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them have strong correlations with genes’ expression following IFN-α stimulations.
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genes as potential ISGs that so far have shown no significant differential expression
when stimulated with IFN-α in the cell/tissue types in the available databases. A
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Abstract 11 

Background: A virus-infected cell triggers a signalling cascade resulting in the secretion of 12 

interferons (IFNs). It in turn induces the up-regulation of the IFN stimulated genes (ISGs) that 13 

play anti-pathogen roles in host defenses. Here, we conducted analyses on large-scale data 14 

relating to evolution, gene expression, sequence compositions, and network properties to 15 

elucidate factors associated with the stimulation of human genes in response to the typical IFN-16 

α. 17 

Results: We propose that the ISGs are less evolutionary conserved than genes that are not 18 

significantly stimulated in IFN experiments (non-ISGs). ISGs show obvious depletion of GC-19 

content in the coding region, leading to differential representations in their sequence 20 

compositions. The IFN repressed human genes (IRGs), which are down-regulated in IFN 21 

experiments can have similar properties to the ISGs. Additionally, we also design a machine-22 

learning framework integrating the support vector machine and novel feature selection 23 

algorithm. It achieves an area under the receiver operating characteristic curve (AUC) of 24 
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0.7455 for the ISG prediction and demonstrates the similarity between the ISGs triggered by 25 

type I and III IFNs.  26 

Conclusions: The ISGs have unique properties that make them different from the non-ISGs. 27 

Some of them have strong correlations with genes’ expression following IFN-α stimulations. 28 

which can be used as good features in machine learning. Our model predicts several genes as 29 

potential ISGs that so far have shown no significant differential expression when stimulated 30 

with IFN-α in the cell/tissue types in the available databases. A webserver implementing our 31 

method is accessible at http://isgpre.cvr.gla.ac.uk/. 32 

 33 

Key words: interferon, interferon stimulated genes, omics data analyses, machine-learning. 34 

 35 

 36 

Introduction 37 

Interferons (IFNs) are a family of cytokines originally defined for their capacity to interfere 38 

with viral replication. They are secreted from host cells after an infection by pathogens such as 39 

bacteria or viruses to trigger the innate immune response with the aim of inhibiting viral spread 40 

by ‘warning’ uninfected cells [1]. The response induced by IFNs is usually fast and 41 

feedforward, especially to synthesize new IFNs, which guarantees a full response even if the 42 

initial activation is limited [2]. In humans, several IFNs have been discovered (e.g. IFN-43 

α/β/ε/κ/ω/γ/λ [3-8]). IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω are grouped into type I IFNs for 44 

signalling through the common IFN-α receptor (IFNAR) complex present on target cells [3-6] 45 

(Figure 1A). IFN-α comprises 13 subtypes in humans while the remaining type I IFNs are 46 

encoded by a specific gene [9]. IFN-λ targets IFN-λ receptor 1 (IFNLR1)/interleukin-10 47 

receptor 2 (IL-10R2) and was classified as type III IFN since its discovery in 2003 [8] (Figure 48 

1C). Similar to type I IFNs, IFN-λ also exert antiviral properties but functions less intensely 49 

http://isgpre.cvr.gla.ac.uk/
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[10-12]. IFN-γ is classified as type II IFN and manifest its biological effects by interacting with 50 

IFN-γ receptor (IFNGR) [7] (Figure 1B). In contrast to type I and III IFNs, IFN-γ is also anti-51 

pathogen, immunomodulatory, and proinflammatory but more focused on establishing cell 52 

immunity [3,7,11,13].  53 

All three types of IFNs are capable of activating the Janus kinase/signal transducer and 54 

activator of transcription (JAK-STAT) pathway and inducing the transcriptional up-regulation 55 

of approximately 10% of human genes that prime cells for stronger pathogen detections and 56 

defenses [9,14,15]. Henceforth, these up-regulated human genes are referred to as the IFN-57 

stimulated genes (ISGs). They play an important role in the establishment of the cellular 58 

antiviral state, the inhibition of viral infection and the return to cellular homeostasis [3,9,14,16]. 59 

For example, the ectopic expression of heparinase (HPSE) can inhibits the attachment of 60 

multiple viruses [17,18]; interferon induced transmembrane proteins (IFITM) can impair the 61 

entry of multiple viruses and traffic viral particles to degradative lysosomes [19,20]; MX 62 

dynamin like GTPase proteins (MX) can effectively block early steps of multiple viral 63 

replication cycles [21]. Abnormality in the IFN-signalling cascade, for example, the absence 64 

of signal transducer and activator of transcription 1 (STAT1) will lead to the failure of 65 

activating ISGs, making the host cell highly susceptible to virus infections [22].  66 

 67 

Figure 1. Illustration of signalling cascade triggered by different IFNs. In (A), type I IFN 68 

signals through IFNAR, Janus kinase 1(JAK1), tyrosine kinase 2 (TYK2), STAT, and IFN 69 

regulatory factor 9 (IRF9) to form IFN stimulated gene factor 3 complex (ISGF3), and then 70 

bind to IFN stimulated response elements (ISRE) to induce the expression of type I ISGs. In 71 

(B), type II IFN signals through IFNGR, JAK1 and JAK2 to form IFN-γ activation factor (GAF) 72 

and then bind to gamma-activated sequence promoter elements (GAS) to induce the expression 73 

of type II ISGs. In (C), type III IFN signals through IFNLR1, IL-10R2, JAK1, TYK2, STAT, 74 
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and IRF9 to form ISGF3, and then bind to ISRE to induce the expression of type III ISGs. 75 

Figure created using the BioRender (https://biorender.com/).  76 

 77 

Most research on the ISGs has focused on elucidating the role of the ISGs in antiviral 78 

activities or discovering new ISGs within or across species [3,9,14,19,23,24]. The 79 

identification of ISGs can be achieved via various approaches. Associating gene expression 80 

with suppression of viral infection is a good strategy to identify ISGs with obvious antiviral 81 

performance, exemplified by the influenza inhibitor, MX dynamin like GTPase 1 (MX1), and 82 

the human immunodeficiency virus 1 inhibitor, MX dynamin like GTPase 2 (MX2) [21]. 83 

CRISPR screening is a loss-of-function experimental approach to identify ISGs required for 84 

IFN-mediated inhibition to viruses. It enabled the discovery of tripartite motif containing 5 85 

(TRIM5), MX2 and bone marrow stromal cell antigen 2 (BST2) [25]. Monitoring the ectopic 86 

expression of ISGs is another instrumental way to find some ISGs that are individually 87 

sufficient for viral suppression [26], for example, interferon stimulated exonuclease gene 20 88 

(ISG20) and ISG15 ubiquitin like modifier (ISG15).  Using RNA-sequencing [27] and fold 89 

change-based criterion to measure whether a target human gene is induced by IFN signalling 90 

now has become a well-accepted idea [24,28,29]. In most cases, a gene is defined as IFN 91 

stimulated (up-regulated) when its expression value is more than doubled with the presence of 92 

IFNs (fold change > 2) [3,24,30]. There are also many online databases to support IFN- or ISG-93 

related research. For example, Interferome (http://www.interferome.org) provides an excellent 94 

resource by compiling in vivo and in vitro gene expression profiles in the context of IFN 95 

stimulation [24]. The Orthologous Clusters of Interferon-stimulated Genes (OCISG, 96 

http://isg.data.cvr.ac.uk) demonstrates an evolutionary comparative approach of genes 97 

differentially expressed in type I IFN system for ten different species [3].  98 

https://biorender.com/
http://www.interferome.org/
http://isg.data.cvr.ac.uk/
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We notice that a same human gene may show differential response to different IFNs in 99 

different tissues or cells [24]. Despite some well-investigated ISGs, the majority of classified 100 

ISGs have limitedly expression following IFN stimulations [3,24]. It means that the difference 101 

between ISGs and those human genes not significantly up-regulated in the presence of IFNs 102 

(non-ISGs) may not be obvious especially when being assessed more generally. It should also 103 

be noted that, within non-ISGs, there are a group of genes down-regulated during IFN 104 

stimulations. We refer to them as interferon-repressed human genes (IRGs) and they constitute 105 

another major part of the IFN regulation system [3,31]. Collectively, the complex nature of the 106 

IFN-stimulated system results in knowledge that is far from comprehensive. 107 

In this study, we try to associate the inherent properties of human genes with their 108 

expression following IFN-α stimulations. We propose that it is feasible to make ISG 109 

predictions on human genes with a model only compiled from the knowledge of IFN-α 110 

responses in the human fibroblast cells. To achieve these ends, we first constructed a refined 111 

high-confidence dataset consisting of 620 ISGs and 874 non-ISGs by checking the genes across 112 

multiple databases including the OCISG [3], Interferome [24], and Reference Sequence 113 

(RefSeq) [32]. The analyses were conducted primarily on our refined data using genome- and 114 

proteome-based features that were likely to influence the expression of human genes in the 115 

presence of IFN-α. Then based on the calculated features, we designed a machine learning 116 

framework with an optimised feature selection strategy for the prediction of putative ISGs in 117 

different IFN systems. Finally, we also developed an online web server that implemented our 118 

machine learning method at http://isgpre.cvr.gla.ac.uk/. 119 

 120 

 121 

http://isgpre.cvr.gla.ac.uk/
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Results 122 

Evolutionary characteristics of ISGs  123 

In this study, we constructed the dataset S2 from 10836 well-annotated human genes (dataset 124 

S1). It consists of 620 ISGs and 874 non-ISGs with high confidence based on their records in 125 

both the OCISG [3] and Interferome [24]. The compiled 10836 human genes were used as the 126 

background set and were evolutionarily unrelated to each other as they were retrieved from the 127 

OCISG [3] that compiled clusters of orthologous genes based on whole-genome alignments. 128 

Detailed information about our compiled datasets is provided in Table 5 and Supplementary 129 

Data S1.  130 

Here, we explored features relating to alternative splicing [33], duplication [34] and 131 

mutation [35]. We used the number of open reading frames (ORFs) and transcripts of a human 132 

gene to represent the diversity of its alternative splicing process. Meanwhile, the usage of 133 

protein-coding exons was quantified to reflect the complexity of the alternative splicing process. 134 

By calculating the average number of ORFs with respect to different Log2(Fold Change) levels 135 

of expression (window size = 0.1) in the presence of IFN-α, we found that more highly 136 

upregulated human genes tended to have less ORFs (Pearson’s correlation coefficient (PCC) = 137 

-0.287, Figure 2A). As for the latter two features relating to the transcripts and protein-coding 138 

exons, similar negative relationships were observed when Log2(Fold Change) increased 139 

(Figure 2B & 2C). These results illustrate that simple alternative splicing process may promote 140 

IFN-α up-regulation. Particularly, as the lowest value of Log2(Fold Change) for human genes 141 

not differentially expressed only reached around -0.9. Points placed left to the boundary (x = -142 

0.9) are all IRGs. They are generally placed below those non-ISGs with a Log2(Fold Change) 143 

around zero, suggesting these three features (number of ORFs, number of transcripts and the 144 

usage of protein-coding exons) are all differentially represented in some IRGs compared to the 145 

remaining non-ISGs. This distribution also indicates that some IRGs have similar feature 146 
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patterns to ISGs, especially to those highly up-regulated in the presence of IFN-α (right part of 147 

the scatter plots in Figure 2A, 2B & 2C).  148 

 149 

Figure 2. The average representation of features associated with IFN-α stimulations in 150 

experiments. (A) The numbers of ORFs and (B) transcripts are used as measurements of the 151 

diversity of alternative splicing process. (C) The counts of exons used for coding is used as a 152 

measurement of the complexity of alternative splicing process. These three plots are drawn 153 

based on the expression data of 8619 human genes with valid fold change in the IFN-α 154 

experiments (Supplementary Data S1). 2217 human genes are not shown in these figures as 155 

they had insufficient read coverage to determine a fold change in the experiments (Table 5). 156 

Points in the scatter plot are located based on the average feature representation of genes with 157 

similar expression performance in experiments.  158 

 159 

To determine whether the ISGs tend to originate from duplications, we counted the 160 

number of within human paralogs of each gene (Figure 3A). We found that there were around 161 

22% of singletons in our main dataset, whilst ISGs had 15% and non-ISGs had 26%. The result 162 

of a Mann-Whitney U test [36] indicated that the number of human paralogs was significantly 163 

under-represented in the ISGs compared to the background human genes (M1 = 10.5, M2 = 11.5, 164 

p = 8.8E-03). We hypothesize that such a difference is mainly caused by the imbalanced 165 

distribution of singletons in the ISGs and non-ISGs as it becomes smaller when singletons are 166 

excluded from the test (M1 = 12.4, M2 = 14.6, p > 0.05). Next, we used the number of non-167 

synonymous substitutions per non-synonymous site (dN) and synonymous substitutions per 168 

synonymous site (dS) within human paralogues as a measurement of differences in mutational 169 

signatures between different classes [37]. As shown in Figure 3B, non-synonymous 170 

substitutions are more frequently observed in the ISGs than in the background human genes 171 
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(M1 = 0.62, M2 = 0.55, p = 4.0E-03). On the other hand, the ISGs also have a higher frequency 172 

of synonymous substitutions than the background human genes (M1 = 37.7, M2 = 34.6, p = 173 

1.1E-02) (Figure 3C) but the difference is not as obvious as for non-synonymous substitutions. 174 

In Figure 3D, the distribution of dN/dS ratios within human paralogues indicates that most 175 

human genes are constrained by natural selection but the ISGs, in general, tend to be less 176 

conserved (M1 = 0.036, M2 = 0.045, p = 8.3E-03). When eliminating the influence of 177 

duplication events, the ISGs are still less conserved than the non-ISGs but the difference in the 178 

dN/dS ratio is not significant (M1 = 0.053, M2 = 0.031, p > 0.05). 179 

 180 

Figure 3. Differences in the evolutionary constraints of human genes. (A) Paralogues 181 

within Homo sapiens. (B) Non-synonymous substitutions within human paralogues. (C) 182 

Synonymous substitutions within human paralogues. (D) dN/dS ratios within human 183 

paralogues. Here, the ISGs and non-ISGs are taken from dataset S2 while the background 184 

human genes are from dataset S1 (Table 5). Mann-Whitney U tests are applied for the 185 

hypothesis testing between the feature distribution of different classes. Boxes in the plot 186 

represent the major distribution of values (from the first to the third quartile); outliers are added 187 

for values higher than two-fold of the third quartile; cross symbol marks the position of the 188 

average value including the outliers; upper and lower whiskers show the maximum and 189 

minimum values excluding the outliers.  190 

 191 

Differences in the coding region of the canonical transcripts 192 

Compared to general profile features (e.g., number of ORFs), the sequences themselves provide 193 

more direct mapping to the protein function and structure [38]. Here, we encoded 344 194 

parametric features and 7026 non-parametric features from complementary DNA (cDNA) of 195 

the canonical transcript to explore features specific to ISGs. We divided the parametric features 196 
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into four categories and compared their representations among three different groups of human 197 

genes including recompiled ISGs from dataset S2, recompiled non-ISGs from dataset S2, and 198 

the background human genes from dataset S1 (Figure 4). Firstly, guanine and cytosine were 199 

both more depleted in ISGs than non-ISGs, leading to an under-representation of GC-content 200 

in the ISGs (Mann-Whitney U test: M1 = 52%, M2 = 55%, p = 2.3E-11). This attribute was 201 

antithetical to the GC-biased gene conversion (gBGC), making ISGs less stable with weak 202 

evolutionary conservation (Figure 3) [39]. Additionally, the under-representation of GC-203 

content also influenced the representation of other dinucleotide features. Among all 204 

dinucleotide depletions in ISGs, CpG composition was ranked the first followed by GpG and 205 

GpC composition (p = 2.9E-14, 4.9E-13 and 1.2E-10, respectively). In turn, adenine and 206 

thymine-related dinucleotide compositions, exemplified by ApT and TpA were more enriched 207 

in ISGs than non-ISGs (p = 8.0E-10 and 8.5E-10, respectively).  208 

We compared the usage of 64 different codons in the third category as their frequencies 209 

influence transcription efficiency [40]. Differences between the ISGs and background human 210 

genes were observed in codons for 11 amino acids including leucine (L), isoleucine (I), valine 211 

(V), serine (S), threonine (T), alanine (A), glutamine (Q), lysine (K), glutamic acid (E), 212 

arginine (R), and glycine (G). The most significant difference was observed in the usage of 213 

codon ‘AGA’. Among all arginine-targeted alternative codons, codon ‘AGA’ was usually 214 

favoured, and its usage reached an estimated 25% in the ISGs but reduced to 22% in the 215 

background human genes (p = 1.4E-05). It was even significantly lower in the non-ISGs, at 18% 216 

(p = 1.9E-13). On the other hand, compared to the background human genes, the codon ‘CAG’ 217 

coding for amino acid ‘Q’ was the most under-represented in the ISGs. It was less favoured by 218 

the ISGs than non-ISGs (M1 = 72%, M2 = 78%, p = 7.3E-13) although it dominated in coding 219 

patterns. As for the three stop codons, comparing with the background human genes, the usage 220 

of the ochre stop codon (‘TAA’) was over-represented in the ISGs (M1 = 28%, M2 = 33%, p = 221 
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9.7E-03). In this category of codon usage, the features with different frequencies between the 222 

ISGs and background human genes became more discriminating when comparing the ISGs 223 

with non-ISGs. Significant differences in codon usages between the ISGs and non-ISGs were 224 

widely observed except for methionine (M) and tryptophan (W). Hence, despite the limited 225 

differences of codon usages between the ISGs and background human genes, these features 226 

were useful for discriminating the ISGs from non-ISGs.  227 

In the last category, we calculated the occurrence frequency of 256 nucleotide 4-mers 228 

to add some positional resolution for finding and comparing interesting organisational 229 

structures [41]. Among the 256 4-mers, 46 of them were differentially represented between the 230 

ISGs and background human genes (Supplementary Data S2). Most of these 4-mers were 231 

over-represented by the ISGs except two with the pattern ‘TAAA’ and ‘CGCG’. Interestingly, 232 

the feature of ‘TAAA’ composition became a positive factor when comparing ISGs and non-233 

ISGs (M1 = 4.1%, M2 = 3.7%, p = 4.1E-06), suggesting it might be a good feature to discern 234 

potential or incorrectly labelled ISGs. We found six nucleotide 4-mers: ‘ACCC’, ‘AGTC’, 235 

‘AGTG’, ‘TGCT’, ‘GACC’, and ‘GTGC’ were over-represented in the ISGs when compared 236 

to the background human genes. However, they were not differentially represented when 237 

comparing the ISGs with non-ISGs. These six features might be inherently biased for some 238 

reasons and were not powerful enough to distinguish the ISGs from non-ISGs. In addition to 239 

the aforementioned 40 features (except 4-mer ‘ACCC’, ‘AGTC’, ‘AGTG’, ‘TGCT’, ‘GACC’, 240 

and ‘GTGC’) that were differentially represented in ISGs compared to background human 241 

genes, we found a further 39 features nucleotide 4-mers differentially represented between 242 

ISGs and non-ISGs (Supplementary Data S2).  243 

To check the effect of these aforementioned 343 features on the level of stimulation in 244 

the IFN-α system (Log2(Fold Change) > 0), we calculated the PCC for the normalised features 245 

(Equation 2) and found 106 features were positively related to the increase of fold change, and 246 
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34 features were suppressed when human gene were more up-regulated after IFN-α treatments 247 

(Student t-test: p < 0.05) (Supplementary Data S3). ApA composition showed the most 248 

obvious positive correlation with stimulation level (PCC = 0.464, p = 8.8E-06) while negative 249 

association between the representation of 4-mer ‘CGCG’ and IFN-α-induced up-regulation was 250 

the most significant (PCC = -0.593, p = 3.2E-09). Human genes with higher up-regulation in 251 

the presence of IFN-α contained more codons ‘CAA’ rather than ‘CAG’ for coding amino acid 252 

‘Q’. The depletion of GC-content, especially cytosine content, promotes the suppression of 253 

many nucleotide compositions in the cDNA, e.g. CpG composition. 254 

 255 

Figure 4. Differences in the representation of parametric features encoded from coding 256 

regions (canonical). Mann-Whitney U tests are applied for hypothesis testing and the results 257 

are provided in the Supplementary Data S2. Here, the ISGs and non-ISGs are taken from 258 

dataset S2 while the background human genes are from dataset S1 (Table 5).  259 

 260 

To find conserved sequence patterns relating to gene regulations [42], we checked the 261 

existence of 2940, 44100 and 661500 short linear nucleotide patterns (SLNPs) consisting of 262 

three to five consecutive nucleobases in the group of the ISGs and non-ISGs. By using a 263 

positive 5% difference in the occurrence frequency as cut-off threshold, we found 7884 SLNPs 264 

with a maximum difference in representation around 15%. After using Pearson's chi-squared 265 

tests and Benjamini-Hochberg correction to avoid type I error in multiple hypotheses [43], 266 

7025 SLNPs remained with an adjusted p-value lower than 0.01 (Supplementary Data S4), 267 

hereon referred to as flagged SLNPs. The differentially represented 7025 SLNPs were ranked 268 

according to the adjusted p-value. As shown in Figure 5A, dinucleotide ‘TpA’ dominates in 269 

the top 10, top 100, top 1000, and all differentially represented SLNPs even if TpA 270 

representation is suppressed in the cDNA of genes’ canonical transcripts compared to other 271 
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dinucleotides. Dinucleotide ‘ApT’ and ‘ApA’ are also frequently observed in the flagged 272 

SLNPs but their occurrences do not show significant difference in the top 100 SLNPs 273 

(Pearson's chi-squared test: p > 0.05). GC-related dinucleotides, e.g., ‘CpC’, ‘GpC’ and ‘GpG’ 274 

are rarely observed in the flagged SLNPs especially in the top 10 or top 100. In view of these, 275 

we hypothesize that the differential representation of nucleotide compositions influences and 276 

reflects on the pattern of SLNPs in the ISGs. By checking the co-occurrence status of the 277 

flagged SLNPs, we found that these sequence patterns had a cumulative effect in distinguishing 278 

the ISGs from non-ISGs especially when the number of cooccurring SLNPs reached around 279 

5320 (Pearson's chi-squared test: p = 7.9E-13, Figure 5B). There were eight (~1.3%) ISGs in 280 

the dataset S2 containing all the flagged 7025 SLNPs. Their up-regulation after IFN-α 281 

treatment were generally low with a fold change fluctuating around 2.2. However, some of 282 

these eight genes such as desmoplakin (DSP) were clearly highly up-regulated in endothelial 283 

cells isolated from human umbilical cord veins after not only IFN-α treatments (fold change = 284 

11.1) but also IFN-β treatments (fold change = 13.7). We also found some non-ISGs (e.g., 285 

hemicentin 1 (HMCN1)) and human genes with limited expression in the IFN-α experiments 286 

(ELGs) (e.g. tudor domain containing 6 (TDRD6)) containing the flagged SLNPs, but their 287 

frequencies were lower than that in the ISGs. Although there is an obvious imbalance between 288 

the number of the ISGs and non-ISGs in the human genome [9-11], the curve for the 289 

background human genes in Figure 5B is still closer to that for the ISGs rather than that for 290 

the non-ISGs. It suggests that some genetic patterns are widely represented in the coding region 291 

of human genes, making them potentially up-regulated in the IFN-α system. 292 

 293 

Figure 5. SLNPs in the coding regions (canonical). (A) Influence of dinucleotide 294 

compositions on the flagged SLNPs. (B) The co-occurrence status of SLNPs in different human 295 

genes. Ranks in (A) are generated based on the adjust p value given by Pearson's chi-squared 296 
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tests after Benjamini-Hochberg correction procedure. Detailed results of the hypothesis tests 297 

are provided in Supplementary Data S4. Here, the ISGs and non-ISGs are taken from dataset 298 

S2 while the background human genes are from dataset S1 (Table 5).  299 

 300 

Differences in the protein sequence 301 

We used the protein sequences generated by the canonical transcript to extract features at the 302 

proteomic level. In addition to the basic composition of 20 standard amino acids, we considered 303 

17 additional features related to physicochemical (e.g., hydropathy and polarity) or geometric 304 

properties (e.g., volume) [44,45]. We found several amino acids that were either enriched or 305 

depleted in the ISG products compared to the background human proteins, which were 306 

produced by genes in dataset S1 (Figure 6). The differences were even more marked between 307 

protein products of the ISGs and non-ISGs, highlighting some differences that were not 308 

observed when comparing the ISG products to the background human proteins (e.g., isoleucine 309 

composition). The differences observed in the amino acid compositions were at least in part 310 

associated with the patterns previously observed in features encoded from genetic coding 311 

regions. For example, asparagine (N) showed significant over-representation in the ISG 312 

products compared to the non-ISG products or background human proteins (Mann-Whitney U 313 

test: p = 2.8E-12 and 1.2E-03, respectively). This was expected as there are only two codons, 314 

i.e., ‘AAT’ and ‘AAC’ coding for amino acid ‘N’, and dinucleotide ‘ApA’ showed a 315 

remarkable enrichment in the coding region of ISGs. A similar explanation could be given for 316 

the relationship between the deficiency of GpG content and amino acid ‘G’. The translation of 317 

amino acid ‘K’ was also influenced by ApA composition but was not significant due to the 318 

mild representation of dinucleotide ‘ApG’ in the genetic coding region. Additionally, as 319 

previously mentioned, the ISGs showed a significant depletion in the CpG content, and 320 

consequently, the amino acid ‘A’ and ‘R’ in the ISG products were significantly under-321 
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represented. Cysteine (C) was not frequently observed in human proteins but still showed a 322 

relatively significant enrichment in the ISG products (M1 = 2.3%, M2 = 2.5%, p = 1.8E-03).  323 

When focusing on the composition of amino acids grouped by physicochemical or 324 

geometric properties, we found some features differentially represented between the ISG 325 

products and background human proteins. The result showed that hydroxyl (amino acid ‘S’ and 326 

‘T’), amide (amino acid ‘N’ and ‘Q’), or sulfur amino acids (amino acid ‘C’ and ‘M’) were 327 

more abundant in the ISG products compared to the background human proteins (Mann-328 

Whitney U test: p = 0.04, 1.0E-03 and 0.02, respectively). Small amino acids (amino acid ‘N’, 329 

‘C’, ‘T’, aspartic acid (D) and proline (P), the volume ranges from 108.5 to 116.1 cubic 330 

angstroms) were more frequently observed in the ISG products than in background human 331 

proteins (M1 = 22.1%, M2 = 21.7%, p = 0.02). These differences became more marked when 332 

comparing the representation of these features between the ISG and non-ISG products. For 333 

example, features relating to chemical properties of the side chain (e.g., aliphatic), charge status 334 

and geometric volume showed differences between proteins produced by the ISGs and non-335 

ISGs. Some features such as neutral amino acids that include amino acid ‘G’, ‘P’, ‘S’, ‘T’, 336 

histidine (H) and tyrosine (Y) were not differentially represented between the ISG and non-337 

ISG products, but they indicated obvious association with the change of IFN-α-triggered 338 

stimulations (PCC = -0.556, p = 4.1E-08) (Supplementary Data S3).  339 

 340 

Figure 6. Differences in the representation of parametric features encoded from protein 341 

sequences. Mann-Whitney U tests are applied for hypothesis testing and the results are 342 

provided in the Supplementary Data S2. Here, the ISGs and non-ISGs are taken from dataset 343 

S2 while the background human genes are from dataset S1 (Table 5). Aliphatic group: amino 344 

acid ‘A’, ‘G’, ‘I’, ‘L’, ‘P’ and ‘V’; aromatic/huge group: amino acid ‘F’, ‘W’ and ‘Y’ (volume > 345 

180 cubic angstroms); sulfur group: amino acid ‘C’ and ‘M’; hydroxyl group: amino acid ‘S’ 346 
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and ‘T’; acidic/negative_charged group: amino acid ‘D’ and ‘E’; amide group: amino acid ‘N’ 347 

and ‘Q’; positive_charged group: amino acid ‘R’, ‘H’ and ‘K’; hydrophobic group: amino acid 348 

‘A’, ‘C’, ‘I’, ‘L’, ‘M’, ‘F’, ‘V’, and ‘W’ that participates to the hydrophobic core of the 349 

structural domains [46]; neutral group: amino acid ‘G’, ‘H’, ‘P’, ‘S’, ‘T’ and ‘Y’; hydrophilic 350 

group: amino acid ‘R’, ‘N’, ‘D’, ‘Q’, ‘E’ and ‘K’; Tiny group: amino acid ‘G’, ‘A’ and ‘S’ 351 

(volume < 90 cubic angstroms); small group: amino acid ‘N’, ‘D’, ‘C’, ‘P’ and ‘T’ (volume 352 

ranged from 109 to 116 cubic angstroms); medium group: amino acid ‘Q’, ‘E’, ‘H’ and ‘V’ 353 

(volume ranged within 138 to 153 cubic angstroms); large group: amino acid ‘R’, ‘I’, ‘L’, ‘K’ 354 

and ‘M’ (volume ranged within 163 to 173 cubic angstroms); uncharged group: the remaining 355 

15 amino acids except electrically charged ones; polar group: amino acid ‘R’, ‘H’, ‘K’, ‘D’, 356 

‘E’, ‘N’, ‘Q’, ‘S’, ‘T’ and ‘Y’; nonpolar group: the remaining 10 amino acids except polar ones.  357 

 358 

Next, we searched the sequence of the ISG products against that of the non-ISG 359 

products to find conserved short linear amino acid patterns (SLAAPs), which might have 360 

resulted from strong purifying selection [47]. As opposed to the analysis on the genetic 361 

sequence, we only obtained 19 enriched sequence patterns with a Pearson's chi-squared p value 362 

ranging from 1.5E-04 to 0.02 (Table 1), hereon referred to as flagged SLAAPs. They were 363 

greatly influenced by four polar amino acids: ‘K’, ‘N’, ‘E’ and ‘S’, and one nonpolar amino 364 

acid: ‘L’. Some of these flagged SLAAPs, for example, SLAAP ‘NVT’ and ‘S-N-E’, were 365 

clearly over-represented in the ISG products compared to the background human proteins and 366 

could be used as features to differentiate the ISGs from background human genes. The third 367 

column in Table 1 indicates a number of patterns that are lacking in the non-ISG products and 368 

hence may be the reason for the lack of up-regulation in the presence of IFN-α. Particularly, 369 

we noticed that SLAAP ‘KEN’ was a destruction motif that could be recognised or targeted by 370 

anaphase promoting complex (APC) for polyubiquitination and proteasome-mediated 371 



 

 16 

degradation [48,49]. Results shown in Figure 7A illustrate that the co-occurrence of 372 

differentially represented SLAAPs (flagged) has a cumulative effect in distinguishing the ISGs 373 

from non-ISGs. This cumulative effect can even be achieved with only two random SLAAPs 374 

(Pearson's chi-squared test: p = 4.6E-10). The bias in the co-occurring SLAAPs (flagged) in 375 

the background human proteins towards a pattern similar to the non-ISG products further 376 

proves the importance of these 19 SLAAPs. However, their co-occurrence is not associated 377 

with the level of IFN-triggered stimulations (PCC = 0.015, p > 0.05) (Figure 7B). 378 

Regions that lacked stable structures under normal physiological conditions within 379 

proteins are termed intrinsically disordered regions (IDRs). They play an important role in cell 380 

signalling [50]. Compared with ordered regions, IDRs are usually more accessible and have 381 

multiple binding motifs, which can potentially bind to multiple partners [51]. According to the 382 

results calculated by IUPred [52], we found 6721, 10510, and 119071 IDRs (IUpred score no 383 

less than 0.5) in proteins produced by the ISGs, non-ISGs and background human genes 384 

respectively. We hypothesize that enriched SLAAPs widely detected in the IDRs may be 385 

important for human protein-protein interactions or potentially virus mimicry [53]. For instance, 386 

in the ISG products, about 40.8% of SLAAP ‘SxNxT’ were observed in the IDRs, 14.9% higher 387 

than that in non-ISG products (Table 1). This difference reflected the importance of SLAAP 388 

‘SxNxT’ for target specificity of IFN-α-induced protein-protein interactions (PPIs) [9] even if 389 

it was not statistically significant. By contrast, the conditional frequency of SLAAP ‘SxNxE’ 390 

in the IDRs of the ISG and non-ISG products were almost the same, indicating that SLAAP 391 

‘SxNxE’ might have an association with some inherent attributes of the ISGs but was less likely 392 

to be involved in the IFN-α-induced PPIs. SLAAP ‘KEN’ in the IDRs also showed some 393 

interesting differences: in the non-ISG products, 41.9% of SLAAP ‘KEN’ were observed in 394 

the IDRs, 14.6% higher than that in the ISG products, which provided an effective approach to 395 

distinguish the ISGs from non-ISGs. When SLAAP ‘KEN’ is discovered in the ordered 396 
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globular region of a protein sequence, statistically, the protein is more likely to be produced by 397 

an ISG, but this assumption is reversed if the SLAAP is located in an IDR (Pearson's chi-398 

squared tests: p = 0.03). Despite the relatively low conditional frequency of SLAAP ‘KEN’ in 399 

the IDRs of the ISG products, these SLAAPs in the IDR are more likely to be functionally 400 

active than those falling within ordered globular regions [54].  401 

 402 

Table 1. Representation of SLAAPs in protein sequences and their IDRs. 403 

SLAAPa 

Frequency in 

ISG/non-ISG 

productsb 

Bias based on the 

frequency in human 

proteins 

P valuec 

Conditional frequency in the IDRs of 

ISG/non-ISG products/background 

human proteinsc,d 

P valuee 

SxNxE 15.2%/8.8% +47.6%/-14.2% 1.5E-04 39.4%/40.3%/33.4% 0.90 

ENE 15.0%/8.8% +20.9%/-29.0% 2.1E-04 37.6%/42.9%/40.9% 0.49 

SxNxT 11.5%/6.2% +21.9%/-34.2% 2.9E-04 40.8%/25.9%/27.3% 0.08 

SVI 15.2%/9.2% +37.6%/-16.9% 3.6E-04 18.1%/11.3%/15.2% 0.21 

LxNL 23.7%/16.4% +13.2%/-21.9% 4.0E-04 10.2%/11.9%/9.4% 0.65 

LxKL 30.8%/22.8% +18.0%/-12.8% 4.9E-04 12.6%/10.1%/8.7% 0.43 

NVT 13.7%/8.5% +52.1%/-6.1% 1.2E-03 18.8%/21.6%/15.4% 0.66 

ISS 20.5%/14.3% +20.7%/-15.7% 1.7E-03 29.9%/25.6%/23.8% 0.44 

LKxK 24.4%/17.7% +24.5%/-9.3% 1.8E-03 14.6%/20.6%/20.0% 0.16 

IKxE 14.2%/9.0% +34.2%/-14.5% 1.8E-03 26.1%/16.5%/25.8% 0.13 

EKxI 15.8%/10.4% +31.0%/-13.7% 2.0E-03 15.3%/20.9%/16.0% 0.32 

KxExS 16.9%/11.4% +21.9%/-17.7% 2.4E-03 36.2%/36.0%/39.2% 0.98 

LNS 17.7%/12.1% +21.2%/-17.1% 2.4E-03 20.0%/25.5%/20.5% 0.34 

KEN 16.0%/10.6% +33.5%/-11.0% 2.4E-03 27.3%/41.9%/34.8% 0.03 

LxNxL 22.6%/17.5% +14.3%/-11.4% 1.5E-02 10.7%/11.8%/9.5% 0.78 

KxExL 25.8%/20.5% +25.7%/-0.3% 1.5E-02 18.8%/17.9%/18.7% 0.84 

KLL 27.1%/21.9% +9.9%/-11.4% 1.9E-02 11.3%/8.4%/9.9% 0.35 

LKE 29.8%/24.5% +18.2%/-3.0% 2.1E-02 19.5%/24.8%/20.1% 0.20 

LKxL 33.2%/27.7% +15.0%/-4.2% 2.1E-02 7.8%/12.4%/10.0% 0.11 

a: ‘x’ in SLAAPs indicates one position occupied by a standard amino acid;  404 
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b: here, the ISGs and non-ISGs are taken from dataset S2 while the background human genes use samples from 405 

dataset S1 (Table 5);  406 

c: p values in this column use Pearson's chi-squared tests to measure the difference of SLAAPs occurrences in 407 

the ISG and non-ISG products;  408 

d:  frequencies in this column are calculated based on a condition that corresponding SLAAPs are observed in 409 

the protein sequence;  410 

e: p values in this column use Pearson's chi-squared tests to measure the difference of SLAAPs occurrences in 411 

the IDRs of the ISG and non-ISG products.  412 

 413 

Figure 7. Representation of co-occurred SLAAPs (flagged) in our main dataset. (A) The 414 

co-occurrence status of SLAAPs in different classes. (B) Relationship between co-occurrence 415 

of the marked SLAAPs and Log2(Fold Change) after IFN-α treatments. Here, the ISGs and 416 

non-ISGs are taken from dataset S2 while the background human genes are from dataset S1 417 

(Table 5). Points in (B) are located based on the average feature representation of genes with 418 

similar expression performance in IFN-α experiments.  419 

 420 

Differences in network profiles 421 

We constructed a network with 332,698 experimentally verified interactions among 17603 422 

human proteins (confidence score > 0.63) from the Human Integrated Protein-Protein 423 

Interaction rEference (HIPPIE) database [55] to investigate if the connectivity among human 424 

proteins have association with genes’ expression in the IFN-α experiments. 10169 out of 10836 425 

human proteins produced by genes in our background dataset S1 were included in the network. 426 

Nodes and edges of this network can be downloaded from our webserver at 427 

http://isgpre.cvr.gla.ac.uk/. Based on this network, we calculated eight features including the 428 

average shortest path, closeness, betweenness, stress, degree, neighbourhood connectivity, 429 

clustering coefficient, and topological coefficient.  430 

http://isgpre.cvr.gla.ac.uk/
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As illustrated in Figure 8B/G, ISG products tend to have higher values of betweenness 431 

and stress than background human proteins (Mann-Whitney U test: p = 0.01, and 0.03, 432 

respectively), which means they are more likely to locate at key paths connecting different 433 

nodes of the PPI network. Some ISG products with high values of betweenness and stress, e.g., 434 

tripartite motif containing 25 (TRIM25), can be considered as the shortcut or bottleneck of the 435 

network and play important roles in many PPIs including those related to the IFN-α-triggered 436 

immune activities [56,57]. However, such differential representation of betweenness does not 437 

mean ISG products are more likely to be or even be close to bottlenecks of the network 438 

compared to the background human proteins. Some examples shown in Table 2 indicate that 439 

ISG products are less-connected by top-ranked bottlenecks and hubs of the network than non-440 

ISG products or the background human proteins. This conclusion is not influenced by 441 

hub/bottleneck protein’s performance in the IFN-α experiments. Comparing proteins produced 442 

by the ISGs and non-ISGs, we found the former tends to have lower values of clustering 443 

coefficient and neighbourhood connectivity (Mann-Whitney U test: p = 0.04 and 7.9E-03, 444 

Figure 8D/F). This discovery indicates that the ISG products and some of their interacting 445 

proteins are less likely to be targeted by lots of proteins. It also supports the finding that the 446 

ISG products are involved in many shortest paths for nodes but are away from hubs or 447 

bottlenecks in the network. To some extents, this location also increases the length of the 448 

average shortest paths through ISG products in the network (Figure 8A).  449 

When investigating the association between IFN-α-induced gene stimulation and 450 

network attributes of gene products, we only found the feature of neighbourhood connectivity 451 

was under-represented as the level of differential expression in the presence of IFN increases 452 

(PCC = -0.392, p = 2.2E-04). This suggests that proteins produced by genes that are highly up-453 

regulated in response to IFN-α are further away from hubs in the PPI networks.  454 

 455 
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Figure 8. Differences in network preferences. The included features are: (A) average shortest 456 

path (B) betweenness, (C) closeness, (D) clustering coefficient, (E) degree, (F) neighbourhood 457 

connectivity, (G) stress, and (H) topological coefficient. Mann-Whitney U tests are applied for 458 

hypothesis testing and the results were provided in the Supplementary Data S2. Here, the 459 

ISGs and non-ISGs are taken from dataset S2 while the background human genes use samples 460 

from dataset S1 (Table 5).  461 

 462 

Table 2. Interaction profiles of human proteins connecting top hubs/bottlenecks of the 463 

HIPPIE network. 464 

Human protein TRIM25 ELAVL1 ESR2 NTRK1 

Gene class ISG IRG Not included in S1a 

Degree (hub rank) 2295 (2nd) 1787 (4th) 2500 (1st) 1976 (3rd) 

Betweenness (bottleneck rank) 0.067 (1st) 0.048 (4th) 0.051 (3rd) 0.026 (5th) 

Difference in interacting partners 

(ISG products versus non-ISG products)b 

Depleted 

P = 0.01 

P > 0.05 

Depleted 

P = 1.1E-4 

Depleted 

P = 5.5E-3 

Difference in interacting partners 

(ISG products versus the background human proteins)b 

P > 0.05 P > 0.05 

Depleted 

P = 8.1E-3 

Depleted 

P = 0.03 

a: ESR2 and NTRK1 were not included in dataset S1 as their expression data were not compiled in OCISG; 465 

b: differences here are measured via Pearson's chi-squared tests on human proteins interacting with the 466 

corresponding hub/bottleneck protein.  467 

 468 

Features highly associated with the level of IFN stimulations 469 

In this study, we encoded a total of 397 parametric and 7046 non-parametric features covering 470 

the aspects of evolutionary conservation, nucleotide composition, transcription, amino acid 471 

composition, and network profiles. In order to find out some key factors that may enhance or 472 

suppress the stimulation of human genes in the IFN-α system, we compared the representation 473 

of parametric features of human genes with different but positive Log2(Fold Change). Two 474 

features on the co-occurrence of SLNPs and SLAAPs were not taken into consideration here 475 
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as they were more subjective than the other parametric features and were greatly influenced by 476 

the number of sequence patterns. Upon the calculation of PCC and the result of hypothesis 477 

tests, we found 168 features highly associated with the level of IFN-α-triggered stimulations 478 

(Student t-tests: p < 0.05) (Supplementary Data S3). Among them, 118 features showed a 479 

positive correlation (Figure 9) while the remaining 50 features showed a negative correlation 480 

(Figure 10) with the change of up-regulation in IFN-α experiments. Among these 168 features, 481 

the number of ORFs, alternative splicing results, and counts of exons used for coding were 482 

encoded from characteristics of the gene. Average dN/dS and average dS within human 483 

paralogues were encoded based on the sequence alignment results from Ensembl  [58]. 140 484 

and 22 features were encoded from the genetic sequence and proteomic sequence respectively. 485 

The last one, neighbourhood connectivity, was obtained from the network profile of a human 486 

interactome constructed based on experimentally verified data in the HIPPIE database [55]. 487 

In the positive group, the feature of ‘large’ amino acid compositions that includes the 488 

composition of five amino acids with geometric volume ranged from 163 to 173 cubic 489 

angstroms was ranked the first for having the highest PCC at 0.593 (Student t-test: p = 2.8E-490 

09). This feature was not highlighted previously as it did not have a strong signal for 491 

discriminating the ISGs from non-ISGs (Mann-Whitney U test: p > 0.05). Similar phenomena 492 

were found on 87 features (64 positive correlations and 23 negative correlations) such as AG-493 

content, ApG content and previously mentioned neutral amino acid composition. The strongest 494 

negative correlation between feature representation and IFN-α-triggered stimulations was 495 

found on the feature of 4-mer ‘CGCG’ (PCC = -0.593, p = 3.2E-09). This feature also showed 496 

a differential distribution between the ISGs and non-ISGs, thus provided useful information to 497 

distinguish the ISGs from non-ISGs. Similar phenomena were found on 81 features (54 positive 498 

correlations and 27 negative correlations) such as previously mentioned GC-content, CpG 499 

content and the usage of codon ‘GCG’ coding for amino acid ‘A’.  500 
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Collectively, the biased effect on the basic composition of nucleotides influences the 501 

correlation between the representation of sequence-based features and IFN-α-triggered 502 

stimulations. Human genes that show over-representation in more features listed in Figure 9 503 

are expected to be more up-regulated after IFN-α treatments at least in the human fibroblast 504 

cells. Meanwhile, the under-representation of features listed in Figure 10 also contributes to 505 

the level of up-regulation in the IFN-α experiments. 506 

 507 

Figure 9. 118 features positively associated with higher up-regulation after IFN-α 508 

treatments.  Features here are screened based on the PCC and results of Student t-tests (p < 509 

0.05). Detailed results about PCC and hypothesis tests are provided in Supplementary Data 510 

S3. 511 

 512 

Figure 10. 50 features negatively associated with higher up-regulation after IFN-α 513 

treatments. Features here are screened based on the PCC and results of Student t-tests (p < 514 

0.05). Detailed results about PCC and hypothesis tests are provided in Supplementary Data 515 

S3.  516 

 517 

Difference in feature representation of interferon-repressed genes and genes with low 518 

levels of expression 519 

We grouped human genes into two classes based on their response to the IFN-α in the human 520 

fibroblast cells. Genes significantly up-regulated in IFN-α experiments were included in the 521 

ISG class, while those that did not were put into the non-ISG class. However, there is also 522 

another group of human genes down-regulated in the presence of IFN-α, i.e., the IRGs. They 523 

were labelled as the non-ISGs, but contain unique patterns that constitute an important aspect 524 

of the IFN response [3]. Some of these IRGs were not up-regulated in any known type I IFN 525 
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systems, thus have been placed in a refined non-ISG class for analyses and predictions. 526 

Additionally, there are a number of genes that have insufficient levels of expression in the 527 

experiments to determine a fold change, i.e., ELGs. Here, we used the previously defined 528 

features to compare the ISGs from dataset S2 with the IRGs and ELGs divided from the 529 

background dataset S1 (Table 5). 530 

As shown in Figure 11, the IRGs are differentially represented to a lower extent in the 531 

majority of nucleotide 4-mer compositions than the ISGs, indicating the deficiency of some 532 

nucleotide sequence patterns in the coding region of IRGs. Note that, many nucleotide 4-mer 533 

composition features are more suppressed in the ISGs than non-ISGs although the differences 534 

are small. The biased representation of these features in the IRGs suggests that the IRGs have 535 

characteristics similar to the ISGs rather than non-ISGs. Additionally, there are a very limited 536 

number of features relating to evolutionary conservation, nucleotide compositions or codon 537 

usages showing obvious differences between the ISGs and IRGs, but many of them are 538 

differentially represented when comparing the ISGs with non-ISGs. Therefore, involving the 539 

IRGs in the class of the non-ISGs will increase the risk for machine learning models to produce 540 

more false positives. However, there are some informative features differentiating the IRGs 541 

from ISGs. For example, comparing with the ISGs, the IRGs are more enriched in CpGs 542 

(Mann-Whitney U test: p = 5.6E-03), which is also mentioned in [59]. The IRGs tend to have 543 

higher closeness centrality and neighbourhood connectivity than the ISGs (Mann-Whitney U 544 

test: p = 0.04 and 6.4E-06 respectively), suggesting that the IRGs are closer to the centre of the 545 

human PPI network and connected to key proteins with many interaction partners. Differences 546 

in some amino acid composition features between the ISGs and IRGs can also be observed in 547 

Figure 11. Therefore, good predictability is still expected when using features extracted from 548 

proteins sequences. 549 
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Figure 11 also illustrates 161 features showing significant differences (Mann-Whitney 550 

U tests: p < 0.05) in the representation of the ISGs and ELGs. An estimated 82% of these 551 

features were also differentially represented between the ISGs and non-ISGs. 79% of these 552 

significant features displayed similar over-representation or under-representation in two 553 

comparisons, i.e., ISGs versus ELGs and ISGs versus non-ISGs. These ratios indicate that the 554 

majority of the ELGs are less likely to be ISGs based on their feature profile as well as their 555 

low expression levels in cells induced with IFN-α. Network analyses showed that the ELG 556 

products tended to have lower values of all calculated network features with the exception of 557 

topological coefficient than ISG products. It means that the ELG products are less connected 558 

by other human proteins in the human PPI network. Particularly, their abnormal representation 559 

on the feature of average shortest paths indicating that some ELGs (e.g. vascular cell adhesion 560 

molecule 1 (VCAM1) and ubiquitin D (UBD)) may still have high connectivity in the human 561 

PPI network. 562 

 563 

Figure 11. Differential expressions of parametric features between different genes and 564 

their coded proteins. Mann-Whitney U tests are applied for hypothesis testing and the results 565 

were provided in the Supplementary Data S2. Here, the ISGs and non-ISGs are taken from 566 

dataset S2; the IRGs and ELGs are taken from dataset S4 and dataset S8 (subsets of dataset 567 

S1); the background human genes are from dataset S1 (Table 5).  568 

 569 

Implementation with machine learning framework 570 

In this study, we encoded 397 parametric and 7046 non-parametric features for the analyses. 571 

As an excess of features will greatly increase the dimension of feature spaces and complicate 572 

the classification task for the support vector machine (SVM) [60], we limited the number of 573 

SLNPs to the top 100 based on the adjusted p-value and we expected these to be sufficient to 574 
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provide a picture of short linear sequence patterns in the coding region of the canonical 575 

transcript. Accordingly, features measuring the co-occurrence status of multiple SLNPs were 576 

recalculated based on the selected 100 SLNPs. To reduce the impact of noisy data toward 577 

classifications, we only used the refined ISGs and non-ISGs from dataset S2 in machine 578 

learning.  579 

Measured by sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC) 580 

[61] and area under the receiver operating characteristic curve (AUC), the initial prediction 581 

results shown in Table 3 indicate that proteome-based features, including those deciphered 582 

from protein sequences and the human interactome, perform much better than genome-based 583 

features presumably due to overfitting of the model [62]. Using parametric features that took 584 

the advantage of both genetic and proteomic aspects showed a good improvement in tests. The 585 

non-parametric features used in this study gave a binary statement for the occurrence of short 586 

linear sequence patterns in genetic and proteomic sequences but seemed not to perform well 587 

and disrupted the model when they were combined with parametric features. The results shown 588 

in the previous analyses also indicate that there are a considerable number of disruptive features 589 

hidden in the set (e.g., Figure 4, Figure 6, and Figure 8). The similar attributes of the ISGs 590 

and IRGs (shown in Figure 11) led to lots of noisy data biasing the classifiers. This situation 591 

was not ameliorated and became more difficult when using other machine learning algorithms 592 

such as k-nearest neighbors (KNN), decision tree (DT), random forest (RF) (Table 3) [63,64]. 593 

As some genes respond to IFNs in a cell-specific manner [2], it is hard to produce predictions 594 

unless we detect key discriminating features, which are robust to the change of biological 595 

environment. 596 

Considering these drawbacks, we designed an AUC-driven subtractive iteration 597 

algorithm (ASI) (Figure 15) to remove as many disruptive features as possible (Figure 12A). 598 

Pre-processing using the ASI algorithm showed that there were at least 28% of features 599 
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disrupting the prediction model. They included 34% of features on codon usages and 50% of 600 

SLNP/SLAAP features, thus, explaining the poor performance of the model trained with non-601 

parametric features (Table 3). However, the loss of some of the individual nucleotide 4-mer 602 

feature seemed not to influence the performance of the classifier at this stage, but the 603 

similarities between IRGs and ISGs (Figure 11) particularly in these 4-mer features was a 604 

cause for concern when the model was used to predict new data especially unknown IRGs.  605 

When using the ASI algorithm, the number of disrupting features did not stabilise until 606 

the algorithm reached the 11-th iterations. The remaining 74 features constituted our optimum 607 

feature set for predicting the ISGs (Table 4). Among them, 14 and 9 features displayed positive 608 

and negative correlations with the level of up-regulation in IFN-α experiments. During the 609 

procedure, the AUC kept increasing steadily and reached 0.7479 at the end. The MCC also 610 

showed an overall improvement although it fluctuated slightly during the last few iterations. 611 

By degressively ranking the score calculated by the prediction model, we found 68.1% of the 612 

496 genes (equal to the number of ISGs in the training dataset) were successfully predicted as 613 

the ISGs. Figure 12B illustrates the distribution of prediction scores generated by the ASI-614 

optimised model for human genes with different expressions in IFN-α experiments. Human 615 

genes with higher up-regulation in IFN-α experiments tend to obtain higher prediction score 616 

from our optimised machine learning model (PCC = 0.243, p = 4.2E-10).  617 

However, there were also some ISGs incorrectly predicted by our model even though 618 

they were highly up-regulated, for example, basic leucine zipper ATF-like transcription factor 619 

2 (BATF2, prediction score = 0.34). The model produced 33 ISGs with a prediction score 620 

higher than 0.8 but this number for the non-ISGs reduced to six, including one IRG (tripartite 621 

motif containing 59 (TRIM59)). The highest prediction score within the non-ISGs was found 622 

on ubiquitin conjugating enzyme E2 R2 (UBE2R2, prediction score = 0.88). It contains many 623 

features similar to the ISGs but was not differentially expressed in the presence of IFN-α in the 624 
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human fibroblast cells [3]. The lowest prediction score within ISGs was found on cap 625 

methyltransferase 1 (CMTR1, prediction score = 0.12) due to the weak signal from its features. 626 

For instance, CMTR1 protein does not contain any ISG-favoured SLAAPs listed in Table 1. 627 

The influence of the IRGs on the prediction was reflected in the training dataset but was not 628 

significant. Compared with human genes not differentially expressed in the IFN-α experiments 629 

(non-ISGs but not IRGs), there were slightly more IRGs unsuccessfully classified when using 630 

a threshold of 0.549 (Pearson's chi-squared tests: M1 = 27%, M2 = 24%, p > 0.05). 631 

 632 

Table 3. Performance of different feature combinations on the training dataset S2’ via 633 

five-fold cross-validation. 634 

Method Features Number 

Threshold-dependent Threshold-independent 

Score range Thresholda SN SP MCC SN_496b AUC 

SVM Genetic 452 0.359~0.623 0.402 0.769 0.355 0.169 0.579 0.6058 

SVM Proteomic 66 0.261~0.730 0.560 0.425 0.778 0.218 0.605 0.6360 

SVM Parametric 397 0.305~0.760 0.529 0.595 0.665 0.261 0.621 0.6573 

SVM 

Non-

parametric 

121 0.368~0.605 0.487 0.653 0.504 0.159 0.573 0.5736 

SVM All 518 0.328~0.743 0.542 0.567 0.681 0.250 0.615 0.6509 

KNNc All 518 0.100~0.900 0.500~0.550 0.593 0.621 0.214 0.607±0.014  0.6305 

DT Partial 182d 0 or 1 N/A 0.546 0.548 0.095 0.546 N/A 

RFe Random Random 0.080~0.900 0.380~0.579 0.590±0.168 0.617±0.183 0.219±0.019 0.600±0.007 0.6413±0.0082 

SVM Optimum 74 0.098~0.918 0.549 0.623 0.750 0.376 0.681 0.7479 

a: this threshold is provided by maximum the value of MCC;  635 

b: this sensitivity is measured among tested genes with the top 496 prediction probabilities;  636 

c: k-value here is set as the square root of the size of the training samples in five-fold cross validation, i.e., k = 637 

20 [65];  638 

d:182 out of the 518 features (Supplementary Data S5) are used for decisions during this modelling procedure 639 

as the rest ones are not helpful to better split the dataset for lower system entropy [66];  640 

e: this random forest algorithm uses 50 random grown trees and the modelling and validation procedures are 641 

repeated for 10 times.  642 
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 643 

Figure 12. The optimisation on the machine learning model with the ASI algorithm. (A) 644 

shows the change of the prediction models based on the one generated with all 518 features 645 

(disruptive feature vector = 144, best MCC = 0.250, SN_496 = 0.615, and AUC = 0.6509). (B) 646 

shows the distribution of prediction scores generated by the ASI-optimised model for human 647 

genes with different expression levels in the IFN-α system. The ISGs and non-ISGs shown in 648 

(B) are randomly selected through an undersampling strategy [67] on dataset S2. The list of 649 

gene names can be found in Supplementary Data S1.  650 

 651 

Table 4. The optimum 74 features contributing to predicting the ISGs. 652 

Evolutionary features (2) 

Number of human paraloguesP, average dS within human paraloguesP-. 

Codon usage features (10) 

Codon usage: CTA (L)P+ Codon usage: ATT (I)P Codon usage: TAT (Y)P 

Codon usage: GCG (A)P- Codon usage: CAC (H)P- Codon usage: TGC (C)P 

Codon usage: CGT (R)P Codon usage: CGA (R)P Codon usage: CGG (R)P- 

Codon usage: AGA (R)P+   

Genetic composition features (40) 

DNA AC contentP Dinucleotide CpT compositionP DNA 4-mer CGCG compositionP- 

DNA 4-mer AATC compositionP+ DNA 4-mer TCGT compositionP DNA 4-mer GATG compositionP+ 

DNA 4-mer AACA compositionP DNA 4-mer TGAG compositionP+ DNA 4-mer GACC compositionP 

DNA 4-mer ATAT compositionP DNA 4-mer TGTA compositionP DNA 4-mer GACG compositionP 

DNA 4-mer ATGT compositionP+ DNA 4-mer CACG compositionP DNA 4-mer GAGT compositionP+ 

DNA 4-mer ACAC compositionP DNA 4-mer CTCC compositionP DNA 4-mer GTAC compositionP 

DNA 4-mer ACTA compositionP DNA 4-mer CCAC compositionP DNA 4-mer GTGT compositionP 

DNA 4-mer ACTC compositionP DNA 4-mer CCTA compositionP DNA 4-mer GTGC compositionP 

DNA 4-mer ACCG compositionP DNA 4-mer CCTC compositionP+ DNA 4-mer GTGG compositionP 

DNA 4-mer TATG compositionP DNA 4-mer CCGT compositionP DNA 4-mer GCAA compositionP+ 
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DNA 4-mer TTCT compositionP DNA 4-mer CGAG compositionP DNA 4-mer GCTC compositionP 

DNA 4-mer TTCG compositionP DNA 4-mer CGTG compositionP DNA 4-mer GCCT compositionP 

DNA 4-mer TTGA compositionP DNA 4-mer CGCA compositionP DNA 4-mer GGGG compositionP 

DNA 4-mer TCAT compositionP   

Proteomic composition features (9) 

Arginine compositionP, cysteine compositionP+, methionine compositionP; 

Basic amino acid composition (R/H/K)P+ Sulfur amino acid composition (C&M)P+ 

Hydroxyl amino acid composition (S&T)P- Small amino acid composition (N/D/C/P/T)P- 

Large amino acid composition (R/I/L/K/M)P+  

Uncharged amino acid composition (A/N/C/Q/G/I/L/M/F/P/S/T/W/Y/V)P- 

Features about human interactome network (3) 

Average shortest pathsP+, betweennessP, neighborhood connectivityP-. 

Sequence pattern features (8) 

SLNP: ATA[AG][TG]N SLNP: TAT[AT]TN SLNP: T[AT]AAAN 

SLNP: [ATG]TGTAN SLAAP: SxNxEN SLAAP: ENEN 

SLAAP: SVIN Co-occurrence of SLAAPsP  

P: parametric features;  653 

N: non-parametric features;  654 

‘+’ symbol means features are positively associated with the level of up-regulation in IFN-α experiments (p < 655 

0.05);  656 

‘-’ symbol means features are negatively associated with the level of up-regulation in IFN-α experiments (p < 657 

0.05).  658 

 659 

Review of different testing datasets 660 

In this study, we trained and optimised a SVM model from our training dataset S2’, and 661 

prepared seven testing datasets (dataset S2’’/S3/S4/S5/S6/S7/S8) to assess the generalisation 662 

capability of our model under different conditions (Table 5). The S2’’ testing dataset was a 663 

subset of dataset S2. The prediction performance on this testing dataset was close to that in the 664 

training stage with an AUC of 0.7455 (Figure 13A). The best MCC value (0.345) was achieved 665 
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when setting the judgement threshold to 0.438, which meant that the prediction model was 666 

sensitive to signals related to ISGs. In this case, it performed predictions with high sensitivity 667 

but inevitably produced many false positives, especially within IRGs.  668 

In the S3 testing dataset, we used 695 ISGs with low confidence. The overall accuracy 669 

(equals to SN as there were no negatives) only reached 44.0% when using a judgement 670 

threshold of 0.549, about 0.18 lower than SN under the same threshold in the training dataset 671 

S2’ (Table 3). It is expected as some of their inherent attributes make them slightly up-672 

regulated, silent or even repressed (e.g., become non-ISGs in other IFN systems) in response 673 

to some IFN-triggered signalling. On this testing dataset, our machine learning model produced 674 

38 (5.5%) ISGs with a prediction score higher than 0.8. This number was also lower than that 675 

on the training dataset S2’. It further indicates the relatively low confidence for the ISGs 676 

included in dataset S3. 677 

The S4 testing dataset was constructed to illustrate our hypothesis that there are some 678 

patterns shared among the ISGs and IRGs at least in the IFN-α system in the human fibroblast 679 

cells. On this testing dataset, the prediction accuracy (equals to SP as there were no positives) 680 

was 60.2% under the judgement threshold of 0.549, about 0.15 lower than the SP under the 681 

same threshold in the training dataset S2’ (Table 3). Leucine rich repeat containing 2 (LRRC2), 682 

carbohydrate sulfotransferase 10 (CHST10) and eukaryotic translation elongation factor 1 683 

epsilon 1 (EEF1E1) showed strong signals of being ISGs (probability score > 0.9). In total, 684 

there were 56 (5.6%) IRGs being incorrectly predicted as the ISGs with prediction scores 685 

higher than 0.8. This high score was found in an estimated 8.1% of the ISGs but was only 686 

observed in 1.2% of human genes not differentially expressed in the IFN-α experiments 687 

(Figure 12B). These results indicate that there is a considerable number of IRGs incorrectly 688 

predicted as ISGs in the S4 testing dataset due to their close distance to the ISGs in the high-689 

dimensional feature space. This may be the case for many other datasets including dataset S2’’, 690 
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S5, S6, S7, and S8. It also supports our hypothesis about the shared patterns from the machine 691 

learning aspect and is consistent with the results shown in Figure 11. 692 

The next three testing datasets (S5, S6, and S7) were collected from the Interferome 693 

database [24] to test the applicability of the machine learning model across different IFN types. 694 

The ISGs in these testing datasets were all highly up-regulated (Log2(Fold Change) > 1.0) in 695 

the corresponding IFN systems while all the non-ISGs were not up-regulated after 696 

corresponding IFN treatments (Log2(Fold Change) < 0). The results shown in Figure 13 697 

reveals that the ISGs triggered by type I or III IFN signalling can still be predicted by our 698 

machine learning model, but the performance is limited to some extents (AUC = 0.6677 and 699 

0.6754 respectively). However, it is almost impossible to make normal predictions with the 700 

current feature space for human genes up-regulated by type II IFNs (AUC = 0.5532). 701 

 702 

Figure 13. The performance of our optimised model on different datasets. (A) and (B) 703 

illustrate the AUC and best MCC. S2’ is the training dataset used in this study. It randomly 704 

includes 496 ISGs and an equal number of non-ISGs from dataset S2 that contains ISGs/non-705 

ISGs with high confidence (Table 5). Evaluation on this dataset in (A) is processed via five-706 

fold cross validation. S2’’ is the testing dataset constructed with the remaining human genes in 707 

dataset S2. S5, S6, and S7 are collected from the Interferome database [24], including human 708 

genes with different responses to the type I, II and III IFNs, respectively. The label and usage 709 

of these human genes are provided in Supplementary Data S1.  710 

 711 

The S8 testing dataset consisted of 2217 human genes that were insufficiently expressed 712 

in IFN-α experiments in the human fibroblast cells [3]. The results showed that there were 713 

around 41.2% ELGs being predicted as the ISGs when using a judgement threshold of 0.549. 714 

This was approximately 0.21 lower than the SN under the same threshold in the training dataset 715 
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S2’ (Table 3). It suggests that there are more non-ISGs than ISGs in this dataset, which is 716 

consistent with the results shown in Figure 11. Particularly, we found ten ELGs with prediction 717 

scores higher than 0.9: CD48 molecule, CD53 molecule, lipocalin 2 (LCN2), uncoupling 718 

protein 1 (UCP1), coiled-coil domain containing 68 (CCDC68), potassium calcium-activated 719 

channel subfamily M regulatory beta subunit 2 (KCNMB2), potassium voltage-gated channel 720 

interacting protein 4 (KCNIP4), zinc finger HIT-type containing 3 (ZNHIT3), serpin family B 721 

member 4 (SERPINB4), and fibrinogen silencer binding protein (FSBP). By retrieving data 722 

from the Genotype-Tissue Expression project [68], we found that the expression of these ELGs 723 

were generally limited with the exception of CD53 and ZNHIT3 (Figure 14). The expression 724 

data of CD53 were not included in the OCISG database [3] and were also limited in the 725 

Interferome database [24]. It only showed slight up-regulation after type I IFN treatments in 726 

blood, liver, and brain but there is currently no record of its expression level in the presence of 727 

IFN-α in the human fibroblast cells. ZNHIT3 is another well-expressed gene lacking 728 

information in the OCISG. In the Interferome database [24], we found that ZNHIT3 could be 729 

up-regulated after IFN treatments in some fibroblast cells on skin. As for the remaining eight 730 

ELGs, despite their limited expression in the human fibroblast cells, their features suggest that 731 

they are very likely to be IFN-α stimulated in a currently untested cell type. 732 

 733 

Figure 14. Expression of the ELGs in different tissues. Expression data for ten ELGs are 734 

collected from the Genotype-Tissue Expression project (https://gtexportal.org/) [68]. The 735 

tissues in red are not included in the Interferome database [24]. White boxes in the heatmap 736 

indicate that there is no data available for genes in the corresponding tissues. The overall 737 

expression level of these ten ELGs are reflected via human perspective photo retrieved from 738 

Expression Atlas (https://www.ebi.ac.uk/gxa) [69].  739 

 740 

https://gtexportal.org/
https://www.ebi.ac.uk/gxa
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 741 

Discussion 742 

In this study, we investigated the characteristics that influence the expression of human genes 743 

in IFN-α experiments. We compared the ISGs and non-ISGs through multiple procedures to 744 

guarantee strong signals for the ISGs and to avoid cell-specific influences that resulted in the 745 

lack of the ISGs expression in certain cell types [2]. Even some highly up-regulated ISGs can 746 

become down-regulated when the biological conditions change, exemplified by the 747 

performance of C-X-C motif chemokine ligand 10 (CXCL10) on liver biopsies after IFN-α 748 

treatment. This refinement is necessary as the representation of features between the ISGs and 749 

background human genes show that many non-ISGs especially IRGs have similar feature 750 

patterns to the ISGs (Figure 11).  751 

Generally, the ISGs are less evolutionarily conserved with more human paralogues than 752 

the non-ISGs. They have specific nucleotide patterns exemplified by the depletion of GC-753 

content and have a unique codon usage preference in coding proteins. There are a number of 754 

SLNPs widely observed in the cDNA of the ISGs which are relatively rare in the non-ISGs 755 

(Supplementary Data S4). Likewise, there are also many SLAAPs highlighted in the 756 

sequences of ISG products that are absent or rare in the non-ISG products (Table 1). In the 757 

human PPI network, the ISG products tend to have higher betweenness than the background 758 

human protein, indicating their more frequent interruption of the shortest path (geodesic 759 

distance) between different nodes. Abnormal expression or knockout of these proteins will 760 

increase the diameter of the network and may lead to some lethal consequences that are not 761 

tolerated in signalling pathways [70-72]. These ISG specific patterns may be the result of the 762 

evolution of the innate immune system in vertebrates and could be adaptations to the cellular 763 

environment induced by interferon following a pathogenic infection [73]. It is also possible 764 

that some of the particular SLNPs and SLAAPs may be functionally important as the cell 765 
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changes from non-infected to infected. Experimental evidence will be necessary to investigate 766 

this. 767 

Some inherent properties of the ISGs facilitate or elevate their expression after IFN-α 768 

treatments but may also be used by viruses to escape from IFN-α-mediated antiviral response 769 

[22]. For instance, the representation of dN showed a more significant difference than that of 770 

dS within human paralogues. We found that higher dN/dS ratio was positively correlated with 771 

gene up-regulation following IFN-α treatments (Figure 9). It means the gene is less conserved 772 

with more non-synonymous or nonsense mutations, which can often be associated to inherited 773 

diseases and cancer [74]. It will also facilitate the virus to interfere with IFN-α signalling 774 

through the JAK-STAT pathway and inactivate downstream cellular factors involved in IFN-775 

α signal transductions [22]. We found arginine was under-represented in the ISG products 776 

compared to the non-ISG products. As arginine is essential for the normal proliferation and 777 

maturation of human T cells [75], such depletion in the ISG products may leave a risk of 778 

inhibiting T‐ cell function and potentially increased susceptibility to infections [76]. 779 

Furthermore, the special pattern of the ISGs also promotes the representation of some features 780 

even if they are not well represented in nature, for example, the higher cysteine composition in 781 

the ISGs. We hypothesize that it may be helpful to activate T-cell to regulate protein synthesis, 782 

proliferation and secretion of immunoregulatory cytokines [77,78]. There are also some 783 

features (e.g. methionine composition) not differentially represented between the ISGs and 784 

non-ISGs but play important roles in IFN-α-mediated immune responses. For example, there 785 

is evidence for the methionine content playing a role in the biosynthesis of S-786 

Adenosylmethionine (SAM), which can improve interferon signalling in cell culture [79,80]. 787 

As previously mentioned, there were similar patterns between the feature representation 788 

of the ISGs and IRGs, which led to the unclear boundary for the ISGs and non-ISGs in the 789 

feature space. We found significant differences on the representation of features on 790 
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evolutionary conservation (Figure 3) between the ISGs and non-ISGs, but they became non-791 

significant when comparing the ISGs with IRGs. Similar phenomena were observed on many 792 

features deciphered from the canonical transcript, e.g., dinucleotide composition and codon 793 

usage features. We suggest that the IRGs can be viewed as additional ISGs as they also regulate 794 

the activity of human genes in response to IFNs, only negatively. Furthermore, despite so many 795 

similarities between the ISGs and IRGs, the separate classification of these genes is still 796 

possible. 4-mer compositions can be considered as the key features as most of them are 797 

differentially represented between ISGs and IRGs (Figure 11). Using proteomic features can 798 

also help to differentiate the ISGs from IRGs but is not as good as using 4-mer features. 799 

In the machine learning framework, we developed the ASI algorithm to remove 800 

disruptive features but kept features not influencing the prediction performance when being 801 

removed individually during iterations. Features might have synergistic effects thus the 802 

elimination of each feature left a different impact on the remaining ones even if these were 803 

individually useless for the improvement of the classifier. In this case, keeping as many useful 804 

features as possible seems to be a good option but will greatly increase the dimension of the 805 

feature space and increase the risk of overfitting [62]. By contrast, our ASI algorithm avoided 806 

such a risk and kept the synergistic effect of different features through iterations.  807 

In the prediction task, we found some previously labelled non-ISGs with very high 808 

prediction scores, suggesting that they had many inherent properties enabling them to be 809 

stimulated after IFN-α treatments. Some of them, for example, UBE2R2 has been shown to be 810 

significantly up-regulated after IFN-α treatment [81]. The non-ISG label was assigned because 811 

the relevant expression data in the presence of IFN-α were not included in the OCISG [3] and 812 

Interferome databases [24]. We also found ten ELGs with very high prediction scores (> 0.9). 813 

Literature searches on these genes indicate that they are likely to be involved in the innate 814 

immune response [82,83]. Their responses may be limited to certain tissues or cell types for 815 
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which there is limited expression data in the Interferome database [24]. For example, LCN2 816 

has been shown to mediate an innate immune response to bacterial infections by sequestering 817 

iron [82] and is induced in the central nervous system of mice infected with West Nile virus 818 

encephalitis [84]. CD48 was shown to increase in levels in the context of human IFN-α/β/γ 819 

stimulation [83]. Interestingly, CD48 is also the target of immune evasion by viruses [85] and 820 

has been captured in the genome of cytomegalovirus and undergone duplication [86]. Evidence 821 

for other ELGs is harder to assess, particularly those for which expression is absent in a range 822 

of tissues (e.g., UCP1 in Figure 14). UCP1 is a mitochondrial carrier protein expressed in 823 

brown adipose tissue (BAT) responsible for non-shivering thermogenesis [87]. It is possible 824 

that UCP1 is stimulated directly or indirectly by IFN-α in BAT, resulting in the defended 825 

elevation of body temperature in response to infection.  826 

We developed the machine learning model based on experimental data from the human 827 

fibroblast cells stimulated by IFN-α. It can be generalised to type I or III IFN systems, 828 

presumably because activations of type I and III ISGs are both controlled by ISRE [9] and aim 829 

to regulate host immune response [10-12]. However, our model cannot be used for predictions 830 

in the type II IFN system (AUC = 0.5532, best MCC = 0.083, Figure 13) because of the 831 

different control element and the different role in human immune activities [14]. 832 

In summary, our analyses highlight some key sequence-based features that are helpful 833 

to distinguish the ISGs from non-ISGs or IRGs. Our machine learning model is able to produce 834 

a list of putative ISGs to support IFN-related research. As knowledge of the ISG functions 835 

continue to be elucidated by experimentalists, the in-silico approach applied here can in future 836 

be extended to classify the different functions of ISGs. 837 

 838 

 839 
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Methods 840 

Dataset curation 841 

In this study, we retrieved 2054 ISGs (up-regulated), 12379 non-ISGs (down-regulated or not 842 

differentially expressed), and 3944 unlabelled human genes (ELGs with less than one count 843 

per million reads mapping across the three biological replicates [88,89]) from the OCISG 844 

database (http://isg.data.cvr.ac.uk/) [3]. Gene clusters in the OCISG database were built 845 

through Ensembl Compara [90], which provided a thorough account of gene orthology based 846 

on whole genomes available in Ensembl [58]. Labels of these human genes were defined based 847 

on the fold change and a false discovery rate (FDR) following the IFN-α treatments in the 848 

human fibroblast cells. We searched the collected 18377 entries against the RefSeq database 849 

(https://www.ncbi.nlm.nih.gov/refseq/) [32] to decipher features based on appropriate 850 

transcripts (canonical) [91] coding for the main functional isoforms of these human genes. It 851 

produced 1315, 7304, and 2217 results for the ISGs, non-ISGs and ELGs, respectively. These 852 

10836 human genes were well-annotated by multiple online databases and were used as the 853 

background dataset S1 in the analyses.  854 

For the purpose of generating a set of human genes with high confidence of being up-855 

regulated and non-up-regulated in response to the IFN-α, we searched the recompiled 8619 856 

human genes (ISGs or non-ISGs) against Interferome (http://www.interferome.org/) [24]. We 857 

filtered out the ISGs without high up-regulation (Log2(Fold Change) > 1.0) or with obvious 858 

down-regulation (Log2(Fold Change) < -1.0) in the presence of type I IFNs. This procedure 859 

guaranteed a refined ISG dataset with strong levels of stimulation induced by any type I IFNs 860 

and reduced biases driven by the IRGs for the analyses and predictions. We filtered out the 861 

non-ISGs showing enhanced expression after type I IFN treatments (Log2(Fold Change) > 0). 862 

The exclusion of these non-ISGs could effectively reduce the risk of involving false negatives 863 

http://isg.data.cvr.ac.uk/
https://www.ncbi.nlm.nih.gov/refseq/
http://www.interferome.org/
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in analyses and producing false positives in predictions. As a result, the refined dataset S2 864 

contains 620 ISGs and 874 non-ISGs with relatively high confidence.  865 

The training procedure in the machine learning framework was conducted on the 866 

balanced dataset S2’. It consisted of 992 randomly selected ISGs and non-ISGs from dataset 867 

S2. The remaining human genes in S2 were used for independent testing. Additionally, we also 868 

constructed another six testing datasets for the purpose of review and assessment. Dataset S3 869 

contained 695 ISGs with low confidence compared to those ISGs in dataset S2. Some of them 870 

could be non-ISGs or even IRGs in the type I IFN system. Dataset S4 contained 1006 IRGs 871 

from the human fibroblast cell experiments. Dataset S5, S6, and S7 were constructed based on 872 

records for experiments in type I, II, and III IFN systems from Interferome [24]. The criterion 873 

for an ISG in the latter three datasets was a high level of up-regulation (Log2(Fold Change) > 874 

1.0) while that for non-ISGs was no up-regulation after IFN treatments (Log2(Fold Change) < 875 

0). The last testing dataset S8 was derived from our background dataset S1, containing 2217 876 

ELGs. A breakdown of the aforementioned eight datasets is shown in Table 5. Detailed 877 

information of the human genes used in this study is provided in Supplementary Data S1. 878 

The cDNA and protein sequences are accessible at http://isgpre.cvr.gla.ac.uk/. 879 

 880 

Table 5.  A breakdown of datasets used in this study. 881 

Dataset Brief description IFN system ISGs Non-ISGs ELGs 

S1 Well-annotated human genes (background) IFN-α in fibroblast cells 1315 7304 2217 

S2 Refined dataset with high confidence IFN-α in fibroblast cells 620 874 0 

S2’ Training subset of S2 IFN-α in fibroblast cells 496 496 0 

S2’’ Testing subset of S2 IFN-α in fibroblast cells 124 378 0 

S3 ISGs with low confidence in S1 IFN-α in fibroblast cells 695 0 0 

S4 IRGs divided from S1 IFN-α in fibroblast cells 0 1006 0 

S5 ISGs from Interferome [24] Type I IFNs in all cells 1259 872 0 

http://isgpre.cvr.gla.ac.uk/
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S6 ISGs from Interferome [24] Type II IFN in all cells 2229 755 0 

S7 ISGs from Interferome [24] Type III IFN in all cells 33 1683 0 

S8 ELGs divided from S1 IFN-α in fibroblast cells 0 0 2217 

 882 

Generation of parametric features 883 

We encoded 397 parametric features from aspects of evolution, nucleotide composition, 884 

transcription, amino acid composition, and network preference. Original values of these 885 

features for our compiled 10836 human genes are accessible at http://isgpre.cvr.gla.ac.uk/. 886 

From the perspective of evolution, we used the number of transcripts, open reading 887 

frames (ORFs) and count of exons used for coding to quantify the alternative splicing process. 888 

Genes with more transcripts and ORFs have higher alternative splicing diversity to produce 889 

proteins with similar or different biological functions [33,92,93]. Frequent use of protein-890 

coding exons indicates more complex alternative splicing products [94]. Here, duplication and 891 

mutation features were measured by the number of within species paralogues and substitutions 892 

[34,35]. These data were collected from BioMart [58] to assess the selection on protein 893 

sequences and mutational processes affecting the human genome [95].  894 

From the perspective of nucleotide composition, we calculated the percent of adenine, 895 

thymine, cytosine, guanine, and their four-category combinations in the coding region of the 896 

canonical transcript. The first category measured the proportion of two different nitrogenous 897 

bases out of the implied four bases, e.g., GC-content. The second category also focused on the 898 

combination of two nucleotides but added the impact of phosphodiester bonds along the 5’ to 899 

3’ direction, e.g., CpG-content [96]. The third category calculated the occurrence frequency of 900 

4-mers, e.g., ‘CGCG’ composition to involve some positional resolution [41]. The last category 901 

considered the co-occurrence of SLNPs. From the perspective of transcription, we calculated 902 

the usage of 61 coding codons and three stop codons in the coding region of the canonical 903 

transcripts. Codon usage biases are observed when there are multiple codons available for 904 

http://isgpre.cvr.gla.ac.uk/
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coding one specific amino acid. They can affect the dynamics of translation thus regulate the 905 

efficiency of translation and even the folding of the proteins [40,97].  906 

From the perspective of amino acid composition, we calculated the percentage of 20 907 

standard amino acids and their combinations based on their physicochemical properties [46]. 908 

Patterns in the amino acid level are considered to have a direct impact on the establishment of 909 

biological functions or to reflect the result of strong purifying selection [47]. Based on the 910 

chemical properties of the side chain, we grouped amino acids into seven classes including 911 

aliphatic, aromatic, sulfur, hydroxyl, acidic, amide, and basic amino acids. We also grouped 912 

amino acids based on geometric volume, hydropathy, charge status, and polarity, but found 913 

some overlaps among these features. For instance, amino acids with basic side chains are all 914 

positively charged. Aromatic amino acids all have large geometric volumes (volume > 180 915 

cubic angstroms). Likewise, we also considered the co-occurrence of short linear sequence 916 

patterns at the protein level. These co-occurring SLAAPs may relate to potential mechanisms 917 

regulating the expression of the ISGs [98]. 918 

When trying to measure the network preference for the gene products, we constructed 919 

a human PPI network based on 332,698 experimentally verified interactions (confidence score > 920 

0.63) from HIPPIE [55]. Nodes and edges of this network are provided at 921 

http://isgpre.cvr.gla.ac.uk/. Eight network-based features including the average shortest path, 922 

closeness, betweenness, stress, degree, neighbourhood connectivity, clustering coefficient, and 923 

topological coefficient were calculated from this network. Isolated nodes or proteins were not 924 

included in our network and were assigned zero value for all these eight features. The shortest 925 

path measures the average length of the shortest path between a focused node and others in the 926 

network. Closeness of a node is defined as the reciprocal of the length of the average shortest 927 

path. Proteins with a low value of the shortest paths or closeness are close to the centre of the 928 

network. Betweenness reflects the degree of control that one node exerted over the interactions 929 

http://isgpre.cvr.gla.ac.uk/
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of other nodes in the network [99]. Stress of a node measures the number of shortest paths 930 

passing through it. Proteins with a high value of betweenness or stress are close to the 931 

bottleneck of the network. Degree of a node counts the number of edges linked to it while 932 

neighbourhood connectivity reflected the average degree of its neighbours. Proteins with high 933 

degree or neighbourhood connectivity are close to the hub of the network. They are considered 934 

to play an important role in the establishment of the stable structure of the human interactome 935 

[100]. Clustering and topological coefficient measure the possibility of a node to form clusters 936 

or topological structures with shared neighbours. The former coefficient can be used to identify 937 

the modular organisation of metabolic networks [101] while the latter one may be helpful to 938 

find out virus mimicry targets [53]. 939 

 940 

Generation of non-parametric features 941 

In this study, non-parametric features were used to check the occurrence of short linear 942 

sequence patterns in the genome and proteome. SLNPs constructed in this study contained 943 

three to five random nucleotides, producing 708,540 alternative choices. SLNPs with no 944 

restrictions on their first or last position were not taken into consideration as their patterns 945 

could be expressed in a more concise way. A SLNP was picked out to encode a binary feature 946 

when its occurrence level in the coding region of the canonical ISG transcripts was significantly 947 

higher than that for the non-ISGs (Pearson's chi-squared test: p < 0.05). SLAAPs were 948 

constructed with three to four fixed amino acids separated by putative gaps. The gap could be 949 

occupied by at most one random amino acid, producing 1,312,000 alternative choices. 950 

Likewise, binary features were prepared for SLAAPs showing significant enrichment in the 951 

ISG products than in the non-ISG products (Pearson's chi-squared test: P < 0.05). Since there 952 

were lots of results rejecting the null-hypothesis, we adopted the Benjamini-Hochberg 953 

correction procedure to avoid type I error [43]. Additionally, we also encoded two features to 954 
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check the co-occurrence or absence of multiple SLNPs and SLAAPs. This co-occurrence status 955 

might be a better representation of functional sites composed of short stretches of adjacent 956 

nucleobases or amino acids surrounding SLNPs or SLAAPs [47].  957 

 958 

Assessment of associations between feature representation and IFN-triggered 959 

stimulations 960 

We obtained 8619 human genes with expression data from the OCISG database [3]. 4111 of 961 

them were annotated with a positive Log2(Fold Change) ranging from 0 to 12.6, which meant 962 

they were up-regulated after IFN-α treatments in the human fibroblast cells. In order to measure 963 

the average level of feature representation (AREP) for genes with similar expression during 964 

IFN stimulations, we introduced a 0.1-length sliding-window to divide the data into 126 bins 965 

with different Log2(Fold Change). Here, PCC was introduced to test the association between 966 

the representation of parametric features and IFN-α-triggered stimulation (Log2(Fold Change) > 967 

0). It can be formulated as: 968 

𝑃𝐶𝐶(𝑓) =
1

𝑛 − 1
∑ (

𝐿𝐹𝐶𝑖 −𝑀0

𝑆𝐷0
) × (

𝐴𝑅𝐸𝑃𝑖 −𝑀𝑓

𝑆𝐷𝑓
)

𝑛

𝑖=1
 (1) 

where 𝑛 is the number of divided parts that equals to 126 in this study; 𝐿𝐹𝐶𝑖 and 𝐴𝑅𝐸𝑃𝑖 are 969 

the value of Log2(Fold Change) and AREP in the 𝑖-th part; 𝑀0 and 𝑆𝐷0 are the mean and 970 

standard deviation of Log2(Fold Change), which is set as 6.4 and 3.7 respectively in this study; 971 

𝑀𝑓 and 𝑆𝐷𝑓 are the mean and standard deviation of 126 AREP that reflect the representation 972 

of the considered feature. To make fair comparisons among features with different scales, we 973 

normalised them based on the major value of their representations: 974 

𝑁𝑜𝑟𝑚(𝑓) =

{
 

 
    1, 𝑓 > 𝑈𝐵(𝑓)

𝑓 − 𝐿𝐵(𝑓)

𝑈𝐵(𝑓) − 𝐿𝐵(𝑓)

    0, 𝑓 < 𝐿𝐵(𝑓)

, 𝐿𝐵(𝑓) < 𝑓 < 𝑈𝐵(𝑓) (2) 
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where 𝐿𝐵(𝑓)  and 𝑈𝐵(𝑓)  are the lower and upper bound representing the 5th and 95th 975 

percentile within representation values for the target feature. The representation of feature was 976 

considered to have a stronger positive/negative association with IFN-α-triggered stimulations 977 

if the PCC calculated from the normalised features was closer to 1.0/-1.0 and the p value 978 

calculated by the Student t-test was lower than 0.05. 979 

 980 

Machine learning and optimisation 981 

We designed a machine learning framework for the prediction of ISGs. Firstly, all features 982 

were encoded and normalised based on their major representations (Equation 2). Then we 983 

used an under-sampling procedure [67] to generate a balanced dataset from dataset S2 for 984 

training and modelling. SVM with radial basis function [60] was used as the basic classifier. It 985 

maps the normalised feature space to a higher dimension to generate a space plane to better 986 

classify the majority of positive and negative samples. Since there were usually lots of noisy 987 

data distributed in the feature space, it was necessary to remove disruptive features. This 988 

effectively reduced the dimensionality of the feature space and made it easier for the SVM 989 

model to generate a more appropriate classification plane that involved fewer false positives 990 

and false negatives. Here, we propose a subtractive iteration algorithm driven by the change of 991 

AUC to filter out disruptive features (Figure 15). In each iteration, we traversed the features 992 

and removed those that do not improve the AUC of the prediction results. Theoretically, this 993 

algorithm can greatly optimise the feature space and remove all disruptive features after 994 

multiple iterations. In the testing procedure, we encoded the optimum features for testing 995 

samples and place them in the optimised feature space. Samples with longer distance to the 996 

optimised classification plane indicated a stronger signal of being the ISGs or non-ISGs. They 997 

were more likely to get higher prediction scores (close to 0 or 1) from the SVM model. 998 

 999 



 

 44 

Figure 15. The pseudo-code of the AUC-driven subtractive iteration algorithm.  1000 

 1001 

Performance evaluation 1002 

In this study, the prediction results were evaluated with three threshold-dependent criteria 1003 

including SN, SP, and MCC [61] and two threshold-independent criteria: SN_n and AUC. SN 1004 

and SP were used to assess the quality of the machine learning model in recognising ISGs and 1005 

non-ISGs respectively while MCC provided a comprehensive evaluation for both positives and 1006 

negatives. The number of ‘n’ in the SN_n criterion was determined based on the number of 1007 

ISGs used for testing. It was used to measure the upper limit of the prediction model as well as 1008 

to check the existence of important false positives close to the class of ISGs from the 1009 

perspective of data expression. Finally, AUC was a widely used criterion to evaluate the 1010 

prediction ability of a binary classifier system. The group of interest was almost unpredictable 1011 

in a specific binary classifier system if the AUC of the classifier was close to 0.5. 1012 

 1013 

 1014 

Availability of source code and requirements 1015 

 Project name: ISGPRE 1016 

 Project home page: http://isgpre.cvr.gla.ac.uk/ 1017 

 Operating system: mac OS 1018 

 Programming language: Java 1019 

 Other requirements: JDK 8+ 1020 

 License: GNU GPL v3 1021 

 Any restrictions to use by non-academics: None 1022 

 Documentation and tutorials: https://github.com/HChai01/ISGPRE 1023 

http://isgpre.cvr.gla.ac.uk/
https://github.com/HChai01/ISGPRE
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Additionally, we have released all of our compiled data and calculated features at the 1024 

project home page and GitHub repository. They can be reused to conduct research relating to 1025 

IFN-α or type I/II/III IFNs.  1026 

 1027 

 1028 

Data Availability 1029 

The implemented web server and all reproduceable data are freely accessible at 1030 

http://isgpre.cvr.gla.ac.uk/ and https://github.com/HChai01/ISGPRE. 1031 

 1032 

 1033 

Additional Files 1034 

Supplementary Data S1. Basic information and usage of our compiled 10836 human 1035 

genes. 1036 

Supplementary Data S2. The result of Mann-Whitney U tests for parametric features. 1037 

Supplementary Data S3. Association between feature representations and IFN-α 1038 

stimulations. 1039 

Supplementary Data S4. The result of Pearson's chi-squared tests for sequence motifs. 1040 

Supplementary Data S5. Decision trees generated during five-cross validation on the 1041 

training dataset S2'. 1042 

 1043 

 1044 

Abbreviations 1045 

APC: anaphase promoting complex; AREP: average level of feature representation; ASI: 1046 

AUC-driven subtractive iteration algorithm; AUC: area under the receiver operating 1047 

characteristic curve; BAT: brown adipose tissue; BATF2: basic leucine zipper ATF-like 1048 

http://isgpre.cvr.gla.ac.uk/
https://github.com/HChai01/ISGPRE
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transcription factor 2; BST2: bone marrow stromal cell antigen 2; CCDC68: coiled-coil domain 1049 

containing 68; cDNA: complementary DNA; CHST10: carbohydrate sulfotransferase 10; 1050 

CMTR1: cap methyltransferase 1; CXCL10: C-X-C motif chemokine ligand 10; dN: non-1051 

synonymous substitutions per non-synonymous site; dS: synonymous substitutions per 1052 

synonymous site; DSP: desmoplakin; DT: decision tree; EEF1E1: eukaryotic translation 1053 

elongation factor 1 epsilon 1; ELAVL1: embryonic lethal, abnormal vision like RNA binding 1054 

protein 1; ELGs: human genes with limited expression in the IFN-α experiments; ESR2: 1055 

estrogen receptor 2; FDR: false discovery rate; FSBP: fibrinogen silencer binding protein; GAF: 1056 

IFN-γ activation factor; GAS: gamma-activated sequence promoter elements; gBGC: GC-1057 

biased gene conversion; HIPPIE: Human Integrated Protein-Protein Interaction rEference; 1058 

HMCN1: hemicentin 1; HPSE: ectopic expression of heparinase; IDRs: intrinsically disordered 1059 

regions; IFITM: interferon induced transmembrane proteins; IFNAR: interferon-α receptor; 1060 

IFNGR: IFN-γ receptor; IFNLR1: IFN-λ receptor 1; IFNs: interferons; IL-10R2: interleukin-1061 

10 receptor 2; IRF9: interferon regulatory factor 9; IRG: interferon repressed (down-regulated) 1062 

human genes; ISG15: ISG15 ubiquitin like modifier; ISG20: interferon stimulated exonuclease 1063 

gene 20; ISGF3: interferon stimulated gene factor 3 complex; ISGs: interferon stimulated (up-1064 

regulated) human genes; ISRE: interferon stimulated response elements; JAK1: Janus kinase 1065 

1; KCNIP4: potassium voltage-gated channel interacting protein 4; KCNMB2: potassium 1066 

calcium-activated channel subfamily M regulatory beta subunit 2; KNN: k-nearest neighbors; 1067 

LCN2: lipocalin 2; LRRC2: Leucine rich repeat containing 2; MCC: Matthews correlation 1068 

coefficient; MX: MX dynamin like GTPase proteins; non-ISGs, human genes not significantly 1069 

up-regulated by interferons; NTRK1: neurotrophic receptor tyrosine kinase 1; OCISG: 1070 

Orthologous Clusters of Interferon-stimulated Genes; ORF: open reading frame; PCC: 1071 

Pearson’s correlation coefficient; PPI: protein-protein interaction; RefSeq: Reference 1072 

Sequence; RF: random forest; SAM: S-Adenosylmethionine; SERPINB4: serpin family B 1073 
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member 4; SLAAP: short linear amino acid pattern; SLNP: short linear nucleotide pattern; SN: 1074 

sensitivity; SP: specificity; STAT: signal transducer and activator of transcription; SVM: 1075 

support vector machine; TDRD6: tudor domain containing 6; TRIM25: tripartite motif 1076 

containing 25; TRIM5: tripartite motif containing 5; TRIM59: tripartite motif containing 59; 1077 

TYK2: tyrosine kinase 2; UBD: ubiquitin D; UBE2R2: ubiquitin conjugating enzyme E2 R2; 1078 

UCP1: uncoupling protein 1; VCAM1: vascular cell adhesion molecule 1; ZNHIT3: zinc finger 1079 

HIT-type containing 3. 1080 
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