Web API
that conforms to the 0GC API Features specification.
links:

type: array
items:
$ref: '#/components/schemas/1link’
linestringGeoJSON:
required:
- coordinates
- type

type: object
properties:

36

type:
type: string
enum:
- LineString
coordinates:
minltems: 2
type: array
items:
minItems: 2
type: array
items:
type: number
link:
required:
- href
type: object
properties:
href:
type: string
example: 'http://data.example.com/buildings/123"
rel:
type: string
example: alternate
type:
type: string
example: application/geo+json

hreflang:
type: string
example: en
title:

type: string
example: 'Trierer Strasse 70, 53115 Bonn'
length:
type: integer
multilinestringGeoJSON:
required:
- coordinates
- type
type: object
properties:
type:
type: string
enum:
- MultilineString
coordinates:
type: array
items:
minItems: 2
type: array
items:
minItems: 2

type: array
items:
type: number
multipointGeoJSON:
required:
- coordinates
- type
type: object
properties:
type:
type: string
enum:
- MultiPoint
coordinates:
type: array
items:
minItems: 2
type: array
items:
type: number
multipolygonGeo]SON:
required:
- coordinates
- type
type: object
properties:
type:
type: string
enum:
- MultiPolygon
coordinates:
type: array
items:
type: array
items:
minltems: 4
type: array
items:
minItems: 2
type: array
items:
type: number
numberMatched:
minimum: 0
type: integer
description: |-
The number of features of the feature type that match the selection
parameters like ‘bbox".
example: 127
numberReturned:
minimum: 0

57

38

type: integer
description: |-
The number of features in the feature collection.

A server may omit this information in a response, if the information
about the number of features is not known or difficult to compute.

If the value is provided, the value shall be identical to the number
of items in the "features" array.
example: 10
pointGeoJSON:
required:
- coordinates
- type
type: object
properties:
type:
type: string
enum:
- Point
coordinates:
minItems: 2
type: array
items:
type: number
polygonGeoJSON:
required:
- coordinates
- type
type: object
properties:
type:
type: string
enum:
- Polygon
coordinates:
type: array
items:
minltems: 4
type: array
items:
minltems: 2
type: array
items:
type: number
timeStamp:
type: string
description: >-
This property indicates the time and date when the response was
generated.
format: date-time

responses:
LandingPage:
description: |-
The landing page provides links to the API definition
(link relations ‘service-desc' and ‘service-doc'),
the Conformance declaration (path ‘/conformance®,
link relation ‘conformance‘), and the Feature
Collections (path ‘/collections', link relation
‘data’).
content:
application/json:
schema:
$ref: '#/components/schemas/landingPage’
example:
title: Buildings in Bonn
description: >-
Access to data about buildings in the city of Bonn via a Web API
that conforms to the 0GC API Features specification.

links:
- href: 'http://data.example.org/’
rel: self

type: application/json
title: this document

- href: "http://data.example.org/api’
rel: service-desc
type: application/vnd.oai.openapi+json;version=3.0
title: the API definition

- href: 'http://data.example.org/api.html’
rel: service-doc
type: text/html
title: the API documentation

- href: 'http://data.example.org/conformance’
rel: conformance
type: application/json
title: 0GC API conformance classes implemented by this server

- href: "http://data.example.org/collections’
rel: data
type: application/json
title: Information about the feature collections

text/html:
schema:
type: string
ConformanceDeclaration:
description: |-
The URIs of all conformance classes supported by the server.

To support "generic" clients that want to access multiple
0GC API Features implementations - and not "just" a specific
API / server, the server declares the conformance
classes it implements and conforms to.

content:

39

application/json:
schema:
$ref: '#/components/schemas/confClasses’
example:
conformsTo:
- "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core’
- "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/0as30"
- 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html’
- "http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson’
text/html:
schema:
type: string
Collections:
description: >-
The feature collections shared by this API.

The dataset 1is organized as one or more feature collections. This
resource

provides information about and access to the collections.

The response contains the list of collections. For each collection, a
link

to the items in the collection (path
‘/collections/{collectionId}/items",

link relation ‘items') as well as key information about the collection.

This information includes:

* A local identifier for the collection that is unique for the dataset;

* A list of coordinate reference systems (CRS) in which geometries may
be returned by the server. The first CRS is the default coordinate
reference system (the default is always WGS 84 with axis order
longitude/latitude);

* An optional title and description for the collection;

* An optional extent that can be used to provide an indication of the
spatial and temporal extent of the collection - typically derived from
the data;

* An optional indicator about the type of the items in the collection

(the default value, if the indicator is not provided, is 'feature').
content:

application/json:

schema:
$ref: '#/components/schemas/collections’

example:
links:
- href: "http://data.example.org/collections.json’
rel: self

type: application/json
title: this document
- href: 'http://data.example.org/collections.html’
rel: alternate
type: text/html
title: this document as HTML
- href: 'http://schemas.example.org/1.0/buildings.xsd’
rel: describedBy
type: application/xml
title: GML application schema for Acme Corporation building data
- href: 'http://download.example.org/buildings.gpkg’
rel: enclosure
type: application/geopackage+sqlite3
title: Bulk download (GeoPackage)
length: 472546
collections:
- id: buildings
title: Buildings
description: Buildings in the city of Bonn.

extent:
spatial:
bbox:
- - 7.01
- 50.63
- 7.22
- 50.78
temporal:
interval:
- - '2010-02-15T12:34:56Z'
- null
links:
- href: "http://data.example.org/collections/buildings/items’
rel: items

type: application/geo+json
title: Buildings

- href: "http://data.example.org/collections/buildings/items.html’
rel: items
type: text/html
title: Buildings

- href: "https://creativecommons.org/publicdomain/zero/1.0/"
rel: license
type: text/html
title: CCO-1.0

- href: 'https://creativecommons.org/publicdomain/zero/1.0/rdf"
rel: license

61

62

type: application/rdf+xml
title: CCO-1.0
text/html:
schema:
type: string
Queryables:

description: Information about the feature collection queryable properties
content:

application/json:
schema:
$ref: '#/components/schemas/queryables’
Collection:

description: >-
Information about the feature collection with id ‘collectionld".
The response contains a link to the items in the collection
(path ‘/collections/{collectionId}/items’, link relation ‘items")
as well as key information about the collection. This information

includes:

* A local identifier for the collection that is unique for the dataset;

* A list of coordinate reference systems (CRS) in which geometries may
be returned by the server. The first CRS is the default coordinate
reference system (the default is always WGS 84 with axis order
longitude/latitude);

* An optional title and description for the collection;

* An optional extent that can be used to provide an indication of the
spatial and temporal extent of the collection - typically derived from
the data;

* An optional indicator about the type of the items in the collection
(the default value, if the indicator is not provided, is 'feature').
content:

application/json:
schema:
$ref: '#/components/schemas/collection’
example:

id: buildings
title: Buildings
description: Buildings in the city of Bonn.
extent:
spatial:
bbox:

- - 7.01

- 50.63
-7.22
- 50.78
temporal:
interval:
- - '2010-02-15T12:34:56Z'
- null
links:
- href: 'http://data.example.org/collections/buildings/items’
rel: items

type: application/geo+json
title: Buildings

- href: 'http://data.example.org/collections/buildings/items.html’
rel: items
type: text/html
title: Buildings

- href: "https://creativecommons.org/publicdomain/zero/1.0/'
rel: license
type: text/html
title: CCO-1.0

- href: "https://creativecommons.org/publicdomain/zero/1.0/rdf"
rel: license
type: application/rdf+xml
title: CCO-1.0

text/html:
schema:
type: string
Features:
description: >-
The response is a document consisting of features in the collection.

The features included in the response are determined by the server
based on the query parameters of the request. To support access to
larger collections without overloading the client, the API supports
paged access with links to the next page, if more features are selected

that the page size.

The ‘bbox"' and ‘datetime‘ parameter can be used to select only a
subset of the features in the collection (the features that are in the

bounding box or time interval). The ‘bbox' parameter matches all
features

in the collection that are not associated with a location, too. The

63

64

‘datetime’ parameter matches all features in the collection that are

not associated with a time stamp or interval, too.

The ‘1limit' parameter may be used to control the subset of the

selected features that should be returned in the response, the page
size.

Each page may include information about the number of selected and
returned features (‘numberMatched' and ‘numberReturned') as well as

links to support paging (link relation ‘next‘).
content:
application/geo+json:
schema:
$ref: '#/components/schemas/featureCollectionGeoJSON'
example:
type: FeatureCollection
links:
- href: 'http://data.example.com/collections/buildings/items.json’
rel: self
type: application/geo+json
title: this document
- href: 'http://data.example.com/collections/buildings/items.html’
rel: alternate
type: text/html
title: this document as HTML
- href: >-

http://data.example.com/collections/buildings/items.json&offset=10&1imit=2
rel: next
type: application/geo+json
title: next page
timeStamp: '2018-04-03T714:52:237'
numberMatched: 123
numberReturned: 2
features:
- type: Feature
id: '123°
geometry:
type: Polygon
coordinates:
properties:
function: residential
floors: '2'
lastUpdate: '2015-08-01T12:34:56Z7'

- type: Feature

id: '132'

geometry:

type: Polygon
coordinates:

properties:

function: public use
floors: '10'
lastUpdate: '2013-12-03T10:15:37Z'

text/html:
schema:
type: string
Feature:
description: |-
fetch the feature with id ‘featureId' in the feature collection
with id ‘collectionId®
content:
application/geo+json:
schema:
$ref: "#/components/schemas/featureGeo]SON'
example:
type: Feature
links:

id:

href: 'http://data.example.com/id/building/123'

rel: canonical

title: canonical URI of the building

href: "http://data.example.com/collections/buildings/items/123.json’
rel: self

type: application/geo+json

title: this document

href: 'http://data.example.com/collections/buildings/items/123.html’
rel: alternate

type: text/html

title: this document as HTML

href: 'http://data.example.com/collections/buildings’

rel: collection

type: application/geo+json

title: the collection document

123"

geometry:
type: Polygon
coordinates:

properties:
function: residential
floors: '2'
lastUpdate: '2015-08-01T12:34:56Z'
text/html:
schema:
type: string

66

InvalidParameter:
description: A query parameter has an invalid value.

content:
application/json:
schema:
$ref: "#/components/schemas/exception’
text/html:
schema:
type: string
NotFound:
description: The requested URI was not found.
ServerError:
description: A server error occurred.
content:
application/json:
schema:
$ref: '#/components/schemas/exception’
text/html:
schema:
type: string
FilterCapabilities:
description: A document listing the server filtering capabilities
content:
application/json:
schema:
type: object
text/html:
schema:
type: string
parameters:
bbox:
name: bbox
in: query

description: >-
Only features that have a geometry that intersects the bounding box are
selected.

The bounding box is provided as four or six numbers, depending on
whether the

coordinate reference system includes a vertical axis (height or depth):

*

Lower left corner, coordinate axis 1

*

Lower left corner, coordinate axis 2
* Minimum value, coordinate axis 3 (optional)

* Upper right corner, coordinate axis 1

* Upper right corner, coordinate axis 2

* Maximum value, coordinate axis 3 (optional)

The coordinate reference system of the values is WGS 84
longitude/latitude

(http://www.opengis.net/def/crs/06C/1.3/CRS84) unless a different
coordinate

reference system is specified in the parameter ‘bbox-crs'.

For WGS 84 longitude/latitude the values are in most cases the sequence
of

minimum longitude, minimum latitude, maximum longitude and maximum
latitude.

However, in cases where the box spans the antimeridian the first value

(west-most box edge) is larger than the third value (east-most box
edge).

If the vertical axis is included, the third and the sixth number are

the bottom and the top of the 3-dimensional bounding box.

If a feature has multiple spatial geometry properties, it is the
decision of the

server whether only a single spatial geometry property is used to
determine

the extent or all relevant geometries.
required: false
style: form
explode: false
schema:
maxItems: 6
minltems: 4
type: array
items:
type: number
collectionId:
name: collectionId
in: path
description: local identifier of a collection

68

required: true
schema:
type: string
enum:

- 'syria_vtp:
"syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:

- 'syria_vtp

- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:
- 'syria_vtp:

- 'vtp:Aeron
- 'vtp:Agric
- 'vtp:Agric
- 'vtp:Cultu
- 'vtp:Cultu
- 'vtp:Facil
- 'vtp:Hydro
- 'vtp:Hydro
- 'vtp:Hydro
- 'vtp:Milit
- 'vtp:Settl
- 'vtp:Stora
- 'vtp:Struc
- 'vtp:Trans
- 'vtp:Utili
- 'vtp:Utili
- 'vtp:Veget
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:

building_s'
built_up_area_s'
cemetery_s'
crop_land_s'

dam_s'
electric_power_station_s'
facility_s'
grassland_s'
:military_installation_s'
power _substation_s'
river_c'

river_s'

road _c'
settlement_s'
tower_s'

auticPnt'

ulturePnt’
ultureSrf'

rePnt’

reSrf'

ityPnt'

graphyCrv'
graphyPnt’
graphySrf'

arySrf'

ementSrf'

gePnt'

turePnt'
portationGroundCrv'
tyInfrastructureCrv'
tyInfrastructurePnt'’
ationSrf'
aircraft_hangar_s'
amusement_park_s'
annotated location_s'
apron_s'
archeological_site_s'
barn_s'

bridge_c'

bridge_s'

brush_s'

building_p'
building_s'
built_up_area_p'
built_up_area_s'
canal_c'
cart_track_c'

"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:

"irag_vtp
"iraq_vtp
"iraq_vtp
"irag_vtp
"iragq_vtp

"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"iraq_vtp:
"irag_vtp:
"iraq_vtp:
"irag_vtp:

castle_s'

cemetery_s'
crop_land_s'
crossing_p'
culvert_c'

cut _c'

dam_c'

dam_s'
disposal_site_s'
ditch_c'
embankment_c'
extraction_mine_s'
facility_s'

fence c'
firing_range_s'
ford c'

forest_s'

fountain_s'

gate_c'

gate_p'
grain_storage_structure_s'
grassland_s'
greenhouse_s'
helipad_p'

helipad_s'

hut_s'
hydrocarbons_field_s'
inland_waterbody_s'
interest_site_p'
interest site_s'
island_s'
land_aerodrome_p'
land_aerodrome_s'
land_water_boundary_c'
lookout _s'

:marsh_s'
:memorial_monument_s'
:military_installation_s'
:motor_vehicle_station_p'
:motor_vehicle station_s'
orchard_s'

park_s'

power _substation_s'
racetrack_c'
racetrack_s'
railway_c'
railway_sidetrack_c'
river_c'

river_s'

road_c'

road_s'

69

70

- "iraq_vtp:roadside_rest_area_s'
- "iraq_vtp:ruins_p'
- "iraq_vtp:ruins_s'
- "iraq_vtp:settlement_s'
- 'iraq_vtp:sewage_treatment_plant_s'
- "iraq_vtp:shed_s'
- "iraq_vtp:shopping_complex_s'
- "iraq_vtp:sports_ground_s'
- "iraq_vtp:stadium_s'
- "iraq_vtp:stair_c'
- "iraq_vtp:steep_terrain_face_c'
- 'irag_vtp:storage_tank_s'
- 'irag_vtp:swamp_s'
- "iraq_vtp:swimming_pool_s'
- "iraq_vtp:taxiway_c'
- "iraq_vtp:tower_s'
- 'irag_vtp:traffic_light_p'
- "iraq_vtp:trail_c'
- "iraq_vtp:transportation_block_p'
- 'iraq_vtp:transportation_station_s'
- "iraq_vtp:tunnel_c'
- "iraq_vtp:vehicle_barrier_c'
- "iraq_vtp:vehicle_lot_s'
- "iraq_vtp:wall_c'
- "iraq_vtp:water_tower_s'
- "iraq_vtp:water_well_s'
- "iraq_vtp:waterwork_s'
- "iraq_vtp:zoo_s'
- 'ne:countries50m’
- "ne:popplaces5H0m’
"ne:urban50m’
datetime:

name: datetime

in: query

description: >-

Either a date-time or an interval, open or closed. Date and time
expressions

adhere to RFC 3339. Open intervals are expressed using double-dots.

Examples:

* A date-time: "2018-02-12T723:20:507"
* A closed interval: "2018-02-12700:00:00Z/2018-03-18T12:31:12Z2"

* Open intervals: "2018-02-12700:00:00Z/.." or "../2018-03-18T12:31

1122

Only features that have a temporal property that intersects the value of

‘datetime’ are selected.

If a feature has multiple temporal properties, it is the decision of the
server whether only a single temporal property is used to determine

the extent or all relevant temporal properties.
required: false
style: form
explode: false
schema:
type: string
featureld:
name: featureld
in: path
description: local identifier of a feature
required: true
schema:
type: string
limit:
name: limit
in: query
description: >-
The optional limit parameter limits the number of items that are
presented in the response document.

Only items are counted that are on the first level of the collection in
the response document.

Nested objects contained within the explicitly requested items shall not
be counted.

Minimum = 1. Maximum = 10000. Default = 10.
required: false
style: form
explode: false
schema:
maximum: 1000000
minimum: 1
type: integer
default: 1000000

filter:
name: filter
in: query

description: >-
Defines a filter that will be applied on items, only items matching the

71

72

filter will be returned
schema:
type: string
filter-lang:
name: filter-lang
in: query
description: Filter encoding used in the filter parameter
schema:
type: string
enum:
- cql-text
default: cql-text

Appendix B: OGC API Features Partl:Core
output (JSON)

"openapi":"3.0.2",
"externalDocs":{
"description":"WFS Specification",
"url":"https://github.com/opengeospatial/WFS_FES"
Iy

"servers":[

{

"url":"http://ows.geo-solutions.it/geoserver/ogc/features"”,

"description":"This server"
}
Il
"info":{
"title":"Features 1.0 server",
"version":"2.17-SNAPSHOT",
"contact":{
"name":""
}
o
"tags":[
{
"name":"Data",
"description":"access to data (features)"

"name":"Capabilities",
"description":"essential characteristics of this API"
}
1,
"paths":{
ARt
"get":{
"summary":"landing page",
"description”:"The landing page provides links to the API definition,
conformance\n statements and to the feature collections in this dataset.",
"operationld":"getlLandingPage",
"tags":[
"Capabilities"
1,
"responses":{
200:{
"description":"200 response",
"content":{
"application/x-yaml":{
"schema":{

the

73

74

"type":"string",
"format":"binary"
}
¥
"application/cbor":{
"schema":{
"type":"string",
"format":"binary"
by
1
"application/json":{
"schema":{
"type":"string",
"format":"binary"
}
¥
"text/html":{
"schema":{

"type":"string"

}
}
},
"$ref":{
"$ref":"#/components/schemas/landingPage"
}
H
500:{
"$ref":"#/components/responses/ServerError"
}
}
¥
I
"/conformance":{
"get":{

"summary":"information about specifications that this API conforms to",
"description”:"A list of all conformance classes specified in a standard

the server conforms to.",
"operationId":"getConformanceDeclaration",
"responses":{

200:{
"description":"200 response",
"content":{
"application/x-yaml":{
"schema":{
"type":"string",
“format":"binary"
}
s
"application/cbor":{
"schema":{

"type":"string",

"format":"binary"
}
b
"application/json":{
"schema":{

"type":"string",
"format":"binary"

}
b
"text/html":{
"schema":{
“type":"string"
}
¥
¥
"$ref":{
"$ref":"#/components/schemas/1landingPage”
}
Iz
500: {
"$ref":"#/components/responses/ServerError"
}
}
"tags":[
"Capabilities”
]
¥
b
"/filter-capabilties":{
"get":{

"summary":"information about filters supported in the CQL filter
extension",
"description":"A list of",
"operationId":"getFilterCapabilities",
"responses":{
200:{
"$ref":"#/components/responses/FilterCapabilities"
e
500: {
"$ref":"#/components/responses/ServerError"
}
}
"tags":[
"Capabilities"
]
¥
b
"/collections":{
"get":{
"summary":"describe the feature collection with id ‘collectionId""
"operationld":"getCollections",

75

"responses":{
200:{
"description":"200 response",
"content":{
"application/x-yaml":{
"schema":{

"type":"string",
"format":"binary"

}

1
"application/cbor":{
"schema":{
"type":"string",
"format":"binary"
}
¥
"application/json":{
"schema":{
"type":"string",
"format":"binary"
by
1
"text/html":{
"schema":{
"type":"string"
by
¥
b
"$ref":{
"$ref":"#/components/schemas/landingPage"
}
1
500:{
"$ref":"#/components/responses/ServerError"
}
H
"tags":[
"Capabilities”
]
¥

Ifs
"/collections/{collectionId}":{
"get":{
"summary":"describe the feature collection with id 'collectionId"",
"operationId":"describeCollection",
"parameters":[
{
"$ref":"#/components/parameters/collectionId"
}
]

I
esponses”:{

200:{
"description":"200 response",

"content":{
"application/x-yaml":{
"schema":{

"type":"string",
"format":"binary"
}
b
"application/cbor":{
"schema":{
"type":"string",
"format":"binary"
}
b
"application/json":{
"schema":{
"type":"string",
"format":"binary"

}
Iy
"text/html":{
"schema":{
“type":"string"
}
}
}
"$ref":{
"$ref":"#/components/schemas/1landingPage”
}
Iz
500: {
"$ref":"#/components/responses/ServerError"
}
iy
"tags":[
"Capabilities”
]
}
I
"/collections/{collectionId}/queryables":{
"get":{

"summary":"lists the querable attributes for the feature collection with
id 'collectionId'",

"operationId":"getQueryables",
"parameters":[

{

"$ref":"#/components/parameters/collectionId"

}

]

I
esponses”:{

404 {
"$ref":"#/components/responses/NotFound"

¢
200:{
"$ref":"#/components/responses/Queryables”
b
500:{
"$ref":"#/components/responses/ServerError"
}
}
"tags":[
"Capabilities"
]
}
b
"/collections/{collectionId}/items":{
"get":{

"summary":"fetch features",

"description":"Fetch features of the feature collection with id
‘collectionId'.\n\n Every feature in a dataset belongs to a collection. A
dataset may\n consist of multiple feature collections. A feature collection is
often a\n collection of features of a similar type, based on a common
schema.\n\n Use content negotiation to request HTML or GeoJSON.",

"operationld":"getFeatures",
"parameters":[

{
"$ref":"#/components/parameters/collectionId"
Jr
{
"$ref":"#/components/parameters/filter"
Iz
{
"$ref":"#/components/parameters/limit"
lis
{
"$ref":"#/components/parameters/bbox"
i
{
"$ref":"#/components/parameters/datetime"
Jr
{
"$ref":"#/components/parameters/filter-lang"
}

]

esponses":{
404:{
"$ref":"#/components/responses/NotFound"
}
500:{
"$ref":"#/components/responses/ServerError"

}

400:{
"$ref":"#/components/responses/InvalidParameter"
¢
200:{
"content":{
"application/cbor":{
"schema":{
"type":"string",
"format":"binary"
}
I
"application/json":{
"schema":{
"type":"string",
"format":"binary"
¥
3
"application/vnd.google-earth.kml+xml":{
"schema":{
"type":"string",
"format":"binary"
}
I
"application/geo+json":{
"schema":{
"type":"string",
"format":"binary"
¥
3
"application/stac+json":{
"schema":{
"type":"string",
"format":"binary"
}
I
"application/gml+xml;version=3.2":{
"schema":{
"type":"string",
"format":"binary"

}

"components": {

79

"schemas":{
"queryables":{
"type":"object",
"properties":{
"Schema queryables Property":{

"type":"array",
"description":"list of queryable properties"

}
1
"queryable":{
“type":"object",
"required":[
"~ name",
"_ type"
I,
"properties":{
"Schema queryable id Property":{
"type":"string",
"description":"identifier of the attribute that can be used in CQL
filters",

"example":"address"

b
Iltypell:{

"type":"string",
"description":"the property type",
"enum": [

- dateTime",
- boolean",
"- date",

- number",

- geometry",
- integer",
- string",

- url”

}
}

"collection":{
"type":"object",
"required":[

"~ 3d",
"- 1inks"
]I
"properties":{
"Schema extent Reference":{
"$ref":"#/components/schemas/extent"
iy
"Schema collection id Properties":{

"type":"string",

"description”:"identifier of teh collection used, for example, in

URIs",
"example":"address"
b
"Schema collection title Properties":{

"type":"string",

"description”:"human readable title of the collection",

"example":"address"

|
"Schema collection description Properties":{

"type":"string",

"description":"a description of hte features in the collection",

"example":"An address."

e
"Schema collection links Properties":{

"type":"array",

"example":"href: 'http://data.example.com/buildings'\n
rel: item\n - href: "http://example.com/concepts/buildings.html'\n
rel: describedBy\n type: text/html",

"items":{

"$ref":"#/components/schemas/1link"

}

b

"Schema collection itemType Properties":{
"type":"String",
"description":"indicator about the type of the items in the
collection (the default\n value is 'feature').",

"default":"feature"

}I

"Schema collection crs Properties":{

"type":"array",

"description":"the list of coordinate reference systems supported by
the service",

"example":"- 'http://www.opengis.net/def/crs/06C/1.3/CRS84"'\n
- "http://www.opengis.net/def/crs/EPSG/0/4326"",

"default":"- 'http://www.opengis.net/def/crs/06C/1.3/CRS84"'",

"items":{

"type":"string"
}

}
}

ollections":{

"type":"object",

"required":[
"- collections",
"- links"

1,

"properties":{
"Schema collections links property":{

"type":"array",

"items":{
"$ref":"#/components/schemas/1link"
}
Jr
"Schema collections collections property":{
"type":"array",
"items":{
"$ref":"#/components/schemas/collection”

}

}

I

"confClasses":{
"type":"array",
"required":[

"conformsTo"

1
"properties":{

"Schema confClasses conformsTo property”:{
"type":"array",
"items":{

"type":"String"
}

}
}
"exception":{
"requried":[
"- code",
{
"name":"- code"

}
]

ype":"object",
"description”:">-\n Information about the exception: an error code
plus an optional\n description.”,
"properties":{
"Schema exception code property":{

"type":"string"
Jr

"Schema exception description property":{

"type":"string"

}
}
3
"extent":{
"type":"object",
"description”:">-\n The extent of the features in the collection.
In the Core only spatial\n and temporal\n\n extents are specified.
Extensions may add additional members to\n represent other\n\n extents,

for example, thermal or pressure ranges.",

"properties":{
"Schema extent bbox spatial property":{

"minItems":1,

"type":"object",

"description”:">-\n One or more bounding boxes that
describe the spatial extent of\n the dataset.\n\n In the
Core only a single bounding box is supported. Extensions\n may
support\n\n additional areas. If multiple areas are provided, the union
of\n the bounding\n\n boxes describes the spatial
extent.",

"properties":[

{

"maxItems":6,

"minItems":4,

"type":"array",

"description”:">-\n Each bounding box 1is
provided as four or six numbers,\n depending on\n\n
whether the coordinate reference system includes a vertical\n
axis\n\n (height or depth):\n\n\n * Lower left
corner, coordinate axis 1\n\n * Lower left corner, coordinate axis
2\n\n * Minimum value, coordinate axis 3 (optional)\n\n
* Upper right corner, coordinate axis 1\n\n * Upper right corner,
coordinate axis 2\n\n * Maximum value, coordinate axis 3
(optional)\n\n\n The coordinate reference system of the values is WGS
84\n longitude/latitude\n\n
(http://www.opengis.net/def/crs/0GC/1.3/CRS84) unless a\n different
coordinate\n\n reference system is specified in ‘crs‘.\n\n\n
For WGS 84 longitude/latitude the values are in most cases the\n
sequence of\n\n minimum longitude, minimum latitude, maximum
longitude and\n maximum latitude.\n\n However, in
cases where the box spans the antimeridian the\n first value\n\n
(west-most box edge) is larger than the third value (east-most\n box
edge).\n\n\n If the vertical axis is included, the third and the
sixth\n number are\n\n the bottom and the top of the
3-dimensional bounding box.\n\n\n If a feature has multiple spatial
geometry properties, it is\n the decision of the\n\n
server whether only a single spatial geometry property is used\n to
determine\n\n the extent or all relevant geometries.",

"example":"- -180\n - -90\n
- 180\n - 90",

"items":{

"type":"number"

}

"type":"string",

"description":"Coordinate reference system of the coordinates
in the spatial\n extent\n\n (property ‘bbox‘). The
default reference system is WGS 84\n longitude/latitude.\n\n
In the Core this is the only supported coordinate reference\n
system.\n\n Extensions may support additional coordinate reference

83

84

systems\n and add\n\n additional enum values.",
"enum": [
"~ 'http://www.opengis.net/def/crs/06C/1.3/CRS84""
1
"default":"http://www.opengis.net/def/crs/06C/1.3/CRS84"
}
]
b
"Schema extent bbox temporal property":{
"type":"object",
"properties":{
"minItems":1,
"type":"array",
"description":"One or more time intervals that describe the

temporal extent of\n the dataset.\n\n The value ‘null’
is supported and indicates an open time\n intervall.\n\n
In the Core only a single time interval is supported. Extensions\n may
support\n\n multiple intervals. If multiple intervals are provided,
the\n union of the\n\n intervals describes the temporal
extent.",

"items":{

"maxItems":2,
"minItems":2,

"type":"array",
"description":"Begin and end times of the time interval. The

timestamps\n\n are in the coordinate reference system specified in
“trs*. By\n default\n\n this is the Gregorian
calendar.",

"example":"- '2011-11-11T12:22:112"'\n -
null",

"items":{

"type":"String",
"format":"date-time",
"nullable":true

}
}I

"Schema extent bbox temporal trs property":{

"type":"string",
"description":"Coordinate reference system of the coordinates in the

temporal\n extent\n\n (property ‘interval‘). The default
reference system is the\n Gregorian calendar.\n\n In the
Core this is the only supported temporal reference\n system.\n\n
Extensions may support additional temporal reference systems and\n
add\n\n additional enum values.",

"enum": [

"- "http://www.opengis.net/def/uom/I150-8601/0/Gregorian""
1,
"default":"- 'http://www.opengis.net/def/uom/I1S0-8601/0/Gregorian"'"

}
o
"featureCollectionGeoJSON":{
"type":"object",
"required":[
"- features",
"_ type"
1,
"properties":{
"type":{
"enum": [
"- featureCollection"
1
e
"Schema featureCollectionGeo]SON features property":{
"type":"array",
"items":{
"$ref":"#/components/schemas/featureGeoJSON"
}
1
"Schema featureCollectionGeoJSON links property":{
"type":"array",
"items":{
"$ref":"#/components/schemas/1ink"
}
e
"Schema featureCollection GeoJSON timeStamp property":{
"$ref":"$ref: '#/components/schemas/timeStamp"'"
)
"Schema featureCollectionGeoJSON numberMatched property":{
"$ref":"#/components/schemas/numberMatched"
1
"Schema featureCollectionGeo]SON numberReturned property":{
"$ref":"$ref: '#/components/schemas/numberReturned'"
}
}
I
"featureGeoJSON":{
"type":"object",
"required":[
"- geometry",
"- properties",
"_ type"
1,
"properties":{
"type":{

"type":"string",

"enum":"- feature"
b
"Schema featureGeo]SON geometry property":{

"$ref":"$ref: '#/components/schemas/geometryGeo]SON

85

86

}

}

b

"Schema featureGeo]SON properties property":{

"type":"object",
“nullable":true
)
"Schema featureGeo]SON id properties":{
"schema":{
"oneOf": [
"one0f",
{
"type":"string"
s
{
"type":"integer"
}
1
}
}
}
eometryGeoJSON": {
"one0f": [
{
"$ref":"#/components/schemas/pointGeoJSON"
1
{
"$ref":"#/components/schemas/multipointGeoJSON"
b
{
"$ref":"#/components/schemas/linestringGeoJSON"
I
{
"$ref":"#/components/schemas/multilinestringGeo]SON"
)
{
"$ref":"#/components/schemas/polygonGeoJSON"
1
{
"$ref":"#/components/schemas/multipolygonGeoJSON"
b
{
"$ref":"#/components/schemas/geometrycollectionGeoJSON"
}
]
eometrycollectionGeo]SON":{
"type":"object",
"required":[
"- geometry",
"_ type"
1,

"properties":{
"type":{
"enum": [
"- GeometryCollection"

]

}

¥

"landingPage":{
"type":"object",
"required":[

"- Tinks"

1,
"properties":{

"Schema landingPage title property":{
"type":"string",
"example":"Buildings in Bonn"

b

"Schema landingPage description property":{

"type":"string",

"example":">-\n Access to data about buildings in the
city of Bonn via a Web API\n that conforms to the 0GC API Features
specification."”

}
"Schema landingPage links property":{

"type":"array",

"items":{

"$ref":"#/components/schemas/1link"
}
¥
}
¥

"linestringGeoJSON": {
"type":"object",
"properties":{

"type":{

"enum":"- LineString"

H

"Schema linestringGeo]SON coordinates property":{
"minItems":2,

"type":[
"array",
{
"type":"number"
}
]
}
+
b
"link":{

"type":"object",

88

}

"required":[
"- href"
]

roperties":{
“Schema link href property":{

"type":"object",
"example":"http://data.example.com/buildings/123"

b
"Schema link rel property":{

"type":"string",

"example":"alternate"

}

"type":{
"example":"application/geo+json”

¢

"Schema link hreflang property":{
"type":"string",
"example":"en"

I

"Schema link title property":{
"type":"string",
"example":"Trierer Strasse 70, 53115 Bonn"

b

"Schema link length property":{
"type":"integer"

}

}

ultilinestringGeoJSON":{
"type":"object",
"required":[
"= type”,
"- coordinates"”
1,
"properties":{
"type":{
"enum": [
"- MultilineString"
1
b

"Schema multilinestringGeoJSON coordinates property":{

"type":"array",
"items":{
"minItems":2,
"type":"array",
"items":{
"minItems":2,
"type":"array",
"items":{

"type":"number"

}

}

3
"multipointGeo]SON":{
"type":"object",
"properties":{
"Schema multilinestringGeo]SON coordinates property":{
"type":"array",
"items":{
"minItems":2,
"type":"array",
"items":{
"minItems":2,
"type":"array",
"items":{

"type":"number"

}

}
}I
"type":{

"enum":"- multipoint"
}
}
T
"multipolygonGeoJSON":{
"type":"object",
"required":[
"- coordinates",
"_ type"
]

roperties":{
"type":{

"enum":"- MultiPolygon"

b
"Schema multipolygonGeoJSON coordinates property":{

"type":"array",
"items":{
"type":"array",
"items":{
"type":"array",
"minItems":4,
"items":{
"minItems":2,

"type":"array",
"items":{

"type":"number"

}

90

}
I
"numberMatched":{
"minimum":0,
"type":"integer",
"description":"|-\n The number of features of the feature type that
match the selection\n parameters like ‘bbox‘.",
"example":127
b
"numberReturned":{
"minimum":0,
"type":"integer",
"example":10
I
"pointGeoJSON":{

"type":"object",
"required":[
"- coordinates",
"_ type"
1
"properties":{
"type":{
"enum":"- Point"
¥
"Schema pointGeo]SON coordinates property":{
"minItems":2,
"type":"array",
"items":{

"type":"number"

}

}
b
"timeStamp":{

"type":"string",

"description":">-\n This property indicates the time and date when
the response was\n generated."

¥
b

"responses”:{
"LandingPage":[

{
"description":"The landing page provides links to the API definition\n
(link relations ‘service-desc' and ‘service-doc'),\n the Conformance
declaration (path ‘/conformance',\n link relation ‘conformance‘), and the
Feature\n Collections (path ‘/collections', link relation\n ‘data‘).",
"content":[
{

"application/json":{
"schema":{
"$ref":"#/components/schemas/1landingPage"

}
}
Iy,
{
"name":"text/html"
}
]
}
1,
"Collection":[
{

"description":"Information about the feature collection with id
‘collectionId".\n\n\n The response contains a link to the items in the
collection\n\n (path ‘/collections/{collectionId}/items', link relation
“items*)\n\n as well as key information about the collection. This
information",

"content":{

"application/json":{
"schema":{
"$ref":"#/components/schemas/collection”
}
}
}
}
Iy
"Queryables":[
{

"description":"Information about the feature collection queryable
properties”,

"content":{
"schema":{
"$ref":"#/components/schemas/queryables”
}
}
by
1,
"FilterCapabilities":[
{
"description":"A document listing the server filtering capabilities",
"content":[
{
"name":"text/html"
b
{
"schema":{
}
}

91

92

}
1
"ConformanceDeclaration":[
{
"description":"The URIs of all conformance classes supported by the
server.\n\n To support \"generic\" clients that want to access multiple\n
0GC API Features implementations - and not \"just\" a specific\n API / server,
the server declares the conformance\n classes it implements and conforms to.",
"content":[
{
"name":"text/html"
Iy
{
"application/json":{
"schema":{
"$ref":"#/components/schemas/confClasses"

}

}
1.
"Feature":[
{
"description":"fetch the feature with id ‘featureld' in the feature
collection\n with id ‘collectionId*",
"content":{
"application/geo+json”:{
"schema":{
"$ref":"#/components/schemas/featureGeoJSON"

}

}
]I

"Features":[

{

"description”:">-\n The response is a document consisting of
features in the collection.\n\n The features included in the response are
determined by the server\n\n based on the query parameters of the request. To
support access to\n\n larger collections without overloading the client, the
API supports\n\n paged access with links to the next page, if more features are
selected\n\n that the page size.\n\n\n The ‘bbox" and ‘datetime’
parameter can be used to select only a\n\n subset of the features in the
collection (the features that are in the\n\n bounding box or time interval).
The ‘bbox‘ parameter matches all\n features\n\n in the collection that
are not associated with a location, too. The\n\n ‘datetime"’ parameter matches
all features in the collection that are\n\n not associated with a time stamp or
interval, too.\n\n\n The ‘limit' parameter may be used to control the subset of
the\n\n selected features that should be returned in the response, the page\n

size.\n\n Each page may include information about the number of selected
and\n\n returned features (‘numberMatched' and ‘numberReturned‘) as well as\n\n
links to support paging (link relation ‘next‘).",
"content":{
"schema":{
"$ref":"#/components/schemas/featureGeoJSON"

}

}
1,
"Collections":[
{
"description”:"The feature collections shared by this API.\n\n\n
The dataset is organized as one or more feature collections. This\n

resource\n\n provides information about and access to the collections.\n\n\n
The response contains the list of collections. For each collection, a\n
link\n\n to the items in the collection (path\n
‘/collections/{collectionId}/items",\n\n link relation ‘items‘) as well as key
information about the collection.",
"content":[
{
"name": "text/html"
I
{
"application/json":{
"schema": [
{
"$ref":"#/components/responses/Collections”
b
{
"$ref":"#/components/schemas/collections”
}
]
}
}
]
}
1,
"ServerError":[
{
"description":"A server error occurred.",
"content":[
{
"name": "text/html"
I,
{

"application/json":{
"schema":{
"$ref":"#/components/schemas/exception’"

}

93

94

]
}
1.
"InvalidParameter":[
{
"description":"A query parameter has an invalid value.",
"content":{
"schema":{
"$ref":"#/components/schemas/exception""
}
}
}
1
b
"parameters":{
"bbox":{

"name":"bbox",

"in":"query",

"description":">-\n Only features that have a geometry that
intersects the bounding box are\n selected.\n\n The bounding box is
provided as four or six numbers, depending on\n whether the\n\n
coordinate reference system includes a vertical axis (height or depth):\n\n\n *
Lower left corner, coordinate axis 1\n\n * Lower left corner, coordinate axis
2\n\n * Minimum value, coordinate axis 3 (optional)\n\n * Upper right
corner, coordinate axis 1\n\n * Upper right corner, coordinate axis 2\n\n
* Maximum value, coordinate axis 3 (optional)\n\n\n The coordinate reference
system of the values is WGS 84\n longitude/latitude\n\n
(http://www.opengis.net/def/crs/06C/1.3/CRS84) unless a different\n
coordinate\n\n reference system is specified in the parameter ‘bbox-crs‘.\n\n\n
For WGS 84 longitude/latitude the values are in most cases the sequence\n
of\n\n minimum longitude, minimum latitude, maximum longitude and maximum\n
latitude.\n\n However, in cases where the box spans the antimeridian the first
value\n\n (west-most box edge) is larger than the third value (east-most box\n
edge).\n\n\n If the vertical axis is included, the third and the sixth number
are\n\n the bottom and the top of the 3-dimensional bounding box.\n\n\n
If a feature has multiple spatial geometry properties, it is the\n decision of
the\n\n server whether only a single spatial geometry property is used to\n
determine\n\n the extent or all relevant geometries.",

"required":false,

"style":"form",

"explode":false,

"schema":{

"maxItems":6,
"minItems":4,
"type":"array",
"items":{
"type":"number"
}
by
}

"CollectionId":{
"name":"CollectionId",
"in":"path",
"description":"local ident
"required":true,
"schema":{

"type":"string",
"enum": [
"- 'syria_vtp:buildi
- 'syria_vtp:cemetery_s'\n -

ifier of a collection",

ng_s'\n - 'syria_vtp:built_up_area_s'\n
"syria_vtp:crop_land_s'\n -

"syria_vtp:dam_s'\n - 'syria_vtp:electric_power_station_s'\n -
"syria_vtp:facility_s'\n - 'syria_vtp:grassland_s'\n -
'syria_vtp:military_installation_s'\n - 'syria_vtp:power_substation_s'\n

- 'syria_vtp:river_c'\n - 'syria_vtp:river_s'\n -
"syria_vtp:road_c'\n - 'syria_vtp:settlement_s'\n -
"syria_vtp:tower_s'\n - 'vtp:AeronauticPnt'\n -
'vtp:AgriculturePnt'\n - 'vtp:AgricultureSrf'\n - 'vtp:CulturePnt'\n
- 'vtp:CultureSrf'\n - 'vtp:FacilityPnt'\n - 'vtp:HydrographyCrv'\n
- 'vtp:HydrographyPnt'\n - 'vtp:HydrographySrf'\n -
'vtp:MilitarySrf'\n - 'vtp:SettlementSrf'\n - 'vtp:StoragePnt'\n

- 'vtp:StructurePnt'\n - 'vtp:TransportationGroundCrv'\n -
‘vtp:UtilityInfrastructureCrv'\n - 'vtp:UtilityInfrastructurePnt'\n

- 'vtp:VegetationSrf'\n - "irag_vtp:aircraft_hangar_s'\n =
"iraq_vtp:amusement_park_s'\n - "iragq_vtp:annotated_location_s'\n -
"iraq_vtp:apron_s'\n - 'iraq_vtp:archeological_site_s'\n -
"irag_vtp:barn_s'\n - "iraq_vtp:bridge_c'\n - "iraq_vtp:bridge_s'\n
- "iraq_vtp:brush_s'\n - "irag_vtp:building_p'\n -
"irag_vtp:building_s'\n - 'iraq_vtp:built_up_area_p'\n -

"iraq_vtp:built_up_area_s'\n
"iraq_vtp:cart_track_c'\n
"iraq_vtp:cemetery_s'\n - "ir
"iraq_vtp:crossing_p'\n - ir
"irag_vtp:cut_c'\n - 'irag_vt
- "iraq_vtp:disposal_site_s'\n
"iraq_vtp:embankment_c'\n

"iraq_vtp:facility_s'\n - ir
"iraq_vtp:firing_range_s'\n -
"iraq_vtp:forest_s'\n - "iraq
"irag_vtp:gate_c'\n - "iraq_v

"iraq_vtp:grain_storage_structure_s'\n
"irag_vtp:greenhouse_s'\n -

- 'irag_vtp:canal_c'\n -
iraq_vtp:castle_s'\n -
aq_vtp:crop_land_s'\n -
aq_vtp:culvert_c'\n -
p:dam_c'\n - "iraq_vtp:dam_s'\n
- "iragq_vtp:ditch_c'\n -
iraq_vtp:extraction_mine_s'\n -
aq_vtp:fence_c'\n -
"iraq_vtp:ford_c'\n -

_vtp:fountain_s'\n -

tp:gate_p'\n -
- "iraq_vtp:grassland_s'\n -
iraq_vtp:helipad_p'\n -

"irag_vtp:helipad_s'\n - "irag_vtp:hut_s'\n =

"iraq_vtp:hydrocarbons_field_s'\n

- 'iraq_vtp:interest_site_p'\n
"irag_vtp:island_s'\n - "iraq
"iraq_vtp:land_aerodrome_s'\n

- "iraq_vtp:inland_waterbody_s'\n
- 'iraq_vtp:interest_site_s'\n -

_vtp:land_aerodrome_p'\n -

- "iraq_vtp:land_water_boundary_c'\n -

"iraq_vtp:lookout_s'\n - "iraq_vtp:marsh_s'\n -

"iraq_vtp:memorial_monument_s'\n
- "iraq_vtp:motor_vehicle_station_p'\n
- 'irag_vtp:orchard_s'\n -
"iraq_vtp:power_substation_s'\n

- "irag_vtp:military_installation_s'\n
- "iraq_vtp:motor_vehicle_station_s'\n
raq_vtp:park_s'\n -
- "iraq_vtp:racetrack_c'\n -

95

96

"iraq_vtp:racetrack_s'\n - "iraq_vtp:railway_c'\n -

"iraq_vtp:railway_sidetrack_c'\n - "iraq_vtp:river_c'\n -
"iraq_vtp:river_s'\n - "iraq_vtp:road_c'\n - "iraq_vtp:road_s'\n
- "iraq_vtp:roadside_rest_area_s'\n - "iraq_vtp:ruins_p'\n -
"iraq_vtp:ruins_s'\n - "iragq_vtp:settlement_s'\n -
'iraq_vtp:sewage_treatment_plant_s'\n - "iraq_vtp:shed_s'\n -
"iraq_vtp:shopping_complex_s'\n - "iragq_vtp:sports_ground_s'\n -
"iraq_vtp:stadium_s'\n - 'iraq_vtp:stair_c'\n -
"iraq_vtp:steep_terrain_face_c'\n - "iraq_vtp:storage_tank_s'\n -
"irag_vtp:swamp_s'\n - "irag_vtp:swimming_pool_s'\n -
"irag_vtp:taxiway_c'\n - "irag_vtp:tower_s'\n -
"iraq_vtp:traffic_light_p'\n - 'irag_vtp:trail_c'\n -
"iraq_vtp:transportation_block_p'\n - "iraq_vtp:transportation_station_s'\n
- 'irag_vtp:tunnel_c'\n - 'iraq_vtp:vehicle_barrier_c'\n -
"iraq_vtp:vehicle_lot_s'\n - "iraq_vtp:wall_c'\n -
"iraq_vtp:water_tower_s'\n - 'iraq_vtp:water_well_s'\n -
"iraq_vtp:waterwork_s'\n - "iraq_vtp:zoo_s'\n - "ne:countries50m'\n
- 'ne:popplaces50m'\n - 'ne:urban50m""
]
}
b
"dateTime":{

"name":"datetime",

"in":"query",

"description":"Either a date-time or an interval, open or closed. Date and
time\n expressions\n\n adhere to RFC 3339. Open intervals are expressed
using double-dots.",

"required":false,

"style":"form",

"explode":false,

"schema":{

"type":"string"

}

1
"featureld":{

"name":"featureld",

"in":"path",

"description":"local identifier of a feature",

"required":true,

"schema":{
}

¥

"Timit":{

"name":"limit",

"in":"query",

"description":"The optional limit parameter limits the number of items
that are\n presented in the response document.\n\n\n Only items are
counted that are on the first level of the collection in\n the response
document.\n\n Nested objects contained within the explicitly requested items
shall not\n be counted.\n\n\n Minimum = 1. Maximum = 10000. Default =

10.",

"required":false,

"style":false,

"explode":false,

"schema":{
"maximum":1000000,
"minimum":1,
"type":"integer",
"default":1000000

}

I
"filter":{
"name":"filter",
"in":"query",
"description":">-\n Defines a filter that will be applied on items,
only items matching the\n filter will be returned”,
"schema":{
"type":"string"
}
I
"filter-lang":{
“name":"filter-lang",
"in":"query",
"description":"Filter encoding used in the filter parameter",
"schema":{
"type":"string",
"enum": [
"cql-text"
1.
"default":"cql-text"

97

Appendix C: OpenAPI Extension task

This section reports on the work completed as part of an unfunded OpenAPI extension task after
Testbed-16 work was completed. The approach taken was to start the development of ShapeChange
as a new project omitting all of the work completed in Testbed-16, essentially the Testbed-16 work
was completed for a second time. The lessons learned from Testbed-16 were applied in this
extension work to develop a new implementation with a fundamentally new approach.
Additionally, the UML model was changed and troublesome data types and classes from the existing
metamodel were changed to accommodate ShapeChange requirements, specifically, the SCXML
representation of the UML model. Additionally, the model was simplified where possible.

C.1. Recap of issues to be addressed

There were several shortcomings of the Testbed-16 approach to producing a conformant JSON-
encoded definition of an OpenAPI interface, briefly, these were as follows:

» The use of association classes is a valid approach to describing certain relationships in OpenAPI
and although SCXML can see these classes, the relationship they refer to is not clear.

* The use of enumerations was unclear, particularly in the responses classes. This is because the
OpenAPI specification defines this as a variable when in fact it is fact a controlled vocabulary
consisting of approved HTTP status codes.

* The ShapeChange implementation was focused on producing a compliant result, rather than
specifically implementing tests against the metamodel.

C.2. Addressing the shortcomings

As mentioned previously, the work done in Testbed-16 was discarded and implementation was
started from scratch. Changes to the UML model and metamodel were also made, these are
documented in this section. This work was all completed using internal innovation funding and
does not form part of Testbed-16.

C.2.1. UML model Changes

There are two main changes that were made to the UML model and metamodel in this
implementation, these were:

» All relationships described with association classes has been removed, these relationships are
now described with qualifications.

98

class Main /

Main Types::Paths

+

«APIProperty»
paths: Path Item [0..¥]

fipath}f 1

0.*

Main Types::Path Item

+ 4 + 4+ 4 o+ *

wAPIProperty»

sref: String [0..1]
summary: 5tring [0..1]
description: String [0..1]
get: Operation [0..1]

put: Operation [0..1]
post: Operation [0..1]
delete: Operation [0..1]
options: Operation [0..1]
head: Operation [0..1]
patch: Operation [0..1]
trace: Operation [0..1]
parameters: Parameter | Reference

99

Figure 26. Relationships as qualifications

* The responses class now contains all of the HTTP Response codes as variables with multiplicity
of 0 or 1. The specification describes this relationship as a value, value combination (rather than

a key, value pair). This is a similar approach to the Operation class, which contains all of the
possible http verbs with a multiplicity of 0..1.

100

class Paths .~

wenumeration APIDataTy...
Data Types::HTTP Status Codes

100 = Continue

101 = Switching Protocols
200 = 0K

201 = Created

202 = Accepted

203 = Non-Authoritati...
204 = Mo Content

205 = Reset Content

206 = Partial Content
Main Types::Responses 300 = Multiple Choices
301 = Moved Permanently
wAPIProperty» 302 = Found
+ default: Response [0..1] 303 = See Other
+ <http status code>: Response [0..%] 304 = Not Modified
305 = Use Proxy

307 =Temporary Redirect
400 = Bad Request

401 = Unauthorized

402 = Payment Required
403 = Forbidden

404 = Not Found

405 = Method Mot Allowed
406 = Mot Acceptable

407 = Proxy Authentic_.
408 = Request Timeout
409 = Conflict

410 =Gone

411 = Length Required
412 = Precondition Failed
413 = Payload Too Large
414 = URI Too Long

415 = Unsupported Med...
416 = Range Not Satis...
417 = Expectation Failed
426 = Upgrade Required
500 = Internal Server...
501 = Not Implemented
502 = Bad Gateway

503 =Service Unavailable
504 = Gateway Timeout
505 = Http Version No...

Figure 27. Responses

* A general tidy up of the UML metamodel to reflect the changes described and correct any

101

errors. It was noticed in the second round of implementation that the metamodel contained a
few relationship errors, these were corrected for completeness as in reality, ShapeChange only
uses the specialization definition at this time and does not use the attributes in the metamodel.

C.2.2. ShapeChange implementation

The Testbed-16 ShapeChange implementation used a combination of generalizations and class
names to produce the output, this was changed in this implementation to only use the generalized
relationships for consistency. Therefore, the rules were applied at the metamodel level only and
any model based rules were removed. This represented a larger development overhead, but
produces better results. Although this development work produces the required result, it does not
represent a full implementation of the OpenAPI specification into ShapeChange, however, the
approach taken appears to provide a solid pathway for doing so.

C.2.3. Testing

Testing in the initial Testbed-16 work was restricted to a single implementation of OGC API -
Features - Part 1: Core. This resulted in overfitting the implementation to a single specification and
therefore solved a single case but led to developmental dead-ends. Therefore, a set of tests were
devised for the extension implementation, these were:

* A very simple OpenAPI minimal example provided by the OpenAPI team on the website.

* A Helyx-specified OpenAPI interface designed for a different project and not OGC compliant.

* A minimal implementation of OGC API - Features - Part 1: Core.
The objective was to create a generic model and solution that fits all three of these use cases. The

three use cases contained a usage of references, internally defined schemas, parameters, multiple
paths and components to provide confidence that the approach taken solves the generic use case.

C.2.4. Results

By making the changes outlined, it was possible to create a generic solution for the three use cases.

C.2.4.1. Example minimal OpenAPI

The initial test was the sample API taken from the OpenAPI website as a minimal implementation.
The UML model for this is simple and linear and contains only a single response. Note the changes
from the Testbed-16 work in the Responses class which has a variable named 200, this reflects the
fact that the Responses metaclass contains a controlled vocabulary of http responses. Additionally,
the Paths class only has one path described by a UML qualification.

102

motivation OpenAPI - Test

https://swagger. iofdocs/sp

ecification/basic-structure/

Server|

Main Types::Test Server 1 +servers

OpenAPI
Main Types:Landing Page

openapi: string=3.02

+
+

url: string = hitp://api.exam...
description: string = Optiorsl server .

paths: Test Paths

"
+ info: Test Info

e

+ servers:Server [0.%]

+servers

Server|

Main Types::Test Server 2

+ url:string = http;//staging-..
+ description: string = Optional senver...

—

+paths

Paths
Main Types::Test Paths

+ paths: Path ltem [1.7]

Path ltem

Main Types:Test Get Path
Item

+ get:TestGet Operation

+get

Operation
Main Types::Test Get Operation

+ summary: string =Returns a list .
+ description: string = Optional extend...
+ responses:TestGet

+responses
Responses
Main Types::Test Get Responses

<t Get 200 Response

Response
Main Types::Test Get 200 Response.

+ description: string = A ISON array of.
+ content: Test Get Map 200 Response

+content

Map Content

Main Types::Test Get Map 200 Respanse

+ name: string = application/json
+ value: 200 Response Media Type

+value

Media Type

Main Types::200 Response Media Type

+ schema: Test Get 200 Response Content

+schema

Schema
est Get 200 Response Content

Main Typ

+ type: string = string
+ items: Test Get 200 Response Content kems

+items

Schema
Main Types::Test Get
200 Response

Content Test tems

+info
info
Main Types::Test Info
+ ftitle: string = Sample API
+ description: strirg = Opticral muitil..

+

version: string=0.1.9

103

Figure 28. OpenAPI Test taken from https://swagger.io/docs/specification/basic-structure/

"openapi": "3.0.2",
"info": {
"title": "Sample API",
"description": "Optional multiline or single-line description in
[CommonMark](http://commonmark.org/help/) or HTML.",
"version": "0.1.9"

1
"servers": [
{
"url": "http://api.example.com/v1",
"description”: "Optional server description, e.g. Main (production)
server"
I
{

"url": "http://staging-api.example.com",
"description": "Optional server description, e.g. Internal staging server
for testing"

}
1,
"paths": [{"/users": {"get": {
"summary": "Returns a list of users.",
"description”: "Optional extended description in CommonMark or HTML.",
"responses": {
"200": {
"description": "A JSON array of user names",
"content": {"application/json": {"schema": {
"type": "string",
"items": {"type": "string"}
33
L,

}1H

C.2.4.2. Example microservice OpenAPI

This example is taken from a microservice definition that is more complex than the previous
example, but not OGC compliant. It contains references as well as definitions for schemas and
multiple paths and responses defined in the described way.

104

https://swagger.io/docs/specification/basic-structure/

Paths
Main::Paths

+ paths: Path item [0.%]

finformation-broker/load/{ 1 source_id}/frequest_fype]

Main::400 Response Content

4+ name: string =text/plain
+_value: 400 Response Contert

+walue

Main::Map JSON Content
name: string = application/jsn
Media Type 1404 + value: SON Media Type
Main:400 Response Media Type P
+ schema: 400 Media Type Schema Main:404 Response Object
description: string = Resource ratf.

Schemal

Media Type
JSON Content Properties.

Main::JSON Media Type
ain: +schema

+ schema: JSON Content Properties
+ examples: Map Examples [0.]

Figure 29. OpenAPI definition for a Resource Loader

"openapi": "3.0.1",
"info": {
"version": "1",
"title": "Resource Loader",

"description": "Loads resources from the local NFS to the

appropriate
local service, informs the local catalogue of the change and notifies the Resource
Requester that a request has been fulfilled."
h

"paths": {"/information-broker/load/{resource_id}/{request_type}": {"post": {

"summary": "Loads resource from local NFS to appropriate local service.",
"requestBody": {

"description”: "Information about the request and the resource
location on the local NFS",
"required": true,
"content": {"application/json": {
"schema": {"properties": {
"file_path": {"type": "string"},
"request_id": {"type": "string"}

I
"examples": {"test": {"summary": "full resource"}}
1}
i
"parameters": [

{

105

"name": "resource_id",

"description": "ID of the requested resource",
"in": "path",

"required": true,

"schema": {"type": "string"}

b
{
"name": "request_type",
"description": "Type of resource requested",
"in": "path",
"required": true,
"schema": {
"type": "string",
"enum": [{
“init": "",
"delta": ""
}H
¥
}

1,
"responses": {
"202": {"description": "The resource has been located and will be
loaded into the appropriate service."},
"400": {
"description”: "Bad Request. Reason given in response body",
"content": {"text/plain": {"schema": {
"type": "string",
"example": "Request ID did not match any outstanding
request processes."
1}
}
"404": {"description": "Resource not found at given file path"},
"5XX": {"description": "Unexpected error"}

1}

C.2.4.3. Example OGC API - Features - Part 1: Core

OGC API - Features - Part 1: Core was the test case for the Testbed-16 work, however, the definition
and corresponding model was very complex. Therefore, a simpler implementation of the standard
was tested in the post-Testbed-16 work. The definition is heavily reliant on references to external
objects such as conformance classes. This implementation is potentially closer to the building blocks
idea described in the recommendations of the main part of this report.

106

class Landing Page

Tag
Landing Page::Tag 1

+tags

OpenAP|
Landing Page::Landing
Page

+ name: string = Capabilities openapi: string =302
+ description: string = essertia chara... info: Info
servers: Server [1.%]
e Ti 2%
+tags S ag_[{}]
paths: Min Paths
Tag
Landing Page::Tag 2
+info
+ name:string = Data
+ description: string = access to dda ... info
Landing Page::Info
+ title:string = Asample API co...
+ version:string=1.0.0
+ description: strirg = This is a samp..
it oontact + contact: Contact
- ¥ =L
Landing Page::Contact S
+ name: string = Acme Corporaion ‘
string = info@example.og Hicense‘
+ I: string = hitp: le.
url: string p://example.orgf T
Landing Page::License

name: string = CC-BY 4.0 licerse|
url: string = https://creativ...

+5ErVers

Server

Landing Page::Server 1

+ url:string = https://data.ex...
+ description: string = production server

+servers

+paths

Server

Landing Page::Server 2

5
+

url: string = https://devexa
description: string = Development senver

Paths

Paths::Min Paths

+ paths: Path Item [1.%]

Figure 30. Minimal OGC API-Feature Landing Page

class Paths 1

Min Paths

Jconformanc

paths: Path Item [1.2]

+paths +paths
Path ltem Path item
Path / Path Conformance

+ get: Operation /

+ get: Operation /conformance

+get’

Operation /

Operation

o e

tags: string [0..*] = Capabilities
summary: string = landing page
description: string = The landirg pa
operationid: string = getlandingPage
responses: Response [1.%]

+responses

/ Responses

Responses

+ 200: 200 Response Landing Page Ref|
+ 500:500 Server Error

¢

+ Sref s

= https://api swa... +

Sref: string = hitps://apiswa...

+get

Operation fconformance

Operation

description: string= |-
operationid: string =

[T

tags: string [0..*] = Capabilities
summary: string = information abo...

responses: Response [1.%]

Al
getConformanceD...

+responses
L

Jconformance

Responses

Responses

+ 200: Response Conformance Dedlaration Ref

Path Collections

get: Operation /collections

+ 500:500 Server Errr:»r

>
+200 +500
+500
Reference Reference
200 Response Landing Page Ref 500 Server Error s

+200

200 Response Conformance
Declaration Ref

Reference

Path ltem

+get

Operation
‘Operation /collections

+ tags: string [0.*] = Capabilities

+ summary: string =the feature cal...
operationid: string = getCollections
responses: Response [1.%]

+responses

Responses

Jeollections Responses

200: Response Collectiors Ref|
500: 500 Server Error

Reference

200 Response Collections Ref

+ Sref: string = https://api.swa

Figure 31. Minimal OGC API - Feature Paths

107

Refere

Sref string =i fapi v
+500)
500
S00server ;
B

Figure 32. Minimal OGC API - Feature Paths continued

"openapi”: "3.0.2",
"info": {

"title": "A sample API conforming to the standard 0GC API - Features -
Part 1: Core",

"version": "1.0.0",

"description": "This is a sample OpenAPI definition that conforms to the
conformance \n classes \"Core\", \"GeoJSON\", \"HTML\" and \"OpenAPI 3.0\" of the\n
standard \"0GC API - Features - Part 1: Core\".\n \n This example is a generic
0GC API Features definition that uses path \n parameters to describe all feature
collections and all features. \n The generic OpenAPI definition does not provide
any details on the \n collections or the feature content. This information is only
available \n from accessing the feature collection resources.\n \n There 1is
\n [another example](https://app.swaggerhub.com/apis/cportele/ogcapi-features-1-
example2/1.0.0) \n that specifies each collection explicitly.",

"contact": {

"name": "Acme Corporation”,
"email": "info@example.org",
"url": "http://example.org/"

}
"license": {
"name": "CC-BY 4.0 license",
"url": "https://creativecommons.org/licenses/by/4.0/"
}
b
"servers": [
{
"url": "https://data.example.org/",
"description”: "production server"
1
{
"url": "https://dev.example.org/",
"description": "Development server"
}
1

108

{
"name": "Capabilities",
"description”: "essential characteristics of this API"
Js
{
"name": "Data",
"description”: "access to data (features)"
}
1
"paths": {
"/ {"get": {
"tags": ["Capabilities"],
"summary": "landing page",
"description”: "The landing page provides links to the API
definition, the conformance\n statements and to the feature collections in this
dataset.",

"operationId": "getlLandingPage",
"responses”: {

"200": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/LandingPage"},

"500": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ServerError"}

}
H

"/conformance": {"get": {

"tags": ["Capabilities"],

"summary": "information about specifications that this API conforms
to",

"description”: "|-\n A list of all conformance classes
specified in a standard that the \n server conforms to.",

"operationId": "getConformanceDeclaration",

"responses”: {

"500": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ServerError"},

"200": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ConformanceDeclaration"}

}
ja
"/collections": {"get": {
"tags": ["Capabilities"],
"summary": "the feature collections in the dataset",
"operationId": "getCollections",
"responses”: {

"500": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ServerError"},

109

"200": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/Collections"}

}
I
"/collections/{collectionId}": {"get": {
"tags": ["Capabilities"],
"summary": "|-\n describe the feature collection with id
‘collectionId'",
"operationId": "describeCollection",
"parameters": [{"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/parameters/collectionId"}],
"responses”: {

"500": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ServerError"},

"200": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.04#/components/responses/Collection"},

"404": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/NotFound"}

}

by
"/collections/{collectionId}/items": {"get": {

"tags": ["Data"],
"summary": "fetch features",
"description": "Fetch features of the feature collection with id

‘collectionId*.\n \n Every feature in a dataset belongs to a collection.
A dataset may\n consist of multiple feature collections. A feature collection
is often a\n collection of features of a similar type, based on a common
schema.\n\n Use content negotiation to request HTML or GeoJSON.",

"operationld": "getFeatures",
"parameters": [

{"$ref": "https://api.swaggerhub.com/domains/cportele/ogcapi-
features-1/1.0.0#/components/parameters/collectionId"},

{"$ref": "https://api.swaggerhub.com/domains/cportele/ogcapi-
features-1/1.0.0#/components/parameters/limit"},

{"$ref": "https://api.swaggerhub.com/domains/cportele/ogcapi-
features-1/1.0.0#/components/parameters/bbox"},

{"$ref": "https://api.swaggerhub.com/domains/cportele/ogcapi-
features-1/1.0.0#/components/parameters/datetime"}

1,
"responses”: {

"500": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ServerError"},

"200": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/Features"},

110

"400": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/InvalidParameter"},

"404": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/NotFound"}

}

I3
"/collections/{collectionId}/items/{featureld}": {"get": {

"tags": ["Data"],

"summary": "fetch a single feature",

"description”: "|-\n Fetch the feature with id ‘featureId‘ in
the feature collection\n with id ‘collectionId‘.\n\n Use content
negotiation to request HTML or Geo]SON.",

"operationId": "getFeature",

"parameters": [

{"$ref": "https://api.swaggerhub.com/domains/cportele/ogcapi-
features-1/1.0.0#/components/parameters/collectionId"},

{"$ref": "https://api.swaggerhub.com/domains/cportele/ogcapi-
features-1/1.0.0#/components/parameters/featureld"}

1

"responses”: {

"500": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/ServerError"},

"404": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/NotFound"},

"200": {"$ref":
"https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/responses/Feature"}

}

s

C.2.5. Conclusion

The decision to reevaluate the UML modeling approach and reimplement the ShapeChange plugin
to reflect the new design decisions resulted in a solid partial implementation of the approach into
ShapeChange. It is believed that the approach taken in the extension work with the UML model and
the ShapeChange implementation provides a pathway to a full, workable implementation for the
generic case.

111

Appendix D: Revision History

Table 1. Revision History

Date Editor

November 19, S. Meek
2020

112

Release

1.0

Primary Descriptions

clauses

modified

multiple submitted
version

Appendix E: Bibliography

[1] Echterhoff, J.: UML-to-GML Application Schema Pilot (UGAS-2020) Engineering Report. OGC 20-
012,0pen Geospatial Consortium, https://docs.ogc.org/per/ (2021).

[2] Echterhoff,]J.: OGC Testbed-14: Application Schemas and JSON Technologies Engineering Report.
OGC 18-091r2,0pen Geospatial Consortium, https://docs.ogc.org/per/18-091r2.html (2018).

113

https://docs.ogc.org/per/
https://docs.ogc.org/per/18-091r2.html

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Introduction
	Chapter 7. Background
	7.1. Previous work
	7.2. OpenAPI
	7.3. Model Driven Architecture (MDA)
	7.4. ShapeChange

	Chapter 8. OpenAPI Modeling
	8.1. OpenAPI UML Models
	8.2. OpenAPI UML metamodel
	8.2.1. OpenAPI Main view
	8.2.2. OpenAPI Paths views
	8.2.3. OpenAPI Maps views
	8.2.4. Association classes

	8.3. OGC API - Features - Part 1: Core
	8.3.1. Paths
	8.3.2. Components
	8.3.3. References

	Chapter 9. ShapeChange Implementation
	9.1. Initial Configuration
	9.2. Target Generation Rules
	9.3. Association Classes
	9.4. Results

	Chapter 10. Discussion
	10.1. Recommendations
	10.2. Future Work

	Chapter 11. Conclusion
	Appendix A: OGC API - Feature Part1:Core initial input document (YAML)
	Appendix B: OGC API Features Part1:Core output (JSON)
	Appendix C: OpenAPI Extension task
	C.1. Recap of issues to be addressed
	C.2. Addressing the shortcomings
	C.2.1. UML model Changes
	C.2.2. ShapeChange implementation
	C.2.3. Testing
	C.2.4. Results
	C.2.5. Conclusion

	Appendix D: Revision History
	Appendix E: Bibliography

