
GNOSIS Map Tiles
Specifications Draft version 0.2

Contributors
Jérôme Jacovella-St-Louis, Ecere Corporation jerome@ecere.com
Alexis Naveros, Ecere Corporation alexis@ecere.com

Layout for binary representation of tiled geospatial data
(including vector tiles, embedded and referenced 3D models, point clouds, imagery & coverages)

Note

• Offsets and sizes are specified in decimal bytes.

• Despite MSB being network byte ordering, values are encoded as little-endian
(Least Significant Bit first) to avoid a very significant amount of byte swapping,
accommodating today’s most common architectures.

The tile data is prefixed by a 24 bytes header:

GNOSIS Map Tile Header

Offset Type Size Name

0 char 3 Signature: The 3 characters GMT

3 uint8 1 Major (Currently 1)

4 uint8 1 Minor (Currently 0)

5 uint8 1 Type (See Types table below)

6 uint16 2 Flags (See Flags table below)

8 uint64 8

Tile Key (tiling scheme specific)
GNOSIS Global Grid layout (from high to low bits):
level (5 bits: 0..28),
latitude index (29 bits), longitude index (30 bits)

16 uint32 4 Size of uncompressed data excluding header

20 uint8 1 Encoding (See Encodings table below)

21 uint 3 Compressed size (note: 3 bytes only)

24 Total size of header

If the tile is not flagged as empty or full, the actual tile data follows, based on geospatial data type.

The following Types are currently defined:

Type Value Notes

Vector types

vectorPoints 0x10 Points vector type

vector3DPoints 0x11 This implies a 16-bit Z value per point

vector3DPoints32 0x12 This implies a 32-bit Z value per point

vectorLines 0x14 Lines vector type

vector3DLine 0x15 This implies a 16-bit Z value per point

vector3DLines32 0x16 This implies a 32-bit Z value per point

2

vectorPolygons 0x18 Polygons are stored a list of triangles (CDT)

vector3DPolygons 0x19 This implies a 16-bit Z value per point

vector3DPolygons32 0x1A This implies a 32-bit Z value per point

vectorContours 0x1C Polygons are stored as contours

vector3DContours 0x1D This implies a 16-bit Z value per point

vector3DContours32 0x1E This implies a 32-bit Z value per point

vectorTopoContours 0x20 Polygons are stored as contours with shared segments

vector3DTopoContours 0x21 This implies a 16-bit Z value per point

vector3DTopoContours32 0x22 This implies a 32-bit Z value per point

Imagery types

rasterARGB 0x30 Alpha, Red, Green, Blue (the alpha in high order bit).
4 bytes per pixel (262,144 bytes per 256x256 tile).

raster16Bit 0x31 signed 16-bit integer (131,072 bytes per 256x256 tile)

raster8Bit 0x32 1 unsigned byte per pixel (65,536 per 256x256 tile)

Gridded coverage types

coverage8Bit 0x50 unsigned, 1 byte per pixel (67,081 total)

coverage16Bit 0x51 signed, 2 bytes per pixel (134,162 total)

coverageInt32 0x52 signed, 4 bytes per pixel (268,324 total)

coverageFloat32 0x53 floating-point, 4 bytes per pixel (536,648 total)

coverageDouble64 0x54 floating-point, 8 bytes per pixel (1,073,296 total)

coverageQuantized16 0x70 - 2x 64-bit double to specify range (min, max) -- Paeth
filter, image encoding e.g. PNG does not apply to range
- signed 16-bit integer per pixel (134,178 bytes per tile)
representing grid values quantized to the min-max range
0 represents (min+max)/2.

3D environment types

The geometry of pointCloud and models3D(Ground) is still technically vector/points:

pointCloud 0x90 For e.g. LAS files whereas ESRI Shapefiles pointZ/
S57 Sounding Points will be vector3DPoints

models3D(Ground) reference or embed 3D models (e.g. E3D, glTF, COLLADA, FLT, 3DS, OBJ...)

models3D 0xA0 This references external 3D models -- 16-bit altitude per
point, 32-bit LevelModelID in point data

models3DGround 0xA1 This references external 3D models -- dropped to ground
(no Z), 32-bit LevelModelID in point data

embedded3DModel 0xB0 This embeds a single 3D model and is purely 3D geometry
(treated similarly to vector3DPolygons)

3

The following Flags are currently defined:

Flag Position
(from lsb)

Description

All types

full 0 The tile is full(finer zoom levels within the pyramid need not be defined).

empty 1 The tile is empty (finer zoom levels within the pyramid need not be
defined).

Points, Referenced 3D Models & Point Clouds

pointsDataId 2 Separate ID instead of elements list (more efficient when most points are
individual). Duplicates are allowed (quantization can bring to same point).

rgb 3 Color information

alpha 4 Opacity information

All vector types, Point Clouds (for intensity)

measure 5 Measurement information (e.g. PointM)

measure32 6 Measurement information (32 bit)

3D Polygons and Embedded 3D Model

texCoords 8 Texture coordinates

normals 9 Normals information

tangents 10 Tangents information

Referenced 3D Models

yaw 8 Orientation information

yawPitchRoll 9 Separate yaw, pitch, roll orientation information

scale 10 Scaling information

xyzScale 11 Separate x, y, z scaling information

Point clouds (note: id is used for classification)

scanInfo 8 Scan information

The following Encodings are currently defined:

Encoding Value Description

uncompressed 0x00 The raw data without any special encoding.

deflate 0x01 The data is compressed with deflate (zlib) algorithm.

lzma 0x02 The data is compressed with LZMA.

jpeg2000 0x80 The data is compressed as a JPEG-2000 image.

png 0x81 The data is compressed as a PNG image.

paethLZMA 0x82 A Paeth filter* is applied; then the data is compresed with LZMA.

4

Compact Vector Tiles representation

Compact storage as localized vertices with accuracy proportional to scale

• Coordinates are specified as two 16-bit signed integer per vertex, the first integer representing
the latitude, and the second the longitude — like ISO 6709:1983. The full range
(-32,767..32,767) of these integers are linearly mapped to the geospatial extent of the tile.

• Preserving proper topology with varying accuracy was a major challenge which has been solved
in the GNOSIS vector pipeline.

• All points used by the tile are specified in one single array.

Pre-triangulated for high performance GPU rendering and optimal service-to-display processing

• Polygons are described as triangles since tessellation is a required step for hardware accelerated
rendering of polygons which are either concave or feature inner holes. The tessellation process
can add to the initial loading/processing time before incoming geometry can be visualized on
the screen, and therefore this delay is minimized.

• Constrained Delaunay Triangulation is performed to produce an optimal tessellation which
maximizes the fill rate.

Enforced topologically correct representation (shared vertex indices)

• Lines and polygons provide a list of 16-bit indices into the array of vertices to be re-used by
multiple elements sharing the same edges, or by multiple pieces of the same element
connecting. This ensures proper topology as common edges and the spatial relationship between
different elements are preserved, and makes the representation suitable for both high
performance visualization as well as analysis.

• For lines, the indices of one single element make up a single line string
• For polygons, the indices of one single element make up a list of triangles (3 indices per

triangle).
• The polygon indices making up triangles are always specified in a counter-clockwise manner.

Elements listing indices making up a given feature uniquely identified by a 64-bit ID

Elements are specified by the ID, the start index (in the list of indices for lines and polygons; in the list
of points for points) and the count of indices/points used.

Center lines for curved area labels

Since computing the center lines of curved polygons is better done in regard to the overall shapes
before tiling occurs, this information can optionally be included together with polygon geometry. This
is useful for example to render labels following the curve of those areas, such as typically seen on lakes
and large rivers.

5

https://en.wikipedia.org/wiki/ISO_6709
https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation

Binary layout for Points, Point Clouds and Positioned & Oriented 3D Models tiles

Offset Type Size Name Description

0 int 4 numPoints
The number of vertices in the
tile

Vertices (numPoints occurrences)

4+n*12 int64 8 id

(If pointsDataId flag is set)
ID identifying the feature the
following point is part of (in
the data store’s geometry
table).

pointsDataId set:
4+n*12
not set:
4+n*4

int16 2 latitude

Latitude mapped from the
tile’s latitude extent to -
32,767 to 32,767, with the
bottom (south) edge being at
-32,767

pointsDataId set:
6+n*12
not set:
6+n*4

int16 2 longitude

Longitude mapped from the
tile’s longitude extent to -
32,767 to 32,767, with the
left (west) edge being at -
32,767

(end of vertices data)

(If pointsDataId flag is not set)

4+numPoints*4 int 4 numElements
The number of elements in
the tile

Elements (numElements occurrences)

8+numPoints*4
+n*16

int64 8 id

ID identifying the feature the
points within this element are
part of (in the data store’s
geometry table).

16+numPoints*4
+n*16

int 4 start
Index to the first vertices for
this element

20+numPoints*4
+n*16 int 4 count

Number of consecutive
vertices making up element

6

Offset Type Size Name Description

If altitude data is available

double 8 loAlt Minimum altitude.

double 8 hiAlt Maximum altitude.

int16 /
int32

(2 or 4) *
numPoints

altitudes
min..max as -32767..32767
(32 bit if vector3DPoints32)

If measurement data is available

double 8 loMeasure Minimum measurement.

double 8 hiMeasure Maximum measurement.

int16 /
int32

(2 or 4) *
numPoints

measures
min..max as -32767..32767
(32 bit if measure32 flag set)

If color and/or alpha information is available (repeats numPoints times)

byte 1 alpha
Opacity value
(if alpha flag is set)

byte 3 r, g, b
Red, Green and Blue
(if color flag is set)

7

Offset Type Size Name Description

If model flag is set, this points layer references 3D models

uint32
4 *
numPoints

modelIDs
High 5 bits: model level
Low 27 bits: model

If model flag is set and orientation information is available (repeats numPoints times)

uint16 2 yaw -32767(-360°)..32767 (360°)

uint16 2 pitch (if separate ypr flags is set)

uint16 2 roll (if separate ypr flags is set)

If model flag is set and scaling information is available (repeats numPoints times)

int16 2 sx or scale (mul'ed by 256, e.g. 512=2x)

int16 2 sy (if xyz scaling flag is set)

int16 2 sz (if xyz scaling flag is set)

If model flag is set

double 8 * 6 extent

Overall extent of referenced
models (not including
models from other tiles
spilling into this one)
loLat, loLon, loAlt, hiLat,
hiLon, hiAlt

int 4 numSpillTiles
The number of tiles whose
models extend over this tile

For each tile whose models spill onto this tile:

uint64 8 spillTileKey

* * spillData

All information for those
points whose models spill
onto this tile (i.e. all fields
from 'numPoints' to 'extent'
inclusively).

If point cloud flag is set and scan information is available

uint16
2 *
numPoints

scanInfo

(from lsb to msb)
returnNumber (3 bits)
numberOfReturns (3 bits)
scanDirection (1 bit)
edgeOfFlight (1 bit)
angle (8 bit)

8

Binary layout for Lines tiles

Offset Type Size Name Description

0 int 4 numPoints
The number of vertices in
the tile

Vertices (numPoints occurrences)

4+n*4 int16 2 latitude

Latitude mapped from the
tile’s latitude extent to -
32,767 to 32,767, with the
bottom (south) edge being
at -32,767

6+n*4 int16 2 longitude

Longitude mapped from
the tile’s longitude extent
to -32,767 to 32,767, with
the left (west) edge being
at -32,767

(end of vertices data)

4+numPoints*4 uint8
(numPoints+7)
/8

flags

A compact bits array of
flags (1 bit per vertex) set
to 1 if the vertex is
artificial (i.e not present in
source data). The least
significant bit represents
the first of the up to 8
vertices mapped to each
byte of flags.

4+numPoints*4
+(numPoints+7)/8

int 4 numIndices
The number of indices in
the tile

8+numPoints*4
+(numPoints+7)/8

uint16 numIndices * 2 indices
16-bit indices into the
vertex table to be
referenced by elements

8+numPoints*4
+(numPoints+7)/8
+numIndices*2

int 4 numElements
The number of elements
in the tile

9

Offset Type Size Name Description

Elements (numElements occurrences)
Each element defines a line string as a series of indices.

12+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int64 8 id

ID identifying the feature
the lines within this
element are part of (in the
data store’s geometry
table).

20+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int 4 start
Index to the first index
making up the lines for
this element

24+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int 4 count
Number of consecutive
indices making up the
lines for this element

12+numPoints*4
+(numPoints+7)/8
+numIndices*2
+numElements*16

Total Size

NOTE: This table does not yet describe the layout for altitude and measurement values.

10

Binary layout for Polygons tiles

Offset Type Size Name Description

0 int 4 numPoints The number of vertices in the tile

Vertices (numPoints occurrences)

4+n*4 int16 2 latitude

Latitude mapped from the tile’s
latitude extent to -32,767 to
32,767, with the bottom (south)
edge being at -32,767

6+n*4 int16 2 longitude

Longitude mapped from the tile’s
longitude extent to -32,767 to
32,767, with the left (west) edge
being at -32,767

(end of vertices data)

Polygon Vertex Flags (numPoints occurrences)
Each vertex has an associated flag indicating whether it lies on the tile boundary and whether edges
stemming from it were in the source data (see section explaining vertex flags).

4+numPoints*4+n
(& 0x01)

bit single bit onBottomEdge
Set if this vertex lies on the
bottom tile boundary

4+numPoints*4+n
(& 0x02)

bit single bit onLeftEdge
Set if this vertex lies on the left
tile boundary

4+numPoints*4+n
(& 0x04)

bit single bit onTopEdge
Set if this vertex lies on the top
tile boundary

4+numPoints*4+n
(& 0x08)

bit single bit onRightEdge Set if this vertex lies on the right
tile boundary

4+numPoints*4+n
(& 0x10)

bit single bit downIn
Set if an edge from this vertex
going downoriginates from
source data

4+numPoints*4+n
(& 0x20) bit single bit leftIn

Set if an edge from this vertex
going left originates from source
data

11

Offset Type Size Name Description

4+numPoints*4+n
(& 0x40)

bit single bit upIn
Set if an edge from this vertex
going up originates from source
data

4+numPoints*4+n
(& 0x80)

bit single bit rightIn
Set if an edge from this vertex
going right originates from
source data

(end of vertex flags)

4+numPoints*5 int 4 numIndices The number of indices in the tile

8+numPoints*5 uint16 numIndices*2 indices
16-bit indices into the vertex
table to be referenced by
elements

8+numPoints*5
+numIndices*2

int 4 numElements
The number of elements in the
tile

Elements (numElements occurrences)
Elements define polygons as a series of triplets of indices, defining counter-clockwise triangles.

12+numPoints*5
+numIndices*2
+n*16

int64 8 id

ID identifying the feature the
polygons within this element are
part of (in the data store’s
geometry table).

20+numPoints*5
+numIndices*2
+n*16

int 4 start
Index to the first index making
up the polygons for this element

24+numPoints*5
+numIndices*2
+n*16

int 4 count
Number of consecutive indices
making up the polygons for this
element

(end of elements data)

12

Offset Type Size Name Description

28+numPoints*5
+numIndices*2
+numElements*16

int 4 numCLVertices
The number of vertices
describing all centerlines.

Center Lines Vertices

28+numPoints*5
+numIndices*2
+numElements*16
+n*4

int16 2 latitude

Latitude mapped from the tile’s
latitude extent to -32,767 to
32,767, with the bottom (south)
edge being at -32,767

30+numPoints*5
+numIndices*2
+numElements*16
+n*4

int16 2 longitude

Longitude mapped from the tile’s
longitude extent to -32,767 to
32,767, with the left (west) edge
being at -32,767

(end of center lines vertices)

30+numPoints*5
+numIndices*2
+numElements*16
+numCLVertices*4

int 4 numCenterLines
The number of center lines
defined for the tile. 0 if center
lines are not defined.

Center Lines (numCenterLines occurrences)
Each center line defines a line string as a series of vertices.

34+numPoints*5
+numIndices*2
+numElements*16
+numCLVertices*4
+n*16

int64 8 id

ID identifying the feature for
which a center line is being
defined (in the data store’s
geometry table).

42+numPoints*5
+numIndices*2
+numElements*16
+numCLVertices*4
+n*16

int 4 start
Index to the first vertex making
up this center line

46+numPoints*5
+numIndices*2
+numElements*16
+numCLVertices*4
+n*16

int 4 count
Number of consecutive vertices
making up this center line

34+numPoints*5
+numIndices*2
+numElements*16
+numCLVertices*4
+numCenterLines*16

Total Size

NOTE: This table does not yet describe the layout for altitude and measurement values.
Contours and Topological Contours representation remain to be defined as well.

13

Vertex flags for identifying tile boundaries and artificial edges

• In order to avoid rendering unwanted edges at the tile boundaries of polygons, flags are marked
at each vertex.

• This feature is also used to avoid similar edges problems at the dateline with global datasets
• Each vertex actually has two set of flags, represented in the Tiles API by the

PolygonVertexFlags class.
• The first set of flags indicates whether a vertex is on any of a tile’s 4 boundaries (top, left,

bottom, right). These flags are also useful for recombining tiles, by identifying vertices at a
tile’s border. If an edge links two vertices flagged as being on the same edge, it is deemed to be
an artificial edge, unless explicitly marked as being an actual edge by the second set of flags.

• The other direction flags as they are named in the Tiles API indicate whether there is actually a
real edge (i.e. a segment of a polygon contour not introduced by tiling or by wrapping around
the dateline) leaving from the flagged vertex going into each 4 directions (up, left, down, right).
These flags should only set or inspected in relation to the corresponding set of edge flags:

• For on the right edge and on the left edge flags, the up and/or down edge is not artificial
flags can be set.

• For on the top edge and on the bottom edge flags, the left and/or right edge is not
artificial flags can be set.

• The PolygonVertexFlags provides a simple draw() method to determine whether an edge from
one point to another should be drawn or not. The ordering of the vertices matter: the method
should be called with a point counter-clockwise to the object on which it is invoked. This is
because the flags mark whether an actual edge from the source data passed through each vertex
coming from a certain direction.

• A sample implementation of a PolygonVertexFlags class follows:

 public class PolygonVertexFlags : byte
 {
 public:
 EdgeFlags onEdge:4;
 DirFlags d:4;
 bool draw(PolygonVertexFlags b)
 {
 bool drawEdge = true;
 EdgeFlags cf = onEdge & b.onEdge;
 if(cf && (
 (cf.right && (!d.upIn && !b.d.downIn)) ||
 (cf.top && (!d.leftIn && !b.d.rightIn)) ||
 (cf.left && (!d.downIn && !b.d.upIn)) ||
 (cf.bottom && (!d.rightIn && !b.d.leftIn))))
 drawEdge = false;
 return drawEdge;
 }
 };

14

https://github.com/opengeospatial/testbed13/blob/master/DS001-VectorTiles/annex-e.adoc#TilesAPI

NOTE
When encoded using an image compression format such as PNG or JPEG-2000, which
already defines a way to encode the image and dimensions, only the geospatial mapping and
geometry of the image is relevant from what is described below.

Binary layout for Imagery tiles
Offset Type Size Name Description

0 uint16 2 width Width of the data (typically 256)
2 uint16 2 height Height of the data (typically 256)

4 (based on format)

width *
height *

sizeof(type)
(typically
262,144)

data

The first pixel has its upper-left corner at the upper-left
(north-west) corner of the tile, and the next pixels fill a
scanline to the East.

The next scanline is south of the first one, and so on.
Each pixel represents a color for the entire pixel
sampled from the center or average, with the 256 x 256
squares to be entirely within the tiles

Binary layout for gridded Coverage tiles
Offset Type Size Name Description

0 uint16 2 width Width of the data (typically 259)
2 uint16 2 height Height of the data (typically 259)

4 (based on format)

width *
height *

sizeof(type)
(typically
67,081)

data

The first value reflects a sample 1/256th of the tile’s
latitude difference (height) and longitude difference
(width) away towards the north-west direction from
the upper-left (north-west) corner. The next values fill
a scanline to the East, going 1/256th past the tile to the
East, for a total of 259 samples across.

The next scanline is south of the first one, and so on
for a total of 259 scanlines, with the last scanline
1/256th of the tile’s latitude difference south of the
bottom (south) edge.

The value are expected to be sampled at exact location
(e.g. at the corners of the imagery 'pixels'). The values
in different cells for the same geospatial location (e.g.
on the tile boundary, as well as for the 1 value buffer
around each tile) should match exactly, and facilitate
dealing with partial data during visualization or
analysis (e.g. to dynamically create a 3D terrain mesh
from elevation grids).

For coverages, NODATA values are encoded as -32,767.

15

* Paeth filtering

Imagery and coverages can be filtered using a Paeth filter before being compressed with LZMA.
For 16 bit rasters such as the coverageQuantized16 format used for encoding terrain elevation data, this
achieves significantly better compression than the Paeth filter within the PNG format because it treats
the 16 bit integers as a whole rather than as individual bytes. It also seems to compress ARGB rasters
better than PNG.

The following is an eC reference implementation for the Paeth filter encoding:

// a: left, b: above, c: upper left
static inline int paethPredictor(int a, int b, int c)
{
 int p = a + b - c;
 int pa = Abs(p - a);
 int pb = Abs(p - b);
 int pc = Abs(p - c);

 return pa <= pb && pa <= pc ? a : pb <= pc ? b : c;
}

static inline uint16 intToUint16(int x)
{
 x = (short)(uint16)(((uint) x) & 65535);
 return x < 0 ? ((-x-1)*2 + 1) & 65535 : (x * 2) & 65535;
}

static inline int uint16ToInt(uint16 x)
{
 return (x & 1) ? -((int)x-1)/2-1 : (int)x/2;
}

static inline byte intToByte(int x)
{
 return (byte)(((uint) x) & 255);
}

static inline int byteToInt(uint16 x)
{
 return (byte)(((uint) x) & 255);
}

16

static void encodePaeth(void * src, uint16 width, uint16 height, Format format)
{
 int x, y;

 if(format == raster16)
 {
 short * in = src;
 uint16 * temp = new uint16[width * height];
 uint16 * out = temp;

 for(y = 0; y < height; y++)
 {
 short a = 0, c = 0;

 for(x = 0; x < width; x++, out++, in++)
 {
 short d = *in, b = (y > 0) ? in[-width] : 0;
 int r = (int)d - paethPredictor(a, b, c);

 *out = intToUint16(r);
 a = d, c = b;
 }
 }
 memcpy(src, temp, width*height*2);
 delete temp;
 }
 else if(format == rasterARGB)
 {
 char * in = src;
 byte * temp = new byte[width * height * 4];
 byte * out = temp;

 for(y = 0; y < height; y++)
 {
 byte a = 0, c = 0;
 for(x = 0; x < width*4; x++, out++, in++)
 {
 byte d = *in, b = (y > 0) ? in[-width*4] : 0;
 int r = (int)d - paethPredictor(a, b, c);

 *out = intToByte(r);
 // NOTE: These are the values for the next iteration
 if(x >= 3) { a = in[-3]; if(y > 0) c = in[-width*4-3]; }
 }
 }
 memcpy(src, temp, (int)width*height*4);
 delete temp;
 }
}

17

static void decodePaeth(void * src, uint16 width, uint16 height, Format format)
{
 int x, y;

 if(format == raster16)
 {
 uint16 * in = src;
 short * temp = new short[width * height];
 short * out = temp;

 for(y = 0; y < height; y++)
 {
 short a = 0, c = 0;

 for(x = 0; x < width; x++, out++, in++)
 {
 short b = (y > 0) ? out[-width] : 0;
 int r = (int)uint16ToInt(*in) + paethPredictor(a, b, c);
 short d = (short)r;

 *out = d;
 a = d, c = b;
 }
 }
 memcpy(src, temp, width*height*2);
 delete temp;
 }
 else if(format == rasterARGB)
 {
 byte * in = src;
 byte * temp = new byte[width * height * 4];
 byte * out = temp;

 for(y = 0; y < height; y++)
 {
 byte a = 0, c = 0;
 for(x = 0; x < width*4; x++, out++, in++)
 {
 byte b = (y > 0) ? out[-width*4] : 0;
 int r = (int)byteToInt(*in) + paethPredictor(a, b, c);
 byte d = (byte)(char)r;

 *out = d;
 // NOTE: These are the values for the next iteration
 if(x >= 3) { a = out[-3]; if(y > 0) c = out[-width*4-3]; }
 }
 }
 memcpy(src, temp, (int)width*height*4);
 delete temp;
 }
}

18

	Jérôme Jacovella-St-Louis, Ecere Corporation jerome@ecere.com
	Alexis Naveros, Ecere Corporation alexis@ecere.com
	Compact Vector Tiles representation Compact storage as localized vertices with accuracy proportional to scale
	Pre-triangulated for high performance GPU rendering and optimal service-to-display processing
	Enforced topologically correct representation (shared vertex indices)
	Elements listing indices making up a given feature uniquely identified by a 64-bit ID

